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Heat due to system-reservoir correlations in thermal equilibrium
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The heat flow between a quantum system and its reservoir is analyzed when initially both are in a separable
thermal state and asymptotically approach a correlated equilibrium. General findings are illustrated for specific
systems and various classes of non-Markovian reservoirs relevant for solid state realizations. System-bath
correlations are shown to be substantial at low temperatures even in the weak coupling regime. As a consequence,
predictions of work and heat for actual experiments obtained within conventional perturbative approaches may
often be questionable. Correlations induce characteristic imprints in heat capacities which opens a proposal to
measure them in solid state devices.
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I. INTRODUCTION

Recently, the subjects of heat and work and their distri-
butions in the quantum regime have received considerable
attention [1,2] with measurement protocols proposed and
implemented for solid state devices [3–5]. Classical thermo-
dynamics considers a system of interest immersed in a much
larger heat bath [6], where the latter one ensures thermal
equilibration of the system, but can be ignored otherwise.
This weak coupling assumption works extremely accurately
for basically all physical realizations on a macroscopic
level. For quantum systems in contact with a heat bath
realized, e.g., through mesoscopic circuits, the situation is
more intricate though. The nonlocality of quantum mechanical
wave functions induces system-reservoir correlations and
even entanglement which may have profound impact also on
thermodynamical properties [7]. Common wisdom is that at
least in the weak coupling regime the classical-like setting
of a thermal state factorizing in system and reservoir density
operators, respectively, applies. Perturbative formulations for
the reduced quantum dynamics of the system such as, e.g.,
conventional master or Lindblad equations [8] rely on this
separability.

Quantum mechanical system-environment correlations
have been discussed in the past, mainly with respect to
proper initial preparations for nonequilibrium dynamics; see,
e.g., Refs. [7,9]. Much less attention has been paid to this
subject in the context of quantum thermodynamics [10–13],
where systems are kept close to thermal equilibrium and
where the focus lies on quantities such as heat [14] and
work [2]. In many theoretical studies the simplified situation
of (at least initially) factorizing thermal equilibria is taken
for granted [15,16]. This way, predictions for work, work
distributions, and heat due to the presence of weak classical
driving sources have been obtained based on conventional
master equations or related approaches [3,17–19]. However,
in actual measurements, specifically in solid state structures,
quantum correlations between system and reservoir may be of
relevance not only far from but also close to and in thermal
equilibrium.

*joachim.ankerhold@uni-ulm.de

The goal of this paper is to contribute to this latter
topic. For that purpose, we consider the situation where an
initially separable thermal state asymptotically approaches
a correlated equilibrium and identify the exchanged energy
to establish proper system-bath correlations as heat. While
an instantaneous switching-on of system-bath interactions is
typically difficult to realize experimentally, it allows us, in
a first step, to quantify the impact of these correlations for
various types of reservoirs. We derive general expressions and
discuss specific results for systems of possible experimental
interest [3–5,16,20], namely, two-level systems and harmonic
modes. It turns out that even in the weak coupling regime, this
heat flow is substantial at low temperatures and may become
comparable to typical predictions for the work based on
conventional weak coupling approaches [3,17–19]. It further
depends sensitively on non-Markovian features of the reservoir
such that the commonly made simplification of a strictly
Ohmic environment [8] is always unphysical.

Hence the so-defined heat is a profound measure for aspects
of quantum thermodynamics beyond descriptions accounting
merely for energy level quantization of otherwise separable
systems and reservoirs [21]. Thus, in a second step, we show
that the heat capacity of an embedded system encodes this
information in the form of, e.g., a characteristic temperature
dependence. It is proposed to measure it by manipulating and
monitoring the reservoir in a solid state circuitry by means of
advanced thermometry at cryogenic temperatures.

