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We analyze work done on a quantum system driven by a control field. The average work depends on the
whole dynamics of the system, and is obtained as the integral of the average power operator. As a specific
example we focus on a superconducting Cooper-pair box forming a two-level system. We obtain expressions for
the average work and work distribution in a closed system, and discuss control field and environment contributions
to the average work for an open system.

DOI: 10.1103/PhysRevB.87.060508 PACS number(s): 74.78.Na, 05.40.−a

The fluctuation relations (FRs)1,2 govern work and dissi-
pation in small classical systems when they are driven out
of equilibrium. They have recently attracted much attention
because of their applications in molecular systems.3 Fluctua-
tion relations can also be accurately studied in single-electron
transport.4–6 A natural question is if similar concepts and
experiments can be extended to the quantum regime. The first
attempts in this direction focused on finding a proper work
operator.1,7–10 However, after a long debate, it has become
clear that this approach has serious drawbacks.11 Work is
characterized by a process, not only by the instantaneous
state of the system,11,12 and therefore it cannot be defined
by an operator local in time, which would disregard the
actual evolution of the system under the driving protocol.
Although this is not an issue for closed systems it can become
critical when discussing work in open systems. Alternatively
the work has been defined through a two-measurement
process (TMP).10–16 The energy of the system is measured
at the beginning and at the end of the evolution and the
work done in a process is determined by the corresponding
energy difference. This definition has the advantage that the
quantum FRs can be immediately obtained and they resemble
the classical ones. In this proposal the system does not
interact with the environment and, thus, the dynamics is
unitary.

To circumvent the problem of extending the TMP approach
to an open system,17,18 we introduce work in analogy to that
in the classical case as an integral of the injected power
during the evolution. Let the evolution of the system be
governed by a time-dependent Hamiltonian Ĥ (t) driven by
a control parameter λ(t). The corresponding power opera-
tor is then given by P̂ = ∂Ĥ/∂λλ̇ = ∂Ĥ/∂t . If the state
of the system is described by its reduced density operator
ρ̂(t), the average power is given by 〈P̂ (t)〉 = Tr{ρ̂(t)P̂ (t)} and
the expectation value of the work done on the quantum system
is

〈W 〉 =
∫ T

0
〈P̂ (t)〉dt. (1)

This way, the work explicitly depends on the whole evolution
of the system through ρ̂(t) containing the information about
the dynamics which can or cannot be unitary. To address this
point, we differentiate the average energy of the system, 〈Ĥ 〉 =

Tr{ρ̂(t)Ĥ (t)}, yielding

d

dt
〈Ĥ 〉 = Tr

{
dρ̂

dt
Ĥ

}
+ 〈P̂ 〉 . (2)

Under quite general assumptions the dynamics of the reduced
density operator of the system can be described by a master
equation19 dρ̂/dt = − i

h̄
[Ĥ ,ρ̂] + L̂(ρ), where the contribu-

tions on the right-hand side are given by the unitary and
dissipative dynamics, respectively. By substituting the above
result into Eq. (2), we find that there is no contribution due
to the unitary dynamics since Tr{[Ĥ ,ρ̂]Ĥ } vanishes. Then the
average power reads 〈P̂ (t)〉 = d 〈Ĥ (t)〉 /dt − Tr{L̂(ρ)Ĥ (t)}
and the corresponding average work is given by

〈W 〉 = 〈Ĥ (T )〉 − 〈Ĥ (0)〉 −
∫ T

0
dt Tr{L̂(ρ)Ĥ (t)}. (3)

If the system does not interact with the environment, only
the first difference on the right-hand side survives in Eq. (3),
and the average work is equal to the variation of the internal
energy. The last term describes the energy exchange with the
environment during the evolution process, and is dependent
on the particular realization of the evolution trajectory. We
call this contribution average heat and denote it as Q. In
thermodynamical terms, Eq. (3) is the first law in the quantum
regime, and it has been discussed previously in Refs. 20 and 21
as the energy balance equation.

The average work definition in Eq. (3) is more general than
the TMP since it takes into account the full quantum evolution.
For a closed quantum system, given the initial quantum state
and a driving protocol, the evolution is determined completely
by the Schrödinger equation, while the initial measurement
performed in the TMP causes a collapse of the quantum state
before the beginning of the protocol. Thus, the two approaches
yield different results for the initial states with coherent
superpositions of the eigenstates of Ĥ (0) and the TMP result
is recovered if the system is initially in an eigenstate or in
an incoherent superposition of the eigenstates of Ĥ (0). The
second advantage of Eq. (3) is that it allows one to define
and calculate the heat in terms of the system density matrix
only, without detailed knowledge of the environment degrees
of freedom. In addition, Eq. (3) can be used with any master
equation.
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FIG. 1. (Color online) Schematic presentation of avoided cross-
ing with the eigenstates of energies Eg and Ee in a CPB as a function
of the normalized gate charge q. The phases which contribute to the
interference are explicitly indicated.

