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In the shift towards an Industrial Internet, programmable logic controllers, used
to drive processes in industrial facilities, are more intelligent and capable of mu-
tual communication and independent decision-making. Essentially, these con-
trollers are also directly connected to the Internet, which opens new possibilities
for the implementation of process control and monitoring systems.

The goal of this thesis is to assess the suitability of web technologies for the
development of supervisory control and data acquisition systems. The assessment
is performed by developing a web-based monitoring system and comparing it to
other solutions currently in the market. The available features and usability are
used as the criterion for the comparison. The OPC UA standard for industrial
information modeling and data transfer is used as the Industrial Internet platform
when developing the application.

The practical part of the thesis is concerned with the development of a generic
OPC UA web client. The web client serves as a framework for the development of
web-based supervisory control systems that take advantage of the standard data
modeling features of OPC UA. Modern web technologies enable the implementa-
tion of periodic updates and reusable user interface components, and a uniform
service interface transfers the application state with service requests. A central
theme in the thesis is the integration of software components written in the Java
and JavaScript programming languages.

The implementation shows that web techniques can be used to implement both
request/response based and event-based information transfer between logic con-
trollers and end-user devices. The standardization of reusable web components
makes the development of web-based industrial monitoring systems more attrac-
tive by allowing to combine functionality and style definitions into uniform build-
ing blocks. Finally, incompatibility issues between OPC UA sessions and the
RESTful architecture were identified and assigned as subjects of future work.
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Teollisen internetin suuntauksessa teollisuuslaitoksia ohjaavat ohjelmoitavat lo-
giikkapiirit ovat aikaisempaa älykkäämpiä, kyeten keskinäiseen kommunikointiin
sekä itsenäiseen päätöksentekoon. Oleellisesti nämä logiikat ovat myös suoraan
kytkettyinä internetiin, mikä avaa uusia mahdollisuuksia niin prosessiohjauksen
kuin valvomojärjestelmienkin toteuttamiselle.

Tämän diplomityön tarkoituksena on arvioida web tekniikoiden soveltuvuutta
valvomojärjestelmien kehitykseen. Arviointi perustuu työn tuloksena toteutet-
tavan web-pohjaisen valvomoratkaisun vertaamiseen muihin markkinoilla tar-
jolla oleviin ratkaisuihin. Vertailukriteereinä ovat ratkaisujen ominaisuudet ja
käytettävyys. Teollisen internetin alustana toteutuksessa käytetään teollisen tie-
donsiirron ja tiedonmallinnuksen standardia OPC UA:ta.

Työn tuloksena toteutetaan OPC UA standardiin perustuvan web-pohjaisen
valvomo-ohjelman prototyyppi. Prototyyppi käsittää kehikon teollisen tiedon lu-
kemiselle ja ohjauskomentojen lähettämiselle OPC UA osoiteavaruuteen tuo-
tujen tietomallien kautta. Nykyaikaiset webtekniikat mahdollistavat jaksottais-
ten tapahtumien sekä uudelleenkäytettävien valvomokomponenttien toteutuk-
sen. Yhtenäinen palvelurajapinta perustuu sovelluksen tilan siirtämiseen palve-
lupyyntöjen yhteydessä. Lisäksi työn keskeisenä teemana on Java- ja JavaScript
ohjelmointikielillä toteutettujen kirjastojen yhteensovittaminen.

Toteutus osoittaa, että web tekniikoilla on mahdollista toteuttaa sekä kyse-
lyihin että tapahtumiin perustuva tiedonsiirto ohjelmoitavien logiikoiden ja
päätelaitteiden välille. Uudelleenkäytettävien web komponenttien standardoin-
ti tekee teollisten valvomojärjestelmien toteuttamisesta entistä houkuttelevam-
paa mahdollistamalla toiminnallisuuden ja tyylimäärittelyiden pakkaamisen it-
senäisiksi kokonaisuuksiksi. Keskeisenä ongelmana jatkokehityksen kannalta to-
detaan tilallisten OPC UA palveluiden yhteensopimattomuus tilattomiin web ra-
japintakutsuihin.
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Chapter 1

Introduction

1.1 Background and motivation

Industrial corporations employ control networks for transferring data and
control messages between different levels of the corporate hierarchy. These
control networks are used for automating the industrial process. On the low-
est level, a large number of various field devices including different kinds of
sensors and actuators collect data on the industrial process. Different levels
in the corporate automation hierarchy, all the way up to the management
levels, use this data to improve the process and to make intelligent busi-
ness decisions. In order to ensure successful process execution, control room
operators need a means to monitor and control the industrial network. Su-
pervisory control and data acquisition (SCADA) systems are often used to
provide such a Human-Machine Interface (HMI) for the plant operators.

Traditionally SCADA systems have been implemented as native desk-
top applications. However, during the last decade software development in
general has seen a shift towards mobile and web applications. This develop-
ment has been partly motivated by the nearly ubiquitous adoption of mobile
devices and the high speed Internet connections available today. Web appli-
cations in particular have shown many advantages over native applications,
including straightforward cross platform support, ease of development, and
faster development cycles [33]. Web applications in turn are increasingly
hosted in computing clouds, which offer higher scalability, reliability and
flexibility compared to hosting the applications on dedicated servers. All
in all, the developments in cloud computing and areas such as sensor net-
working are paving the road for the highly anticipated Internet of Things
(IoT), which among other things is expected to yield considerable savings to
industrial plants by allowing a higher level of fine-tuning in the industrial

1



CHAPTER 1. INTRODUCTION 2

processes.
Many automation system vendors are already releasing their own cloud-

based SCADA solutions. Hosting the SCADA system in the cloud allows
SCADA system manufacturers to sell their products as Software as a Service
(SaaS). Industrial companies however might be reluctant to give access to
their industrial data to a third-party service provider. As such it may be
beneficial for the company to host the SCADA application in its own private
cloud. Another advantage of web-based SCADA systems is their portability,
as the users need only a standard web browser to access the service. On the
other hand the service provider can ensure portability of the service imple-
mentation by using a platform independent programming language such as
Java. In order to gain the performance benefits of multiple computing cores,
web applications must be programmed to execute concurrently in multiple
threads or processes. Multi-threaded code is however inherently more diffi-
cult to write and prone to hard-to-find bugs. As a simpler alternative, the
asynchronous event driven Node.js programming model offers a straightfor-
ward way to write scalable web applications. Several frameworks already
allow to mix server-side Java and JavaScript code, enabling a new hybrid
class of web applications.

1.2 Objectives and scope

The objective of this thesis is to evaluate the applicability of web technologies
to the development of industrial monitoring applications for the Industrial
Internet. The focus is on finding a way to bridge the gap between browser-
based operator interfaces and industrial devices. This topic partly grew out
from the need of Prosys PMS Ltd to evaluate the use of its OPC UA Java
SDK in the development of applications for the Industrial Internet. As such
the OPC Unified Architecture (OPC UA) communication protocol was cho-
sen as the implementation platform, with the Java programming language as
the implementation language.