II. GENERAL RESULTS AND PERTURBATION THEORY

We consider a system and its surrounding in a standard
setting with H = HS + HR + HC . Since neither the system
part HS nor the reservoir part HR do commute with the
coupling HC , the canonical thermal operator of the full
compound

Wβ = e−βH

Z
(1)

with corresponding partition function Z describes system-
bath correlations. The nature of these correlations has
been an issue if intense research (see e.g. [10,22–25])
with the general conclusion that in many system at suffi-
ciently low temperatures they are nonclassical and related to
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entanglement. This is not the case for a so-called factorized
thermal state [8]

Wf = e−βHS

ZS

⊗ e−βHR

ZR

, (2)

where ZS and ZR denote the partition functions of isolated
system and isolated bath, respectively.

We now think of a setup where one initially starts with
a factorized state Wf and then monitors the asymptotic
state when the system has fully equilibrated to Wβ . Due
to the nonequilibrium initial preparation, energy will be
exchanged between system and bath such as to establish proper
equilibrium correlations between them. Following the first law
of thermodynamics in absence of external driving, this shift in
system energy,

Qcorr = 〈HS(t → ∞)〉 − 〈HS(0)〉
= 〈HS〉β − 〈HS〉f , (3)

can be interpreted as heat due to system-bath correlations.
Here, 〈·〉β/f are expectation values taken according to the
distributions (1) and (2), respectively. Note that, in contrast to
the situation considered in [11], here system-bath correlations
do not appear due to an external (adiabatic) switching-on of the
system-bath interaction but solely due to the intrinsic dynamics
according to the full Hamiltonian H . Accordingly, the reduced
density operator of the system alone ρ(t) = TrR{W (t)} evolves
from a Gibbs state into a thermal state which in general is not
of Gibbs form.

A formal expression can be found based on the relation be-
tween the respective partition functions and energy expectation
values, i.e.,

Qcorr = − ∂

∂β
ln(Z/ZS) − 〈HR + HC〉β. (4)

While for specific systems such as harmonic oscillators, this
expression can be evaluated exactly, in general, a perturbative
treatment must be applied. In the sequel, we focus on the weak
coupling regime and calculate the heat exchange in lowest
nonvanishing order in HC (canonical perturbation theory [9]).
This is conveniently done by iterating the operator identity

e−βH = e−βH0

(
1 −

∫ β

0
dλ eλH0HCe−λH

)
, (5)

with H0 = HS + HR . Since in equilibrium, the bath is assumed
to exert no net force, i.e., 〈HC〉f = 0, one needs to iterate at
least up to the second order in HC . This yields

Z ≈ ZSZR

[
1 + 1

�2

∫
�β

0
dλ

∫ λ

0
dτ 〈HC(−iτ )HC〉f

]
, (6)

with Heisenberg operators taken with respect to H0. When
combined with a similar result for the not-normalized energy
expectation values one finds

Qcorr ≈ 1

�2

∫
�β

0
dλ

∫ λ

0
dτ [〈HSHC(−iτ )HC〉f

−〈HS〉S〈HC(−iτ )HC〉f ]. (7)

This result applies to arbitrary system operators when HS is
replaced accordingly. Here and in the sequel, 〈·〉R,S denote

expectation values based on the individual canonical operators
of reservoir and system, respectively.

To proceed, we consider the generic situation of a bath
with Gaussian noise properties bilinearly coupled to a system
via HC = qE with E being a collective bath mode and
q a dimensionless system operator. The reservoir is then
completely determined by the equilibrium correlation L(t) =
〈E(t)E〉R so that

Qcorr = 1

�2

∫
�β

0
dλ

∫ λ

0
dτ L(−iτ )[〈HS q(−iτ )q〉S

−〈HS〉S〈q(−iτ )q〉S]. (8)

In imaginary time the bath correlation takes the form [7]

L(−iτ ) = μ : δ(τ ) : −k(τ ), (9)

where : δ() : denotes a periodically continued δ function
beyond the interval �β and μ = (2/π )

∫ ∞
0 dω I (ω)/ω with the

spectral distribution of bath modes I (ω). Further, the kernel

k(τ ) = 1

β

∞∑
n=−∞

ζne
iνnτ (10)

is periodic in �β and

ζn = |νn|γ̂ (|νn|) (11)

contains the Matsubara frequencies νn = 2πn/�β and the
Laplace transform of the classical damping kernel

γ̂ (z) = 2

π

∫ ∞

0
dω

I (ω)

ω

z

z2 + ω2
. (12)

Note that this perturbative treatment is valid as long as Qcorr

is sufficiently smaller than typical bare level spacings of the
system of interest.

