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Evanescent states and nonequilibrium in driven superconducting nanowires
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We study the nonlinear response of current transport in a superconducting diffusive nanowire between normal
reservoirs. We demonstrate theoretically and experimentally the existence of two different superconducting
states appearing when the wire is driven out of equilibrium by an applied bias, called the global and bimodal
superconducting states. The different states are identified by using two-probe measurements of the wire, and
measurements of the local density of states with tunneling probes. The analysis is performed within the framework
of the quasiclassical kinetic equations for diffusive superconductors.

DOI: 10.1103/PhysRevB.85.224503 PACS number(s): 74.40.Gh, 74.78.Na, 74.25.fg, 74.45.+c

I. INTRODUCTION

Superconducting nanowires are often part of objects to
study the Josephson effects in graphene, carbon nanotubes,
or semiconducting nanowires. In addition, in many cases
superconducting nanowires themselves are used to study
their response to radiation. In most cases, the electron back-
scattering resistance is assumed to be located at the interfaces
and in the normal metal part. An interesting question is to
what extent the superconducting mesoscopic or (nano)wires
themselves contribute to the resistance of a device due to
the conversion from normal current to supercurrent and vice
versa. For superconducting nanowires between supercon-
ducting contacts, a common assumption is that the applied
power leads to dissipation and to an increased temperature
varying over the wire length.1 In quite a few experiments
with a nanowire between normal or superconducting pads,
a parabolic temperature profile T (x) is assumed to control
the local superconducting properties.2–4 The definition of
a temperature, however, requires that the electrons are in
local equilibrium, a condition not easily met for wires of
mesoscopic length scales. In the case of a biased normal
wire,5 the diffusion time τD = L2/D, with L the wire length
and D the diffusion constant, can be much shorter than
the inelastic relaxation time τin. In this case, the electron
distribution is highly nonthermal and given by a two-step
function f (E,x) = (1 − x)f0(E − eV/2) + xf0(E + eV/2),
with f0(E,T ) = 1/[exp(E/kT ) + 1] a Fermi-Dirac distribu-
tion, V the applied bias, k Boltzmann’s constant, E the
energy of the electrons measured from the Fermi energy,
T the bath temperature, and x the coordinate along the
wire. A general, nonthermal (or nonequilibrium) electron
distribution in a superconductor influences almost all aspects
of that superconductor. It affects the local Cooper-pair density
and the current-carrying capacity, but it can also produce a
voltage drop in the superconductor, i.e., a dc resistance of
the superconductor. To discuss the various contributions, it
is advantageous to separate the nonequilibrium distribution
function f (E) into an energy (or longitudinal) mode fL,
acting primarily on the amplitude of the superconducting
gap, and a charge (or transverse) mode fT , which leads to
a shift in the pair chemical potential μcp.6 The latter mode

FIG. 1. (Color online) A superconducting Al nanowire connected
to two massive normal reservoirs, consisting of the same Al, covered
by a normal metal Cu layer: (a) scanning electron microscopy (SEM)
picture, (c) atomic force microscope (AFM) picture, and (d), (e)
schematic representation. The thin Al of the pads is driven normal by
the inverse proximity effect of the thick normal Cu. Normal tunneling
probes are attached for local measurements (b).

fT describes an imbalance between electron and holes in
the excitation spectrum, leading to a net charge Q∗ in the
(decaying) excitations. This contribution can be dominant in
experiments probing electrical transport in superconducting
heterostructures at subgap energies.

In this paper, we report on an experimental and theoretical
study of nonlinear electrical transport in a well-defined model
system,7,8 in which a superconducting wire is connected to
two large normal contact pads (Fig. 1). The normal electrodes
induce evanescent subgap states in the superconducting wire.
In addition, they act as equilibrium electron reservoirs to fill
and empty the states in the superconducting wire. When a bias
eV is applied, evanescent electrons and holes are injected from
the reservoirs into the superconducting wire, and the resulting
nonequilibrium distribution function consists of both an energy
mode fL and a charge mode fT . The well-defined boundary
conditions and simplicity of this system make it a natural
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FIG. 2. (Color online) (a) The complete wire is in a single
superconducting state with order parameter �(x). However, near the
normal reservoirs, the condensate carries only a small fraction Js

of the current as a supercurrent, which results in a resistance and a
voltage drop at the ends of the wire, over roughly a coherence length.
At the lowest temperatures, a small proximity effect can occur at
the connection of the bilayer reservoirs to the wire (schematically
illustrated by dotted black lines). (b) Two distinct superconducting
domains at the ends of the wire are separated by a normal region
in the center of the wire. Due to the small supercurrent, the voltage
profile is almost equal to the normal state.

choice to study the superconducting state in the presence of a
general nonequilibrium.

We address these microscopic properties of the wire ex-
perimentally using two-point measurements of the nanowire,
which are a sensitive probe for the resistive properties
originating in fT . Measurements with tunneling probes allow
us to measure the local density of states and the different
chemical potentials involved. We demonstrate that two distinct
metastable superconducting states exist when the wire is
driven (Fig. 2). The first superconducting state extends over
the complete length of the wire, and has been reported
in the linear regime by Boogaard et al.9 The second state
exists only under driving, and consists of two, geometrically
separated, superconducting domains, both at the ends of the
wire. We show that the superconductivity nucleates in the
vicinity of the normal reservoirs because the local electron
distribution is closer to the equilibrium state. The existence of
metastable states has been identified in previous work using
phenomenological models,10,11 based on a normal resistive
domain. We analyze these states using the quasiclassical
Green’s functions, and show how the energy mode controls
the existence of these states, whereas the charge mode controls
the resistance. Hence, the full nonlinear response is found to
be the result of a complex interplay between both the charge
and the energy mode nonequilibrium.