Cooper-pair box as a driven quantum two-level system.
We consider a Cooper-pair box (CPB)22–24 consisting of a
superconducting island connected to a superconducting lead
by a Josephson tunnel junction. The system is described by the
circuit scheme in the inset in Fig. 2 and it is characterized by a
voltage source Vg , coupling gate capacitance Cg , a Josephson
junction with energy EJ , and capacitance CJ . We denote
C� ≡ Cg + CJ . Resistor R, to be discussed in the last part of
this Rapid Communication, forms the dissipative environment
of the box. This system is a candidate for a calorimetric
measurement of quantum work distribution.25

In the regime ε ≡ EJ /(2EC) � 1, where EC = 2e2/C�

is the charging energy of the box, we can treat the CPB as
a two-level quantum system. Denoting with |0〉 and |1〉 the
state with zero and one excess Cooper pair on the island,
respectively, the Hamiltonian reads

Ĥ = −ECq(|1〉〈1| − |0〉〈0|) − EJ

2
(|1〉〈0| + |0〉〈1|), (4)

where q = CgVg/(2e) − 1/2 is the normalized gate voltage.
We assume driven evolution: a linear gate ramp q(t) =
−1/2 + t/T over a period T starting from t = 0. The ground
and the excited states of the system are separated by the energy
gap h̄ω0 = 2EC

√
q2 + ε2 which reaches the minimum EJ at

t = T /2 (see Fig. 1). We recover the standard Landau-Zener
(LZ) model,26,27 where the system is excited when driven in a
nonadiabatic way through a avoided crossing.

The time-dependent eigenstates of the Hamilto-
nian (4) are |g〉 = 1√

2
(
√

1 − η|0〉 + √
1 + η|1〉) and |e〉 =

1√
2
(
√

1 + η|0〉 − √
1 − η|1〉), where η = q/

√
q2 + ε2.28

For this system, the power operator is P̂ = ECq̇(1 − 2n̂),
where n̂ = |1〉〈1| is the operator of the number of Cooper
pairs on the island and 1 = |1〉〈1| + |0〉〈0| is the identity oper-
ator. We calculate the time-dependent average of the power
operator in the Heisenberg picture, P̂ H (t) = U †(t)P̂U (t),
with the time evolution operator U (t), and the state |ψ(0)〉
that does not change in time. Here we focus on the first
and second moments of the work done on the CPB, which
can be expressed through P̂ H (t) as 〈W 〉 = ∫ T

0 dt〈P̂ H (t)〉
and 〈W 2〉 = ∫ T

0 dt2
∫ T

0 dt1〈P̂ H (t2)P̂ H (t1)〉, where 〈· · ·〉 ≡

〈ψ(0)| · · · |ψ(0)〉. Explicitly,

〈W 〉 = EC

(
1 − 2

T

∫ T

0
〈n̂H (t)〉dt

)
(5)

and

〈W 2〉 = 2EC〈W 〉

−E2
C

[
1 − 4

T 2

∫ T

0
dt2

∫ T

0
dt1〈n̂H (t2)n̂H (t1)〉

]
. (6)

Equations (5) and (6) can be applied for both closed and open
systems.19,29,30

Instantaneous transition regime, unitary evolution. If the
time of the control ramp is much shorter than the relaxation and
dephasing times, the evolution of the system can be considered
unitary. For ε � 1, the LZ transitions are localized near the
minimum energy gap at t = T /2 and the dynamics is well
approximated by the instantaneous transition model,31,32 i.e.,
the evolution is composed of pure adiabatic evolution and
instantaneous LZ transitions at t = T /2 (see Fig. 1). All work,
spent exactly in these LZ transitions, is stored in the system
(CPB) as increased internal energy. Along the adiabatic region,
the evolution operator reads Uk(t) = exp [−iξ t

kσz], where
ξ t
k = ∫ tk

tk−1
dτω0(τ )/2 is half of the integrated energy gap, tk and

tk−1 denote the time limits of the adiabatic evolution, and σz =
|e(t)〉〈e(t)| − |g(t)〉〈g(t)|. The transfer matrix for the instanta-
neous LZ transitions in the basis {|g(T /2)〉,|e(T /2)〉} reads

NLZ =
(√

1 − PLZeiϕ −√
PLZ√

PLZ
√

1 − PLZe−iϕ

)
, (7)

where ϕ = δ(log δ − 1) + arg �(1 − iδ) − π/4 (�
is the gamma function).31,32 The probability of
the LZ transition is given by PLZ = e−2πδ , where
δ = E2

JT /(8EC) = ε2ECT /2. We consider the system
initially in a superposition of ground and excited state and
|ψ0〉 = α|g(0)〉 + √

1 − α2 exp (iγ )|e(0)〉. We can then write
for t < T /2, U (t) = U1(t), while after the LZ transition
at t > T /2, U (t) = U2(t)NLZU1(T /2). The calculation of
|ψ(t)〉 is given in the Supplemental Material (SM).33 Here we
discuss only the relevant results.