The practical part of this thesis has to do with the development of a
generic OPC UA web client. The goal is not to develop a complete SCADA
HMI system, but rather evaluate and demonstrate how such a system could
be built given the platform and programming language constraints. Never-
theless, the generic client could be used as a starting point when developing
complete supervisory control systems. The generic client implementation is
evaluated and compared with other web-based SCADA systems. Finally,
based on the experiences gained throughout the development effort, the ap-
plicability of web technologies to the Industrial Internet shall be assessed.
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The objectives of the thesis can be summarized in the following four
research questions:

1. What are the requirements for the generic OPC UA web client?

2. How can the generic OPC UA web client be implemented?

3. How does the generic OPC UA web client compare to other solutions?

4. Are standard web technologies compatible with the Industrial Internet?

The first question examines the requirements for the generic client. The
requirements analysis serves as a basis for the implementation of the generic
client.

The second question is related to the implementation of the generic client.
It is concerned with the specific technology choices, architecture, interfaces
between different components, and other technical decisions related to the
implementation.

The third question has to do with the evaluation of the finished imple-
mentation in relation to the existing solutions on the market. The solutions
are compared based on their features and usability, with the focus on SCADA
solutions that utilize standard web technologies.

The last question assesses the overall applicability of web technologies to
the development of applications for the Industrial Internet, by reflecting on
the experiences gained during the development of the generic client.

1.3 Research methods

This thesis has two parts: the theoretical part and the technical part. The
theoretical part is conducted mainly as a literature study. Industrial net-
works and industrial user interfaces have been discussed in detail by for
example Galloway et al. [27], Hollifield et al. [40], and Heimbürger el al [32].
The book OPC Unified Architecture by Mahnke el al. [45] and the OPC UA
specifications serve as the main literary sources regarding OPC UA. In ad-
dition to the official language specifications, there is a large number of both
printed and online resources for Java and JavaScript, including books by
Horstmann [41] and Crockford [12], respectively. The history of rich Internet
applications has been covered in detail by Casteleyn [11]. The development
of purely web-based monitoring system using standard web technologies has
been studied by Teliö [62], and OPC UA stack and framework development
has been covered by Hennig et al. [34] and Freund [26], respectively.
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The technical part involves creating a generic OPC UA web client appli-
cation prototype. The requirements for the application are determined based
on the application profiles of OPC UA. In addition, existing OPC UA client
applications and web-based SCADA solutions serve as a reference point when
determining the requirements for the application.

1.4 Structure of the work

The structure for the rest of this thesis is as follows. First, Chapter 2
gives a brief introduction to industrial networks, industrial operator inter-
faces and the Industrial Internet. Chapter 3 then presents the OPC UA
standard for industrial data transfer and information modeling, focusing on
OPC UA services (UA Part 4 [51]) and information modeling concepts (UA
Part 3 [50]), which form the theoretical foundation for OPC UA application
development [45]. Chapters 4 and 5 end the background part of the thesis by
examining relevant backend and frontend technologies, respectively. Chap-
ter 6 surveys the existing solutions providing OPC UA connectivity from the
web browser, and forms the basis for the requirements analysis performed in
Chapter 7. The finished web client implementation developed in accordance
to the specified requirements is then discussed in Chapter 8. This chapter
outlines the development process and the design decisions that were taken.
Chapter 9 evaluates the success of the implementation and compares it to
the existing solutions presented in Chapter 6. Alternative approaches and
future work are also discussed. Finally, Chapter 10 concludes the thesis.



Chapter 2

Industrial networks

When developing software, it is important to understand the context in which
the software solution is to be deployed. This chapter presents a brief intro-
duction to the control networks that can be found in industrial facilities such
as chemical processing plants, and manufacturing plants. First, Section 2.1
describes how the industrial processes can be monitored and controlled by
the use of an automation system. Section 2.2 expands the discussion to the
user interfaces that the plant operators use to interact with the automation
system. Finally, Section 2.3 concludes the chapter by discussing the emerg-
ing Industrial Internet and how it will affect the development of automation
systems.

2.1 Industrial control systems

An industrial plant includes all the machines, systems, structures and people
that are needed to perform an industrial manufacturing process [32]. The
process comprises all the actions that are taken to reach the business goal
of manufacturing a product. The ISA-95 standard [16] specifies integration
between the organization’s industrial process and business management. It
defines a model with three organizational levels: enterprise resource planning
(ERP), manufacturing execution system (MES), and the automation system.

Automation systems, referred to as industrial control systems (ICS) for
the rest of this thesis, can be divided into two categories: distributed control
systems (DCS) and supervisory control and data acquisition (SCADA) sys-
tems. Traditionally DCS have been used in local and continuous closed loop
processes, such as chemical processing, which have high requirements for reli-
ability, whereas SCADA systems have been used in geographically scattered
processes where the monitoring and control activities take place in multiple

5
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remote field sites [27].
Industrial plants use control networks to pass information from the field

devices on the factory floor level all the way up to the business and man-
agement levels of the corporation. The application of industrial networks
spans many industries including but not limited to discrete manufacturing
and building automation [27]. In comparison to conventional information
networks, industrial control networks are often characterized by their deeply
hierarchical architecture and strict requirements for fault tolerance, deter-
minism and real-time data transfer [27].

Industrial controllers, referred to as remote terminal units (RTU), control
processes at field sites by implementing a control loop. The control loop at-
tempts to maintain a process variable within its assigned limits. The control
loop works by connecting inputs and outputs of a controller to sensors and
actuators of process instruments. The controller periodically reads the cur-
rent process information from the sensors, and based on the perceived state
it sends commands to the actuators in order to maintain a desired state of
the process. The interaction between the actuators and the physical process
in turn creates disturbances which are captured by the sensors.

2.2 Human-machine interface

The human machine-interface (HMI) is a combination of displays, input de-
vices and software, which provides the plant operator with services to monitor
and control the industrial process. A good HMI enhances the operator’s situ-
ational awareness, and allows the operator to respond to abnormal situations
in a timely manner [40]. The HMI should be carefully designed to ensure
safe, efficient and cost-effective operation of the industrial plant [40].

Part 5 of the ISO 11064 set of standards [17] specifies guidelines for the
design of HMI systems. It defines a layered approach for structuring the
information that is presented on HMI display. Everything that is displayed
on a display screen constitutes a page. The page can be further divided into
windows. One window can cover the whole page or multiple windows can
be displayed at the same time. Finally, windows are composed of elements
such as icons and labels, which are used as the basic building blocks of user
interface components.

According to Heimbürger et al. [32], a page can show a general overview of
the process by utilizing user interface components such as process diagrams,
or it can be task specific, showing only the process data and controls that are
needed to perform a specific task. Furthermore, the process data includes
current values fetched through periodical updates, alarms and notifications,
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and historical data. Besides displaying process data, the page should contain
controls which an operator can use to control the process.

