
 
 
 
 
 
 
 
England, M. and Gibbons, J. (2009) A genus six cyclic tetragonal 
reduction of the Benney equations. Journal of Physics A: Mathematical 
and Theoretical, 42 (37). p. 375202. ISSN 1751-8113 

 
http://eprints.gla.ac.uk/38723 
 
Deposited on: 21 September 2010 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 



A genus six cyclic tetragonal reduction of the

Benney equations

M England1 and J Gibbons2

1 Department of Mathematics and the Maxwell Institute for Mathematical Sciences,

School of Mathematical and Computer Sciences (MACS), Heriot-Watt University,

Riccarton, Edinburgh, EH14 4AS, UK
2 Department of Mathematics, Imperial College London, South Kensington Campus,

London, SW7 2AZ, UK

E-mail: M.England@ma.hw.ac.uk, j.gibbons@imperial.ac.uk

Abstract. A reduction of Benney’s equations is constructed corresponding to

Schwartz-Christoffel maps associated with a family of genus six cyclic tetragonal curves.

The mapping function, a second kind Abelian integral on the associated Riemann

surface, is constructed explicitly as a rational expression in derivatives of the Kleinian

σ-function of the curve.

AMS classification scheme numbers: 14H40, 14H42, 14H70, 14H51, 33F10

PACS numbers: 02.30.Ik, 02.30.Gp, 02.70.Wz



A genus six cyclic tetragonal reduction of the Benney equations 2

1. Introduction

In [1, 2] it was shown that Benney’s equations

An
t = An+1

x + nAn−1A0
x, n ≥ 0,

admit reductions in which only finitely many N of the moments An are independent, and

that a large class of such reductions may be parametrised by conformal maps from the

upper half p-plane to a slit domain - the upper half λ-plane, cut along N nonintersecting

Jordan arcs, which have one fixed end point on ℑ(λ) = 0, and whose other ‘free’ end is

a Riemann invariant of the reduced equations.

A natural subclass of these occurs where these Jordan arcs are straight lines,

leading to a polygonal domain and hence an N -parameter Schwartz-Christoffel map;

an important and tractable subfamily of these is the case in which the angles are all

rational multiples of π, and in this case the mapping is given by an integral of a second

kind Abelian differential [3] on an algebraic curve. Such examples have been worked out

explicitly, in [3], [4], [5] and [6]. These have looked at elliptic and hyperelliptic curves

as well as a cyclic trigonal example. It is thus worthwhile to generalise this to other

algebraic curves.

In all these examples, reductions have been constructed explicitly - both the

integrand and its integral were evaluated using quotients of derivatives of the σ-function

associated with the respective curves. These curves are all specific examples from the

wider class of cyclic (n, s) curves which have equations of the form:

yn = xs + µs−1x
s−1 + . . .+ µ1x+ µ0. (1)

We suppose that (n, s) are coprime with n < s, in which case the curves have genus

g = 1
2
(n− 1)(s− 1), and a unique branch point ∞ at infinity. In this paper we consider

a reduction associated with a cyclic tetragonal curve, that is, from the class (1) with

n = 4. For simplicity we look at the case with s = 5 here.

2. Benney’s Equations

In 1973, Benney considered an approximation for the two-dimensional equations of

motion of an incompressible perfect fluid under a gravitational force [7]. He showed

that if moments are defined by:

An(x, t) =

∫ h

0

un dy,

where u(x, y, t) is the horizontal fluid velocity and h(x, t) the height of the free surface,

the moments An(x, t) satisfy an infinite set of hydrodynamic type equations

∂An

∂t
+

∂An+1

∂x
+ nAn−1

∂A0

∂x
= 0 (n = 1, 2, . . .), (2)

now called the Benney moment equations.
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Identical moment equations can alternatively be derived from a Vlasov equation [8],

[9]:

∂f

∂t2
+ p

∂f

∂x
− ∂A0

∂x

∂f

∂p
= 0. (3)

Here f = f(x, p, t) is a distribution function and the moments are defined instead by

An =

∫ ∞

−∞
pnf dp.

We assume throughout that f is such that all these moments exist. The equation of

motion (3) has the Lie-Poisson structure :

∂f

∂t
+

{
f,

δH

δf

}
p,x

= 0, (4)

where {· , ·}p,x is the canonical Poisson bracket. Kupershmidt and Manin showed

directly that the moment equations are Hamiltonian [10], [11]. If we set H = 1
2
H2 =

1
2
(A2 + A2

0), A = (A0, A1, . . .), then

∂A

∂t
= B

∂H

∂A
(5)

where the matrix operator B is given by

Bn,m = nAn+m−1
∂

∂x
+m

∂

∂x
· An+m−1.

This is consistent with (4) in the sense that if H is some function only of the moments,

the moment equations resulting from (4) and (5) are identical.

Benney showed in [7] that system (2) has infinitely many conserved densities,

polynomial in the An. One of the most direct ways to calculate these is to use generating

functions [10]. Let λ(x, p, t), a formal series in p, be the generating function of the

moments

λ(x, p, t) = p+
∞∑
n=0

An

pn+1
(6)

and let p(x, λ, t) be the inverse series

p(x, λ, t) = λ−
∞∑

m=0

Hm

λm+1
.

We note here that if An =
∫∞
−∞ pnf dp is substituted into (6), then this can be

understood as the asymptotic series, as p → ∞, of an integral

λ = p+

∫ ∞

−∞

f(x, p′, t)

(p− p′)
dp′. (7)

Here p′ runs along the real axis, and we take ℑ(p) > 0. It follows that λ(p) is analytic

in its domain of definition. If f(p) is Hölder continuous, the boundary value, on the real

p-axis, of λ(p) will itself be Hölder continuous.

Comparing the first derivatives of λ(x, p, t), we obtain the PDE

∂λ

∂t
+ p

∂λ

∂x
=

∂λ

∂p

(
∂p

∂t
+ p

∂p

∂x
+

∂A0

∂x

)
. (8)
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If we now hold p constant, this gives

∂λ

∂t
+ p

∂λ

∂x
− ∂A0

∂x

∂λ

∂p
= 0 (9)

which is a Vlasov equation of the same form as (3). Thus (3) and (9) have the same

characteristics. Any function of λ and f must satisfy the same equation.

Alternatively, if we hold λ constant in (8), then we obtain the conservation equation

∂p

∂t
+

∂

∂x

(
1

2
p2 + A0

)
= 0. (10)

Substituting the formal series of p(x, λ, t) into (10), we see that each Hn is polynomial

in the An and is a conserved density. Any of the Hn could be used as the Hamiltonian

in (4), and the resulting flows all commute. From this we define the Benney hierarchy

to be the family of evolution equations

∂f

∂tn
+

{
f ,

1

n

δHn

δf

}
= 0.

Again, λ satisfies an equation analogous to this,

∂λ

∂tn
+

{
λ ,

1

n

δHn

δf

}
= 0,

so that both f and λ are advected along the same characteristics. These characteristics

are flows of a Hamiltonian vector field, with Hamiltonians δHn

δf
given by the relation:(

1

n

δHn

δf

)
=

(
λn

n

)
+

where (·)+ denotes the polynomial part of the Laurent expansion.

2.1. Reductions of the moment equations

Suppose that for some family of points, p = p̂i(x, t), λ(p̂i) = λ̂i(x, t), we have

∂λ

∂p

∣∣∣∣
p=p̂i

= 0.

Then (8) reduces to:

∂λ̂i

∂t
+ p̂i

∂λ̂i

∂x
= 0

where ∂λ̂i

∂t
= ∂λ

∂t

∣∣
p=p̂i

and ∂λ̂i

∂x
= ∂λ

∂x

∣∣
p=p̂i

. We say that λ̂i is a Riemann invariant with

characteristic speed p̂i. We will see that there are families of functions λ(p) which are

invariant under the Benney dynamics, and are parametrised by N Riemann invariants

λi.