II. THEORETICAL FRAMEWORK

We consider a model system consisting of a superconduct-
ing one-dimensional diffusive wire connected to two normal,
equilibrium reservoirs [Fig. 1(d)]. Electrons are injected into

and extracted from the superconducting wire by the reservoirs
with equilibrium Fermi distributions f0(E ± eV,T ), with
relative Fermi levels determined by the applied voltage V .
Within the wire, the electrons are distributed over the energies
with a position- and energy-dependent nonequilibrium distri-
bution function f (E,x) determined by a diffusion equation. In
addition, the electronic states concerned are decaying states,
evanescent modes, as their energy is smaller than the energy
gap (eV � 2�). Therefore, it is necessary to include the inter-
play between these short-lived states and the superconducting
condensate, which goes beyond a two-fluid description, in
which a sharp distinction between long-living quasiparticle
states and the condensate is assumed. Such an analysis is
performed using the quasiclassical Green’s functions theory
for superconductivity, which treats the electronic properties of
the excitations and the condensate on the same footing:12

Ǧ =
(

ĜR ĜK

0 ĜA

)
, ĜR =

(
G F1

F2 G†

)
. (1)

The retarded (advanced) functions ĜR(A) consist of normal
and anomalous propagators G and F , which describe the
single-electron spectrum and the coherence between electrons,
respectively. The occupation numbers of the electronic excita-
tions are contained in the Keldysh component ĜK .

In general, these Green’s functions are dependent on the
time, energy, position, and momentum of the particle: G =
G(E,t,r,p). However, typical variations occur on a much
slower length scale than the Fermi wavelength. The Green’s
functions are sharply peaked around the Fermi momentum
p = pF , and a considerable simplification can be obtained
by integrating G over all momenta. A second simplification
arises from the short mean-free path in dirty superconducting
films, which averages out any dependence on the momentum
direction. The resulting equations were obtained by Usadel,13

and they only contain what is called the quasiclassical
Green’s functions g(E,x,t) and f (E,x,t). Our experimental
observations indicate that relevant solutions are stationary, so
in addition we neglect all time dependencies in the equations.
This choice is partially supported by theoretical work of
Snyman et al.14 who demonstrate for a simplified system that
the solutions for a dc bias are always stationary. To parametrize
g(E,x) and f (E,x), we use a complex pairing angle θ (E,x)
describing correlation between electrons and holes, and a
complex phase χ : g = cos(θ ),f1,2 = sin(θ )e±iχ .15 The nor-
malization condition g2 + f

†
1 f2 = 1 is automatically fulfilled,

while the variations of θ (E,x) and χ (E,x) are determined by
the following diffusion equations:

h̄D{∇2θ − sin θ cos θ (∇χ )2}
= −i2E sin θ − cos θ (�e−iχ + �∗eiχ ), (2)

h̄D∇{sin2 θ (∇χ )} = i sin θ (�e−iχ − �∗eiχ ),

with D the normal-state diffusion constant. The first equation
describes how the presence of a local superconducting order
parameter �(x) generates pair correlations θ (E,x), which
allows us to calculate the local density of states (DOS)
N (E,x) = Re cos(θ ). The second equation relates the phase
gradient of the gap to the presence of supercurrents.
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A convenient description of a nonequilibrium supercon-
ductor is obtained by introducing a generalized distribution
function h(E), defined as GK = GRh(E) − h(E)GA. To
disentangle the influence of the distribution function on the
amplitude and the phase of the order parameter, h(E) is split
in the even part (energy mode) in particle-hole space fL(E,x),
and the odd part (charge mode) fT (E,x). The total electron dis-
tribution functions f (E,x) are then obtained from 2f (E,x) =
1 − fL(E,x) − fT (E,x). The presence of a charge mode is
related to the presence of a charge Q∗ integrated over all
excitations, and the consequence of inhomogeneity in the
superconducting system, leading to conversion of quasiparticle
current to supercurrent. Charge imbalance has been studied
thoroughly at temperatures close to Tc, i.e., for long-lived
quasiparticle excitations.16,17 However, the concept of charge
imbalance also applies to short-lived evanescent states,18 for
small injection voltages, and at low temperatures.19,20

Conservation of energy E and charge Q result in two
coupled diffusion equations for fL and fT :

h̄D∇JE = 0,h̄D∇JQ = 2RLfL + 2RT fT , (3)

with

JE = �L∇fL + �X∇fT + jεfT ,

JQ = �T ∇fT − �X∇fL + jεfL

�L,T = 1 + | cos θ |2 ∓ | sin θ |2 cosh(2χ2), (4)