The HMI implements navigation by inserting links between display pages.
Display pages are typically organized in a hierarchical structure. The start-
ing point for designing an HMI can be for example a process diagram, which
identifies different components of the process, and the relations between
them [32]. Processes can be further divided into sub-processes and the op-
erator can be provided with the ability to drill down to specific parts of the
process to gain more detailed information [32].

Alarms and notifications are an important part of any industrial automa-
tion system. Alarms are exceptional process states that the operator should
handle immediately, while notifications are only informative in nature, and
describe the normal operation of the process [32]. Alarms demand the im-
mediate attention of the operator, and as such should be paid attention to
when designing an HMI. HMIs use sounds and color to inform the operator,
and should contain information about the reason of the alarm, the origina-
tor, and the priority associated with the alarm. The HMI should allow the
operator to easily access this information and properly handle it. The hier-
archical organization of display pages allows events to be propagated all the
way from the individual components to the process view.

Besides current measurement values, HMIs allow the operator to view
value history of variables in the form of trends. The ability to read history
data is useful when diagnosing problems with the process. Access to historical
data also enables the creation of reports, either periodically or on-demand.
Many HMIs allow operators to simply drag-and-drop variables to a trend
and see how different variable values relate to each other [32].

In addition to these, automation systems can have a variety of other fea-
tures that make managing the process easier [32]. For example, the system
may have communication tools which plant operators can use to communi-
cate with colleagues who are potentially located in a different countries. The
HMI may also provide contextual information which helps the operator to
make decisions for example in case of an emergency. Supporting tools may
also be integrated to help new operators to get familiar with the automation
system. Most automation solutions also come with tools for designing and
configuring the HMI for the given industrial process. All in all, the introduc-
tion of new technology creates new possibilities for optimizing the industrial
process. One such development is the Industrial Internet, which is predicted
to revolutionize the way how industrial organizations do business.
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2.3 Industrial Internet

Today’s industrial plants, such as manufacturing and waste processing plants,
are increasingly connected to the global Internet. This development is driven
by the large number of field devices found in today’s industrial facilities, and
a need to further lower the operating costs and improve the efficiency by
remotely controlling and monitoring those devices, as well as by automating
their functions. On the other hand, the developments on the Industrial
Internet of Things (IIoT) are promising new, flexible ways to access and
utilize the large amount of data that industrial facilities are already collecting
from their field devices. On the supervisory control level, the ubiquity of
mobile devices and their increasing network bandwidths are changing the way
in which supervisory control systems are composed. Control room operators
and field operators alike can now use low cost smart phones and tablets to
monitor and control process instruments.

A report by the Research Institute of the Finnish Economy (ETLA) [43]
discusses the impacts of Industrial Internet on the Finnish economy. It high-
lights several enabling factors for the Industrial Internet: availability of cheap
smart products, ubiquity of today’s Internet, processes becoming more global,
and the combination of cloud technologies with big data and data analytics.
It also suggests that today’s young generation is better at using IT, and may
more easily adapt to technological change.

According to the predictions in the report by ETLA, industrial plants
will be increasingly automated. As reasons for this increase in automation
the report lists higher safety, efficiency, lower cost, and more efficient pro-
cess management. As a consequence, the responsibility of plant operators
lies increasingly in the handling of the big picture, as the automation sys-
tem becomes increasingly more capable of independent decision making and
operation.

According to General Electric [19], the Industrial Internet has the poten-
tial to yield significant increases in industrial productivity, efficiency and per-
formance. General Electric defines Industrial Internet as consisting of three
main factors: intelligent machines, data analytics and people. Firstly, phys-
ical machines will become more intelligent and increasingly interconnected,
have a higher number of sensors, and are controller by more sophisticated
control software. Secondly, the data generated by the machines will be ana-
lyzed by analytics software based on deep domain knowledge and predictive
algorithms, revealing new information about the system. Thirdly, the Indus-
trial Internet will connect people more closely with each other, the physical
system and the data it produces, allowing for greater productivity.
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Industry 4.0, a project by the German government, emphasizes a flexible
and customizable production of future’s industrial plants [43]. The goal is
to optimize production by making production systems more intelligent, and
capable of communicating with one another. This is achieved by applying
data analytics on the large amount of data that is already being generated by
industrial instruments. Intelligent production systems allow for more efficient
material utilization, higher energy savings, and a bigger flexibility.

Despite the increasing adoption of open Internet standards in the factory
setting, the reality is that on the factory floor level there typically exists a
large number of instruments from different vendors, each speaking their own
vendor specific language. However, standardization efforts exist, one example
being the OPC UA specification, discussed in the next chapter.



Chapter 3

OPC Unified Architecture

This chapter presents the OPC UA standard which defines a platform in-
dependent framework for industrial data transfer and modeling. Section 3.1
begins by giving an overview of the specification. Section 3.2 continues by
focusing on the data transfer capability, while Section 3.3 discusses the data
modeling aspects. Next, Section 3.4 describes OPC UA services and how
they are mapped to the other parts of the specification. Section 3.5 dis-
cusses the application profiles defined in OPC UA, and how they promote
interoperability between different automation vendors. Section 3.6 lists the
available tools and frameworks that can be useful when developing OPC UA
applications.

3.1 Overview

OPC Unified Architecture (OPC UA) is a set of specifications defined and
maintained by the OPC Foundation which serve as a standard for industrial
data transfer and data modeling [45]. It is meant to replace the preceding
OPC Data Access (OPC DA), OPC Historical Data Access (OPC HDA), and
OPC Alarm & Events (OPC A&E) standards, which provide a standardized
interface for information transfer between SCADA systems and automation
devices. OPC DA specifies mechanisms for reading, writing and monitoring
data residing in industrial devices. OPC HDA specifies how OPC clients can
access the historical data and events of an OPC server. OPC A&E defines
the management of industrial alarms and notifications. However, OPC has
a number of limitations that have motivated the definition of the new OPC
UA standard. These limitations include its reliance on Microsoft’s COM and
DCOM protocols for communication, and the lack of a standard security
model. The problems associated with the standard OPC specifications are

10
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further highlighted by Mahnke et al.
Frejborg et al. list several advantages of using OPC UA over the old

OPC protocol. The listed advantages include platform independence and
interoperability, flexible communication and security schemes, use of open
standards, and a well-defined and extensible architecture [25]. The paper
goes on to present different real-world use cases of OPC UA, such as using
OPC UA security instead of setting up a VPN, easily extensible information
models through vendor specific extensions, the possibility to develop native
applications both for mobile devices and web browsers [26], and the use of a
unified communication protocol and common information models on all levels
of the organizational hierarchy. For example, components like individual
PLCs could be exposed to standard OPC UA clients as individual OPC
UA servers, enabling straightforward information flow all the way from the
control network level to the production and business management levels of
the organization.

