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Thermal noise generated by a hot resistor (resistance R) can, under proper conditions, catalyze heat
removal from a cold normal metal (N) in contact with a superconductor (S) via a tunnel barrier (I). Such a
NIS junction is reminiscent of Maxwell’s demon, rectifying the heat flow. Upon reversal of the
temperature gradient between the resistor and the junction, the heat fluxes are reversed: this presents a
regime which is not accessible in an ordinary voltage-biased NIS structure. We obtain analytical results for
the cooling performance in an idealized high impedance environment and perform numerical calculations
for general R. We conclude by assessing the experimental feasibility of the proposed effect.

DOI: 10.1103/PhysRevLett.98.210604 PACS numbers: 05.40.�a, 07.20.Pe, 73.40.Gk

In 1867, Maxwell suggested a demon that attempts to
violate the second law of thermodynamics [1]. The demon
acts between two containers A and B, initially at the same
temperature; it exclusively allows hot particles to pass
from container A to container B and cold ones from B to
A. This process would lead to a decrease of entropy if the
system were isolated and could then be used for useful
work. Ever since, this thought experiment has intrigued
physicists, see, e.g., Refs. [1–4]. Yet the demon needs to
exchange energy with the containers in order to function
properly. Thereby, the entropy of the whole system is
always increasing, rendering thermodynamics intact.

In this Letter, we present a particularly illustrative ex-
ample, reminiscent of Maxwell’s demon, which can be
realized experimentally in a straightforward way. Our sys-
tem is a Brownian refrigerator [5] in close analogy to
Brownian motors and thermal ratchets [6–10]. It conveys
heat unidirectionally in response to random noise. At the
same time, the total entropy of the system increases, in
agreement with the second law of thermodynamics.
Specifically, we consider a tunnel junction between a
normal metal and a superconductor (NIS junction) subject
to the thermal noise of a resistor at temperature TR, see
Fig. 1. The temperatures of the electrodes N and S are TN
and TS, respectively. The capacitance C consists of that of
the junction itself and the surrounding circuit. The resistor
and the junction can be connected by superconducting
lines which efficiently suppress electronic thermal conduc-
tance and thus enable us to discuss solely the photonic heat
exchange via the lines as in Refs. [11,12]. The N side can
be connected to the superconducting line via a metal-to-
metal SN contact, which provides perfect electrical trans-
mission but, due to Andreev reflection, prevents heat flow
[13,14]. We note already here that the presented NIS
structure can be replaced by a more practical symmetric
SINIS device with two tunnel junctions.

The heat balance between the resistor and the NIS
structure is described on the level of a single electron

tunnelling event between N and S, accompanied by pho-
tonic exchange of energy between the junction and the
resistor. Formally, this can be done using the so-called
P�E� theory developed for a tunnel junction embedded in
an electromagnetic environment [15,16]. Assuming that
for both electrodes i � 1, 2, the (normalized) density of
states ni�E� is symmetric around the Fermi level E � 0 and
that the corresponding energy distributions satisfy fi�E� �
1� fi��E�, we find that the heat fluxes upon tunnelling
between electrodes 1 and 2 are given by
 

_Qi �
2

e2RT

ZZ
dE0dEn1�E

0�n2�E� ~Ef1�E
0��1� f2�E��

� P�E0 � E�; (1)

where ~E equals E0 (� E) for heat _Q1 ( _Q2) extracted from 1
(from 2), and P�E0 � E� is the probability density of emit-

 

FIG. 1. Schematic presentation of the system. In (a), we show
the electrical diagram of the resistor at temperature TR and the
tunnel junction. The parallel capacitance C includes that of the
junction and a possible shunt capacitor. In (b), we show the
thermal diagram of the system. The NIS tunnel junction acts as a
Brownian heat engine, or as Maxwell’s demon (MD) between N
and S. _QN and _QS are the heat fluxes out from N and S,
respectively, and Pext denotes the external power needed to
create the temperature bias of the resistor. The wavy lines into
T0 bath indicate phonon coupling of the electrical subsystems.
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ting energy E0 � E to the environment in this event. Thus,
for heat extracted from the environment, _Q3, ~E � E� E0

in (1), which secures energy conservation: _Q1 � _Q2 �
_Q3 � 0. P�E� can be calculated for a particular environ-

ment at a temperature TR, once the dissipative part<eZ�!�
of its impedance at frequency !=2� is known [16]. The
theory is perturbative in tunnel conductance; therefore, the
tunnel resistance RT should be of the order of the resistance
quantum, RK � h=e2, or higher. Here, we have neglected
the Joule dissipation in the normal metal itself, which is
usually justified as N can have a very low resistance
compared to that of the tunnel junction.

