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of all three elements would be of considerable
interest.

This work was performed under the auspices
of the U. S. Department of Energy by Lawrence
Livermore National Laboratory under Contract
No. % -7405-Eng. -48.
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Flow of 3He Bthrou-gh Narrow Channels

M. T. Manninen and J. P. Pekola
Lour Temperature Laboratory, Helsinki Uniuersity of Technology, SF-02150 Espoo 15, Finland

(Received 22 December 1981)

The critical current J, of superfluid 3He-8 through 0.8-pm-diam channels has been
measured. For small currents the pressure difference ~P = 0 aloag the flow channels
within the resolution, implying small or zero dissipation. ~P grows rapidly with in-
creasing current above J, ; a clear transition to dissipative flow is thus observed. The
temperature dependence of J, indicates that the superfluid density and the critical tem-
perature are reduced inside the narrow flow channels.

PACS numbers: 67.50.Fi

The most important feature of a simple super-
fluid is that it can sustain mass flow without fric-
tion. At some critical current J„however, the
superfluid state becomes unstable, which leads

to dissipation. This model was derived from ex-
periments on He II; its validity in the case of
'He-B is currently of considerable interest.
I'arpia and Reppy' have observed the onset of
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excess dissipation in an 18-pm-diam hole and
they relate this to a critical velocity. Similar
experiments by Crooker, Hebral, and Reppy'
indicate that even in 5- p, m holes the depairing
velocity has not been reached. Eisenstein, Swift,
and Packard' and Dahm et a/. ' found dissipation
in larger flow channels for all velocities they
investigated; in these measurements, however,
only the maximum sustainable current was ob-
served.

%e report in this Letter direct measurements
of hP in 'He-B along narrow flow channels as a
function of the mass current density J,. The data
are consistent with zero dissipation at small cur-
rents and show, as the velocity is increased, a
clear transition to dissipative superf low. Our
experimental method enables us to extrapolate to
~=0 and thus to find the critical mass current
associated with the onset of dissipation. In addi-
tion, our measurements of the superfluid transi-
tion in bulk liquid show that T, is reduced inside
the flow channels.

Our experimental silver cell, which was ther-
mally connected to a copper nuclear stage, ' is
schematically illustrated in Fig. 1. An alumin-
ized Mylar diaphragm, with capacitor plates on
both sides, divides the cell into two compart-
ments. The separate 'He fill lines to each side
were connected together at the mixing chamber

of the precooling dilution refrigerator; the flow
through the fill line is negligible because of the
high viscosity of normal 'He. By application of
a biasing voltage U on one side of the capacitor,
liquid was forced through the flow channels. The
displacement of the diaphragm from equilibrium
was monitored by measuring the capacitance of
the other side.

The susceptibility of CLMN (cerium magnesium
nitrate diluted to. 3% molar solution by the cor-
responding lanthanum salt) and the nuclear sus-
ceptibility of platinum were employed as thermom-
eters. Tabulated values' of T, vs P were used
for calibration of all three thermometers; T,
was detected with CLMN as a change in the slope
of the temperature drift curves.

The superleak was a piece of Nuclepore filter'
with etched particle-track holes, believed to be
straight circular cylinders. The thickness of the
filter is 10 pm and the nominal diameter of the
channels is 0.8 pm. The electron-microscopical-
ly determined total area of the channels was 6.4
x102 pm2.

In our experiment the drive voltage was typical-
ly swept from 0 to 100 V so that U', i.e., the
force on the diaphragm, varied linearly with
time. As a result, the response AC of the capaci-
tance bridge (proportional to the displacement x)
is also linear with time, provided that there is
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FIG. 1. Schematic diagram of the experimental cell.
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A/t» respectively. Our P= 0 data only can be
reliably extrapolated to 8, = 0; we then find T,»/
T =0.94, which is in agreement with this predic-
tion. We have also found at each pressure the
value of T

y&
which gives the best fit of the form

Z, ~(1 —T/T, &i)' ' to our data, as illustrated in
Fig. 4(b). This analysis yields T,&&/T, =0.935,
0.966, 0.976, and 0.983 at P=O, 3.5, 7, and 15
bars, respectively; the agreement with the cal-
culations in Ref. 9 is good. Measurements of the
superfluid density in packed powders by Chainer,
Morii, and Kojima" have also shown suppression
of transition temperature in agreement with Ref.
9.

cn 6
CV

E
Ol

A

4

~O

I-
I

2
0

Tc y I / Tg 0 .98 3

0 o o o «o oooooooo0 p 00
0.976

+ + + + + + +
0.966

'~ ~ ~ ~ 4 ~ 0 ~ ~ ~
0.935

(b)
I

0.2
I

0 4
1-T/T

C

0.6 0.8

FIG. 4. (a) The temperature dependence of the criti-
cal mass current density J, , suitably normalized, at
four different pressures. (b) J, normalized by (1-T/
Tcyi) 3/2

perature at four different pressures. In our nar-
row channels we expect to observe the depairing
critical current which, according to the weak-
coupling theory, ' behaves as (1 —T/T, )' ', this
is used to normalize the measured J,. The cal-
culated values of J,/(1- T/T, )' ' are 3.06 kg/m'
s at P=0 and 8.04 kg/m' s at P=15 bars. The
deviation of our data from this prediction, both
in magnitude and in the temperature dependence,
can be explained, at least qualitatively, by a re-
duction of the superfluid density p, inside the
flow channels. The influence of their size de-
pends on the ratio of the channel radius R to the
coherence length $, =0.133hv„/ABT„R/$, =— 5, 9,
11, and 17 for P=0, 3.5, 7, and 15 bars, respec-
tively, if the values of m*/m from Ref. 6 are
used.