3.2 Data transfer

The various OPC UA communication stacks implement the client-server com-
munication protocol defined in the OPC UA Service Mappings specifica-
tion [52]. For data transfer, the specification defines the UA TCP protocol,
which is a transport protocol built on top of TCP and optimized for in-
dustrial data transfer. In addition, OPC UA supports HTTPS and SOAP
over HTTP, which may be useful in situations where the use of UA TCP
is restricted by the organization’s firewall policies. The transmitted data
is serialized either by using OPC UA’s own binary encoding format or by
encoding it in XML. The OPC UA transport profiles, along with the secu-
rity protocols and encodings they use, are depicted in Figure 3.1. A client
and a server communicate with each other by exchanging messages. Server
to server communication is also possible if one of the servers additionally
implements the client functionality.

In order to securely send messages using the chosen transport mechanism,
OPC UA defines a security model which is based on communication over a
secure channel. The secure channel secures the communication between the
client and the server by the use of public key cryptography. The messages can
be encrypted for privacy, and signed to ensure that the sender information
and content have not been altered on the way. A client can have multiple
connections to different servers and servers are expected to handle multiple
client connections simultaneously. Therefore, all communication between
a client and a server is associated with a session, which encapsulates the
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Figure 3.1: The OPC UA transport profiles. Adapted from Mahnke et al [45].

communication context within a secure channel.

3.3 Information modeling

An OPC UA server exposes data through the address space. The address
space is a connected network of nodes. The nodes are used to represent
data in an organized way that is easily accessible to the client. For exam-
ple, nodes can represent real objects such as thermometers or valves, or they
can be used to organize the address space or to store type definitions. The
connections between nodes are called references. A reference represents a
directed relationship between two nodes. For example, a Device node can
have a reference HasTypeDefinition to a node called DeviceType. Each node
belongs to a specific NodeClass and has a set of standard defined attributes.
These attributes are determined by the NodeClass, and they represent the
node’s data values. The most important attribute a node has, aside from the
NodeClass itself, is its NodeId which uniquely identifies the node, and is used
in service calls by the client. Other standard attributes include BrowseName
and DisplayName, and the optional Description attribute. The HasType-
Definition attribute refers to the NodeId of a type definition in the address
space.

The address space of an OPC UA server effectively forms a mesh network.
While the specification allows a server to organize its address space by using
hierarchical references, a client can choose to browse the address space in a
number of ways by following the multitude of named references that nodes
are allowed to have between each other.
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Service Set Description
Discovery Finding server endpoints and their security parameters
Secure Channel Creating and maintaining secure channels
Session Authentication and session management
Node Management Modifying the structure of the address space
View Browsing and creating views in the address space
Query Finding information in the address space
Attribute Reading and writing attributes
Method Allows clients to call server-defined methods
Subscription Managing subscriptions used to hold monitored items
Monitored Item Monitoring objects for events and data changes

Table 3.1: The Service Sets defined in UA Part 4 [51].

The address space model is the meta model of OPC UA, and it serves
as a basis for all other information models. OPC UA already defines some
information models such as the base information model. These information
models and the address space model can be extended to define new domain
specific information models. The advantage of the uniform base model is that
an OPC UA client can rely on the OPC UA semantics and type information
provided by the server to automatically process the data it gets from the
server.

3.4 Services

OPC UA services define the interfaces that OPC UA clients and servers use
to communicate with each other. The services are organized into service
sets based on the type of facilities that they provide. The client interacts
with the server by invoking services. It typically does this by sending a
request message to the server and receiving the consequent response message
from the server. Messages are passed asynchronously so service requests are
by definition non-blocking. Alternatively a client can subscribe to events
originating from nodes in the server’s address space. Events can be used
to provide real-time data updates to the client, and they are also ideal for
implementing process alarms and notifications.

OPC UA Part 4 [51] specifies abstract service interfaces which are in-
dependent of the transport protocols and programming languages used to
implement them. This allows the underlying technologies to evolve and new
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technologies to be adopted while maintaining the same service interfaces. It
also means that all applications use the same interfaces regardless of the tech-
nologies that have been used to implement them. OPC UA Part 6 specifies
how technologies map to the service interfaces. The actual implementation
of the services is left as the responsibility of OPC UA stacks. One of the
design principles for services has been to create a small number of generic
services which can handle various types of parameters.

3.5 Application profiles

One of the design goals of OPC UA is that it should be usable in hardware of
different storage capacity and computing power, ranging from small embed-
ded devices to applications running in the cloud. Profiles, defined in OPC
UA Part 7 [53], enable application developers to choose which parts of the
specification they want to support. An OPC UA profile is a collection of
features that a conformant OPC UA application has to support. A profile
consists of facets, which in turn can be broken down to conformance units,
representing specific features [45]. The features that a server should support
are defined in terms of both facets and complete profiles, while client applica-
tions need to only choose the individual facets they want to support. Facets
are categorized to client facets and server facets based on the application
type. Additionally, clients and servers have to support transport profiles and
security profiles, which define the supported protocols.

Conformance units form the test suite which is used to verify that an OPC
UA application conforms to the OPC UA specification [45]. OPC Foundation
provides certification to OPC UA applications, and passing the tests forms
the basis for receiving the certificate. Because of profiles system integrator
can make sure that the chosen OPC UA products conform to the specification
and are interoperable. The logical functional units formed by profiles can be
used as a basis when designing the functional requirements of an OPC UA
application.

3.6 Tools and frameworks

An OPC UA communication stack acts as a layer between the OPC UA
application software and the networking hardware. The OPC Foundation
provides several stack implementations, which can be used with different
programming languages.
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Developing OPC UA applications against a stack takes considerable ef-
fort, so various companies are now providing software development kits (SDK).
The SDKs facilitate and speed up development of OPC UA applications by
providing a set of high level interfaces, modules and tools. By using an SDK
an application developer does not need a deep understanding of the OPC UA
specification. As such a number of SDKs have emerged, that facilitate the
development of OPC UA applications by abstracting away the complexities
of the OPC UA standard.

Prosys has developed an OPC UA Source Development Kit (SDK) [58]
for Java, which facilitates the development of OPC UA client and server
applications. The SDK sits on top of OPC Foundation’s OPC UA Java
stack, and provides a higher level of abstraction for accessing the various
OPC UA services. The Prosys OPC UA Client [39] and Prosys OPC UA
Simulation Server [8] are based on this SDK.

The increasing adoption and a number of successful applications [25]
demonstrate the suitability of OPC UA for industrial data communications
and information modeling.



Chapter 4

Backend development

Enterprise web applications, such as those found in industrial facilities, are
often large and complex systems faced with challenges related to scalability,
reliability and security. This chapter discussed backend development in two
popular [63] programming languages, Java and JavaScript. In the context of
this thesis, the term backend refers to the web server, while the term frontend
refers to the web browser acting as a user interface.