First, we analyze the various heat fluxes assuming that
temperatures are fixed by whatever condition, usually by
electron-phonon coupling (to be discussed towards the
end). As a warm-up exercise, we consider the system
where the tunnel junction is of type NIN; i.e., both sides
are normal metals. Then, ni�E� 	 1 for both electrodes.
We furthermore assume them to be kept at equal tempera-
ture TN characterized by Fermi distributions fi�E� � �1�
eE=kBTN ��1. This example closely resembles the original
setup of Johnson and Nyquist [17], where thermal noise
acts between two resistors. We employ Eq. (1) for a general
resistive environment at high temperatures, kBTR;N 

@�RC��1. The total heat flux out of the junction is then _Q 	
_Q1 � _Q2 ’ kB�TN � TR��RTC��1. This power is shared

equally by both N electrodes due to symmetry. The result
for _Q is consistent with the expectation that heat flows
from hot to cold.

The symmetry of the previous example is vitally broken
in the NIS junction that we focus on here. We have
n1�E� � 1 for N as before. Yet, the BCS density of states
in S, n2�E� � 0 for jEj< � and n2�E� � jEj=

������������������
E2 � �2
p

for jEj>�, breaks the symmetry and makes this system
behave as an energy selective entity in the spirit of
Maxwell’s demon. Because of the existence of the energy
gap � in S, photon coupling to the resistor promotes
otherwise forbidden tunnelling, and the hot electrons are
preferably escaping from N (and cold ones are entering it)
since they lie closer to the gap threshold. In more classical
terms, we can think of the process as if symmetric thermal
fluctuations of voltage would induce energy selective tun-
neling like in a standard voltage-biased NIS junction [14],
and heat flow is rectified. We again assume standard Fermi
distributions: f1�E� � �1� e

E=kBTN ��1 for N and f2�E� �
�1� eE=kBTS��1 for S. Let us first discuss a particular limit
where illustrative analytical results can be obtained. We
consider highly resistive environment, such that � R

RK
�

kBTR
EC

 1, where EC 	

e2

2C is the charging energy. Then

P�E� assumes a simple Gaussian form: P�E� �

�2����1=2 exp�� �E�EC�
2

2� �, where the width is given by
� � 2kBTREC [16]. We now assume that this width is
small compared to �. The integration over energy in (1)
then involves E, E0 * �
 kBTN;S and we may approxi-
mate the Fermi distributions by their Boltzmann-like ex-

ponential tails. In this limit, setting TS � TN for simplicity,
we have
 

_QN ’

���������������������
2��kBTN

p
e2RT

�e��=kBTN

�

��
1�

�
2
TR
TN
� 1

�
EC
�

�
e�TR=TN�1�EC=kBTN

�
EC
�
� 1

�
: (2)

One can similarly estimate the heat flux from S:

 

_QS ’

���������������������
2��kBTN

p
e2RT

�e��=kBTN �1� e�TR=TN�1�EC=kBTN �:

(3)

The expressions (2) and (3) vanish when TR � TN, as
expected. The nontrivial result is that on heating, the
resistor to temperatures TR > TN , N tends to cool down,
i.e., _QN > 0, and S is heated, _QS < 0. On the other hand,
for TR < TN , the heat flux is reversed: S tends to cool down
and N to warm up. Also in this regime, the heat flux
between the junction and the resistor is unevenly distrib-
uted among N and S. Such cooling of S never occurs in a
conventional voltage-biased NIS refrigerator [14].

