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ABSTRACT 

 
We demonstrate a novel atomic layer deposition (ALD) process to make high quality nanocrystalline titanium dioxide 
(TiO2) and zinc oxide (ZnO) with intermediate Al2O3 layers to limit the crystal size.  The waveguide losses of 
TiO2/Al2O3 nanolaminates measured using the prism coupling method for both 633 nm and 1551 nm wavelengths are as 
low as 0.2 ± 0.1 dB/mm with the smallest crystal size.  We also show that the third-order optical nonlinearity in 
ZnO/Al2O3 nanolaminates can be enhanced by nanoscale engineering of the thin film structure. 
 
Keywords: atomic layer deposition, loss, third-order optical nonlinearity 
 

1. INTRODUCTION 
 
Nanoscale materials often exhibit remarkable differences in mechanical, optical and electrical properties compared to 
their bulk form1,2.  Fabrication of these structures in a controlled fashion can be challenging.  Therefore, a simple method 
to controllably fabricate these nanoscale structures is important.  Atomic layer deposition (ALD) has been used to 
fabricate nanolaminate structures, for instance from aluminum and zinc oxide (Al2O3 and ZnO) layers3,4. 
 
Aluminum doped zinc oxide (AZO) is a material that has been intensively studied mainly because of its application as a 
transparent conducting electrode5-7.  Furthermore, zinc oxide is also an interesting material because of its outstanding 
nonlinear optical properties8-13.  The third-order optical nonlinearity, χ(3), is important for many applications in optical 
signal processing and telecommunications.  For example, the large χ(3) in silicon has already enabled impressive device 
demonstrations, e.g., wavelength conversion, all-optical switching and optical signal processing at low optical power 
levels14-16.  Silicon has a high χ(3), but two-photon absorption related to the imaginary part of χ(3) limits its usefulness.  
We have earlier shown that ALD grown Al2O3 and titanium dioxide TiO2 work well with silicon slot and strip 
waveguides17-20.  TiO2 is a promising material for linear and nonlinear microphotonic devices at both visible and infrared 
wavelengths.  Previously, atomic layer deposition (ALD), reactive radio frequency magnetron sputtering, sol-gel and ion 
implantation methods have been studied as potential methods to make low loss TiO2 waveguides21-26.  
 
Titanium dioxide thin films can appear in many different crystalline phases and the phase is mainly dependent on the 
growth temperature and/or annealing temperature, but also on the surface on which it grows27.  The lowest losses are 
measured for amorphous TiO2 waveguides, but they are thermally unstable as the films crystallize when heated to > 
200°C28.  This can limit their applicability in applications requiring higher temperature steps during the fabrication 
process.  Furthermore, amorphous TiO2 is less nonlinear than its crystalline anatase or rutile counterparts.  Thus, TiO2 
films deposited at higher temperature but still having low losses would be highly desirable in various optical 
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applications. ALD provides a straightforward way to fabricate nanolaminates while controlling the crystal size at the 
nanometer scale.  Crystal size control has been used previously to improve the optical properties and uniformity when 
TiO2 is deposited at higher temperature29,30. 
 
The diethyl zinc (DEZn) + water process for ZnO, the titanium chloride (TiCl4) + water process for TiO2 and the 
trimethylaluminum (TMA) + water process for Al2O3 are very widely used ALD processes as the precursors are liquid 
and have suitable vapor pressures for evaporation at ambient temperature.  In addition the processes have large ALD 
temperature windows in which they can be utilized.  However, when the TiCl4 + water and TMA + water processes are 
combined the layer interfaces tend to have high optical absorption21, an effect which has been utilized to create absorbing 
decorative coatings using the H2O + TiCl4 + TMA –process31.  TiO2 crystal growth termination via Al2O3 has been done 
using different chemistries, e.g. the AlCl3 + H2O process, but these precursors are not as ideal ALD precursors as 
TMA30. Therefore, we used the TMA + ozone process and observed that it is working well with the TiCl4 + water 
process32.  
 

2. NANOLAMINATE STRUCTURES 
 
ZnO/Al2O3 nanolaminates 
 

 
 

Fig. 1. Schematic diagram of the ZnO/Al2O3 nanolaminate structure. 
 