First, Section 4.1 presents an up-to-date survey on web server devel-
opment using the Java programming language. Section 4.2 then gives an
overview of the JavaScript programming language and presents an alterna-
tive way of building web applications by using a server-side JavaScript frame-
work, a technique which has gained much traction recently. After reviewing
some popular server-side JavaScript frameworks, the chapter continues to
present the state of the art of technologies supporting intermixed Java and
JavaScript code. Finally, Section 4.3 ties everything together by taking a
look into web services technologies for exposing the server’s functionality in
the form of reusable services, readily consumable by web browser based client
applications.

4.1 Java Enterprise Edition

4.1.1 Overview

The name Java covers both the programming language and the set of plat-
forms supporting it. When talking about plain Java, the Java Standard
Edition (Java SE) is typically meant. Java SE consists of the Java language,
runtime environment and APIs, along with tools that aid in development and
deployment of Java applications. Java SE 8 was released in early 2014, and

16



CHAPTER 4. BACKEND DEVELOPMENT 17

1 package hello;
2
3 import javax.faces.bean.ManagedBean;
4
5 @ManagedBean
6 public class Hello {
7
8 final String world = "Hello World!";
9
10 public String getworld () {
11 return world;
12 }
13 }

Listing 4.1: A simple JavaBeans class.

includes several new features such as support for lambda expressions and a
new DateTime API [41].

Java Enterprise Edition (Java EE) extends Java SE with a collection of
Java-based technologies for addressing typical needs encountered in enter-
prise Java application development, such as object persistence and messag-
ing [56]. Java EE 7 is the current latest version of the specification, but the
specification for Java EE 8 is already being worked on. Java EE supports
the development of multi-tiered software systems spanning from client ap-
plications all the way to the organization’s information systems and offers
solutions to the mid-level tiers.

Java EE also specifies a web profile, which is targeted at web application
developers and narrows the specification down to a smaller set of available
APIs, helping to reduce the runtime footprint of web application deploy-
ments [54]. The web profile specifies a list of required components that the
implementations must provide. The most important components include the
specifications for Servlets, JavaServer Pages and JavaServer Faces, along with
the components that they depend on such as the Expression Language.

In order to address issues related to the re-usability of software compo-
nents written in Java, the Java EE specification introduced the JavaBeans
technology. JavaBeans is a standardized way to design reusable Java com-
ponents called beans. Any Java object that fills certain three criteria is
considered to be a bean. First, the object should have a parameterless con-
structor. Second, the object should correctly implement the Serializable in-
terface. Lastly, the object’s fields should be private and accessible through
getters and setters only. A bean is composed of three features: properties,
methods and events. Listing 4.1 presents an example of a bean.
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Java has provided a way to run Java applications in the web browser since
its initial release. This has been achieved in the form of Java Applets. A
Java Applet is a Java application that can be embedded to a website by using
the <applet>1 HTML tag. The browser downloads the Java application
bytecode and executes it locally in a sandbox, which implements certain
restrictions such as preventing the applet from accessing the local file system.
Alternatively, since Java 5.0 applications can be installed and run directly
from a web site by using the Java web start technology. Recently, a third
option has become available as JavaFX applications can be embedded on
web sites, enabling two-way communication between the application and the
web browser’s document object model (DOM).

Integral part of the Java EE specification is the Servlet API, which re-
sembles an applet but with the exception that it is executed on the server
side [55]. The servlet acts as a bridge between the web server and appli-
cations running in the Java programming language. The paths which the
servlet should handle are configured in a web.xml file. The servlet container
is a component which receives requests from the web server, encapsulates
them in request and response objects, and forwards them to specific servlet
components based on the servlet’s configuration.

The Servlet does not concern itself with how the response is generated.
For this reason Java EE employs JavaServer Pages (JSP) which can be
thought of as its template engine. JSP pages work by implementing the
servlet interface. They are compiled into servlets either in advance or au-
tomatically at deployment time. JSP pages can generate HTML responses
independently or they can be used as the view component in an MVC frame-
work. In the latter case a separate servlet component is used as the controller
while JavaBeans objects are used to represent the data model. In addition
to standard HTML elements, JSP views can use special JSP tags. These
reusable tags perform some specific task and are organized into tag libraries.
In addition to the JSP Standard Tag Library (JSTL), several custom tag
libraries exist for JSP, such as the jQuery UI taglib.

Web applications developed in Java EE must conform to a specific direc-
tory structure. The application directory is required to have a WEB-INF/
directory which includes a web.xml configuration file, along with lib/ and
classes/ directories, for external libraries and application specific class files,
respectively [14]. The application can be deployed as a directory, or it can
be packaged as a Web Application Archive (WAR) file.

1Tags <embed> and <object> can also be used but with varying browser support.
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4.1.2 Deployment platforms

Java EE requires the implementation of the Servlet API. Frameworks im-
plementing the Servlet API are called Servlet Containers, or alternatively
Servlet Engines. The following list presents two popular servlet containers.

Tomcat is an open source, servlet compliant web server which is widely
used for serving Java web applications. It implements the Servlet and
JSP specifications, and newer releases have added support for the Web-
Socket specification. Tomcat by itself does not support features such
as JSF, but support for JSF and other Java EE features can be added
by bundling it with TomcatEE.

Jetty is a light-weight, extensible servlet engine and web server which can be
embedded into software to add web server functionality. Some software
using Jetty include Google App Engine, and the Spark web application
framework. Like Tomcat, Jetty includes support for WebSocket.

The Servlet API is however only a subset of the whole Java EE specifi-
cation, and more larger deployment platforms called application servers im-
plement additional Java EE features. The following list presents two widely
used open source application servers.

TomcatEE is an open source extension for the Tomcat servlet container.
It adds support for the complete Java EE web profile by integrating
various other Java EE components developed by Apache.

Glassfish by Oracle is an open source application server supporting Java EE
7. It serves as the reference implementation for Java EE, and as such is
among the first to implement new Java EE specifications. Commercial
support for Glassfish was discontinued in November 2013 in favor of
the WebLogic application server.

Servlet containers and full featured application servers provide a stan-
dardized way to build Java web applications. Application servers certified
against Oracle’s test suite provide large corporations with the confidence
that the deployment platform conforms to Java EE standards. On the other
hand, development in Java EE relies heavily in XML configuration, and the
relationships of different components in the Java EE platform can quickly be-
come confusing and hard to debug. Java-based web development frameworks
ease web development by allowing developers to concentrate on the applica-
tion specific code, and require less configuration. Deployment also becomes
easier and applications can be more easily deployed on different platforms.
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1 <html lang="en"
2 xmlns="http ://www.w3.org /1999/ xhtml"
3 xmlns:h="http :// java.sun.com/jsf/html">
4 <h:head>
5 <title>Facelets Hello World</title>
6 </h:head>
7 <h:body>
8 #{hello.world}
9 </h:body>
10 </html>

Listing 4.2: A simple Facelets view.

4.1.3 Development frameworks

There exists a wide variety of Java-based web development frameworks. This
chapter focuses on frameworks that utilize the model-view-controller (MVC)
architectural pattern, as it is the most common pattern used by web appli-
cation frameworks. MVC frameworks in general can be divided into roughly
two categories based on how they handle incoming HTTP requests: compo-
nent based frameworks and action based frameworks [56].