III. TWO-LEVEL SYSTEM

According to common experimental realizations in super-
conducting circuits, we first discuss a two-level system [5,26]

HS = −�


2
σx (13)

with coupling operator q = σz. Performing the time integra-
tions in (8) with (10) yields with the bare result

〈HS〉S = −�


2
tanh(θ/2), (14)

the expression

Qcorr = �
2

2 cosh2(θ/2)

∑
n�1

ζn


2 + ν2
n

[
1 − 
2 − ν2

n


2 + ν2
n

sinh(θ )

θ

]

(15)

with the dimensionless inverse temperature θ = 
�β. Reser-
voir properties only appear in ζn so that this result allows one to
analyze Qcorr for various spectral distributions. We start with
a Drude bath

I (ω) = η
ωω2

c

ω2
c + ω2

, (16)
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FIG. 1. (Color online) Heat Qcorr from (15) exchanged between
system and an Ohmic-type reservoir to establish equilibrium cor-
relations from an initially factorized state vs inverse temperature
θ = 
�β for various cutoff frequencies ωc/
 = 20 (blue, dotted),
50 (purple, short-dashed), 100 (green, long-dashed), 200 (red, solid),
and coupling constant η = 0.1. Heat is scaled with �
.

with coupling parameter η and Drude frequency ωc. This then
implies γ̂ (z) = ηωc/(ωc + z). Numerical results are shown
in Fig. 1. At high temperatures θ � 1, the heat grows
quadratically

Qcorr,high ≈ η�ωc

4π2
θ2, (17)

so that in this regime, as expected, a factorizing initial state is
an accurate approximation. In contrast, at moderate and low
temperatures the exchanged heat is quite substantial even for
weak coupling and it tends to saturate at very low temperatures
θ 	 1. For ωc 	 
 the leading contributions read

Qcorr,low ≈ η�


2π
ln(ωc/
) + η�


4ωc

− η�


θ2

π

6
. (18)

Here, the logarithmic dependence on the Drude frequency
reflects the impact of zero-point fluctuations of the reservoir
(Lamb shift) which have recently been measured in a circuit
quantum electrodynamical setup [27]. It originates from the
second term in brackets in (15) while the first one dominating
the classical and moderate quantum regime is exponentially
suppressed. The changeover to the deep quantum domain
roughly occurs when cosh(θ/2) ≈ 1, i.e., θ ≈ 2, and according
to Fig. 1 is related to a maximum in Qcorr. Note that in a
strict Ohmic limit ωc → ∞ the exchanged heat diverges and
non-Markovian properties must always be taken into account.
Treatments which not only assume factorized initial states
but also purely Ohmic reservoirs to predict heat and work
distributions for open systems may thus be of only limited
value at low temperatures. Further, the result (18) reveals that
the expression (15) applies even at zero temperature as long as
η ln(ωc/
) � 1.

Let us now turn to more general types of spectral distribu-
tions

I (ω) = η
ωsω3−s

c

ω2
c + ω2

(19)

characterized by a spectral exponent 0 � s < 2. For s < 1
(sub-Ohmic noise) this distribution describes a class of reser-
voirs which appears in quantum optical [28] and mesoscopic

0.0
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rr
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s

FIG. 2. (Color online) Heat Qcorr exchanged between system
and sub-Ohmic reservoirs with spectral exponents s [see (19)] to
establish equilibrium correlations from an initially factorized state
at various inverse temperatures 
�β = 0.1 (red, dotted), 0.5 (green,
short-dashed), 1 (purple, long-dashed), and 10 (blue, solid). Heat is
scaled with �
 and η = 0.1, ωc/
 = 50.