A hydrodynamic type system with N ≥ 3, independent variables can not in

general be expressed in terms of Riemann invariants. If such a system does have N

Riemann invariants, it is called diagonalisable. Tsarev showed in [12] that if a diagonal

hydrodynamic-type system

∂λ̂i

∂t
+ vi(λ̂)

∂λ̂i

∂x
= 0 (i = 1, 2, . . . , N). (11)



A genus six cyclic tetragonal reduction of the Benney equations 5

is semi-Hamiltonian, that is if

∂j

(
∂ivk

vi − vk

)
= ∂i

(
∂jvk

vj − vk

)
, i ̸= j ̸= k,

for i, j, k distinct, where

∂k =
∂

∂λ̂k

,

then it can be solved by the hodograph transformation. Any Hamiltonian system of

hydrodynamic type is semi-Hamiltonian. Given a second equation of type (11)

∂λ̂i

∂τ
+ wi(λ̂)

∂λ̂i

∂x
= 0 (i = 1, 2, . . . , N), (12)

and requiring it to be consistent with (11), we find that the wi(λ̂) must satisfy the

over-determined linear system

∂kwi

wi − wk

=
∂kvi

vi − vk
, i ̸= k. (13)

These equations are consistent provided (11) is semi-Hamiltonian. If the condition (13)

holds, we say that (11) and (12) commute. In this case a set of equations for the

unknowns λ̂i(x, t) is given by :

wi(λ̂) = vi(λ̂) t+ x, (i = 1, 2, . . . , N)

where t and x are the independent variables. Thus any reduction of this type can be

solved in principle.

This generalized hodograph construction cannot easily be applied directly to the

Benney equations however, as these have infinitely many dependent variables. Instead

we will now consider families of distribution functions f , which are parameterised by

finitely many N Riemann invariants λ̂i(x, t). We are interested in the case [1], [2] where

the function λ(p, x, t) is such that only N of the moments are independent. Then there

are N characteristic speeds, assumed real and distinct, and N corresponding Riemann

invariants (p̂i, λ̂i), so Benney’s equations reduce to a diagonal system of hydrodynamic

type with finitely many dependent variables λ̂i,

∂λ̂i

∂t
+ p̂i(λ̂)

∂λ̂i

∂x
= 0 (i = 1, 2, . . . , N). (14)

Such a system is called a reduction of Benney’s equations.

The construction of a more general family of solutions for equations of this type

was outlined in [1] and [2]. An elementary example is the case where the map λ+ takes

the upper half p-plane to the upper half λ-plane with a vertical slit as follows. This is

a Schwarz-Christoffel map:

λ+(x, p, t) = p+

∫ p

∞

p′ − p̂1√
(p′ − p1)(p′ − p2)

dp′.
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If the residue at infinity is set to be zero, then this imposes the condition p̂1 =
1
2
(p1+p2)

and we get the solution

λ+(x, p, t) = p̂1 +
√

p2 − (p1 + p2)p+ p1p2

= p̂1 +
√

(p− p̂1)2 + 2A0

(from the expansion as p → ∞). This gives a steadily translating solution of Benney’s

equations (4)

∂f

∂t
+

{
f ,

1

2
p2 + A0

}
p,x

= 0.

The two parameters p1 and p2 are not independent, as for consistency their sum must

be a constant. Hence only the end point of the slit in the λ-plane is variable. This is

the Riemann invariant.

This construction can be generalized, [2], mapping the upper half p-plane to the

upper half λ-plane with N curvilinear slits. However, in this paper we are specifically

interested in straight slits - these mappings are all of Schwartz-Christoffel type.

2.2. Schwartz-Christoffel reductions

The case of a polygonal N -slit domain is of particular interest. The real p-axis has M

vertices uj marked on it; the preimage in the p-plane of each slit runs from a vertex p̂j,

to a point v̂i, the preimage of the end of the slit, and then to another vertex p̂j+1. The

angle π in the p-plane at p̂j is mapped to an angle αjπ at the image point. The internal

angle at the end of each slit is 2π.

The mapping function is then given, up to a constant of integration, by

λ =

∫ p
[ ∏N

i=1(p− v̂i)∏2N
j=1(p− p̂j)1−αj

]
dp.

If the integrand is to converge to 1 as p → ∞, we require
∑2N

j=1 αj = N , while to avoid a

logarithmic singularity, we further impose
∑M

j=1 αj p̂j =
∑N

i=1 v̂i. We then define λ more

precisely as

λ = p+

∫ p

−∞

[ ∏N
i=1(p− v̂i)∏M

j=1(p− p̂j)1−αj

− 1

]
dp.

Other constraints are imposed by requiring the vertices p̂j to map to points λ0
i , the fixed

base points of the slits; there remain N independent parameters, which can be taken to

be the movable end points of the slits λi(x, t). These satisfy the equations of motion

∂λi

∂t
+ v̂i

∂λi

∂x
= 0.

To understand and to solve these equations, it is necessary to understand the dependence

of the v̂i on the Riemann invariants (λ1, . . . , λN) - we thus need to evaluate the Schwartz-

Christoffel integral explicitly.
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The most tractable cases are where all the αj are rational, so that the integrand

becomes a meromorphic second kind differential on some algebraic curve. In this case

the only singularity is as p → ∞, where the integrand has a double pole with no residue,

and the integral thus has a simple pole. For specific families of curves, as in [3], [4], [5]

and [6], this integral has been worked out explicitly. In each case, these mappings were

found as rational functions of derivatives of the Kleinian σ-function of the associated

curve.

3. A tetragonal reduction

We will consider reductions that allow us to work on a tetragonal surface; these have not

been considered before, in the context of this application. Such reductions will require

two or more sets of straight slits, making angles of π/4, π/2, 3π/4 to the horizontal.

Define P to be the upper half p-plane with 14 points marked on the real axis, as in

Figure 1.

Figure 1. The domain P within the p-plane.

These points satisfy

p̂1 < v̂1 < p̂2 < v̂2 < p̂3 < v̂3 < p̂4 < p̂5 < v̂4 < p̂6 < v̂5 < p̂7 < v̂6 < p̂8.

Then define the domain L′ as the upper-half λ-plane with two triplets of slits, as

described above. We let the first trio of slits radiate from the fixed point p1, with

the end points of these three slits labelled v1, v2 and v3 respectively. Similarly, let the

second trio of slits radiate from p5 and have end points v4, v5, v6. Finally impose the

conditions that

λ(p̂) = p, p1 = p2 = p3 = p4,

λ(v̂) = v, p5 = p6 = p7 = p8.

We then see that L′ is the slit domain as shown in Figure 2, and the mapping λ : P → L′

can be given in Schwartz Christoffel form by

λ(p) = p+

∫ p

∞
[φ(p′)− 1]dp′ (15)

where

φ(p) =

∏6
i=1(p− v̂i)

[
∏8

i−1(p− p̂i)]
3
4

=

∏6
i=1(p− v̂i)

y3
(16)

where

y4 =
8∏

i=1

(p− p̂i). (17)
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Figure 2. The domain L′ within the λ-plane.

Figure 3. The domain L within the λ-plane.

Note that we require the following zero residue property:

lim
p→∞

φ(p) ∼ 1 +O

(
1

p2

)
. (18)

This mapping would lead us to consider the Riemann surface given by points (p, y)

that satisfy (17). However, we wish to consider the simplest possible tetragonal surface

(one with only six branch points) and so we collapse two of the slits, (the final two by

choice). This simplifies our λ-plane to L, given in Figure 3.

Further, as in the trigonal case, the analysis of this surface is eased if we put it into

canonical form, by mapping one of the branch points (p8 by choice), to infinity. So we

use the following invertible rational map to perform these simplifications on our curve

and integrand.

p̂6 = p̂8, p̂7 = p̂8, v̂5 = p̂8, v̂6 = p̂8,

p = p̂8 − (1/t), p̂i = p̂8 − 1
Ti
, i = 1, . . . , 5 (19)

y =
sk

t2
where k4 = −

5∏
i=1

(p̂8 − p̂i) = −
5∏

i=1

1

Ti

If we perform the mapping (19) on the curve (17) we obtain

s4k4

t8
=

[
5∏

i=1

(
p̂8 −

1

t
− p̂8 +

1

Ti

)](
p̂8 −

1

t
− p̂8

)3

= − 1

t3

5∏
i=1

(
1

Ti

− 1

t

)

= − 1

t3

[
5∏

i=1

(t− Ti)
1

tTi

]
=

[
5∏

i=1

(t− Ti)

]
·
(
1

t8

)
· (−1)

[
5∏

i=1

1

Ti

]
.
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This simplifies to give the following canonical form of (17).

s4 =
5∏

i=1

(t− Ti) = t5 + µ4t
4 + µ3t

3 + µ2t
2 + µ1t+ µ0, (20)

for constants µ0, . . . , µ4. Let C denote the Riemann surface defined by (20).

We now consider λ(p) as mapping P → L by performing (19) on the integrand

(16).

φ(p)dp =

(
t6

s3k3

)[ 4∏
i=1

(
p̂8 −

1

t
− v̂i

)](
p̂8 −

1

t
− p̂8

)2(
− 1

t2
dt

)

=

(
t6

s3k3

)[ 4∏
i=1

((p̂8 − v̂i)t− 1)

] [
1

t4

](
1

t

)2(
− 1

t2
dt

)
= K

[
A4t

4 + A3t
3 + A2t

2 + A1t+ 1
] 1
t2

dt

4s3
≡ φ(t)dt, (21)

where K = −4/k3 and A1, . . . , A4 are constants. We will evaluate this integrand using

Kleinian functions defined upon C.