Component based frameworks abstract away the underlying request/re-
sponse cycle [9]. Instead, applications are developed by combining compo-
nents which are inserted in the view declaration in the form of custom tags.
Component based frameworks also hide the underlying HTML, CSS and
JavaScript.

JavaServer Faces (JSF) [56] is a component-based MVC framework that
is also based on the Servlet definition and originally used JSP as its view
rendering system. The use of JSP is nowadays deprecated in favor of the
new Facelets view declaration language. JSF defines a new FacesServlet
component which is used as the controller. Being a servlet, it receives requests
from the servlet container and based on the request generates a response to
the requesting client. By abstracting the specific web technologies such as
HTML and CSS from the development process, JSF enables developers not
familiar with web technologies to write web applications.

JSF defines a collection of components which map to tags specified in a
tag library. The components represent user interface elements which are con-
nected to server-side objects that have methods for rendering the component
and encoding and decoding its data for transmission. JSF also supports the
saving of user interface state across the otherwise session-less HTTP proto-
col. Listing 4.2 presents an example of a Facelet definition. The example
demonstrates how basic Java beans can be bound to the Facelet, allowing to
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access their properties by using the Expression Language (EL) syntax.
Being part of the Java EE specification, JSF is a popular choice among

component based web development frameworks. There are also other com-
ponent based frameworks such as Tapestry, which is very similar to JSF.
However, there exists a large number of Java-based web development frame-
works that do not endorse the component-based approach. Such frameworks
can be classified as action based frameworks.

Action based frameworks expose the underlying HTTP request and re-
sponse as objects. The request object can be read for headers, data, and
parameters, while the response object can be assigned to set headers and
response data. Action based frameworks are useful when access to the re-
quest/response cycle is required. They are also more easier for frontend
developers and designers to work with, as they do not hide the HTML, CSS
and JavaScript files [9]. Following is a list of five popular action based frame-
works.

Play is a web application development framework written in Java, and pro-
grammed by using the Java programming language. Play Framework
is built on top of the Akka framework, which uses the Actor model to
help in development of concurrent Java applications.

GWT by Google is a RIA framework that compiles Java source code to
JavaScript. Both Eclipse and IntelliJ IDEA provide support for GWT.
The main difference to the other alternatives presented here is that the
application code is run mainly on the client-side.

Vaadin is a commercially supported, open source web application develop-
ment framework supporting the creation of rich Internet applications
(RIA). Vaadin uses the GWT framework for client-side rendering. Like
GWT, Vaadin features a large collection of reusable user interface com-
ponents. Unlike GWT, however, it emphasizes server-side processing.

Spark is a modern request/response framework supporting Java 8 and based
on Jetty. Compared to the other alternatives presented here, Spark is
more light-weight and designed after the popular Sinatra framework.
Spark may be more suitable alternative for smaller projects that do not
need all the enterprise features of Java EE.

Spring is a popular Java EE compatible web development framework which
competes with pure Java EE stack. Java EE standardizes industry
proven technologies and as a result new features tend to be introduced
to the Spring framework more earlier.
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4.1.4 JavaScript support

The Java Development Kit 8 (JDK 8) was released to developers on March,
2014. In addition to new features such as Lambda Expressions, it includes
the Nashorn JavaScript engine which replaces the old Rhino JavaScript en-
gine. Compared to Rhino, Nashorn achieves significant performance benefits
by utilizing a new JVM instruction for supporting dynamic languages [41].
At the time of writing this, Nashorn implements the ECMAScript Edition
5.1 language specification, but future releases are planned to support EC-
MAScript 6. Not only does Nashorn enable the execution of JavaScript
within Java, but it also makes it possible to instantiate and use Java classes
within JavaScript code. This in turn allows JavaScript developers to take
advantage of Java’s features and libraries written in Java.

The implications of using Java and JavaScript together include code reuse,
lower entry barrier, easy prototyping, faster development cycles and the pos-
sibility to add scripting support to Java applications. The benefit gained
from reusing existing Java and JavaScript libraries should not be overlooked.
For example, JavaScript code can use the BigInteger Java class to handle
large integers and avoid overflows, and Java code can utilize for example
JavaScript based testing frameworks such as Mocha for increased flexibility
and to enable testing of the user interface. The lower entry barrier means
that developers knowing one of the two languages can leverage their existing
skills when developing against libraries written in the other language. Pro-
totyping and iterative development become easier and faster, as less time is
spent on compiling the source code. Scripting support can make applications
more flexible to use, as users can write their own scripts to extend the base
application and automate repetitive tasks.

4.2 JavaScript

4.2.1 Overview

JavaScript is a prototype-based, dynamically typed programming language,
which has originally been run in browsers as an interpreted language, but
has in recent years gained popularity as a server-side programming language.
Nowadays JavaScript engines typically perform just-in-time (JIT) compila-
tion in order to speed up code execution. For example the V8 engine, de-
veloped by Google to power its Chrome web browser, compiles JavaScript
straight to native machine code. Mozilla’s Firefox on the other hand starts
by interpreting the code, but gradually performs JIT compilation on those



CHAPTER 4. BACKEND DEVELOPMENT 23

parts of the code that are encountered often.
Despite its name, JavaScript is not directly related to Java. Java is a

statically typed language which is compiled to an intermediate format called
bytecode, understood by the JVM, whereas JavaScript is a dynamically
typed language which is usually compiled during the execution. Further-
more, JavaScript does not have classes, but instead relies on prototypes to
handle inheritance.

JavaScript is an implementation of the ECMAScript standard. At the
time of writing this thesis the latest ECMAScript version is 5.1, released in
2011, but version 6 is expected to be released in early 2015.

There are two kinds of data types in JavaScript: primitives and objects.
The five primitive data types are number, string, boolean, null and unde-
fined. All numbers in JavaScript are represented as 64 bit double precision
decimal numbers. An object can can be thought of as a map. It is a col-
lection of properties that can be referenced either by using dot notation or
with brackets. Aside from the primitive types, everything in JavaScript is
represented as objects. For example, the array data type is an object with
array semantics, including a length property and methods for performing
array manipulations. In JavaScript, even functions are objects.

Functions are a fundamental part of JavaScript, and because they are
objects, they can be assigned and passed as a parameter to other functions.
This makes functional programming in JavaScript possible [12]. Functions
are important for understanding scope in JavaScript. JavaScript has function
scope as opposed to block scope. By default variables belong to the global
scope, and creating a function creates a new scope. Furthermore, nested
functions create closures, whereby the inner function closes on the outer
function’s variables. Closures are useful because the enclosed information
becomes private to the enclosing function, and stays available even after the
outer function has returned. A peculiar feature of JavaScript’s function scope
is hoisting: variables declared within a function are automatically hoisted to
the top of the function definition, no matter where they are declared.