setups [29] and for s � 1 mimics 1/f noise, a significant noise
distribution in the low temperature regime of solid state devices
[30]. The case s > 1 is known as super-Ohmic decoherence.
It has recently been shown that in the sub-Ohmic regime at
sufficiently low temperatures, system and bath are strongly
correlated due to entanglement [23,25]. As illustrated in Fig. 2,
this has direct consequences for the heat generated from an
initially factorized state. In fact, in the zero temperature limit
one arrives in leading order in ωc/
 at

Qcorr,0(s) ≈ η�


2 sin(πs)
[(ωc/
)1−s − sin(πs/2)]. (20)

Here, the limit s → 1 must be taken with care to regain (18).
As seen in Fig. 2, even reservoirs with moderate sub-Ohmic
characteristics display an enhanced heat production at low
temperatures which is much less pronounced in the super-
Ohmic case and basically absent at high temperatures. In the
regime s � 1, relevant for cryogenic solid state experiments,
heat is mainly determined by reservoir energy scales, i.e.,
Qcorr,0(s � 1) ≈ (η�ωc)/(2πs).

IV. EXACT RESULTS: HARMONIC OSCILLATOR

Exact results valid also for strong system-bath coupling
can be obtained for harmonic systems. This not only allows
one to inspect the validity of weak coupling predictions, but
may also be of experimental relevance [16,20], in solid state
systems, e.g., for circuits including Josephson junctions such
as superconducting quantum interference devices (SQUID).
This way, we consider

HS = p2

2m
+ mω2

0

2
q2, (21)

which yields under a factorized equilibrium

〈HS〉S = �ω0

2
coth(ω0�β/2). (22)
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Instead, in correlated equilibrium one has [7]

〈HS〉β = 1

β
+ 1

β

∑
n�1

2ω2
0 + ζn

ν2
n + ω2

0 + ζn

, (23)

with the second term describing quantum mechanical fluctu-
ations. Hence one finds for the exchanged heat (15) the exact
expression

Qcorr,ex = 1

β

∑
n�1

ζn

ν2
n + ω2

0 + ζn

ν2
n − ω2

0

ν2
n + ω2

0

. (24)

In the regime of weak coupling, this reduces according to (8)
to

Qcorr,app ≈ 1

β

∑
n�1

ζn

ν2
n + ω2

0

ν2
n − ω2

0

ν2
n + ω2

0

, (25)

which can further be approximated for a Drude model (16). At
high temperatures θ � 1 one gains

Qcorr,high ≈ η�ωc

4π2
θ, (26)

with a linear rise instead of a quadratic one in (17) due to
an unbounded energy spectrum. The factorizing assumption
seems thus to be better justified for two-level systems than for
systems with an infinite number of accessible states. In the
zero temperature regime and for weak coupling, the harmonic
oscillator reduces to a two-level system which in turn may
verify the validity of the result (18). Indeed, the exchanged
heat from (25) coincides with the result (18) with 
 replaced
by ω0.

To analyze the accuracy of the weak coupling treatment
for finite temperatures, we depict in Fig. 3 the ratio of the
approximated result (25) to the exact one (24). Notably,
the perturbative treatment works fairly accurately also for
somewhat stronger dissipation and over the full temperature
range. Its predictions tend to deviate substantially from the
exact values, however, in the overdamped regime η > 1. In
this regime, the reservoir induced level broadening η�ω0

even exceeds the bare level spacing so that for very strong
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pp
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rr

,e
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0 2 4 6 8 10

FIG. 3. (Color online) Approximate value of the exchanged heat
for weak coupling Qcorr,app for a harmonic oscillator normalized to
the exact value Qcorr,app vs inverse temperature θ in a Drude bath
(ωc/ω0 = 50). Depicted are results for various coupling strengths
η = 0.01 (black, solid), 0.05 (blue, long-dashed), 0.2 (purple, short-
dashed), 0.5 (green, dotted–closely spaced), and 1 (red, dotted).

dissipation and at low temperatures η 	 1, ωc�β 	 ω0�β 	
1, one finds from (24)

Qcorr,over ≈ η�ω0

2π
ln(ηωc/ω0). (27)

Note that, in this latter regime, it is known that entanglement
correlates system and bath [10,24].