Four ZnO/Al2O3 nanolaminate samples and one plain ZnO film were prepared by a Beneq TFS 500 ALD system on 
Corning 0211 glass substrates.  The schematic diagram of the nanolaminate structure is shown in Fig. 1.  The ZnO/Al2O3 
nanolaminates consist of alternating layers of ZnO and Al2O3.  The thickness of each layer is defined by the number of 
ALD cycles.  We kept the total number of ZnO growth cycles constant in all samples to ensure equal amounts of ZnO.  
Since the number of Al2O3 and ZnO layers varies, the number of cycles in each ZnO layer was changed from 25 to 100 
depending on the sample (see table 1.).  All Al2O3 layers in the nanolaminates were formed with 10 ALD cycles 
(thickness of about 1.1 nm).  Diethyl zinc (DEZn) and H2O acted as precursors for ZnO and trimethyl aluminum (TMA) 
and H2O for Al2O3

33, and the growth temperature was 200 °C.  Sample labeling is presented in Table 1. 
 

Table 1. Labeling of the ZnO/Al2O3 nanolaminate samples 
 

Sample name Number of AZO cycles An AZO cycle consists of  
  Number of Al2O3 cycles Number of ZnO cycles 

AZO1 100 10 25 
AZO2 50 10 50 
AZO3 33 10 75 
AZO4 25 10 100 
ZNO 1 0 2500 

 
TiO2/Al2O3 nanolaminates 
 
TiO2/Al2O3 nanolaminates (samples S0-S4) were fabricated using TiCl4 + H2O and TMA + O3 ALD processes at a 
growth temperature of 250 °C.  The growth rate of the TMA + O3 process is reported to be between 0.09 to 0.11 
nm/cycle34,35.  Therefore, the Al2O3 layer thickness is estimated to be about 1 nm.  Fabricated samples are presented in 
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Table 2.  The structure of these samples is very similar to that of the ZnO/Al2O3 nanolaminates.  Sample S5 is fabricated 
using the TiCl4 + H2O process at 120 °C and sample S6 is sample S5 annealed at 400 °C for crystallizing the film. 
 

Table 2. Naming of the TiO2/Al2O3 nanolaminate samples. 
 

Sample name Number of TiO2+Al2O3 
cycles 

An TiO2+Al2O3 cycle consists of  

  Number of TiO2 cycles Number of Al2O3 cycles 
S0 1 4000 0 
S1 40 100 11 
S2 20 200 11 
S3 15 267 11 
S4 10 400 11 
S5 1 ~3300 0 

S6 (annealed S5 at 400 °C) 1 ~3300 0 
 

3. RESULTS AND DISCUSSION 
 
3.1. Optical properties 
 
ZnO/Al2O3 nanolaminates 
 
The effective refractive index and the total thickness of each sample were measured using a prism coupler at the 
wavelengths of 532 nm, 633 nm and 1551 nm.  The measured effective refractive indices are shown in Fig. 2. 
 

 
Fig. 2. Measured refractive indices of the ZnO/Al2O3 nanolaminate and ZnO samples. 

 
Table 3. Properties of the ZnO/Al2O3 nanolaminate samples. 

 
Sample Effective refractive 

index N 
Total thickness 

ttot (nm) 
Estimated total ZnO 

thickness in 
nanolaminate (nm) 

Estimated total Al2O3 
thickness in 

nanolaminate (nm) 
AZO1 1.87 516.7 339.9 176.8 
AZO2 1.92 494.9 388.6 106.2 
AZO3 1.93 478.9 398.0 80.9 
AZO4 1.95 486.1 424.0 62.1 
ZNO 1.99 501.4 501.4 0 

 
The results of the measurement at 633 nm are shown in Table 3.  The estimated total and layer thicknesses of ZnO and 
Al2O3 in nanolaminates are also shown in Table 3.  They are calculated from the measured effective refractive indices 

using the equation 𝑡ℎ = (𝑁2−𝑛𝑙
2)

(𝑛ℎ
2−𝑛𝑙

2)
𝑡𝑡𝑜𝑡, where th, tl, nh and nl are the high-index (ZnO, nh = 1.99) and low-index (Al2O3, nl = 

1.63) materials’ thicknesses and refractive indices, and ttot and N are the nanolaminate thickness and effective refractive 
index, respectively36.  Here we assume that the refractive index of ZnO is constant regardless of the layer thickness.  We 
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measured the linear absorbance of our samples using an untreated Corning 0211 glass plate as a reference.  The obtained 
spectra are presented in Fig. 3a.  For the ZnO sample, a sharp absorption edge is observed at the wavelength 375 nm, 
corresponding to the bandgap of ZnO.  For the nanolaminate samples, the absorbance below the absorption edge 
decreases with decreasing amount of ZnO.  The absorbance data at 350 nm (shown in Fig. 3b) agrees well with our 
estimations (Table 3) of the total amount of ZnO in the samples. 
 