�X = −| sin θ |2 sinh(2χ2), jε = 2 Im(sin2 θ∇χ ),

RL,T = Re[sin θ (�e−iχ ∓ �∗eiχ )],

where �L,T,X are generalized diffusion constants, jε is the
spectral supercurrent, and RL,T determine the magnitude of
the source term on the right-hand side of Eq. (3). The energy
current is dominated by the diffusion of the energy mode
fL. Our Al wires are relatively short, which means we can
neglect inelastic processes, as the inelastic electron-electron
and electron-phonon interaction lengths are of the order
of 10 μm at a temperature of 1 K.21 For long wires or
materials with a strong electron-phonon interaction, this is not
necessarily true. The stronger electron-phonon coupling of Nb
results in an inelastic mean-free path of roughly 0.1 μm.22

The charge current consists partly of a normal current driven
by a gradient of the charge mode In = �T ∇fT , and partly of
a supercurrent related to a gradient of the phase Is = fLjε .
Conversion of a normal current into a supercurrent implies a
change of ∇fT , and is proportional to RT ≈ � in Eq. (3).

The position-dependent potential in the superconductor
eφ(x) is obtained by integrating the charge of the quasiparticle
excitations over all energies:

eφ(x) =
∫ ∞

−∞
N (E)f S

T (E,x). (5)

In order to conserve charge neutrality, the presence of the
net charge in the excitations is compensated by a shift in the
pair chemical potential δμcp(x). This means that the static
electric field E = ∇φ, which drives the normal current In,
does not influence the condensate since it is exactly balanced
by δμcp(x) = −eφ(x). If this were not the case, the Cooper
pairs would accelerate.

The retarded and kinetic equations (2) and (3) are completed
with the self-consistency relation for �(x):

�(x) = N0Veff

4i

∫ h̄ωD

−h̄ωD

dE(sin θeiχ − sin θ∗eiχ∗
)fL

− (sin θeiχ − sin θ∗eiχ∗
)fT . (6)

The charge mode is directly related to the observed potential
drop over the superconductor through Eq. (5), and the energy
mode fL only appears implicitly in the gap Eq. (6).

III. POSSIBLE SOLUTIONS

In this section, we present the numerical solutions of
Eqs. (2)–(6) for the model system shown in Fig. 1. The wire can
be considered to be one dimensional, as the width and thickness
are smaller than the dirty superconducting coherence length
w,t � ξ =

√
h̄D
2�0

. The normal equilibrium reservoirs act as
boundary conditions, both for the superconducting pairing
angles θ = ∇χ = 0 and the distribution functions fL,T .
Temperature enters the problem only through the boundary
conditions for fL and fT , while all nonequilibrium processes in
the wire itself are contained in the distribution functions. After
an initial guess for �(x), the superconducting angles θ and χ

are calculated from the retarded equations (2). Subsequently,
the kinetic equations (3) can be solved to obtain fL and fT .
Finally, the value of �(x) is updated using Eq. (6), and this
process is repeated until all values converge. We find two
distinct superconducting solutions for the problem: (a) one
global superconducting state [Fig. 2(a)] and (b) a bimodal
superconducting state separated by a normal valley [Fig. 2(b)].

A. One global superconducting state

The first solution is characterized by one coherent super-
conducting state, which extends over the full length of the
wire, although the strength of the superconducting gap � is
suppressed at the edge of the wire by the presence of the
normal reservoirs [Fig. 2(a)]. Although fully superconducting,
the wire has a finite resistance due to the conversion of a normal
current into a supercurrent, as shown by the position-dependent
voltage V . Normal electrons, which are injected from the
metallic reservoirs, decay into Cooper pairs over roughly one
coherence length ξ . The excess charge Q∗ associated with the
charge mode fT of these evanescent quasiparticle states results
in the presence of an electric field in the superconductor, and
hence a potential drop over the same length the supercurrent
increases. These processes correlate with the picture of
electrons being injected at energies E ≈ eV , leading to a
two-step distribution fL, as shown previously by Keizer et al.7

While the charge mode nonequilibrium fT relaxes over a
length scale of ξ , because of interaction with the condensate,
the energy mode fL remains constant over the length of the
wire due to the absence of inelastic interactions [Fig. 3(a)].

For increasing voltages, there is hardly any change in the
profiles of �, φ, Js,n, fL,T until the wire switches to the
normal state. For example, there is no gradual expansion
of the voltage-carrying parts at the end of the wires, as one
would guess qualitatively. A careful analysis7 indicates that
the energy mode fL triggers this transition, while the current
is still far below the critical pair-breaking current Ic0.
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FIG. 3. (Color online) The even mode fL and odd mode fT of
the nonequilibrium distribution function f (E,x). (a) For the global
superconducting state, a two-step distribution is present through
the full wire, while the charge mode is only present at the edges.
(b) A strong, nonthermal energy mode nonequilibrium fL suppresses
superconductivity at the center of the wire.

In performing these numerical calculations, we assumed
that the reservoirs are fully normal down to the lowest
temperatures. The dashed lines in Fig. 2(a), however, show
a schematic picture of a situation where the reservoirs are
proximitized by the wire, which in fact is a situation we
encounter in the experiments. The conversion and voltage
drop occur primarily in the contact pads, and the measured
resistance is largely a spreading resistance of the contact pad.
We will show experimentally that the latter contribution can
be quenched by the bias and by a magnetic field.