4. Properties of the tetragonal surface C

The Riemann surface C is defined by (20), the cyclic tetragonal curve of genus six.

This is also referred to as the cyclic (4,5)-curve. The surface is constructed from four

sheets of the complex plane, with branch points of order 4 at T1, . . . , T5, T6 = ∞, a local

coordinate at t = ∞ given by ξ = t−1/4 and branch cuts along the intervals

[T1, T2], [T2, T3], [T3, T4], [T5,∞].

This surface was recently considered in [13], where the aim was to generalise the theory

of the Weierstrass ℘-function to Abelian functions associated with (20). We will give

the essential properties of the surface here, but refer the reader to [13] for some of the

details and proofs.

We start by noting that there are a set of Sato weights associated to the surface,

which render all equations within the theory homogeneous. The weights of the variables

t, s and the curve constants can be determined up to a constant factor, from the curve

equation. We may set the weights as below.

t s µ4 µ3 µ2 µ1 µ0

Weight −4 −5 −4 −8 −12 −16 −20

The weights of other variables and function in the theory are derived uniquely from

these, with all other constants are assigned zero weight.

We define a basis of holomorphic differentials upon C by

du = (du1, . . . , du6), dui(t, s) =
gi(t, s)

4s3
dt,

where
g1(t, s) = 1, g2(t, s) = t, g3(t, s) = s,

g4(t, s) = t2, g5(t, s) = ts, g6(t, s) = s2.
(22)
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We can use the local parameter ξ to express these as series,

du1 = −ξ10 +O(ξ11)dξ du4 = −ξ2 + 3
4
µ4ξ

6 +O(ξ7)dξ

du2 = −ξ6 +O(ξ7)dξ du5 = −ξ1 + 1
2
µ4ξ

5 +O(ξ6)dξ

du3 = −ξ5 +O(ξ6)dξ du6 = −1 + 1
4
µ4ξ

4 +O(ξ5)dξ.

(23)

We know from the general theory that any point u ∈ C6 can be expressed as

u = (u1, u2, u3, u4, u5, u6) =
6∑

i=1

∫ Pi

∞
du,

where the Pi are six variable points upon C. Integrating (23) gives

u1 = − 1
11
ξ11 +O(ξ15) u3 = −1

6
ξ6 +O(ξ10) u5 = −1

2
ξ2 +O(ξ6)

u2 = −1
7
ξ7 +O(ξ11) u4 = −1

3
ξ3 +O(ξ7) u6 = −ξ +O(ξ5).

(24)

from which we can conclude that the weights of u are:

u1 u2 u3 u4 u5 u1

Weight +11 +7 +6 +3 +2 +1

Next we choose a basis of cycles (closed paths) upon the surface defined by C. We

denote them

αi, βj, 1 ≤ i, j ≤ 6,

and ensure they have intersection numbers

αi · αj = 0, βi · βj = 0, αi · βj = δij =
{ 1 if i = j

0 if i ̸= j
.

Let Λ denote the lattice generated by the integrals of the basis of holomorphic

differentials around this basis of cycles in C. Then the manifold C6/Λ is the Jacobian

variety of C, denoted by J . Next, for k = 1, 2, . . . define A, the Abel map from the kth

symmetric product Symk(C) to J .

A : Symk(C) → J

(P1, . . . , Pk) 7→
(∫ P1

∞
du+ . . .+

∫ Pk

∞
du

)
(mod Λ), (25)

where the Pi are again points upon C. Denote the image of the kth Abel map by W [k],

and let [−1](u1, . . . , u6) = (−u1, . . . ,−u6). We then define the kth standard theta subset

(also referred to as the kth stratum) by

Θ[k] = W [k] ∪ [−1]W [k].

When k = 1 the Abel map gives a one dimensional image of the curve C. Since our

mapping was given by a single integral with respect to one parameter, it will make sense

to rewrite this as an integral on the one-dimensional stratum, Θ[1]. In addition to [4],[5]

and [6], similar problems of inverting meromorphic differentials on lower dimensional

strata of the Jacobian have been studied, in the case of hyperelliptic surfaces, in [14],

[15], [16] and [17] for example.
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Let us also define a basis of second kind meromorphic differentials, dr, for the

surface; these have their only pole at ∞. These are determined modulo the space

spanned by the du and can be expressed as

dr = (dr1, . . . , dr6), where drj(t, s) =
hj(t, s)

4s3
dx.

A specific set was derived in [13] in order to construct Klein’s explicit realisation of the

fundamental differential of the second kind. This set was given as

h1 = −s2(11t3 + 8t2µ4 + 5tµ3 + 2µ2), h2 = −s2(7t2 + 4tµ4 + µ3),

h3 = −2ts(3t2 + 2tµ4 + µ3), h4 = −3ts2, h5 = −2t2s, h6 = −t3.

We then define the period matrices ω′, ω′′, η′ and η′′ by

2ω′ =
(∮

αk
duℓ

)
k,ℓ=1,...,6

2ω′′ =
(∮

βk
duℓ

)
k,ℓ=1,...,6

2η′ =
(∮

αk
drℓ

)
k,ℓ=1,...,6

2η′′ =
(∮

βk
drℓ

)
k,ℓ=1,...,6

.

We can combine these into

M =

(
ω′ ω′′

η′ η′′

)
,

which satisfies the generalised Legendre relation,

M

(
0 −16
1g 0

)
MT = −iπ

2

(
0 −16
1g 0

)
.

5. The Kleinian σ-function associated with C

We will now define the multivariate σ-function associated with C, which is constructed

from the θ-function, (see for example, [18]). This function is a generalisation of the

classical Weierstrass elliptic σ-function, and as in the elliptic case, it can be used to

construct Abelian functions on J .

Definition 5.1. The Kleinian σ-function associated with C is

σ(u) = σ(u;M) = c exp (− 1
2
uη′(ω′)−1uT )× θ[δ]((ω′)−1uT | (ω′)−1ω′′)

= c exp (− 1
2
uη′(ω′)−1uT )×

∑
m∈Z6

exp
[

2πi
{

1
2
(m+ δ′)T (ω′)−1ω′′(m+ δ′) + (m+ δ′)T ((ω′)−1uT + δ′′)

}]
.

Here c is a constant dependent upon the curve parameters, (µ0, µ1, µ2, µ3, µ4). The

results of this paper are independent of this constant, so we do not discuss its value here.

The matrix δ =

[
δ′

δ′′

]
is the theta function characteristic which gives the Riemann

constant for C with respect to the base point ∞ and the period matrix [ω′, ω′′], (see [19]

p23-24).
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We will evaluate the integrand using derivatives of σ(u), with respect to the variables

u. We denote these σ-derivatives by adding subscripts. For example we write ∂σ
∂ui

as σi.

Lemma 5.2. We summarise the fundamental properties of the σ-function in this lemma.

Further details and proofs are available in [13]. For a detailed study of the general

multivariate σ-function, we refer the reader to [19].

• Given u ∈ C6, denote by u′ and u′′ the unique elements in R6 such that

u = u′ω′ + u′′ω′′. Let ℓ represent a point on the period lattice

ℓ = ℓ′ω′ + ℓ′′ω′′ ∈ Λ.

For u,v ∈ C6 and ℓ ∈ Λ, define L(u,v) and χ(ℓ) as follows:

L(u,v) = uT (η′v′ + η′′v′′),

χ(ℓ) = exp [πi(2(ℓ′T δ′′ − ℓ′′T δ′) + ℓ′T ℓ′′)].

Then, for all u ∈ C6, ℓ ∈ Λ the function σ(u) is quasi-periodic.

σ(u+ ℓ) = χ(ℓ) exp
[
L
(
u+

ℓ

2
, ℓ
)]

· σ(u). (26)

• For γ ∈ Sp(12,Z) we have

σ(u; γM) = σ(u;M). (27)

• σ(u) has zeroes of order 1 when u ∈ Θ[5], and is non-zero elsewhere.