From Eq. (5), the corresponding average work is

〈W 〉 = EC

[
(2α2 − 1)PLZ + 2α

√
1 − α2

√
(1 − PLZ)PLZ

× cos
(
γ + ϕ + 2ξ

T
2

1

)]
. (8)

The first term represents the work done on the system which
is initialized in the ground or in the excited state, i.e., α =
1 or 0, respectively. The second term with its characteristic
oscillatory behavior is due to the quantum interference at the
LZ avoided crossing.32 This additional contribution is always
present when the system is initially in a coherent state and it is
a clear difference with the respect to the TMP. This difference
is highlighted in Fig. 2(a), where we plot the analytical result
in Eq. (8) as a function of T for different initial states. The
oscillating behavior of 〈W 〉 is obtained for α = 1/

√
2 and

γ = 0 and we should compare it with the prediction of the TMP
〈W 〉 = 0. The two exponential decays with PLZ are obtained
for the ground and excited initial states, α = 1 and α = 0 with
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FIG. 2. (Color online) (a) Average work 〈W 〉 normalized to EC

for different initial states: α = 1/
√

2 and γ = 0 (blue oscillating
curve), ground state α = 1 and γ = 0 (top black exponentially
decaying curve), and excited state α = 0 and γ = 0 (lower black
exponentially decaying curve). The purple curve denotes the behavior√

PLZ(1 − PLZ). (b) Work variance 〈δW 2〉 normalized to E2
C . The blue

solid lines contain the oscillatory behavior for initial state α = 1/
√

2
and γ = 0. The black dashed line is obtained for the initial state, α =
1 and γ = 0 (ground state). We have used ε = EJ /(2EC) = 0.05.
Inset: Circuit scheme of the Cooper-pair box (CPB) connected to a
dissipative environment R.

γ = 0, respectively. The behavior for the thermalized initial
density matrix can be obtained from these two curves with the
correct weighted average.

With the same approach, the evaluation of Eq. (6) yields
〈W 2〉 = PLZE2

C for the second moment, independent of the
initial state. With these results the corresponding rms fluc-
tuation of work can be immediately calculated as 〈δW 2〉 =
〈W 2〉 − 〈W 〉2. Figure 2(b) shows the behavior of 〈δW 2〉 for
different initial states. Numerical simulations confirm the
analytical results presented in Fig. 2.

The definition of work in Eq. (3) and the TMP give the same
results if the system is initially in an eigenstate of Ĥ (0) or an
incoherent superposition of them. In the interesting case in
which the system is initialized in the ground state, i.e., α = 1,
and for nearly adiabatic drive (PLZ � 1), we have a linear
response result linking the average work and its fluctuations
as 〈δW 2〉 = EC〈W 〉.

In this specific case, the first two moments of work
calculated above agree with the full work distribution ρ(W )
which for a closed system with unitary evolution U (T ) can
be found essentially by direct comparison of the initial,
Ĥ (0), and final, Ĥ (T ), Hamiltonian of the system. Indeed,
the work generating function G(u) (Fourier transform of the
distribution) can be written as (see, e.g., Ref. 11) G(u) =
Tr{U †(T )eiuĤ (T )U (T )e−iuĤ (0)ρ0}, where ρ0 is the initial den-
sity matrix of the system assumed to be diagonal together with
the initial Hamiltonian Ĥ (0). For the CPB considered above

and the system initialized in the ground state, this equation
gives G(u) = 1 + PLZ(eiuEC − 1), which corresponds to the
following work distribution:

ρ(W ) = (1 − PLZ)δ(W ) + PLZδ(W − EC). (9)

This distribution agrees with the first two moments and can be
used to find the higher moments.

Open system with slow and fast relaxation. The most
interesting and nontrivial test of Eq. (3) is when the system
interacts with the environment during the evolution of q. To
evaluate the heat contribution in Eq. (3) we need to consider
a concrete example of the system-environment interaction. If
the time and the ramp time are of the same order, dissipation Q

takes place during the driven evolution. To evaluate dissipation
during the sweep, we then solve the master equation (ME)
of the CPB adapted from the corresponding ME of Refs. 28
and 34. This ME and some details of the analysis are given
in the SM.33 The environment is described by the resistor R

coupled capacitively to the island of the CPB (inset in Fig. 2).
As above, we assume that the temperature is low as compared
to the excitation energy. If the system is initially in the ground
state, the average heat released to the environment during the
ramp normalized by the total work done for a few values of ε

is shown in Fig. 3(a) based on the numerical solution of the

(b)

20 40 60 80 100 120
0.