B. Bimodal superconducting state

A second solution was inspired by our experimental results.
It consists of two separate superconducting domains located
at each end of the wire [Fig. 2(b)]. A strong energy mode
fL suppresses superconductivity in the middle of the wire,
while the presence of the cold reservoirs near the ends of the
wire favors locally the emergence of a gap. Modeling this
state is complicated, as the presence of two superconducting
regions potentially gives rise to time-dependent processes.
We can, however, avoid this complication by assuming that
the center of the wire is fully normal. In that case, it is
possible to proceed numerically by splitting the wire in two
half-wires and treat them independently, using θ = ∇χ = 0
as boundary conditions. While the distributions at the end of
the wire are again given by the equilibrium reservoirs, in the
middle of the wire we match the distribution functions fL and
fT and their derivatives. The occupation of electronic states
with energies E + eV, E − eV are coupled by the applied
voltage, while previously they were independent. In addition,
the superconducting potential mixes particle and hole states,
and one retrieves relatively complex solutions for fL,T (E,x)
[Fig. 3(b)]. At the center of the wire, the energy mode nonequi-
librium is close to a thermal one, but at an elevated temperature

similar to a parabolic temperature profile. The remaining
structure is in essence due to energy-conserving Andreev
reflection processes, similar to the electron distribution in a
superconductor - normal metal - superconductor structure.23

The emerging superconducting blobs at the end of the wire
are relatively small, both in magnitude |�| ≈ |�0|/2 and in
size LS ≈ 4ξ . Due to their limited size, only a tiny fraction
of the total current is converted into a supercurrent, and the
voltage profile is almost identical to the normal state. While
the local microscopic properties at the end of the wire show a
strong superconducting signature, the global properties of the
wire are hardly influenced. This is true for the current (which
is almost completely normal) and the voltage profile, but also
for the density of states and the distribution functions. Apart
from some small modifications, the distribution function in
the wire is given by a two-step function. The nonequilibrium
energy mode fL is the strongest in the center of the wire, and
is the main reason why the superconducting state nucleates
near the equilibrium reservoirs. The influence of fT is limited
as the condensate carries almost no (super)current.

IV. SAMPLE DESIGN, FABRICATION, AND
CHARACTERIZATION

Figure 1(a) shows a typical superconducting Al nanowire
contacted by two massive normal reservoirs, consisting of the
same thin Al layer covered by a thick Cu layer. For reasonably
clean interfaces, the inverse proximity effect of the thick Cu
drives the Al normal down to the lowest temperatures. The
massive volume of the contacts guarantees that they act as
equilibrium reservoirs from which electrons are injected into
the wire. When a bias is applied, however, the temperature of
the reservoirs electron distribution function f0(E,T ) might for
increasing voltage deviate from the bath temperature according
to24

T 2 = T 2
0 + b2V 2, (7)

b2 = 1

πL

R�
Rwire

ln

(
r0

r1

)
, (8)

where L is the Lorenz number, R� the sheet resistance of
the contact, and r0 and r1, respectively, the electron-electron
and electron-phonon inelastic mean-free path. The temperature
increase can be considerable, and the most obvious way of
decreasing it is to minimize the ratio R�/Rwire by using thick
reservoirs, which we have implemented in our sample design.

The samples are realized by three-angle shadow evapora-
tion through a suspended resist mask (PMMA/LOR double
layer), in a system with a base pressure of 0.5−1.5 ×
10−7 mbar. The parameters of the different samples are
summarized in Table I. First, 50–90 nm of 99.999% purity
Al is deposited through a slit in the suspended mask to create
the superconducting wire and the thin bottom layer of the pads.
Evaporation of a thick (200–500 nm) copper layers under an
angle, which avoids deposition through the slit, completes the
normal bilayers forming the reservoirs. The time between the
two steps is kept to a minimum (<10 min) to ensure a clean and
transparent interface. Subsequently, the Al is oxidized during
5 min in a pure O2 atmosphere with a pressure of 4.6 mbar to
create an AlOx tunnel barrier of RnA ≈ 300 
μm2. The Cu

224503-4



EVANESCENT STATES AND NONEQUILIBRIUM IN . . . PHYSICAL REVIEW B 85, 224503 (2012)

TABLE I. Overview of the properties of the different samples: L, length; w, width; t , thickness; Rn, normal-state resistance; ρ, resistivity;
D, diffusion constant; ξ = √

h̄D/2�, coherence length; Tc, critical temperature; Rs , low-temperature resistance in the superconducting state.
For samples indicated with an asterisk, there is no measurement available for Tc. We assumed the same value for Tc as for sample 3, which was
fabricated under the same conditions.

# L (μm) w (nm) t (nm) Rn (
) ρ (μ
 cm) D (cm2 s−1) Tc (K) ξ (nm) Rs (
)

1a 1.4 100 90 2.8 1.8 98 1.23 131 1.0
1b 2.0 100 90 4.5 2.0 87 1.23 124 0.81
2 3.0 200 50 3.7 1.23 143 1.35* 152 0.7
3a 2.0 100 50 6.2 1.54 115 1.35 135 1.7
3b 4.0 100 50 13.3 1.66 106 1.35 131 1.7
4 1.5 100 50 5.1 1.70 104 1.35* 129 1.7
5 2.0 100 50 4.8 1.20 147 1.35* 154 1.5

probes are deposited during the last evaporation step under a
second angle. The size of the wires is measured using scanning
electron microscopy. The thickness was obtained from a quartz
crystal monitor used during the deposition of the Al film, and
calibrated by atomic force microscopy.