• In the case when all the curve parameters are set to zero, the function σ(u) is equal

to a constant K times the Schur-Weierstrass polynomial,

SW4,5 =
1

8382528
u15
6 + 1

336
u8
6u

2
5u4 − 1

12
u4
6u1 − 1

126
u7
6u3u5 − 1

6
u4u3u5u

4
6

− 1
72
u3
4u

6
6 − 1

33264
u11
6 u2

5 +
1
27
u6
5u

3
6 +

2
3
u4u

3
5u3 − 2u2

4u6u3u5 − u2
2u6

− 2
9
u3
5u3u

3
6 − u4u

2
3 +

1
12
u4
4u

3
6 − 1

3024
u9
6u

2
4 − 1

756
u7
6u

4
5 +

1
1008

u8
6u2

+ 1
3
u4
5u2 +

1
3
u3
6u

2
3 − 1

9
u4u

6
5 +

1
399168

u12
6 u4 + u4u6u

2
5u2 +

1
4
u5
4

+ 2u5u3u2 +
1
6
u5

2u6
4u2 +

1
12
u6

5u2u4 − 1
2
u4

2u6
2u2 +

1
2
u4

3u6
2u5

2

− 1
3
u4

2u6u5
4 − 1

36
u5

4u4u6
4 + u4u6u1 − u5

2u1. (28)

• The sigma function must have definite parity and weight. From SW45 above we can

conclude that σ(u) is odd with weight +15.

One of the key results in [13] was a Taylor series expansion for σ(u) about the

origin, used to derive relations between the Abelian functions associated with C. We

will use this expansion in the evaluation of the integrand given in Section 7. In [13] it

was shown that this expansion could be constructed in the form

σ(u) = σ(u1, u2, u3, u4, u5, u6) = C15(u) + C19(u) + . . .+ C15+4n(u) + . . .

where each Ck was a finite, odd isobaric polynomial composed of sums of monomials

in ui of total weight +k, each multiplied by a monomial in µj of total weight 15 − k.

From Lemma 5.2 we can conclude that C15 = SW4,5, while the other Ck were found in

turn, up to C59 by considering the possible terms, and ensuring the expansion satisfied

known properties of σ(u). (See [13] for full details of the construction, and [20] for a

link to the expansion.)
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6. Deriving relations between the σ-function and its derivatives

We will evaluate the integrand (21) as a function of σ-derivatives restricted to Θ[1]. In

order to achieve this we will need to derive equations that hold between the various

σ-derivatives. In [13], sets of relations between the Abelian functions associated with

C were calculated. However, these were the relations that held everywhere on J , and

do not give us sufficient information for the behaviour of σ(u) on the strata. To derive

such relations we start by considering a theorem of Jorgenson [21]:

Theorem 6.1. Let u ∈ Θ[k] for some k < g. Then for a set of k points Pi = (ti, si) on

C we have

u =
k∑

i=1

∫ Pi

∞
du,

and the following statement holds for vectors a, b of arbitrary constants.∑g
j=1 ajσj(u)∑g
j=1 bjσj(u)

=
det [a|du(P1)| · · · |du(Pk)|du(Pk)

(g−k−1)| · · · |du(Pk)
(1)]

det [b|du(P1)| · · · |du(Pk)|du(Pk)(g−k−1)| · · · |du(Pk)(1)]

Here, du(i) denotes the column of ith derivatives of the holomorphic differentials du,

and should be ignored if i < 1.

Below we state that the strata of C can be defined by the zeros of the σ-function, and

of its derivatives. The definition of Θ[5] is a classical result (in Lemma 5.2) while the

others can be derived from the theorem above. (See Appendix A for full details.)

Θ[5] = {u | σ(u) = 0}
Θ[4] = {u | σ(u) = σ6(u) = 0}
Θ[3] = {u | σ(u) = σ6(u) = σ5(u) = 0} (29)

Θ[2] = {u | σ(u) = σ6(u) = σ5(u) = σ4(u) = 0}
Θ[1] = {u | σ(u) = σ6(u) = σ5(u) = σ4(u) = σ3(u) = 0}

We use these defining relations to generate further relations between the σ-derivatives,

holding on each stratum. We use a systematic method, implemented in Maple, to

achieve this.

Start with the relation σ(u) = 0 valid for u ∈ Θ[5]. Consider u as it descends to

Θ[4]. We write u as u = û+uξ where û is an arbitrary point on Θ[4] and uξ is a vector

containing the series expansions, (24). We can calculate the Taylor series expansion in

ξ for σ(û+ uξ) = 0 as

0 = σ(û+ uξ) = σ(û)− σ6(û)ξ +
1
2
[σ66(û)− σ5(û)]ξ

2 + [1
2
σ56(û)

− 1
3
σ4(û)− 1

6
σ666(û)]ξ

3 + [1
8
σ55(û) +

1
3
σ46(û)− 1

4
σ566(û)

+ 1
24
σ6666(û)]ξ

4 + [ 1
12
σ5666(û) +

1
6
σ45(û)− 1

120
σ66666(û)− 1

6
σ466(û)

− 1
8
σ556(û) +

1
20
σ6(û)µ4]ξ

5 +O(ξ6)
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Setting the coefficients of ξ to zero gives us a set of relations for u ∈ Θ[4]:

σ6(u) = 0

σ66(u) = σ5(u)

σ666(u) = 3σ56(u)− 2σ4(u) (30)

σ6666(u) = 6σ566(u)− 8σ46(u)− 3σ55(u)

σ66666(u) = 10σ5666(u)− 20σ466(u)− 15σ556(u) + 20σ45(u) + 6µ4σ6(u)
...

If we calculate the expansion to a higher order of ξ then more relations can be obtained.

Note however, that the expansion for uξ must first be calculated to a sufficiently high

order first. We have calculated an expansion for σ(û+uξ) up to O(ξ29), using the weight

properties of σ(u) to simplify the calculation. This expansion can be found on-line at

[20].

The next step in this process will be to find the relations valid for u ∈ Θ[3]. Since

Θ[3] ⊂ Θ[4] we can conclude that the relations (30) are valid here also. However, we can

derive a larger set of relations for u ∈ Θ[3] by repeating the descent procedure for those

relations that are valid on Θ[4].

We do not need to consider the relation σ(u) = 0 since that will only give us the

same relations as above. Instead choose the second defining relation σ6(u) = 0. We

again write u = û+uξ where uξ is the vector of expansions as before and û is now an

arbitrary point on Θ[3]. We do not need to calculate the Taylor series expansion in ξ for

σ6(û+ uξ) as before. Instead we can take the previous expansion and simply add 6 to

each index:

0 = σ6(û)− σ66(û)ξ +
1
2
[σ666(û)− σ56(û)]ξ

2 + [1
2
σ566(û)− 1

3
σ46(û)

− 1
6
σ6666(û)]ξ

3 + . . .

Setting the coefficients of ξ to zero gives us more relations valid for u ∈ Θ[3], starting

with σ66(u) = 0. We can obtain further relations for u ∈ Θ[3] by descending all of (30).

We automate this process in Maple as follows:

1. Take a relation valid for u ∈ Θ[4] and expand as a Taylor series in ξ. To do this we

replace each σ-derivative by the Taylor series expansion for σ(û + uξ), adding the

relevent index to each σ-derivative in the expansion.

2. Set each coefficient with respect to ξ to zero, and save the resulting equations.

3. Repeat steps 1 and 2 for all known relations valid for u ∈ Θ[4].

4. Use the set of equations we have obtained, to express the higher index σ-derivatives

using lower-index derivatives. If we have σ-derivatives with the same number of

indices, solve for those with the higher indices first.

Once we have finished this process we will have a set of relations valid for u ∈ Θ[3].

We can repeat the process by descending each of these to Θ[2] creating another set of

relations which we can finally descend to Θ[1]. We end up with a set of relations valid
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for u ∈ Θ[1], some of which are contained in Appendix B, with the full set we have

derived available online at [20].

The surprising result of these calculations was that on Θ[1], we have σ1(u) =

σ2(u) = 0 along with the other first derivatives of σ(u), concluded to be zero using

Theorem 6.1. These calculations were computationally much more difficult that in

[6]. The latter stages were performed in parallel on a small cluster of machines, using

Distributed Maple, (see [22] and [23]).

7. Evaluating the integrand

Recall our integrand, (21)

φ(t)dt = K

(
A4t

2 + A3t+ A2 +
A1

t
+

1

t2

)(
dt

4s3

)
.

Now, λ(t) was given by a single integral with respect to one parameter, the point (t, s)

on C. So we rewrite this as an integral on the one-dimensional stratum Θ[1] of J , which

we will parametrise by u1. We will then evaluate it using σ-derivatives restricted to Θ[1].