The superfluid transition temperature T,&&
in

a cylindrical channel has been calculated by
Kjaldman, Kurkijarvi, and Rainer. Their re-
sults for T,z&/T, are 0.930, 0.955, 0.974, and
0.988, corresponding to the above four values of

The pressure variation of J, found by us is in-
consistent with the results of Hutchins et al. ,

"
who observed a saturation current such that 4, /
(1 —T/T, )'i' was almost independent of P. The
flow channel used was 50 pm x 3 mm in cross
section and 9 mm long. According to our results,
the current density increases with pressure in
0.8- pm-diam channels more than would be ex-
pected from the weak-coupling theory, but the
magnitude of' the current is smaller than the de-
pairing current predicted by this theory, especial-
ly at low pressures. This behavior is consistent
with the suppression of superfluidity because $,
decreases with increasing pressure. The mag-
nitude of our 0, at P = 0 is close to the saturation
current observed by Eisenstein, Swift, and
Packard' in a 354- pm-diam channel; this agree-
ment, however, may be accidental in view of the
suppression of p, in our measurements.

We wish to thank M. S. Tagirov and S. A. Ne-
nonen for helping in the measurements. Discus-
sions with O. V. Lounasmaa, J. Kurkijarvi, R. E.
Packard, and E. V. Thuneberg are gratefully
acknowledged. This work was financially sup-
ported by the Academy of Finland.
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Shock Compression of Liquid Xenon to 130 Gpa (1.3 Mbar)

W. J. Nellis, M. van Thiel, and A. C. Mitchell
University of California, Lawrence Livermore National Laboratory, Livermore, California 94550

(Received 30 November 1981)

New data are reported for liquid xenon shock compressed to a pressure of 130 GPa
(1.3 Mbar), a molar volume of 13.7 cm3/mole, and a calculated temperature of 29000 K.
The data are consistent with the theory of Ross and McMahan, which indicates that xenon
undergoes an insulator-to-metal transition at 9 cm3/mole at about 130 GPa or greater
at 0 K. The minimum molar volume achieved in these experiments corresponds to a
pressure of 60 GPa on the 0-K isotherm.

PACS numbers: 62.50.+p, 71.30.+h

Xenon is the simplest material studied to under-
stand the insulator-to-metal transition at high
pressure. This material has been compressed
statically to measure the 85-K pressure-volume
isotherm up to 11 GPa (110kbar) and 21 cm'/
mole, ' and to measure electrical conduction at
32 K which indicates an insulator-to-metal transi-
tion at about 33 GPa. ' The Hugoniot or shock-
compression curve of liquid xenon has been meas-
ured previously up to a pressure of 50 GPa and a
molar volume of 18 cm'/mole. ' Recent theoreti-
cal results are in agreement with the shock-wave
data but place the insulator-to-metal transition
at 130 GPa or greater at 0 K.&' Thus, theoreti-
cal predictions~' of the transition pressure differ
by a factor of 4 from the only reported experi-
mental observation. '

We have measured the Hugoniot of liquid xenon
to a pressure of 130 GPa and a molar volume of
13.7 cm'/mole in order to estimate the density
dependence of the narrowing of the conduction
electron energy gap. Since rare-gas solids and
fluids are extremely similar in their electronic
structure, which is dominated by tight-binding
character, these results for the fluid are expect-
ed to be representative of the solid as well. The
estimate of the energy gap follows from the ex-
cellent agreement of the data with the theory of
Ross and McMahan which takes into account the
density dependence of the electronic energy gap
in xenon. The sensitivity of the data to the ener-

gy gap arises because strongly shocked xenon is
heated to temperatures comparable to the gap en-
ergy; that is, xenon is a liquid semiconductor in
our experiments. The heating is caused by the
thermodynamically irreversible nature of the
shock-compression process. A sufficient number
of electrons are thermally excited so that the
shock pressure is reduced by up to a factor of 3
from what it would be without electronic excita-
tion. The reason is that the irreversible shock
energy can be distributed in only two ways in a
simple fluid like xenon: thermal motion and elec-
tronic excitation. If energy is absorbed internal-
ly by electronic excitation, the shock pressure
will be smaller than if no excitation occurs be-
cause less energy is available for thermal pres-
sure. Thus, the high shock temperature is a
very useful probe of the electronic structure at
high density and pressure. '

Shock waves were generated by accelerating a
planar projectile to a velocity in the range 2.6-
6.6 km/s with a two-stage light-gas gun and im-
pacting the projectile onto a target containing liq-
uid xenon. The experiment is based on the Ran-
kine-Hugoniot relations which relate measured
kinematic parameters to thermodynamic vari-
ables. Diagnostic, cryogenic, and data-reduc-
tion techniques were as described earlier, ' ' ex-
cept that a cold N, gas system was used to cool
the target assemblies and control sample temper-
ature to 0.1 K." Xenon gas was condensed until
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