V. HEAT CAPACITY

Heat capacity is a central experimental quantity in bulk
systems. It has thus been proposed as a measure to access
information about entanglement [31]. Recently, this has indeed
been demonstrated for large spin ensembles [32].

Here, we follow a somewhat more ambitious route and
consider the heat capacity of a single quantum degree of
freedom embedded in a thermal bath. We show to what
extent system-bath correlations induce deviations from bare
predictions. Accordingly, we consider heat capacities Cβ in full
thermal equilibrium and compare them against those of a bare
system thermal state CS . Both follow from the temperature
dependence of the respective system energy expectation
values (internal energy), the difference of which Qcorr has
been calculated above. Classically or for bare systems, heat
capacities can be obtained from the temperature dependence
of either internal energies or partition functions. In full thermal
equilibrium, however, only the energy-based definition leads
to physically meaningful predictions [14]. We thus obtain

Cβ

CS

= 1 + ∂Qcorr(T )

CS∂T
. (28)

For the two-level system (13), the bare textbook expression
[6] reads

CS

kB
= θ2

4 cosh2(θ/2)
. (29)

This result can now be compared with the full heat capacity
stemming from (15); see Fig. 4. In particular, based on (17),

1.0

1.5

C
/C

S

0 2 4 6

FIG. 4. (Color online) Ratio of the heat capacities Cβ/CS of
correlated and bare thermal state vs inverse temperature for a
two-level system and various bath cutoff frequencies ωc/
 = 20
(blue, short-dashed), 50 (green, long-dashed), and 100 (red, solid). For
comparison also results for a harmonic system are depicted (purple,
dotted) for ωc/ω0 = 50. Coupling strength is η = 0.1.
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in the high temperature limit both basically coincide

Cβ

CS

≈ 1 − 2ηωc

π2
θ. (30)

However, at very low temperatures, according to (18),

Cβ

CS

≈ ηωcπ

3θ3
eθ . (31)

One observes a strong enhancement due to the fact that the full
Cβ decays only algebraically in contrast to (29). For the full
heat capacity the changeover between the classical/moderate
quantum to the deep quantum regime is related to substantial
suppression and enhancement, respectively, compared to the
bare prediction. This feature is more pronounced for large
Drude frequencies.

For harmonic systems (21), the well-known bare result

CS

kB
= θ2

4 sinh2(θ/2)
(32)

leads for high temperatures together with (26) to

Cβ

CS

≈ 1 − η�ωc

4π2
θ2. (33)

For low temperatures and weak coupling one regains the
expression (31). Exact data can easily be obtained from (24).
Figure 4 reveals an only weak temperature dependence of
Cβ/CS in the range shown and the overall behavior is basically
insensitive to ωc for ωc/ω0 	 1. The strong coupling domain,
where perturbative results are not applicable, is addressed in
Fig. 5. Interestingly, larger coupling has not always had the
tendency to increase the heat capacity compared to the bare one
even at moderately low temperatures. One obtains a substantial
enhancement only for very low temperatures. Notably, this
occurs in the regime η > 1 and ηω0�β 	 1, also known
as the quantum Smoluchowski limit [33], where the level
broadening due to friction exceeds both the bare level spacing
and the thermal energy scale so that quantum dynamics tends
to become more classical, though, with substantial quantum
fluctuations.

1

2

3

4

C
/C

S

0 1 2 3

FIG. 5. (Color online) Ratio Cβ/CS of correlated and bare ther-
mal state of a harmonic oscillator vs coupling strength for various
inverse temperatures ω0�β = 0.1 (red, dotted), 1 (green, short-
dashed), 4 (purple, long-dashed), and 6 (blue, solid).