In addition to hoisting, JavaScript has several other features that can
confuse beginners [12]. First, variables declared without the var keyword
become global, so developers should make sure to always prepend the var
keyword. Second, JavaScript has automatic semicolon insertion, which means
that in certain cases the use of semicolon is optional, but recommended.
Failure to do so may result in weird bugs.

JavaScript is a single-threaded programming environment, which means
that the language does not expose an API for developing multi-threaded
applications [46]. Instead, JavaScript relies on messaging to handle concur-
rency. Operations that require concurrency are handled by generating events.
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In the web browser environment a developer can add interactivity to a static
HTML page by assigning event handler functions to different DOM elements.
For example, a developer can bind a click handler to a div element. Sup-
posing that a user clicks the div, a message is dispatched and added to the
event loop. The JavaScript runtime goes through the event loop, and on each
event, calls the associated event handlers. This continues until all messages
in the event loop have been processed. As a consequence, callback functions
should return quickly. Otherwise they risk blocking the event loop. Blocking
the event loop is undesirable especially in the browser environment, because
it means that the browser will not be able to handle other events, such as
those generated by a window resize.

JavaScript’s inheritance model is prototype-based. All objects inherit di-
rectly or indirectly from Object.prototype. On access to an object’s property,
if the property is not found in the object itself, it is looked up in its pro-
totype. If the property is still not found, the lookup continues through the
prototype chain until is is found or until the whole chain has been checked.
Prototypes are assigned during instantiation of an object. To create a new
instance, a constructor function is called with the new keyword. The new
keyword does two things. First, it creates an empty object instance and sets
the this context variable to point to the newly created instance. Second, it
assigns the prototype property of the constructor function to the proto
property of the newly created object. The proto property is important
since it is referenced when searching for properties in the object’s prototype.
The constructor function can use this to set properties and functions on the
object. Alternatively, properties can be assigned directly to the construc-
tor’s prototype. This allows new instances to inherit properties. Moreover,
this way the properties are assigned only once, no matter how many objects
are instantiated [15]. The prototype can be manually set to create complex
inheritance hierarchies between objects.

The this keyword is often a source of confusion. This is because the value
of this varies based on where a function is called. If a function declared in
the global scope is called, this is set to undefined. If an object’s method is
called, this is set to the object on which the method was called. Finally,
functions such as apply and bind can be used to explicitly set the value of
this.

In his book, Crockford [12] summarizes some of the strengths and weak-
nesses of JavaScript. As the useful features he lists things like first class
function objects, dynamic objects, object based inheritance, and object and
array literals. As the bad parts he lists the dependence on global variables,
automatic semicolon insertion, two different kind of equality operators and
problems related to decimal precision.
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4.2.2 Server-side JavaScript

Web applications usually perform I/O operations synchronously and handle
multiple concurrent users by spawning new worker threads to handle each
HTTP request. However, business applications often need to handle a large
amounts of data. This data can include for example customer records residing
in a database. These I/O operations are slow and make up most of the
time that the web server spends while serving each individual request. Thus
serving a large number of concurrent users can severely impact the response
time of the server. Furthermore, having to execute each request in a separate
thread complicates application design and makes it easier to introduce hard-
to-find bugs.

Originally JavaScript has been used almost exclusively as a scripting
language in web browsers. JavaScript has allowed web developers to cre-
ate dynamic web sites with enhanced user experiences and higher levels of
user interaction. During recent years however, increasing number of JVM-
based JavaScript engines and frameworks have emerged. High-performance
JavaScript engines have made it possible to develop server software in JavaScript.
Unfortunately JavaScript engines have been tied to the specific browser envi-
ronments they have been running in. In order to take advantage of JavaScript
on the server side, a runtime which does not depend on the browser envi-
ronment is required. There are several ECMAScript compliant standalone
JavaScript runtimes that can be used as embedded components. The follow-
ing list presents four alternative open source JavaScript runtimes:

V8 is an open source JavaScript engine written in C++. It was developed
by Google to power the Chrome web browser.

DynJS is an open source JavaScript engine written in Java. It adds JavaScript
scripting capability to Java applications.

Rhino is an open source JavaScript engine written in Java. It comes bundled
with Java SE 6 and Java SE 7.

Nashorn is a JavaScript engine written by Oracle. Since Java SE 8, it is
the default JavaScript engine that comes bundled with Java.

Node.js is a server side JavaScript environment that uses V8 as its JavaScript
engine, and a C library called LibUV as a platform independent abstraction
layer for handling asynchronous I/O operations. The public API of Node.js
is written entirely in JavaScript. Listing 4.3 shows a simple HTTP server
written in Node.js and demonstrates some powerful features of the JavaScript
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1 var http = require(’http’);
2 http.createServer(function (req , res) {
3 res.writeHead (200, {’Content -Type’: ’text/plain’});
4 res.end(’Hello World\n’);
5 }).listen (1337, ’127.0.0.1 ’);

Listing 4.3: A simple HTTP server using Node.js [47].

language. First, the createServer function takes a callback function as a pa-
rameter, taking advantage of the fact that JavaScript functions are first class
objects. Second, the callback function creates a closure so it is able to ac-
cess variables in its parent scope. Third, the HTTP module uses a chaining
pattern where consequent methods operate on the same http object. This is
possible because the methods of http module always return the same object
instance that they operate on.

The Node.js programming model emphasizes asynchronous and non-blocking
I/O operations. It achieves asynchronous and non-blocking I/O by utilizing
an event loop [61]. The event loop runs in a single thread and synchronously
processes a queue of events. For each event it calls the callback function
associated with that event, if one exists. Node.js delegates I/O operations
to LibUV, which takes care of polling for I/O and notifies the main event
loop when data is available. Using the event loop ensures that only one call-
back is executed at a time, and that callbacks run to completion without
interruption.

The single threaded programming model of Node means that by default
a single Node.js application instance can utilize only one CPU core [61].
In order to scale the application up to using multiple cores the application
needs to be forked into multiple processes. This in turn requires that in-
coming connections are evenly load balanced between the processes. Writing
Node.js applications that run on multiple cores is facilitated by Node’s cluster
module, which allows the master process to spawn worker processes that all
listen on the same server port. There is no shared state between the worker
processes so all communication between them has to go through the master
process.

Node.js has built-in support for file I/O, networking by using TCP, UDP,
and HTTP protocols, data streams, child process management, and SSL and
HTTPS based security [61]. In addition to the core modules, Node.js has a
CommonJS based module system, which features a large repository of user
contributed modules. The modules range from full stack application develop-
ment frameworks to highly focused libraries. The module system of Node.js
remedies the problems that JavaScript has with its dependence on global
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scope [12] by allowing developers to organize their code into reusable com-
ponents that share only their public interface. The module system follows a
convention of placing module dependencies in a directory called node modules
in the root directory of the module. Modules are searched by starting from
the module’s own node modules directory and recursively ascending through
the parent directories until the module is found. Node.js comes bundled with
a package manager called npm which facilitates the dependency management.