If one employs (2) to find the optimum TR=TN where the
cooling power ofN is maximal, one finds TR=TN ’ �=2EC
for EC=�� 1. Although this is the right order of magni-
tude, the numerical results presented below show that the
actual value of the ratio TR=TN is approximately twice
higher. The approximation used above for the Fermi func-
tions leads to a counterbalance of the cooling effect as the
Boltzmann tails grow exponentially at negative energies. A
better estimate can be obtained by retaining the full Fermi
function f1�E

0� and linearizing the exponent of the
Gaussian P�E0 � E� around E0 � 0 where f1 steeply
drops. We then arrive at
 

_QN ’
�3�kBTN�2

2e2RT
����������������������
1� EC=�

p ���=EC � 1�TN=TR � 1�

� e�
�2

4kBTREC
�1�EC=��2 : (4)

This expression predicts that for kBTN , EC � � the opti-
mal point of cooling indeed lies at TR=TN ’ �=EC. In its
range of validity, this optimum as well as the overall
behavior described by Eq. (4) are consistent with the
numerical results, as will be seen below.

In order to picture the characteristics of the system more
precisely, we have performed numerical calculations
within the same model as above. In Fig. 2, we show a
comparison of the exact numerical results for R
 RK and
the analytical approximations of Eqs. (2) and (4). We see in
the main frame that at low temperatures, the approximation
(4) works quite well over a broad range of temperature
biases, whereas the Boltzmann approximation (2) fails at
high values of TR=TN . Yet, around zero temperature bias,
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the latter approximation works perfectly as demonstrated
by the inset of Fig. 2.

A set of numerical results under representative condi-
tions is collected in Fig. 3. In (a), we see the influence ofEC
on the performance of the system. Here, the Gaussian
approximation of P�E� was used. The maximum cooling
occurs indeed at TR=TN ’ �=EC, and the value at the
maximum grows a little with increasing �=EC. In (b), the
Gaussian approximation was abandoned. Under reduced R,
the P�E� function transforms from a broad Gaussian cen-
tered around EC towards a delta-function around E � 0.
According to Eq. (1), this evolution weakens the refrigera-
tion effect. In Fig. 3(b), we see that it is indeed essential to
have a relatively large R in order to sustain the effect,
although some cooling can be observed also down to
R=RK � 0:1. With high resistances, the cooling character-
istics approach the result of a Gaussian P�E� as should be
the case. In (c) and (d), we show the quantitative results for
the heat flux _QN and the optimum temperature bias, re-
spectively, as a function of TN for R
 RK.

The discussion above demonstrates counter-intuitive
heat fluxes in the system, and one should verify that they
do not contradict the second law of thermodynamics.
Specifically, one must demonstrate that the total entropy
does not decrease, i.e., that the inequality

P
i�N;S;R

_Qi=Ti <
0 holds. This constitutes a difficult task, first of all since the
compatibility of quantum mechanics and the second law of
thermodynamics has not been established in general [18].
An additional complication is that we are dealing with
three different temperatures. Using Eq. (1), it is straightfor-
ward but tedious to rigorously demonstrate that the above

inequality is satisfied for the cases TR 
 TN 
 TS and
TR � TN � TS. Note that this is exhaustive when N and
S are kept at the same temperature. We have performed
extensive numerical tests and found no violation in the
remaining two cases TR 
 TS 
 TN and TR � TS � TN .

Some of the results above can be obtained approxi-
mately by straightforward classical estimates. In particular,
we may consider an ordinary NIS junction with large
resistance RT and evaluate its cooling power when biased
by a fluctuating voltage with vanishing mean value and
Gaussian variance h�eV�2i 	 � � 2kBTREC. In the limit of
low frequencies (small EC), we may make a quasistation-
ary averaging over the fluctuations, such that the expected
cooling power of N is h _QNi ’

R
p�eV� _QNd�eV�, where

p�eV� � �2����1=2e��eV�
2=�2�� is the distribution of fluc-

tuations and _QN�eV� is the cooling power of the NIS
junction at a static bias voltage V. For jeVj 
 kBTN , one

obtains _QN�eV� ’
�����������������
��kBTN=2
p

e2RT
��� jeVj�e����jeVj�=kBTN

[19]. Performing the averaging yields then h _QNi ’���������������
2��kBTN
p

e2RT
�e��=kBTN �1� 2 TR

TN
EC
� �e

�TR=TN�EC=kBTN . This re-

sult resembles very closely that of Eq. (2), in particular,
for TR > TN . Yet the classical result above neglects the
backflow of heat from the junction to the resistor, which is
an important contribution especially when TR & TN .