0.002

0.004

0.006

EC

Q
W

(a)

FIG. 3. (Color online) (a) Numerically calculated (solid lines)
dissipated average heat during the sweep in an open CPB as a function
of the sweep time when the system is initially in the ground state.
The system-environment coupling constant is chosen to be Cg/C� =
0.05 here, EC/kB = 1 K, and the environment resistance is R =
1 × 104 �. The different curves from top to bottom correspond to
ε = 0.05, 0.0375, and 0.025. The dashed line is the analytic approxi-
mation of Eq. (10). (b) Dissipated average heat at ECT /h̄ = 150,100,
and 50 from top to bottom as a function of ε2. The other parameters
and the line conventions are as in (a).
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ME (solid lines). The dependence of the same quantity on the
minimum energy gap EJ (for scaling purposes the horizontal
axis is ε2) is shown in Fig. 3(b). The apparent dependences
on the various parameters in Fig. 3 are captured by a simple
analytical approximation

Q/〈W 〉 � R

RQ

(
Cg

C�

)2 (
EJ

EC

)2
ECT

h̄
, (10)

which is derived in the SM (Ref. 33) with the assumption
that, again, the LZ transition occurs exactly at t = T /2 with
probability PLZ. Here, RQ ≡ h̄/e2. The prediction of Eq. (10)
is shown by dashed lines in Fig. 3, in close agreement with the
full numerical solution. Energy relaxation occurs uniformly
over the positive values of q, leading to the proportionality
of Q/〈W 〉 on T . As a by-product, Fig. 3(a) justifies the
semiquantitative analysis and the proposed measurement
protocol above, since most of the work remains stored in the
system during fast ramps (small T ).

In the limit of fast relaxation, i.e., τ � T , it is possible
to obtain an analytical estimate of the heat released during
the evolution. Since the dephasing time is usually smaller
than the relaxation time, we can assume that the coherences
between the ground and excited state are quickly lost and
they do not influence the dynamics. The system tends to
follow the instantaneous equilibrium state but due to the
drive there are corrections to this dynamics which cause
the heat emission. We calculate the heat in this regime
directly from the semiclassical master equation. As shown
in SM,33 the same result is still obtained if one takes into
account quantum corrections from the finite drive to adiabatic
dynamics.

The integrand in the heat contribution in Eq. (3) can be
conveniently written as −h̄ρ̇ggω0. If we denote with �ge

and �eg the excitation and relaxation rates, respectively,
in the semiclassical limit we have ρ̇gg = −��ρgg + �ge,
where �� = �ge + �eg , �ge/�eg = exp (−βh̄ω0), and β is
the inverse temperature of the environment. We use the
trial solutions ρgg = ρ(0)

gg + δρ(1)
gg , where ρ(0)

gg = �ge/�� is

the stationary solution and δρ(1)
gg is the correction due to the

drive. Plugging ρgg in the initial equation we obtain δρ(1)
gg =

−ρ̇(0)
gg /�� . When integrated the adiabatic contribution h̄ρ̇(0)

gg ω0

gives no contribution (see SM33) and, with an integration by
parts, the nonvanishing contribution in the limit βEC � 1 can
be written as

Q = 4E2
C

h̄T

∫ 1
2

− 1
2

dq
q

ω0��

d

dq

(
�eg

��

)

= βE2
C

T

∫ 1
2

− 1
2

dq
η2

�� cosh2
(

βω0

2

) . (11)

Here the second line arises from the detailed balance of the
transition rates. Thus, we recover the expected properties of
the released heat: (i) It depends on the full evolution which,
in this limit, is represented by the driving parameter q, (ii) it
scales as 1/T , and (iii) it is positive.35

In summary, we have analyzed work done by a driving field
on a quantum system. The obtained expression of average
work has a physical interpretation, allowing one to assign
separate contributions to the change in the internal energy and
the heat dissipated to the environment in the spirit of the first
law of thermodynamics. We applied our results to a two-level
system, obeying in the first case unitary evolution and then
in the presence of weak dissipation. For an open system, we
presented a detailed analysis of the released heat two regimes
where the relaxation time was either of the order or smaller
than the driving time. In the latter case, our approach allows
an analytical calculation of the released heat which has and
immediate physical interpretation.
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S. Suomela, S. Gasparinetti, M. Möttönen, and J. Ankerhold
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