A. Linear response of the nanowire

Figure 6(a) shows a typical current voltage curve (IV ).
The linear regime extends up to a critical current designated
by Ic1. This initial slope has been measured as a function of
temperature with an ac technique leading to the results shown
in Fig. 4. We used a bias current I12 of 1 μA modulated at
342 Hz [terminal labels are shown in Fig. 1(b)]. The two-point
resistance of this 1.4-μm-long wire (sample 1a) as a function
of temperature displays a well-defined pattern (open squares).
The spreading resistance of the contact pads adds a small but
finite contribution of approximately 20 m
 to the measured
two-point resistance. Clearly, at high temperatures, the wire
is normal and has a resistance Rn. When the temperature is
decreased below Tc = 1.05 K, the resistance of the wire drops
considerably as it becomes superconducting. This critical tem-
perature is depressed compared to the intrinsic critical temper-
ature of the aluminum due to the proximity effect, as discussed
by Boogaard et al.9 For intermediate temperatures (500–
800 mK), the resistance appears to saturate at a value Rs ≈
1 
. As we will analyze further, this is the result of a normal
current penetrating into the wire over roughly one coherence
length ξ , yielding a Rs ≈ 2ρξ/A, with A the cross section.

Further lowering of the temperatures leads to a further drop
in resistance to almost zero, suggesting that the bilayer contacts
are becoming superconducting due to a low transparency of
the interface between the Al and Cu layers. To check this
hypothesis, we measured the resistance of identical Al/Cu
bilayer strips down to the lowest temperatures, and find that
they stay normal. Instead, we attribute the vanishing resistance
due to the proximity effect by the nanowire on the contact point
between the normal reservoir and the superconducting wire
itself. The superconductivity gradually spreads out into the
bilayer, leading to a normal-superconducting boundary which
moves from the nanowire into the contact pads [Fig. 2(a)].
Consequently, the current conversion resistance in the wire
itself becomes gradually less relevant. As the cross section
for the conversion moves into the contacts, it becomes larger,

reducing its resistive contribution. Hence, only a part of the
spreading resistance (≈20 m
) is measured.

This observed pattern changes if we measure the resistance
for a small dc bias current, larger than Ic1. Then, super-
conductivity in the weakly proximitized region in the pads
is suppressed, and the differential resistance stays constant
down to the lowest temperatures [blue triangles, Fig. 4(a)].
To further test this hypothesis, we measured the IV of the
wire while we apply a small magnetic field of 7 mT, parallel
to the pads but perpendicular to the wire [Fig. 4(b)]. The
vanishing resistance at zero bias is no longer observed, while
the differential resistance at higher biases is identical to the

FIG. 4. (Color online) (a) The two-probe resistance versus tem-
perature of a 1.4-μm-long wire (sample 1a). Due to the proximity
effect of the wire on the normal reservoirs, the resistance becomes
negligible at low temperatures. This weak proximity effect can be
suppressed by applying a small bias current (b) or small magnetic
field (c) (sample 4, 200 mK). This “corrected” wire resistance is
constant down to the lowest temperatures [magenta squares of panel
(a)]. A model (dashed line) with rigid normal boundary conditions
for the pairing angle θ = 0 slightly overestimates the observations. A
weaker boundary condition (full line), in which θ decays gradually to
zero over a characteristic length a, shows excellent agreement with
the experiment.
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one without magnetic field. This indicates that such a small
field does not influence the properties of the wire, and only
quenches the weakly proximitized region in the pads. Only at
a much higher field B ≈ 100 mT do we observe a change in
the differential resistance of the wire [Fig. 4(c)].

The dashed gray line in Fig. 4 shows the calculated two-
point resistance. The bulk critical temperature Tc0 = 1.23 K

was the only free parameter in the fit, while the diffusion
constant D = 98 cm2/s was obtained through the relation
D = ρ/N0e

2. The resistivity ρ is deduced from the normal-
state resistance Rn, using N0 = 2.2 × 1047 J−1 m−3 for the
density of states at the Fermi level.25 The superconducting
coherence length is obtained from ξ =

√
h̄D
2�

. Although the
numerical calculation agrees quite well with the data (for
I > Ic1), the model overestimates the residual resistance at low
temperatures. This indicates that the assumption of completely
normal contact pads is too rigid, as also observed by Boogaard
et al.9 To include the geometric out-diffusion of coherent
electrons into the normal pads, we adjust the boundary
conditions at the ends of the wire to ∇θ = −θ/a, which
indicates the dilution of superconductivity into the normal pads
over a characteristic length scale a. With a ≈ 18 nm (full line in
Fig. 4), we find excellent agreement with the observations. The
key parameters are listed in Table I for the different samples.
It demonstrates that the linear response of the wires is well
understood, but that the boundary conditions are a sensitive
part of the problem even for the thick and wide contact pads
used. However, for bias currents I � Ic1, the system is in a
well-defined state, which can be connected to the theoretical
predictions.