 
 

Fig. 3. a) Measured absorption spectra of the samples, and b) absorption at 350 nm as a function of the estimated amount of ZnO. 
 
TiO2/Al2O3 nanolaminates 
 

Table 4. Estimated loss values of TiO2/Al2O3 nanolaminates and TiO2 films. 
 

Sample Loss at 633 nm [dB/mm] Loss at 1551 nm [dB/mm] 
S0 very high very high 
S1 0.2 ± 0.1 0.2 ± 0.1 
S2 0.6 ± 0.1 0.2 ± 0.1 
S3 very high 0.8 ± 0.1 
S4 very high 1.0 ± 0.1 

Amorphous TiO2 (similar as S5) 0.2-0.3521 0.08-0.0921 
 
Propagation losses of the TiO2/Al2O3 nanolaminates and the TiO2 reference sample were estimated using the loss 
measurement feature of the prism coupler at the wavelengths of 633 and 1551 nm.  The measured losses are presented in 
Table 4.  The loss values are decreasing when the TiO2 sublayer thickness decreases.  The lowest value, 0.2 dB/mm at 
both wavelengths, was measured from the sample S1.  Higher loss values at the wavelength of 633 nm can be explained 
by higher scattering from the small crystals.  In Rayleigh scattering, the scattering intensity is inversely proportional to 
the fourth power of the wavelength.  Therefore, the scattering from the small particles (crystals in this case) is increasing 
when the wavelength is decreasing; deviation from the Rayleigh law can be due to the presence of larger particles that 
would exhibit Mie scattering.  The loss value of 2 dB/cm is very promising for waveguiding applications.  The loss of 
amorphous ALD TiO2 grown at 120 °C has been reported to be less than 1 dB/cm21.  However, the nanolaminate 
structure is much more stable thermally than low temperature TiO2. 
 
3.2. Crystal structure 
 
ZnO/Al2O3 nanolaminates 
 
In order to characterize the crystal structure and the size of the crystallites in the ZnO layers, powder X-ray diffraction 
(XRD) experiments using Cu K-α radiation were carried out.  The measured XRD curves are shown in Fig. 4a.  
Diffraction peaks are located at positions 31.8°, 34.4°, 56.6° and 66.4° corresponding to (100), (002), (110) and (200) 
crystal planes of hexagonal wurtzite ZnO.  The peak at 31.8° comes from a-direction oriented crystals and the peak at 
34.4° from c-direction oriented crystals37,38.  These results indicate c-direction oriented ZnO crystals in the beginning of 
the growth, but for the thicker films a-direction oriented growth begins to dominate.  ZnO, grown using ALD at 200 °C 
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with the same precursors, has been earlier reported to be a-direction oriented37.  Crystallite sizes estimated using 
Scherrer’s formula are presented in Fig. 4b.  These results show that an approximately 2 nm thick amorphous Al2O3 
layer between ZnO layers terminates the ZnO crystal growth and affects the size of the crystallites in the nanolaminates. 
 

 
 

Fig. 4. a) Measured powder XRD curves and b) calculated crystallite sizes of the samples. 
 
Top view scanning electron micrographs are presented in Fig. 5.  In the ZNO sample, the crystals are very large 
compared to the AZO samples and their shape is more like elongated than spherical as is the case with the AZO films.  
The crystal size clearly increases from AZO1 to AZO4 as the XRD results suggest.  However, the smallest crystals seem 
larger than the lower bound estimated from the XRD peak width. 
 

 
 

Fig. 5. Top view SEM images of the samples: a) AZO1, b) AZO2, c) AZO3, d) AZO4, and e) ZNO. 
 
TiO2/Al2O3 nanolaminates 
 
In order to characterize the crystal structure and the size of the crystallites in the TiO2/Al2O3 nanolaminates, similar 
powder XRD experiments were carried out.  Measured XRD curves of the TiO2/Al2O3 nanolaminates are shown Fig. 6a.  
Diffraction peaks are located at the positions 25.3°, 48.0°, and 55.1°, which correspond to (101), (200), and (211) planes 
of anatase TiO2, respectively.  These results indicate that the grown TiO2 is in the anatase phase in samples S0, S3, and 
S4.  The samples S1, and S2 do not show visible peaks in the XRD suggesting the amorphous phase.  Fig. 6b shows the 
top view SEM images of the samples SO-S4.  S1 and S2 look like amorphous film without any clear crystals. Large 
crystals are seen in the samples S0 and S4.  Smaller crystals can be found from S3. 
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Fig. 6. a) Measured XRD curves and b) top view SEM images of the TiO2/Al2O3 samples. 

