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Recent progress on micro- and nanometer-scale manipulation has opened the possibility to probe

systems small enough that thermal fluctuations of energy and coordinate variables can be significant

compared with their mean behavior. We present an experimental study of nonequilibrium thermodynamics

in a classical two-state system, namely, a metallic single-electron box. We have measured with high

statistical accuracy the distribution of dissipated energy as single electrons are transferred between the box

electrodes. The obtained distributions obey Jarzynski and Crooks fluctuation relations. A comprehensive

microscopic theory exists for the system, enabling the experimental distributions to be reproduced without

fitting parameters.

DOI: 10.1103/PhysRevLett.109.180601 PACS numbers: 05.70.Ln, 05.40.�a, 73.23.Hk, 74.45.+c

Everyday concepts such as heat and mechanical work
have their foundation in dynamics at the atomic and
molecular scale, which is typically unobservable in macro-
scopic samples. Advances in the synthesis and manipula-
tion of biological matter have made it possible to study the
response of individual molecules [1] to mechanical forces;
also see Ref. [2] for a recent review. In these experiments,
the external force is modulated following a predetermined
protocol and the resulting workW exerted upon the system
is measured. Consequently, the fluctuating nature of the
thermodynamic quantity ‘‘work’’ is revealed, as repeated
measurements yield different results depending on the
microscopic trajectory traversed by the molecule. Similar
studies have been performed on colloidal particles [3] and
mechanical oscillators [4]. Fluctuation theorems such as
the Jarzynski equality (JE) [5] enable one to infer path-
independent equilibrium free-energy differences from the
statistics of irreversible measurement protocols. The JE
states that

he�W=kBTi ¼ e��F=kBT; (1)

where the ensemble average is taken over repetitions of the
force protocol starting from an equilibrium state at tem-
perature T, and�F is the difference in free energy between
the final and initial values of the external control parame-
ters. As we demonstrate experimentally, this equation ap-
plies also to a single-electron device operated in a dilution
refrigerator at temperatures of about 200 mK. An electro-
static gate drive plays the role of the time-dependent
mechanical force that has been missing in previous studies
of fluctuation theorems in electronic systems [6] and is
crucial for studying JE (1) and Crooks fluctuation relations
discussed below.

The system that is the subject of our study is a single-
electron box [7] as depicted in the scanning electron micro-
graph of Fig. 1(a). The box is formed by two metallic

electrodes that are electrically connected through a tunnel
junction with a small electric capacitance Cj. The com-

plete circuit diagram and naming of capacitors is shown in
Fig. 1(b). The sole degree of freedom that is of interest here
is the number n of electrons transferred from the left to the
right electrode. The relevant n-dependent part of the elec-
trostatic energy of the single-electron box is given by [8]

U ¼ Ecðn2 � 2nngÞ; (2)

where Ec ¼ e2=ð2C�Þ is the characteristic unit of charging
energy of the box, e is electron charge, C� ¼ Cj þ Cg is

the total capacitance of the box, Cg ¼ ðC�1
L þ C�1

R Þ�1 is

the effective gate capacitance, and ng ¼ CgVg=e is the gate

charge in units of e. The charge number n changes by �1
in the process of electron tunneling across the junction.
In the temperature range of strong Coulomb blockade T �
Ec=kB, thermal excitations of n are exponentially unlikely
when the gate charge ng in Eq. (2) is an integer [7]. Thus,

the charge number n can be driven between two adjacent
charge states, for example, n ¼ 0 and n ¼ 1, by a protocol
ngðtÞ that ramps the gate charge between the values ng ¼ 0

and ng ¼ 1. This is demonstrated in Fig. 1(c).

We employ a readout that yields the heat Q ¼ W ��U
deposited into the electrodes in such driven transitions.
The theoretical analysis presented in Refs. [8,9] establishes
that JE can be written in terms of Q as

he�Q=kBTi ¼ 1; (3)

provided that the drive protocol is such that the n ¼ 0 ! 1
transition always occurs. This condition is realized in
the present experiment to an accuracy of 10�4 (see
Supplemental Material [10]). For completeness, we illus-
trate in Fig. 1(d) the relationship between Q and the dis-
sipated work Wdis ¼ W ��F appearing in the fluctuation
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relations for other trajectory types as well. One can simi-
larly write the Crooks fluctuation theorem [11] in terms
of Q as