B. Characterization of the tunnel probe

To measure locally the density of states, the electrostatic
potential eφ(x), and the chemical potential of the condensate
μcp, we use a normal tunneling probe. The current flowing
from a normal tunnel probe contacted to a nonequilibrium
superconductor at a position x is given by

IT (V,x) = 1

eRn

∫ ∞

−∞
Re{cos[θ (E,x)]}

× {
f S

T (E,x) − f N
T (E + eV )

}
dE, (9)

with θ (E,x) the pairing angle, f S
T (E,x) the charge mode

nonequilibrium distribution in the superconductor, and f N
T =

1 − f0(E + eV ) − f0(−E + eV ) the distribution function in
the normal probe. Using Eq. (5), we can rewrite this to

IT (x) = 1

eRn

{
eφ(x) −

∫ ∞

−∞
N (E,x)f N

T dE

}
. (10)

The tunnel current consists of two contributions: the first one
does not depend on the applied voltage, but is completely
determined by the charge imbalance in the superconductor,
leading to the local electrostatic potential φ(x). The second
contribution is given by the convolution of the local DOS
N (E,x) of the superconductor and the distribution function
f N

T (E + eV ) in the normal metal. At low temperatures, the
differential conductance of the tunnel contact is a direct
measure for the density of states in the superconductor. The

FIG. 5. (Color online) The differential conductance of the local
tunnel probe as a function of applied voltage (magenta triangles).
Good agreement between experiment and theory (full line) is obtained
when the series resistance of the setup is included (blue squares).

condensate chemical potential of the superconductor can be
obtained from N (E,x), which is symmetric around E = μcp.

Figure 5 shows a typical measurement of the differential
resistance for a tunnel probe located at a distance of 320 nm
= 2.4ξ from the normal reservoir of a 4-μm-long wire.
The nanowire is biased just above Ic1 to ensure it is in a
well-defined state. The bias current needed to drive the probe
is typically four orders of magnitude smaller than the bias
current of the nanowire, due to the high normal resistance
of the tunnel junction (RT = 43 k
). Hence, it is safe to
assume that the properties of the nanowire are not influenced by
the measurement of the probe. One recognizes the coherence
peaks at the gap voltage, however, the subgap DOS is increased
in comparison to the BCS values due to the presence of the
normal banks, and the driving of the nanowire. The simulated
local DOS, for the set of parameters, is in good agreement with
the data, but near the gap voltage a small discrepancy exists.
We attribute this to a series resistance in the wiring of the
tunnel probe and can correct our data for this contribution. We
obtain a good agreement between the data and the theory using
a series resistance of RS = 1.2 k
, which is the estimated
wiring resistance of the experimental setup.

V. TWO-STATE ANALYSIS AND DISCUSSION

We have realized and studied a total of seven samples with
parameters shown in Table I. All displayed similar behavior.
The nonlinear current voltage characteristic of a typical
sample is shown in Fig. 6(a), with two clearly distinguished
branches. Before discussing the details, we first indicate the
various signatures for processes, which dominate the various
regimes. By increasing the current from zero bias, we pass
Ic1, the current at which the proximitization in the banks is
quenched as discussed in Sec. IV A. Beyond Ic1 until Ic2,
we claim that the wire remains in the global superconducting
state, characterized by a low and almost constant differential
resistance Rs [Fig. 6(b)]. This resistance reflects the conversion
of a normal current into a supercurrent and is located at the
edges of the wire. At the current I = Ic2, the wire switches

224503-6



EVANESCENT STATES AND NONEQUILIBRIUM IN . . . PHYSICAL REVIEW B 85, 224503 (2012)

FIG. 6. (Color online) The voltage V12 (a) and differential resistance (b) of a 4-μm-long wire (sample 3b) as a function of bias current I12,
measured at 200 mK. We define four different regimes with boundaries labeled Ic1−Ic4, each characterized by a nearly constant differential
resistance. The critical currents Ic2 and Ic4 are defined as the bias currents where the wire switches between the two hysteretic voltage branches.
Ic1 and Ic3 are the transition points between the two different states of one branch. (c) The apparent resistance of the complete wire V12/I12,
and of the edge of the wire V13/I12 as measured with a voltage probe, multiplied by two for the ease of comparison.

into the normal state, leading to an abrupt switch of both the
voltage and the differential resistance, followed by a constant
differential resistance equal to the normal-state resistance.

Decreasing the current from the normal state, a kink
in the measured voltage signals a more subtle transition
at I = Ic3. The measured voltage shows a small deficit
with respect to its normal-state value (black dashed line),
suggesting the nucleation of superconductivity. We claim that
superconductivity nucleates here at the ends of the wires close
to the contact pads in agreement with Fig. 2(b). The sudden
transition at I = Ic4 is due to the transition from the bimodal
to the global superconducting state.

A first experimental indication to support this interpretation
is provided by Fig. 6(c), which compares local measurements
with measurements over the full wire. It shows the two-point
resistance of the wire V12/I12 (squares) as a function of bias
current I12, together with the apparent resistance V13/I12

(triangles) at the ends of the wire (see inset for the probe
position and terminal labels). The probe voltage is multiplied
by two for comparison, as a similar contribution is present at
the other edge of the wire. For the lower branch, the assumed
global superconducting state, one observes that the voltage
drop V13 over the end of the wire is almost identical to half of
the complete voltage drop over the wire length, a direct proof
that this resistance is located at the ends of the wire.