 
3.3. Third-order optical nonlinearity 
 
ZnO/Al2O3 nanolaminates 
 
The third-order optical nonlinearity of the nanolaminates was characterized using a multiphoton microscope.  The third 
harmonic generation (THG) signal as a function of crystallite size is plotted in Fig. 7a.  The figure shows that the THG 
signal increases almost linearly as the crystallite size decreases.  We assume that the THG is mainly from ZnO because 
the third-order optical nonlinearity coefficient χ(3) of Al2O3 has been reported to be about 20 times less than in ZnO9.  
AZO1 sample generates 13 times higher THG signal than a homogeneous ZnO sample.  THG is proportional to (V·χ(3))2 
where χ(3) is the third-order optical nonlinearity coefficient and V is the material volume.  The estimated χ(3) of the 
nanolaminate samples normalized to ZnO film are presented in Fig. 7b.  We also measured the THG signal from Corning 
0211 glass as a reference and the value was 2.26.  Therefore, the THG signal from the nanolaminate with the smallest 
crystals is about 200 times stronger than from glass.  Aluminum doped zinc oxide is a well-known transparent 
conducting oxide.  We also observed that zinc oxide was doped by aluminum in our nanolaminates even though our 
Al2O3 sublayers are relatively thick.  Therefore, one explanation for the higher third-order nonlinearities from AZO1 and 
AZO2 samples could be that they contain more free electrons than ZNO, AZO4 and AZO3.  
 

 
 

Fig. 7. a) THG signal as a function of crystallite size and b) χ(3) of the samples normalized to ZNO sample. Inset in a) shows the 50x50 
µm2 THG signal image from the sample AZO1. 

 
TiO2/Al2O3 nanolaminates 
 
Thicknesses of the samples and the measured THG signals are presented in Table 5.  Thicknesses are estimated using a 
spectral transmission measurement.  The highest THG signal was observed from the crystalline TiO2 reference sample.  
The highest THG signal measured from the TiO2/Al2O3 nanolaminates was from the sample S4 which has the largest 
crystals and the smallest number of interfaces.  We believe that this is due to the larger amount of anatase TiO2.  The 
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sample S2 seems to be the best trade-off having almost two thirds of the THG signal compared to S0, but still having low 
losses at the wavelength of 1551 nm (2 dB/cm).  If we take thickness into account then it looks like that the sample S4 
has the highest χ(3).  Also the sample S1 has still relatively high χ(3) compared to the amorphous TiO2 (sample S5). 
 

Table 5. Thicknesses and THG signals of S0-S6 samples. 
 

Sample Thickness (nm) THG signal (normalized to 
S0) 

χ(3) (normalized to S0) 

S0 203 ± 10 1 ± 0.08 1 
S1 195 ± 2 0.46 ± 0.08 0.70 
S2 183 ± 2 0.66 ± 0.08 0.90 
S3 173 ± 2 0.76 ± 0.08 1.02 
S4 168 ± 2 0.80 ± 0.08 1.08 
S5 200 ± 2 0.57 ± 0.08 0.44 
S6 200 ± 2 0.72 ± 0.08 0.76 

 
 

4. CONCLUSIONS 
 
We demonstrated the novel atomic layer deposition (ALD) process to control the crystallinity of titanium dioxide (TiO2) 
and zinc oxide (ZnO) using amorphous intermediate Al2O3 layers4,32.  The waveguide losses of TiO2/Al2O3 
nanolaminates measured using prism coupling method for both 633 nm and 1551 nm wavelengths were as low as 0.2 ± 
0.1 dB/mm with the thinnest TiO2 layer.  In comparison, plain TiO2 deposited at 250°C without the intermediate Al2O3 
layers shows high scattering losses and is not viable as a waveguide material.  The third-order optical nonlinearity in 
TiO2/Al2O3 nanolaminate was also studied, and it was shown that the crystallinity controlled ALD-TiO2 is an excellent 
candidate for various optical applications, where good thermal stability and high third-order optical nonlinearity are 
needed.  We also investigated the third-order optical nonlinearity in ZnO/Al2O3 nanolaminates fabricated by atomic layer 
deposition and showed that the third-order optical nonlinearity can be enhanced by nanoscale engineering of the thin film 
structure.  The grain size of the polycrystalline ZnO film is controlled by varying the thickness of the ZnO layers in the 
nanolaminate.  Nanoscale engineering enables us to achieve a third harmonic generated signal enhancement of ~13 times 
from the optimized nanolaminate structure compared to a ZnO reference film of comparable thickness. 
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