In [6] Jorgenson’s Theorem was used to express t in terms of σ-derivatives. However, if

we solved (A.3) näıvely for u ∈ Θ[1] we would find

t = −σ1(u)

σ2(u)

which makes no sense given that σ1(u) = 0 for u ∈ Θ[1]. Instead let us take equation

(A.2) which was also derived from Jorgenson’s Theorem (in Appendix A) and which

holds for u on Θ[2]. We consider what happens to this as u descends to Θ[1]. We replace

(t2, s2) with the expansions in the parameter ξ and replace the σ-derivatives by their

Taylor series in ξ. If we then take series expansion of this in ξ and set ξ = 0 we find

that for u ∈ Θ[1] we have

a1σ23(u) + a2σ34(u)

b1σ23(u) + b2σ34(u)
=

a1t− a2
b1t− b2

.

Solving this for t gives:

t = −σ23(u)

σ34(u)
(31)

for u ∈ Θ[1]. Therefore, using the basis of differentials (22) and equation (31) we can

rewrite our integrand as:

φ(t)dt = K[φ1(t)dt+ φ2(t)dt] (32)

where

φ1(t)dt = A2du1 + A3du2 + A4du4, (33)

φ2(t)dt =

((
σ34(u)

σ23(u)

)2

− A1
σ34(u)

σ23(u)

)
du1 ≡ φ2(u)du1. (34)
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Thus φ1 is a sum of holomorphic differentials on C, and φ2 is a second kind meromorphic

differential. As in the previous cases we will need to find a suitable function Ψ(u) such

that
d

du1

Ψ(u) = φ2(u), u ∈ Θ[1]. (35)

We will identify such a function Ψ(u) as follows. First we must derive the

expansions for φ2(u) at its poles. We will then find a function Ψ(u), which has simple

poles at the same points as the double poles of φ2(u), and which varies by at worst an

additive constant as umoves round the α and β-cycles of Θ1. The function will be chosen

so that d
du1

Ψ(u), has the same expansion at the poles as φ2 and is regular elsewhere.

It then follows that the difference d
du1

Ψ(u) − φ2(u) is holomorphic and Abelian; by

Liouville’s theorem we conclude that this difference is a constant. This constant may

be evaluated at any convenient point.

7.1. The expansion of φ2(u) at the poles

Recall that σ(u) was an entire function, and so φ2(u) will have poles only when

σ23(u) = 0. Since we are working with u ∈ Θ[1], by (31) this will occur at the points,

one on each sheet, where t = 0. The cyclic symmetry [i], relating the different sheets of

the curve, acts on (t, s) by [i](t, s) 7→ (t, is); hence, it will act on u as follows:

u1 7→ iu1 u2 7→ iu2 u3 7→ −u3

u4 7→ iu4 u5 7→ −u5 u6 7→ −iu6.
(36)

Let u0 be the Abel image of the point on the principal sheet where σ23 = 0. This is

the point where t = 0 and s = (µ0)
1/4. Then the full set of zeros of σ23 are given by

u0,N = [i]Nu0, N = 0, 1, 2, 3. We will require the poles to match at all four of these

points.

We need to find an expansion for φ2(u) at these points. To start, we consider

u ∈ Θ[1] and calculate the Taylor series of σ(u) around the point u = u0 =

(u0,1, u0,2, u0,3, u0,4, u0,5, u0,6). Writing wi = (ui − u0,i) we have

σ(u) = σ(u0) + [σ1(u0)w1 + σ2(u0)w2 + σ3w3(u0) + σ4(u0)w4

+ σ5(u0)w5 + σ6(u0)w6] + [1
2
σ11(u0)w

2
1 + σ12(u0)w1w2 + σ13(u0)w1w3

+ σ14(u0)w1w4 + σ15(u0)w1w5 + σ16(u0)w1w6 +
1
2
σ22(u0)w

2
2 + . . .

We will have similar expansions around the other u0,N , and we can also use this

expansion to easily compute the expansions for the σ-derivatives, (by simply adding

the relevant indices). Note, that since u0,N are the points where t = 0, we can write

their components as

u
[N ]
0,i =

∫ 0

∞
dui, i = 1, . . . , 6.

evaluated on the sheet where s = [i]N(µ0)
1/4. Therefore

wi,N := (ui − u
[N ]
0,i ) =

∫ t

∞
dui −

∫ 0

∞
dui =

∫ t

0

dui,
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evaluated on this sheet. Using (22), our basis of holomorphic differentials, we can find

expansions for w1,N , . . . w6,N in the parameter t.

w1,N =
1

4

iN

µ0
3/4

t− 3

32

i3Nµ1

µ0
7/4

t2 − i3N

128

8µ2µ0 − 7µ2
1

µ0
11/4

t3

− iN

2048

(96µ3µ0
2 − 168µ1µ2µ0 + 77µ1

3)

µ0
15/4

t4 +O
(
t5
)

(37)

w2,N =
1

8

iN

µ0
3/4

t2 − 1

16

iNµ1

µ0
7/4

t3 − 3iN

512

8µ2µ0 − 7µ1
2

µ0
11/4

t4 +O
(
t5
)

w3,N =
1

4

i2N

µ
1/2
0

t− 1

16

i2Nµ1

µ0
3/2

t2 − i2N

96

4µ2µ0 − 3µ1
2

µ0
5/2

t3

− i2N

256

8µ3µ0
2 − 12µ1µ2µ0 + 5µ1

3

µ0
7/2

t4 +O
(
t5
)

w4,N =
1

12

iN

µ0
3/4

t3 − 3

64

iNµ1

µ0
7/4

t4 +O
(
t5
)

w5,N =
1

8

i2N

µ
1/2
0

t2 − 1

24

i2Nµ1

µ0
3/2

t3 − i2N

128

4µ2µ0 − 3µ1
2

µ0
5/2

t4 +O
(
t5
)

w6,N =
1

4

i3N

µ
1/4
0

t− 1

32

i3Nµ1

µ0
5/4

t2 − i3N

384

8µ2µ0 − 5µ1
2

µ0
9/4

t3

− i3N

2048

(32µ3µ0
2 − 40µ1µ2µ0 + 15µ1

3)

µ
13/4
0

t4 +O
(
t5
)

Note that all these expansions are given for the general sheet since we need to check the

behaviour at all the poles. We can move between the sheets by selecting the appropriate

value of N . We can invert (37) on the N -th sheet to give an expansion for t in w1,N ,

allowing us to use w1,N as a local parameter near u0,N .

t = 4 i3Nµ0
3/4w1,N + 6µ1i

6Nµ
1/2
0 w2

1,N +O
(
w3

1,N

)
.

We start by substituting for t to give the expansions of w2,N , . . . , w6,N with respect to

w1,N .

w2,N = 2i3Nµ0
3/4w2

1,N +O
(
w3

1,N

)
... (38)

w6,N = i2Nµ
1/2
0 w1,N + µ

1/4
0 µ1i

5Nw2
1,N +O

(
w3

1,N

)
.

We use these in turn to give the σ-derivative expansions at u0,N as series in w1,N . For

example we have,

σ23(u) = σ23(u0,N ) +
(
i2Nµ

1
2
0 σ236 + σ123 + iNµ

1
4
0 σ233

)
(u0,N )w1,N

+O
(
w2

1,N

)
.

We substitute these into (34) to obtain an expansion of φ2(u) at u = u0,N , as a series

in w1,N .

φ2(u) =
1

w2
1,N

(
σ34

iNµ
1/4
0 σ233 + i2Nµ

1/2
0 σ236 + σ123

)2

(u0,N ) + (39)
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+
C(u0,N )

w1,N

+O(w0
1,N) (40)

where C(u0,N ) is a polynomial in the σ-derivatives, which we need to evaluate to ensure

that φ2dt has zero residue.

In the previous section we derived a set of relations for u ∈ Θ[1], but these are not

sufficient to simplify C(u0,N ). We need to generate a further set of relations which are

valid only at u = u0,N . We do this using a similar approach to the previous section. We

take a relation valid on Θ[1] and calculate its expansion around u = u0,N as a series in

w1,N , using the series derived above. We then set to zero the coefficients of w1,N . We do

this for each relation valid on Θ[1] and obtain a set of equations between σ-derivatives

at the points u = u0,N . The first few such relations are given in Appendix C, with a

fuller set available online at [20].

If we substitute these into the expansion of φ2(u) we obtain

φ2(u) =

[
i2N

16

1

µ
3/2
0

]
1

w2
1,N

+

[
iN

16
(4µ0A1 − 3µ1)

]
1

w1,N

+O(w0
1,N) (41)

Recall equation (18) which stated that φ(p) has zero residue at p = ∞ on all sheets.