In contrast, in the normal state, the voltages V12 and V13

are, as expected, proportional to their respective lengths along
the wire, V = ρL/A. Upon decreasing the bias below Ic3,
where we assume the bimodal state exists, one observes
over the full length of the wire a decreasing resistance
for decreasing bias, signaling the growing strength of su-
perconductivity somewhere. The measured resistance over
the end of the wire, however, increases compared to the
normal state V13/I12 � Rn. Although counterintuitive, this
is consistent with the general nonequilibrium present in the
superconductor. In the following, we make a detailed analysis
of both superconducting states, and place the experimental
results in the context of the theoretical model.

A. Global superconducting state

Figure 7 shows two-point measurements of the lower
branch of a 1.4-μm-long nanowire (sample 1a) at three

different bath temperatures. In view of the analysis shown
Sec. IV A, we assume that the resistance of the wire is primarily
determined by the charge mode of the distribution function
fT (E,x), which depends on the position-dependent density of
states and the order parameter �(x). The weak dependence
of the differential resistance on the current indicates that
the superconducting properties of the wire hardly change
with increasing bias (open symbols). Although numerical
simulations (filled symbols in Fig. 7) show the same qualitative
behavior, the simulations seem to overestimate the bias current
at which the differential resistance begins to increase. Hence,
the observed switching current Ic2 is also slightly lower than
predicted. Ignoring this small discrepancy, the simulated data
show good agreement with the experiment over the complete

FIG. 7. (Color online) Two-probe voltage (a) and differential
resistance (b) as a function of bias current, for a 1.4-μm wire, at three
different bath temperatures. Open symbols: experimental data. Filled
symbols: numerical simulations. The critical current as a function of
temperature (inset).
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(a)

(b)

Probe

Probe

FIG. 8. (Color online) The local density of states for (a) the global
superconducting state and (b) the bimodal state, for different bias
currents I12 of the nanowire, measured at 200 mK. For the global
superconducting state, the gap is only weakly dependent on the bias
current, while for the bimodal state, one observes a DOS gradually
changing from a normal into a superconducting state.

temperature range (inset Fig. 7). At the same time, the observed
values for the critical current (or critical voltage) are much
smaller than what one would expect for a pair-breaking
current, experimentally26,27 as well as theoretically.28,29 This
demonstrates that the nonequilibrium processes should be
taken into account in evaluating the parameters. The remaining
deviations between theory and experiment suggest, most likely,
that the temperature of the reservoirs deviates from the bath
temperature for higher driving currents, as expected from
Eq. (8).

Figure 8(a) shows the differential conductance dI13/dV13 of
a tunnel probe, located at a distance of 320 nm (=2.4 ξ ) from
the normal reservoir of a 4-μm-long wire (sample 3b). The
wire is biased at a fixed current I12 with a corresponding
voltage V12. At the same time, the probe current I13 is
varied while measuring the probe voltage V13 [Fig. 1(b)]. The
evolution of the local DOS for increasing bias is shown on the
right side in Fig. 8(a). The conductance at zero bias Vp = 0
increases slightly for increasing bias, while the coherence
peaks get further smeared out. The dependencies are, however,
weak, and even right before the switching current Ic2 the DOS
is hardly affected by the drive current. These observations are
in close agreement with the theoretical predictions and confirm

the idea that the superconducting state remains globally stable.
For increasing bias, the resistance remains located at the ends
of the wire and the DOS does not change either. Unfortunately,
we have not been able to directly measure fL(x). Nevertheless,
we believe that this energy mode nonequilibrium triggers the
transition at Ic2 as analyzed by Keizer et al.7

B. Bimodal superconducting state

The continuous transition, with decreasing bias, from the
normal into a superconducting state at Ic3 (Fig. 6) indicates
that the emerging superconducting state is initially very close
to the normal state. For lower bias currents, the absolute
resistance gradually decreases [Fig. 6(c)], which suggests that
an increasing fraction of the current is carried by the emerging
condensate [Fig. 2(b)]. A similar picture is observed for the
local density of states, plotted in Fig. 8(b) for different bias
currents I12 of the nanowire. Below Ic3, a gradually increasing
gap is found, unambiguously showing the emergence of
superconducting order. Close to Ic3, the DOS at the position
of the probe evolves in a continuous way from a flat spectrum
into a spectrum with a gap. However, at Ic4 one observes
an abrupt transition to a situation with a stronger gap. The
abruptness indicates that it is a transition from two distinct
superconducting states, which directly proves that at least
two microscopically distinct superconducting states exist.
Although the simulations for the local DOS agree well at
currents close to Ic4, they do not account in detail for the
gradual evolution between the normal and superconducting
states at Ic3. At this point, we assume that the reservoirs start to
heat up, and can no longer be treated as equilibrium reservoirs
with T = T0. Overall, the model supports the picture of the
emergence of the superconducting state quite nicely, with the
strongest nonequilibrium in the wire occurring at Ic4, with the
reservoirs most closely to equilibrium at T = T0.