PFð�QÞ
PRðQÞ ¼ e�Q=kBT; (4)

where PF and PR are the probability distributions of Q
when the system is driven in forward (F) or reverse (R)

directions, respectively. Importantly, the above formula-
tions of the fluctuation theorems can be applied without
detailed knowledge of the internal dynamics of the system,
thus retaining their universality and usefulness.
Charge tunneling is governed thermally by the excita-

tions of conduction electrons in the box electrodes that
couple to the bath of lattice phonons. Hence, switching
dynamics between the different charge states n is dissipa-
tive. The amount of energy deposited into the two elec-
trodes in a single tunneling event equals the difference of
the chemical potentials of the electrodes at the time of the
tunneling, which is essentially instantaneous on the other
relevant time scales in the problem [12]. The chemical
potential difference is given by the change in energy U
of Eq. (2) in response to a change �n ¼ �1 of the charge
number n. In general, the n trajectory consists of a random
number N of successive back-and-forth tunneling events,
and hence the total heat generated in such a trajectory is [9]

Q ¼ 2Ec

XN

k¼1

�
�
ngð�kÞ � 1

2

�
; (5)

where �k is the stochastic time instant of the kth tunneling
event, and the sign is the same as for �n in the event.
Because of the intrinsic randomness of the tunneling
events, the heat Q fluctuates from one gate voltage ramp
to another. In the experiment, the system was driven with
a sinusoidal excitation corresponding to ngðtÞ ¼ 1

2�
1
2 cosð2�ftÞ with frequencies f ranging from 1 to 20 Hz.

These frequencies are sufficiently slow that at the turning
points of the drive, i.e., when ngðtÞ ¼ 0 or 1, the system

occupies the minimum energy charge state n ¼ ngðtÞ with
high probability. Hence, each half cycle from 0 to 1 and
similarly from 1 to 0 can be considered an independent
realization of the control protocol.
We perform the heat readout by detecting the electron

tunneling events by a capacitively coupled single-electron
transistor (SET) (see Supplemental Material [10]).
Equation (5) yields the heat Q in terms of Ec for an
individual ngðtÞ sweep. One can thus utilize the experi-

mental Q distributions in two ways: with the use of the
values of Ec and T determined by independent means, the
validity of Eqs. (3) and (4) can be tested. On the other hand,
accepting Eqs. (3) or (4), one can determine the ratio
Ec=kBT and furthermore find Ec by multiplying this ratio
with the independently measured temperature of the sam-
ple holder.
The preceding discussion is independent of the details

of the charge tunneling rates in the single-electron box.
However, in our case it is possible to analyze the fluctua-
tion relations also from a microscopic point of view.
Charge transport through Cu=AlOx=Al normal-metal–
insulator–superconductor (N-I-S) tunnel junctions occurs
via thermally activated 1e events described by the orthodox
theory [12], provided that (i) the tunneling resistance RT of
the junction is high compared to the resistance quantum

a b

c d

FIG. 1 (color online). (a) Scanning electron micrograph of the
active area of the measured sample, which shows metallic films
fabricated on an oxidized silicon wafer by e-beam lithography
and shadow evaporation technique [18]. Two shifted copies of
the original resist mask pattern lie on the surface: copper layer
appears brighter compared to oxidized aluminum. Tunnel junc-
tions are formed in the overlap regions between the two films.
The single-electron box is located on the left, and the SET
electrometer is at the top. The tips of two gate electrodes that
are used to control the electrostatics of the box and the elec-
trometer are visible at the left and right edges. (b) Simplified
circuit diagram of the system. The galvanically isolated single-
electron box is connected capacitively to its environment via CL

and CR and to the electrometer as illustrated by the dashed gray
line. (c) Full period of the sinusoidal drive signal (top) applied to
the control gate, and one instance of electrometer response
(bottom). The drive frequency is 1 Hz, and the amplitude is
equal to one gate modulation period of the box. (d) Energy-level
diagram of the system for the two lowest-energy charge states.
Black parabolas represent the charging energy of the system in
the states n ¼ 0 and n ¼ 1 as a function of the externally
controlled gate charge ng. The arrows indicate possible combi-