Since residues are invariant under conformal maps, we can conclude that φ2(u) must

also have zero residue, and so the constant A1 must be equal to

A1 =
3

4

µ1

µ0

, giving φ2(u) =

[
i2N

16

1

µ
3/2
0

]
1

w2
1,N

+O(w0
1,N). (42)

7.2. Finding a suitable function Ψ(u)

We need to derive a function Ψ(u) such that the Laurent expansion of dΨ(u)
du1

has the same

principal part at the poles as φ2(u), so we will restrict our search to linear expressions

in σ-derivatives, divided by σ23(u). For these functions we will derive expansions in

w1,N at u = u0,N using the techniques described above. Let us take the function

Ψ(u) =
∑
1≤i≤6

ηi
σi(u)

σ23(u)
+

∑
1≤i≤j≤6
[i,j ]̸=[2,3]

ηij
σij(u)

σ23(u)
+

∑
1≤i≤j≤k≤6

ηijk
σijk(u)

σ23(u)
,

where the ηij and ηijk are undetermined constants. (Through trial and error we found

that 3-index σ-derivatives were required in the numerator). Now, since we are working

on Θ[1] we will find that many of these σ-derivatives are equal to zero, or can be expressed

as a linear combination of other such functions using the equations in Appendix B. Let

us set the coefficients of these functions to zero, leaving us with

Ψ(u) = [η22σ22 + η34σ34 + η111σ111 + η122σ122 + η123σ123 + η134σ134

+ η222σ222 + η223σ223 + η224σ224 + η225σ225 + η226σ226 + η233σ233

+ η234σ234 + η235σ235 + η236σ236 + η334σ334 + η344σ344 + η345σ345

+ η346σ346](u) ·
1

σ23(u)
.
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We emphasise that we need to work with the total, not the partial, derivative of Ψ(u)

with respect to u1; in practice the other ui are expressed in terms of w1,N in the vicinity

of u0,N so there is no ambiguity. Note from (22) that

∂
∂u2

= t ∂
∂u1

, ∂
∂u3

= s ∂
∂u1

, ∂
∂u4

= t2 ∂
∂u1

, ∂
∂u5

= st ∂
∂u1

, ∂
∂u6

= s2 ∂
∂u1

.

Therefore

D1 :=
d

du1

∣∣∣
Θ[1]

=
∂

∂u1

+ t
∂

∂u2

+ s
∂

∂u3

+ t2
∂

∂u4

+ st
∂

∂u5

+ s2
∂

∂u6

=
∂

∂u1

− σ23(u)

σ34(u)

∂

∂u2

+ s
∂

∂u3

+

(
σ23(u)

σ34(u)

)2
∂

∂u4

− s
σ23

σ34

∂

∂u5

+ s2
∂

∂u6

We can now evaluate d
du1

Ψ(u) as a sum of quotients of σ-derivatives. For example

D1

(σ236

σ23

)
=
[σ1236

σ23

− σ236σ123

σ2
23

− σ2236

σ34

+
σ236σ223

σ23σ34

+ s
σ2336

σ23

− s
σ236σ233

σ2
23

+
σ23σ2346

σ2
34

− σ236σ234

σ2
34

− s
σ2356

σ2
34

+ s
σ236σ235

σ23σ34

+ s2
σ2366

σ23

− s2
σ2
236

σ2
23

]
.

Now let us consider the expansion of D1(Ψ(u)) at u = u0,N . We generate series

expansions in w1,N for the relevant σ-derivatives using the method described in the

previous subsection. We can use the relations in Appendix B and Appendix C to

simplify these expansions, and so obtain a series in w1,N for D1(Ψ(u)). We find,

d

du1

Ψ(u)
∣∣∣
u=u0,N

=
N(u0,N )

σ22(u0,N )

[
1

w2
1,N

]
+O(w0

1,N),

where N(u0,N ) is a linear polynomial in {σ22, σ122, σ222, σ223, σ224, σ225, σ226}. This set of
σ-derivatives can be used to express all other 2 and 3-index σ-derivatives when u = u0,N ,

(as in Appendix C). We find the coefficients of N(u0,N ) with respect to each of these

seven σ-derivatives and determine conditions on the constants ηij, ηijk that set all the

coefficients, except that of σ22, to zero. We then obtain further conditions by ensuring

the expansion we are left with (now independent of any σ-derivatives) is equal to (41)

on the four sheets. Imposing these conditions on Ψ(u) leaves us with

Ψ(u) =
[
η22

σ22

σ23

+ η111
σ111

σ23

+ 2η334
σ235

σ23

+
8η22µ0 − 1

4µ0

σ236

σ23

+ η334
σ334

σ23

]
(u).

Note from Appendix C that the terms containing σ111, σ235, σ334 all vanish at the points

u = u0,N and so have no effect on the expansion here. Let us discard these to leave,

Ψ(u) = η22
σ22(u)

σ23(u)
+

1

4

(8η22µ0 − 1)

µ0

σ236(u)

σ23(u)

We now have two functions, φ2(u) and D1(Ψ(u)), which both have poles at u0,N . We

have derived expansions at these points, given in the local parameter w1,N , and ensured

that they match. However, we should also separatelyly check, explicitly, what happens

at the point u = 0, since w1,N is not a suitable local parameter here. We can instead

use the Taylor series expansion of σ(u) presented in [13] and described in Section 5.

We differentiate this to give expansions for the σ-derivatives and then, since we are
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at the origin, replace the variables u1, . . . , u6 with their expansions, (24), in the local

parameter ξ.

Now, the sigma expansion was given as a sum of polynomials with increasing weight

in u and hence the expansions will have increasing order of ξ. Since the functions we

consider all contain ratios of σ-derivatives we will only need the leading terms from each

expansion, in order to check regularity. Hence we only require a minimum amount of the

sigma expansion, sufficient to give non-zero expansions for the derivatives we consider.

We find that for the functions used here, we can truncate the expansion after C35.

Substituting these expansions into φ2(u), we find

lim
u→0

φ2(u) = lim
ξ→0

[
3

4

µ1

µ0

ξ4 + ξ8 +O(ξ36)

]
= 0. (43)

So φ2(u) is regular at the origin, and hence we must ensure that Ψ(u) is as well. Upon

substitution into Ψ(u), we find that we must set η22 = 0 for the expansion to be regular.

This leaves us with

Ψ(u) = −1

4

1

µ0

σ236(u)

σ23(u)
,

with

lim
u→0

Ψ(u) = lim
ξ→0

[
− 1

28

µ3

µ0

ξ7 +
1

176

(−8µ2 + 3µ4µ3)

µ0

ξ11 +O(ξ15)

]
= 0. (44)

Now all that remains is to check the periodicity properties of the functions. Recall

equation (26) which gave the quasi-periodicity property of σ(u). We can differentiate

this, and use the relations in Appendix B to show that, first, for any ℓ ∈ Λ, the lattice

of half-periods,

σ23(u+ ℓ) = χ(ℓ) exp(L(u+ ℓ
2
, ℓ))σ23(u),

σ34(u+ ℓ) = χ(ℓ) exp(L(u+ ℓ
2
, ℓ))σ34(u),

for σ and its first derivatives vanish on Θ[1]; hence from equation (34) we can see that

φ2(u+ ℓ) = φ2(u) and so is indeed Abelian. Further, we find that:

σ236(u+ ℓ) = χ(ℓ) exp(L(u+ ℓ
2
, ℓ)) · [ ∂

du6
L(u+ ℓ

2
, ℓ) · σ23 + σ236]. (45)

It then follows that:

Ψ(u+ ℓ) = −1

4

1

µ0

σ236(u+ ℓ)

σ23(u+ ℓ)
= Ψ(u)− 1

4

1

µ0

∂

du6

(L(u+ ℓ
2
, ℓ))

Hence D1(Ψ(u)) is Abelian, though Ψ itself is not, and we may now write our integrand

φ(t)dt as

φ2(u)du1 + A2du1 + A3du2 + A4du4 = D1(Ψ(u)) +BTdu, (46)

for some vector of constants BT = (B1, B2, B3, B4, B5, B6).
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7.3. Evaluating the vector B

We can evaluate the vector B by considering the integral of equation (46) at the point

u = 0. We can use the expansions in (23), (43) and (44) to obtain the following series.

0 = B6ξ +
B5

2
ξ2 +

(
−A4

3
+

B4

3

)
ξ3 − B6

20
µ4ξ

5 +

(
−B5

12
µ4 +

B3

6

)
ξ6

+
1

28

1

µ0

(3µ4µ0A4 − µ3 − 3µ4µ0B4 − 4A3µ0 + 4B2µ0)ξ
7

+
B6

288
(5µ2

4 − 8µ3)ξ
9 +

(
−B3

20
µ4 −

B5

20
µ3 +

3B5

80
µ2
4

)
ξ10

− 1

352

1

µ0

(32A2µ0 − 32B1µ0 + 16µ2 − 6µ4µ3 − 24µ0A4µ3 + 21µ0A4µ
2
4

+ 24µ0B4µ3 − 21µ0B4µ
2
4 − 24µ4µ0A3 + 24µ4µ0B2)ξ

11 +O(ξ13)

Setting each coefficient of ξ to zero, we find

B1 =
1

2

(µ2 + 2A2µ0)

µ0

, B2 =
1

4

(4A3µ0 + µ3)

µ0

, B3 = 0,

B4 = A4, B5 = 0, B6 = 0.