VI. EXPERIMENTAL DETECTION

We now propose a scheme to retrieve information about the
impact of system-bath quantum correlations by measuring the
heat capacity of the embedded system. The latter one is taken
as a solid state implementation of a two-level system, e.g., in
the form of a biased SQUID coupled inductively to a resistor
(reservoir). In these devices, at cryogenic temperatures, elec-
tronic degrees of freedom (Fermi gas) are very weakly coupled
to the underlying phonon background with relaxation times on
the order of 100 μs, while electron-electron interaction leads
to equilibration in the Fermi gas within a few nanoseconds.
It is this latter heat bath which dominantly interacts with
the SQUID. By means of rf thermometry [34–36], it is now
possible to monitor the actual temperature of the Fermi gas
of a mesoscopic metallic island on sub-μs time scales which
in turn allows one to monitor its relaxation dynamics after a
heating pulse has been applied.

We imagine a situation where both SQUID and its electronic
environment are in thermal equilibrium at a temperature T1. A
short and weak heating pulse of duration τp is sent to the reser-
voir, where it leads within a few nanoseconds to a temperature
T2 of the electron gas. The coupling between the system and
this reservoir is assumed to be weak such that the coupling
rate � depending on their correlations obeys τp ∼ 1/�ee �
1/� � 1/�ep, with �ee (�ep) being the equilibration rate of
the Fermi gas (Fermi gas and phonon bath). Accordingly, on
a much shorter time scale than 1/�ep the electronic reservoir
will transfer energy to the two-level system and eventually
equilibrate with it. This loss of energy of the electronic
reservoir corresponds to a heat flow QR = CRδT , where CR is
the heat capacity of the bare reservoir and δT is the temperature
drop T2 → T2 − δT due to the reservoir-system equilibration.
This heat flow balances the heat flow received by the system
when it heats up from T1 → T2 − δT , i.e., Cβ(T2 − δT − T1)
with Cβ being the heat capacity of the embedded system.
Hence one arrives at

Cβ

CR

≈ δT

T2 − T1 − δT
, (34)

where the small portion of heat lost to the phonon bath
during the equilibration between system and reservoir has been
neglected. It can be estimated to be on the order of �ep/� � 1.
A specific advantage of this protocol is that the heat capacity
CR (known for typical bulk materials) can be extracted in situ
from the known energy carried in the initial heating pulse
Ein via CR = Ein/(T2 − T1). Experimental data for varying T1

and T2 (but still small T2 − T1) can then be compared with
predictions for the bare system according to the results of the
previous section.

VII. CONCLUSION

The quantum correlations between a system and its reser-
voir are analyzed in terms of the heat exchange during the
equilibration when starting initially with a separable thermal
state. Specific results are discussed for systems for which
recent theoretical predictions of work, work distributions,
and heat have been made based on factorized thermal
states. System-bath correlations substantially influence heat
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capacities in the low temperature regime which may open a
way to detect them in solid state devices.

As we have shown, system-bath correlations induce devia-
tions in the weak coupling quantum regime when compared to
predictions based on separable thermal states on the order
of 10% of the bare level splitting. When a weak external
driving is exerted to the system, according to the first law
of thermodynamics, part of its energy is deposited into the
system (internal energy) and part of it is transferred to the
bath in the form of heat. Weak coupling approaches such as
master equations obtain work and heat based on separable
thermal equilibria [17–19]. For example, for a monochromatic
pulse with frequency � and amplitude λ0 in resonance with a
two-level system, they are applicable as long as work and heat
are on the order of (λ0/��)2 � 1 which basically matches

the impact of system-bath correlations. For actual realizations
at low temperatures, their predictions may thus be of limited
reliability. System-bath correlations may be substantial not
only in theoretical approaches to understand work and heat at
the quantum level but also to analyze experimental data.
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