nations of initial and final states (open and filled circles, respec-
tively). The expression for dissipated work W ��F is given
next to the arrow for each trajectory type, illustrating that work
separates into dissipated heat Q and change of internal energy.
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RK ’ 25:8 k�, (ii) quasiparticles in the electrodes obey an
equilibrium thermal distribution, and (iii) coupling of stray
microwaves to the junction has been prevented by appro-
priate shielding and filtering in the construction of the
sample stage and signal lines. Realization of these con-
ditions in N-I-S single-electron devices, including the
backaction from the capacitively coupled electrometer,
has been studied in detail in recent years [13,14]. Based
on these studies, nonthermal charge transport is expected
to be negligible at least above temperatures of 150 mK.
In particular, overheating of the superconducting electrode
in the present design is diminished by the fact that quasi-
particle excitations can relax to the overlapping normal
metal through the oxide barrier. Observed stochastic
switching of the system between charge states at a fixed
value of gate charge near degeneracy can be directly fitted
to the tunneling rates predicted by the orthodox theory (see
Supplemental Material [10]). We extract values � ¼
218� 3 �eV, Ec=kB ¼ 1:94� 0:05 K, and RT ¼ 100�
13 M� for the superconducting gap parameter, charging
energy of the box, and tunneling resistance of the box
junction, respectively. For the detector SET, we obtain
RT ¼ 0:63 M� and � ¼ 211 �eV from a fit to the mea-
sured I-V characteristics.

The experimentally obtained Q distributions for drive
frequencies 1, 2, and 4 Hz are presented in Fig. 2(a). The
distributions were measured at a bath temperature of
214 mK where the thermally activated tunneling rate at
degeneracy was 70 Hz, which is well within the detector
bandwidth of about 1 kHz. In addition, we have similar
data but in smaller quantities for driving frequencies from
5 Hz to 20 Hz. At frequencies higher than this, the ob-
served distributions deviate significantly from the theoreti-
cal prediction due to systematic errors arising from finite
readout bandwidth and uncertainty in the event timing.
On the other hand, driving frequencies lower than 1 Hz
make the measurement susceptible to 1=f type charge
noise that is ubiquitous in metallic single-electron devices
[15]. In Fig. 2(a), we show also the exact theoretical
distributions based on charge kinetics described by the
orthodox theory and sample parameters obtained in the
manner described above. The theoretical and experimental
distributions are in excellent agreement.

To assess quantitatively the systematic error due to finite
detector bandwidth, we also show in Fig. 2(a) the distribu-
tions obtained from Monte Carlo simulations that incorpo-
rate a finite detector rise time before threshold detection.
Visually, the change in the shape of the distribution func-
tions appears small. Quantitatively, we can assess the
accuracy of the readout by evaluating the exponential

average he�Q=kBTi, which equals 1 for the ideal thermally
activated kinetics. From the Monte Carlo simulations, we
obtain 1.006 for the 1 and 2 Hz cases and 1.012 for the 4 Hz
case. For the experimental distributions, evaluation of the
Jarzynski average yields 1:033� 0:003 (for 1 Hz drive),

1:032� 0:003 (2 Hz), and 1:044� 0:004 (4 Hz), when
using the independently determined Ec=kBT ratio as de-
scribed above. The stated uncertainty is the unbiased esti-
mate for the standard deviation of the mean based on the
observations, not including the uncertainty of the value of
Ec=kBT. As the relative uncertainty of the independent Ec
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FIG. 2 (color online). (a) Measured distribution of the gener-
ated heat at drive frequencies 1 Hz (black squares), 2 Hz (red
circles), and 4 Hz (blue diamonds). The solid lines are exact
theoretical predictions for the independently determined sample
parameter values. The dashed lines show the results of
Monte Carlo simulations, where the finite bandwidth of the
detector was included in the model. Inset: PðQÞ=Pð�QÞ ratio
for the experimental distributions. Solid line shows the result
from the Crooks fluctuation theorem. [(b) and (c)] First and
second moments, respectively, of the Q distribution at different
drive frequencies and bath temperatures. Markers are experi-
mental data, and solid lines are exact theoretical predictions as in
part (a). For the lowest bath temperatures, the theoretical curves
have been calculated using a slightly elevated electron tempera-
ture to account for nonideal thermalization as discussed in the
text. The temperature used in the calculation is given in paren-
theses if it differs from the sample stage temperature. In panel
(c), dashed lines represent the distribution width inferred from
the FDT formula hðQ� hQiÞ2i ¼ 2kThQi using the theoretical
value of the first moment hQi.
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estimate is 3%, the JE is shown to hold within experimental
accuracy, accounting for the 1% bias from finite detector
bandwidth. Conversely, starting from the assumption that
JE holds for the experimental distributions, we obtain an
estimate Ec=kB ¼ 1:91� 0:03 K.