The electrochemical potential of the superconducting con-
densate μcp is determined from the minimum of the measured
DOS μcp = eV |min(DOS). It is found that, at this probe position,
μcp is equal to the electrostatic potential V1 of the adjacent
reservoir. Measurements with a probe in the middle of the wire
show that, in the same bias regime, the voltage is equal for both
sides of the wire, which means that the state is symmetric, and
a similar superconducting region should exist near the other
reservoir at a potential V2. If these two regions were part of one
global superconducting state, there would be a voltage drop
�V = V1 − V2 over the superconducting potential μcp of this
state, and a superconducting phase-slip process should occur.
However, according to the Josephson relation 2eV = ∂χ/∂t , it
would be at a frequency ν ≈ 8h̄/�, which is too high compared
to the energy gap.

The fact that the two-point resistance is so close to Rn, the
gradual increase of the DOS at the position of the probe, and
the electrochemical potential of the condensate demonstrate
that two separate superconducting regions emerge at the
edges of the wire. The physical reason is the energy mode
nonequilibrium, as discussed by Keizer et al.7 for the lower
branch, but similarly for this upper branch. At the bias Ic4, the
wire is still largely normal and fE is given by the two-step
distribution function. In the middle of the wire, the width of
the step is several times bigger than the superconducting gap.
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Through relation Eq. (6), it is seen that this suppresses fully the
nucleation of a gap, while the cold equilibrium reservoirs favor
the emergence of a gap at the edges of the wire. Simply put, the
ends are cold where the center of the wire is hot. Therefore,
we conclude that the results are most easily understood as
due to two distinct superconducting domains, separated by
a normal central region, which we have called the bimodal
state.

Finally, we discuss the voltage V13 measured by the probe
when the wire is biased into the bimodal state [triangles
in Fig. 6(c)]. Close to Tc, the voltage measured by such a
normal probe is equal to the electrochemical potential of the
quasiparticle bath.17 At low temperatures16 and for short-lived
quasiparticles,18 it is impossible to define a quasiparticle bath
with a well-defined chemical potential; however, the measured
voltage is still related to the local electrostatic potential eφ

[using Eq. (10)]:

eφ =
∫ ∞

−∞
N (E)f N

T (E + eV )dE. (11)

For a relatively small charge imbalance eφ(x) � �, the
measured voltage equals the local electrostatic potential eφ(x)
divided by the local DOS in the superconductor at zero energy:
V ≈ φ/N (0). Hence, the voltage measured with the tunnel
probe can be larger than the local potential eφ(x).

VI. CONCLUSION

We have analyzed a well-defined model system of a
superconducting wire between two massive normal contact
pads. We demonstrate that this system, when driven by a
current, has two distinct metastable superconducting states.
For low bias, we find a global superconducting state with most
of the resistance occurring as a current-conversion resistance
at the ends of the superconducting wires where normal current
enters. Although resistive, we demonstrate that the whole
wire including the edges continues to be in one coherent
superconducting state. This state does hardly change for
increasing current until the wire switches abruptly to the full
normal state at a current, which is much lower than the critical
pair-breaking current. On a microscopic level, the distribution
function changes considerably and is strongly different from
the commonly used parabolic temperature profile. A numerical
analysis based on the nonequilibrium quasiclassical Green’s
functions shows that the switching current is determined by
the nonequilibrium electron distributions, in good agreement
with the experimental results.

For high bias, decreasing the current from a fully normal
state, we find that the superconducting state emerges as two

decoupled domains at the ends of the wire. The vicinity of
the cool equilibrium reservoirs favors the nucleation of the
superconducting state at these ends, while strong nonequi-
librium at the center of the wire continues to suppress the
superconductivity. Upon further lowering of the bias current,
the two domains grow in strength until the wire switches
back to the low resistive, globally superconducting state. We
speculate that the transition from one state to the other is
triggered by a condition in which the Josephson coupling
energy between the two domains exceeds the thermal energy
at that bias point.

This work is also relevant for normal-metal–
superconductor–normal-metal mixing devices, called
hot-electron bolometer (HEB) mixers.30 In most practical
cases, the superconducting material is thin NbN and gold (Au)
normal pads are used as antenna. Under the condition that no
radiation is applied to an HEB, the present analysis is helpful to
understand the observed current-voltage characteristics, which
are analogous to the one shown in Fig. 6(a).31 The resistive
properties for low bias and temperature will be dominated
by the conversion resistance at the interfaces (controlled by
fT ). This regime will extend to a critical current, analogous
to Ic2 reported here, but with a value which may depend on
the electron-phonon relaxation, which is present in a material
like NbN, but is negligible in our experiment with Al. Beyond
this critical value, the device is most likely either fully in the
normal state (beyond Ic3 as identified here), or in the bimodal
state (for lower biases between Ic3 and Ic4). The stronger
electron-electron and electron-phonon interaction in NbN as
compared to Al will bring the longitudinal nonequilibrium fL

closer to a local thermal profile. In case radiation is applied to
an HEB, an overall increase in electron temperature occurs,
which brings the superconductor close to its transition point
where thermally activated phase-slip events contribute to
the resistivity. Hence, for a full understanding of the HEB
mixers, one needs to take into account two contributions to
the observed resistance: first the static conversion resistance
inside the superconductor near the interface between the
normal metal and the superconductor, described here,
dominating for the unexposed devices, and second the
resistance due to time-dependent phase-slip events occurring
at electron temperatures close to the critical temperature of
the superconductor, which dominates under actual mixer
operation.4
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