8. Obtaining an explicit formula for λ(p)

We now use the results of Section 7 to derive an explicit formula for the mapping λ(p).

Start by applying the change of coordinates given in (19) to λ(p) as given in (15).

λ(p) = p+

∫ p

∞
[φ(p′)− 1]dp′ =

(
p̂8 −

1

t

)
+

∫ 1
p̂8−p

0

(
φ(t)− 1

t2

)
dt

=

(
p̂8 −

1

t

)
−
∫ 1

p̂8−p

0

[
1

t2

]
dt

+

∫ 1
p̂8−p

0

(
K[A4t

4 + A3t
3 + A2t

2 + A1t+ 1]
1

t2
dt

4s3

)
,

where the constants A1, A2, A3, A4 and K were defined by equation(21). Note from (31)

that

p = p̂8 +
σ34(u)

σ23(u)
, u ∈ Θ[1]. (47)

So let us take u ∈ Θ[1], and use (47) and the evaluation of φ(t)dt from the previous

section to write λ(p) as

λ(p) =

(
p̂8 +

σ34(u)

σ23(u)

)
−
∫ 1

p̂8−p

0

[
1

t2

]
dt+K

∫ 1
p̂8−p

0

[
1

2

(µ2 + 2A2µ0)

µ0

du1

+
1

4

(4A3µ0 + µ3)

µ0

du2 + A4du4

]
+K

∫ 1
p̂8−p

0

[
d

du1

(
−1

4

1

µ0

σ236(u)

σ23(u)

)]
du1.

Integrating, gives

λ(p) =

(
p̂8 +

σ34(u)

σ23(u)

)
−
[
σ34(u)

σ23(u)

]
+K

[
1

2

(µ2 + 2A2µ0)

µ0

u1
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+
1

4

(4A3µ0 + µ3)

µ0

u2 + A4u4

]
+K

[
−1

4

1

µ0

σ236(u)

σ23(u)

]
+ Ĉ

= p̂8 +K

[
− 1

4µ0

σ236(u)

σ23(u)
+

µ2 + 2A2µ0

2µ0

u1 +
4A3µ0 + µ3

4µ0

u2 + A4u4

]
+ Ĉ.

for some constant Ĉ. We can determine Ĉ by ensuring that the following condition on

the mapping is satisfied.

lim
p→∞

λ(p) = p+O

(
1

p

)
Note from (47) that p → ∞ implies σ23(u) → 0 and therefore u → u0,N .

lim
p→∞

[λ(p)− p] = lim
u→u0,N

[
Ĉ − σ34(u)

σ23(u)

+K

(
− 1

4

1

µ0

σ236(u)

σ23(u)
+

µ2 + 2A2µ0

2µ0

u1 +
4A3µ0 + µ3

4µ0

u2 + A4u4

)]
Let us ensure that the condition is met on the sheet of the surface C associated with

limt→0(s) = µ
1/4
0 . We can write this as a series expansion in the local parameter w1, (as

described in Section 7.1). Recall that ui = wi + u0,i, and use the expansions (38) and

the existing expansions for the σ-derivatives to obtain

lim
p→∞

[λ(p)− p] =

[
1

4

1

µ
3
4
0

− K

16

1

µ
3
2
0

]
1

w1

+

[
Ĉ − 3

8

µ1

µ0

+K

(
− 1

4

1

µ0

σ226(u0)

σ22(u0)

+
1

32

µ1

µ
7/4
0

+
(µ2 + 2A2µ0)

2µ0

u0,1 +
(4A3µ0 + µ3)

4µ0

u0,2 + A4u0,4

)]
+O(w1).

Therefore, we must set the constants of integration, Ĉ, to be

Ĉ =
3

8

µ1

µ0

+K

(
+

1

4

1

µ0

σ226(u0)

σ22(u0)
− 1

32

µ1

µ
7/4
0

− 1

2

(µ2 + 2A2µ0)

µ0

u0,1

− 1

4

(4A3µ0 + µ3)

µ0

u0,2 − A4u0,4

)
giving us the following explicit formula for the mapping λ(p).

λ(p) = p̂8 +
3

8

µ1

µ0

+K

[
− 1

4

1

µ0

[
σ236(u)

σ23(u)
− σ226(u0)

σ22(u0)

]
− 1

32

µ1

µ
7/4
0

+
µ2 + 2A2µ0

2µ0

(u1 − u1,0) +
4A3µ0 + µ3

4µ0

(u2 − u2,0) + A4(u4 − u4,0)

]
,

where u ∈ Θ[1] and u0 is the point on the principal sheet of the surface C where t = 0.
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Appendix A. Deriving defining relations for the strata from Jorgenson’s

Theorem

Consider Theorem 6.1 in the case when k = 5. Then for arbitrary a, b∑6
j=1 ajσj(u)∑6
j=1 bjσj(u)

=
det [a|du(P1)| · · · |du(P5)]

det [b|du(P1)| · · · |du(P5)]
.

Now, as u ∈ Θ[5] approaches Θ[4] we have the point P5 = (t5, s5) approaching∞. We can

use the local coordinate ξ here and hence replace the final column of the determinants

by the expansions (23). When u arrives at Θ[4] we will have ξ = 0 and hence the

determinant in the numerator becomes∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1
dt1
4s31

· · · dt4
4s34

0

a2
t1dt1
4s31

· · · t4dt4
4s34

0

a3
s1dt1
4s31

· · · s4dt4
4s34

0

a4
t21dt1
4s31

· · · t24dt4
4s34

0

a5
t1s1dt1
4s31

· · · t4s4dt4
4s34

0

a6
s21dt1
4s31

· · · s24dt4
4s34

−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

dt1
3s31

· · · dt4
3s34

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 · · · 1 0

a2 t1 · · · t4 0

a3 s1 · · · s4 0

a4 t21 · · · t24 0

a5 t1s1 · · · t4s4 0

a6 s21 · · · s24 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
The determinant in the denominator will be identical, except with the entries of a

replaced by the entries of b. Hence the factored terms will cancel, leaving us with

the simpler determinants. It is clear from the final column, that when we expand

the determinants the resulting quotient of polynomials will not vary with the arbitrary

constant a6. Hence we must conclude that for u ∈ Θ[4], σ6(u) = 0. The same conclusion

could have been drawn from considering b6.

Θ[4] = {u | σ(u) = σ6(u) = 0}.

We repeat this process by considering Theorem 6.1 in the case when k = 4.∑6
j=1 ajσj(u)∑6
j=1 bjσj(u)

=
det [a|du(P1)| · · · |du(P4)|du(P4)

(1)]

det [b|du(P1)| · · · |du(P4)|du(P4)(1)]
.

This time we consider u descending to Θ[3], by letting the fourth point move towards

infinity. The penultimate column in each determinant can be given with the expansions

(23) as before. For the final column we will need to determine the derivative of these

expansions:

d2u1

dξ2
= −10ξ9 +O(ξ10)

d2u2
4

dξ
= −2ξ + 9

2
µ4ξ

5 +O(ξ6)

d2u2

dξ2
= −6ξ5 +O(ξ6)

d2u5

dξ2
= −1 + 5

2
µ4ξ

4 +O(ξ5) (A.1)

d2u3

dξ2
= −5ξ4 +O(ξ5)

d2u6

dξ2
= µ4ξ

3 +O(ξ4).
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When u arrives at Θ[3] we will have ξ = 0. Our determinants will again factor and

cancel to leave the numerator as∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 · · · 1 0 0

a2 t1 · · · t3 0 0

a3 s1 · · · s3 0 0

a4 t21 · · · t23 0 0

a5 t1s1 · · · t3s3 0 −1

a6 s21 · · · s23 −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
with the denominator identical with b instead of a. From the final two columns it is

clear that the resulting quotient of polynomials will not vary with the arbitrary constant

a6 and a5. Hence we must conclude that

Θ[3] = {u | σ(u) = σ6(u) = σ5(u) = 0}.

We repeat the procedure once more for k = 3. We let u descend to Θ[2] and use the

previous expansions along with the derivatives of (A.1) for the final three columns.