The possibility to numerically evaluate the theoreticalQ
distribution to a high accuracy enables us to assess the
magnitude of sampling error in the experiment. From the
acquired experimental data, the distribution can be deter-
mined reliably for a range of Q=Ec values where PðQÞ>
10�3. Evaluating numerically the contribution to JE out-
side this interval, we see that the deviation due to sampling
errors is of the order 10�3.

Concerning the Crooks fluctuation theorem in the form
of Eq. (4), the forward and backward distributions coincide
in the present case of a gate drive that is antisymmetric
with respect to the degeneracy point. Hence, we present
the experimental PðQÞ=Pð�QÞ ratio as a function of heat
Q in the inset of Fig. 2(a). On a semilogarithmic plot, one
expects a linear dependence with the slope equal to 1=kBT,
independent of frequency. The experimental data adheres
to this quite well, but there is a tendency towards less steep
slopes for a lower frequency. This feature can be repro-
duced in our simulations by assuming a broadening of the
Q distributions due to an additive Gaussian noise having a
rms amplitude of 0:0035Ec ¼ 0:032kBT independent of
driving frequency. We attribute the broadening to the re-
sidual background charge noise that induces fluctuations
in the exact position of the degeneracy point.

In Figs. 2(b) and 2(c), we present the mean generated

heat� ¼ hQi and distribution width � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihðQ��Þ2ip
for

different bath temperatures in the range of 66–214 mK and
drive frequencies 1–20 Hz. The experimental results agree
well with the values obtained from numerical simulations
performed in the same manner as for Fig. 2(a). Theoretical
results for the moments of Q distribution are presented in
Ref. [9] for a normal state box, and similar results hold for
the first two moments in the present N-I-S case as well. For
sufficiently low f values, the box remains close to local
equilibrium during the gate voltage drive. In this case, the
transfer of heatQ into the box reservoirs can be viewed as a
linear response to small deviations from the equilibrium
caused by the drive. As a linear response, this process
satisfies the classical fluctuation-dissipation theorem
(FDT) which takes the form � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBT�
p

. This implies
that in the adiabatic limit, the generated heat vanishes not
only on average but for all individual tunneling trajecto-
ries. Local equilibrium also implies that the distribution
of heat Q is Gaussian [9], similar to all equilibrium ther-
modynamic fluctuations. The behavior is evident in the
experimental data for T ¼ 182 and 214 mK, where the
slowest drive frequencies produce an almost Gaussian Q
distribution, whereas the distributions become strongly
non-Gaussian as the frequency is increased. At lower
temperatures, the adiabatic threshold frequency is well

below 1 Hz and thus inaccessible in the present experi-
ment. For the simulations at the lowest temperatures, we
had to use somewhat higher temperatures than those in-
dicated by the sample stage thermometer in order to re-
produce the experimental data [see Fig. 2(b)]. At low
temperatures, charge kinetics is expected to depart from
the basic thermal activation model with a single heat bath,
as discussed earlier. Note that our test of the fluctuation
relations is not carried out in this regime.
Thermodynamics of the driven transitions in electronic

systems studied in this work will play an important role
in the development of reversible information processing
devices [16]. We also envision this work to introduce a
fruitful test bed of nonequilibrium fluctuation theorems in
qualitatively new settings such as engineered environ-
ments. It is possible to realize experimentally a regime
where the charge transitions are dominated by coupling to
an external nonequilibrium environment [13]. A fully
superconducting box [17] should enable the study of ther-
modynamic fluctuations in true quantum regime, which
at the moment is mostly an unexplored territory for
experiments.
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(2010); B. Küng, C. Rössler, M. Beck, M. Marthaler,
D. S. Golubev, Y. Utsumi, T. Ihn, and K. Ensslin, Phys.
Rev. X 2, 011001 (2012).

[7] D. V. Averin and K.K. Likharev, J. Low Temp. Phys. 62,
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