The presented effect can be tested experimentally in a
standard on-chip configuration by employing common N
and S metals like copper and aluminum, respectively. The
resistance can be formed using a strip of resistive metal
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FIG. 3. Heat flux out from the normal island. In (a) and (b), we
assume kBTN=� � 0:1 and TS � TN . The cooling power is
plotted as a function of TR=TN . In (a), the environment resistance
is R
 RK . Different curves, with maxima from left to right,
correspond to �=EC � 1, 2, 5, 10, and 30. In (b), �=EC � 5, and
R=RK � 1, 10, 2, 1, 0.5, 0.25, and 0.125 from top to bottom. In
(c), we plot the maximum cooling power, and in (d), the relative
temperature of the resistor at this optimum point as functions of
TN . In (c) and (d), �=EC � 30, 10, 5, 2, and 1 from top to
bottom.
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FIG. 2. Calculated cooling power _QN at kBTN=� � 0:03 as a
function of temperature bias TR=TN . Here, we have assumed
R
 RK , TS � TN , and �=EC � 5. In the main frame, the solid
line is the result of the exact numerical calculation, and the
dashed one is the analytic expression of Eq. (4) based on
linearizing the exponent of the Gaussian distribution over the
relevant energy interval. The dotted line diving to negative
values around TR=TN ’ 3 is the result of Eq. (2). This approxi-
mation works well, contrary to Eq. (4), at small temperature
biases, see inset: the solid line is the exact result, and the
approximation (2) is shown by open dots.
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such as chromium or a metallic alloy. Figure 4 demon-
strates the temperature reduction, TN=T0, of the N island
assuming that the superconductor is well thermalized at the
phonon bath temperature T0 and that the electron-phonon
scattering is the dominant energy relaxation mechanism in
N [14]. The results are shown specifically for the case of
aluminum as a superconductor (� � 200 �eV, transition
temperature TC ’ 1 K). We have chosen the ratio �=EC �
5, which corresponds to realistic junction parameters: the
largest temperature reduction of almost 40% occurs at T0 ’
0:2 K corresponding to TR ’ 0:7 K. The specific material
parameter for the electron-phonon coupling in the normal
metal was chosen to be � � 1� 109 WK�5 m�3 [14]. The
N island volume of � � 1� 10�21 m3 can be achieved by
a standard process.

In the analysis above, the charging energy EC is due to
the parallel connection of the junction capacitance and an
optional shunt capacitance. We have seen that the optimum
cooling results do not depend particularly strongly on EC,
as long as EC < � holds. Some improvement in perform-
ance can, however, be obtained by decreasing EC, see
Fig. 3, because the parallel capacitance filters out the
harmful high frequency tail of the noise spectrum. Yet,
the ratio TR=TN � �=EC reflects the fact that with large
shunting capacitance, one needs to have a hotter noise
source to induce sufficiently strong fluctuations. From the
practical point of view, this is not advantageous, at least in
a conventional on-chip solution, because the high tempera-
ture of the resistor leads to parasitic heating of N via the
phonons of the substrate. Therefore, in a practical realiza-
tion, the choice of C is a trade-off. We believe that the
presented parallel RC environment can be realized almost
exactly as long asC is kept small, say on the level of few fF
arising from the junction itself. Then, the series inductance
of a circuit of sub-100 �m dimensions can be neglected
because the corresponding LC-frequency remains high as
compared to the frequency band of thermal radiation at
sub-K temperatures.

Finally, the effect can also be realized in a symmetric
SINIS configuration. The same theoretical analysis can be
carried over by using an effective resistance R=4, and
capacitance 2C, where R is the actual resistance in the
circuit and C is the capacitance of one junction. To take
into account the possible charging effects on the island, a
more involved analysis needs to be performed, however.

In summary, we discussed a Brownian refrigerator of
electrons, which offers an illustrative example remi-
niscent of Maxwell’s demon in the form of a tunnel junc-
tion with a superconducting energy gap. Its operation is
based on building blocks whose characteristics and imple-
mentation are well known. We expect that it yields a
substantial temperature reduction in a straightforward
realization.
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