We let ξ = 0, cancel the common factors and expand the determinants to reduce the

statement to ∑6
j=1 ajσj(u)∑6
j=1 bjσj(u)

=
a1t1 s2 − a1s1 t2 + a2s1 − a2s2 − a3t1 + a3t2
b1t1 s2 − b1s1 t2 + b2s1 − b2s2 − b3t1 + b3t2

(A.2)

for u ∈ Θ[2]. We therefore conclude that

Θ[2] = {u | σ(u) = σ6(u) = σ5(u) = σ4(u) = 0}.

Finally we consider Theorem 6.1 in the case when k = 2. Here, when we let u descend

to Θ[1], we find that the statement of the Theorem involves singular matrices, (resulting

from the final set of series for the derivatives all equalling zero when ξ = 0), and hence

gives us no information.

Instead we can consider equation (A.2) which held for u ∈ Θ[2]. Let u descend to

Θ[1] here, by using the expansions in ξ for (t2, s2). We find that∑6
j=1 ajσj(u)∑6
j=1 bjσj(u)

=
a1t1 − a2
b1t1 − b2

+O(ξ) (A.3)

and so for u ∈ Θ[1] we can see there is no dependence on a3, a4, a5 or a6. Hence

Θ[1] = {u | σ(u) = σ6(u) = σ5(u) = σ4(u) = σ3(u) = 0}.
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Appendix B. Relations between σ-derivatives on Θ[1]

The following list of equations are valid for u ∈ Θ[1]. This set contains all those relations

we have obtained that express n-index σ-functions for n ≤ 4. A larger set that includes

relations for n > 4 is available online at [20].

σ1 = 0 σ11 = 0, σ24 = 0 σ44 = 0

σ2 = 0 σ12 = 0, σ25 = −σ34 σ45 = 0

σ3 = 0 σ13 = 0, σ26 = 0 σ46 = 0

σ4 = 0 σ14 = −1
2
σ22, σ33 = 0 σ55 = 0

σ5 = 0 σ15 = −σ23, σ35 = 0 σ56 = 0

σ6 = 0 σ16 = 0, σ36 = 0 σ66 = 0

σ112 = µ0σ34 + µ1σ23 σ156 = −σ236 σ445 = 0

σ113 = 0 σ166 = σ23 σ446 = 0

σ114 = −σ122 + µ1σ34 + µ2σ23 σ244 = σ23 + µ4σ34 σ455 = 0

σ115 = −2σ123 σ245 = −1
2
σ344 σ456 = 0

σ116 = 0 σ246 = 0 σ466 = 0

σ124 = −1
6
σ222 +

1
2
µ2σ34 +

1
2
µ3σ23 σ255 = −2σ345 σ555 = 0

σ125 = −1
2
σ223 − σ134 σ256 = −σ346 σ556 = 0

σ126 = 0 σ266 = σ34 σ566 = 0

σ133 = 0 σ333 = 0 σ666 = 0

σ135 = −1
2
σ233 σ335 = 0

σ136 = 0 σ336 = −2σ23

σ144 = −σ224 + µ4σ23 + µ3σ34 σ355 = 0

σ145 = −σ234 − 1
2
σ225 σ356 = −σ34

σ146 = −1
2
σ226 σ366 = 0

σ155 = −σ334 − 2σ235 σ444 = 3σ34

σ1136 = −µ0σ34

σ1144 = µ3σ223 − 2σ1224 − 1
6
σ2222 + 2µ4σ123 + 2µ2σ234 + 2µ3σ134 + µ1σ344

σ1145 = µ2σ235 − 2σ1234 − σ1225 − 1
3
σ2223 +

1
2
µ3σ233 + µ2σ334 + µ1σ345

σ1146 = −σ1226 + µ2σ22 + µ2σ236 + µ1σ346

σ1155 = −2σ1334 − 4σ1235 − σ2233 + 2µ2σ22

σ1156 = −µ1σ34 − 2σ1236

σ1166 = 2σ123

σ1244 = −1
3
σ2224 + σ123 +

1
2
µ4σ223 + µ4σ134 +

1
2
µ2σ344 + µ3σ234

σ1245 =
1
4
µ4σ233 − 1

6
σ2225 − 1

2
σ2234 − 1

2
σ1344 +

1
2
µ3σ334

+1
2
µ2σ345 +

1
2
µ3σ235

σ1246 =
1
2
µ3σ22 − 1

6
σ2226 +

1
2
µ3σ236 +

1
2
µ2σ346

σ1255 = µ3σ22 − σ2235 − 2σ1345 − σ2334

σ1256 = −1
2
σ2236 − 1

2
µ2σ34 − σ1346

σ1266 =
1
2
σ223 + σ134

σ1333 = −6µ0σ34 + 2µ1σ23
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σ1335 =
4
3
µ2σ23 − 4

3
µ1σ34 − 1

3
σ2333σ1336 = −2σ123

σ1355 = −σ2335 − 1
3
σ3334 − 2

3
µ2σ34 + 2µ3σ23

σ1356 = −1
2
σ223 − σ134 − 1

2
σ2336

σ1366 =
1
2
σ233

σ1444 =
3
2
σ223 + 3σ134 − 3

2
σ2244 + 3µ4σ234 +

3
2
µ3σ344

σ1445 = µ3σ345 +
1
2
σ233 − σ2245 − σ2344 + µ4σ334 + µ4σ235

σ1446 = µ4σ22 − σ2246 + µ3σ346 + µ4σ236

σ1455 = −1
2
σ3344 − 2σ2345 − 1

2
σ2255 + µ4σ22

σ1456 = −1
2
σ2256 − 1

2
µ3σ34 − σ2346

σ1466 = σ234 − 1
2
σ2266

σ1555 = −3σ2355 + 8µ4σ23 − 3σ3345

σ1556 = −2σ234 − σ3346 − 2σ2356

σ1566 = σ334 − σ2366 + σ235 σ3556 = −2σ345

σ1666 = σ22 + 3σ236 σ3566 = −2σ346

σ2444 = 3σ234 +
3
2
µ4σ344 σ3666 = σ34

σ2445 = σ334 + σ235 − 1
3
σ3444 + µ4σ345 σ4444 = 6σ344

σ2446 = σ22 + σ236 + µ4σ346 σ4445 = 3σ345

σ2455 = σ22 − σ3445 σ4446 = 3σ346

σ2456 = −1
2
µ4σ34 − 1

2
σ3446 σ4455 = 0

σ2466 =
1
2
σ344 σ4456 = −σ34

σ2555 = 10σ23 + 2µ4σ34 − 3σ3455 σ4466 = 0

σ2556 = −σ344 − 2σ3456 σ4556 = 0

σ2666 = 3σ346 σ4566 = 0

σ3333 = 0 σ4666 = 0

σ3335 = 0 σ5555 = 0

σ3336 = −3σ233 σ5556 = 0

σ3355 = 0 σ4555 = 4σ34

σ3356 = −2σ334 − 2σ235 σ5566 = 0

σ3366 = −2σ22 − 4σ236 σ5666 = 0

σ3466 = σ345 − σ2566 σ6666 = 0

σ3555 = 0
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Appendix C. Relations between σ-derivatives at u0,N

The following list of equations were not valid in general for u ∈ Θ[1], but are true at

u = u0,N . This set contains all those relations we have obtained that express n-index

σ-functions for n ≤ 4. A larger set that includes relations for n > 4 is available online

at [20].

σ34 =
1

2

σ22

iNµ
1/4
0

σ233 = −iNµ
1/4
0 σ22

σ111 = 0 σ234 =
1

6

σ222

iNµ
1/4
0

− 1

4

µ2σ22

i2N
√
µ0

σ112 =
1

2
σ22i

3Nµ0
3/4 σ235 = −1

2

σ223

iNµ
1/4
0

σ113 = 0 σ236 = −1

2
σ22

σ123 = −1

2
i2N

√
µ0σ22 σ334 = +

σ223

iNµ
1/4
0

σ134 =
i3Nσ122

2µ
1/4
0

− i2Nσ22µ1

2
√
µ0

− σ223

2
σ344 = −1

2

σ22µ3

i2N
√
µ0

+
σ224

iNµ
1/4
0

σ345 =
i3Nσ225

2µ
1/4
0

+
i2Nσ222

6
√
µ0

− iNµ2σ22

4µ0
3/4

σ346 =
1

2

σ226

iNµ
1/4
0

σ1111 = −6µ0

3
2σ22i

2N

σ1112 = −3µ1i
2N√µ0σ22 +

3
2
µ0

3
4σ122i

3N

σ1113 = −3
2
µ0

5/4σ22i
N

σ1114 = −9

4
i2N

√
µ0µ2σ22 −

3

2

i2Nµ1
2σ22√
µ0

− 3

2
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