4.2.3 Java-based frameworks

In the recent years, there has been a great amount of interest in mixing Java
and JavaScript code. As a result, several JVM-based server-side JavaScript
frameworks exist today. In addition to JVM-based approaches, there is ex-
ists even a Node.js module for allowing Node.js applications to import Java
classes [20]. This section focuses on the JVM-based approaches, because they
also support running Node.js applications from Java, allowing for a larger
number of different use cases. Four different alternatives to running Node.js
applications on the JVM are considered: Avatar, Nodyn and Trireme.

4.2.3.1 Avatar

Avatar.js is an open source project which seeks to implement the Node.js
platform APIs on the JVM [3]. Instead of Google’s V8 it uses the Nashorn
JavaScript engine included in JDK 8, and uses the Java Native Interface
(JNI) to provide bindings to LibUV. Furthermore, a separate project by Or-
acle called Project Avatar integrates Avatar.js with Java EE by combining
it with several other Java projects such as Jersey for creating RESTful web
services and Tyrus for creating WebSocket services [57]. Together they form
a framework for easily creating web services that utilize REST, Web Sockets
and Server-Sent Events. It additionally includes a client-side web application
framework which allows the developer to bind Avatar services to client-side
view models, and supports templates based on EL expressions. By includ-
ing Avatar.js, Project Avatar allows the developer to use Node APIs, thus
enabling the use of the wide array of available node modules. In addition to
Node modules the Nashorn JavaScript engine makes it possible to use any
Java libraries, such as the Java Date API [13].

One of the advantages of using Avatar is that it is developed by Oracle,
and thus has the potential of making its way to being part of standard Java
EE ecosystem in the future. Avatar offers an easy way for implementing
web services endpoints which integrate with Java technologies such as the
Java Messaging Services (JMS), and the possibility to easily spawn new Java
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Figure 4.1: The architecture of Avatar.js [3].

worker threads for CPU intensive tasks. The full stack of Avatar views and
services therefore presents a Java EE compatible alternative to technologies
such as the JSF. Avatar allows to develop JVM-based Node.js applications
without the need to write and compile any Java code. Instead, script files are
passed as parameter to the included avatar-js.jar file. Executing avatar-js.jar
without arguments initiates a Read-eval-print loop (REPL) which facilitates
experimenting by reading and evaluating JavaScript line-by-line from the
standard input.

The biggest disadvantage of Avatar is that in addition to the JVM, it also
depends on a platform dependent avatar-js library and the Glassfish appli-
cation server. Moreover, service oriented web applications can be developed
in plain Java EE, so one may question the need to add yet another program-
ming layer on top of standard Java EE just to accommodate an additional
programming language. In addition, the hybrid programming model may be
difficult to reason because of the different semantics of Java and JavaScript.
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For example, the same source file may contain references to variables that are
defined in either of the two programming languages, raising the need to han-
dle variables in different ways based on the programming language context
they have been defined in.

4.2.3.2 Nodyn

Nodyn [48] is a framework similar to Project Avatar. Like Project Avatar
it enables running Node.js applications on top of the JVM. However, it does
not include an implementation for a service layer. Instead of Nashorn, it uses
DynJS as its JavaScript engine.

One of the main advantages of Nodyn is that it is based on the Vert.x
platform. Vert.x [64] is an open-source, JVM-based software development
framework which enables the development of web applications combining
multiple different programming languages. The supported programming lan-
guages include for example Java, JavaScript, Python and Ruby. Vert.x uses
a module based architecture which allows developers to package applications
into modules. Since the APIs of Vert.x are asynchronous, concurrent pro-
grams are written as if they were single-threaded. Similar to Node.js, Vert.x
depends on message passing for increased scalability. The project website
states that Vert.x takes care of automatically utilizing available CPU cores.

In Vert.x, modules can be programmed in several different languages.
Modules written in different languages communicate via a distributed event
bus. Several different modules can use the same event bus to communicate
with each other via messaging. The event bus is not limited to only the
server, but a JavaScript client API is also available to hook to the same
event bus. While Vert.x itself does not implement the Node API, a separate
project by RedHat called Nodyn implements the Node API on top of Vert.x.
By default, Vert.x uses the Rhino JavaScript engine, but an experimental
module which adds support for Nashorn is also available.

Nodyn extends Vert.x in two ways. First, it implements the Node.js
API. Second, it adds support for loading NPM modules by incorporating the
npm-jvm module loader for the JVM. Nodyn leverages the message pass-
ing mechanism of Vert.x and unlike standard Node.js uses Vert.x instead of
LibUV to implement its event loop. Nodyn comes with a package manager
that can install both Vert.x and Node.js modules.

The polyglot nature of Vert.x has the potential of allowing Nodyn appli-
cations to be easily integrated with other Vert.x modules, possibly written
in different programming languages. Vert.x enforces a modular architecture
where modules communicate via message passing. This kind of architec-
ture enables software composition and helps to remove hard dependencies
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between components, thus facilitating testing. Message passing itself allows
applications to easily scale out to multiple processing units. Like Avatar,
Nodyn also features a REPL for conducting small experiments.

The disadvantage of Nodyn is that it currently exists only in its source
repository, as the initial release has not yet been published. As a consequence,
it is still severely lacking in its documentation, with only a small number of
examples residing in its public repository.

4.2.3.3 Trireme

Trireme is another implementation of the Node.js API on the JVM. It is set
out to implement the platform dependent parts of Node.js in Java. Unlike
Avatar, it uses the older Rhino JavaScript engine. Trireme is geared mainly
towards executing Node.js scripts within Java applications. Trireme sup-
ports running several Node.js scripts concurrently, each in its own execution
environment. Trireme creates a sandbox that can control whether the scripts
have access to underlying OS resources.

Trireme is a welcome addition to the available alternatives for a JVM-
based Node.js implementation. Its main advantage compared to the other
alternatives is that it is designed to be easily embeddable to existing Java
projects. Java versions from SE6 upwards are supported. This is in contrast
to Avatar which requires Java 8 or later, and is tied to a Java EE compatible
application server. The only external dependency besides the JVM and the
Rhino JavaScript engine is the SLF4J logging framework. An added benefit
of Trireme is the sandbox model which can restrict untrusted scripts from
accessing specific OS resources.

As of now Trireme still uses the old Rhino JavaScript engine, which is
considerably slower than Nashorn in executing JavaScript code. There are
however plans to support alternative JavaScript engines in the future. Similar
to Nodyn, writing Java code is required in order to run Node.js applications
on the JVM.

4.3 Web services

4.3.1 Overview

Web services allow to decouple the frontend user interfaces from the service
backend. However, to enable this reuse, a uniform and well documented ser-
vice interface is required. Client-server applications usually employ a request-
response oriented communication model. In this model, a client sends a re-
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quest message to the server, along with request parameters. Upon receiving
the request, the server parses the request and does the necessary processing
to generate a response. Finally, the server sends the response to the request-
ing client. The request-response model is appropriate when the client needs
data from the server on demand.

Another model the client and server can use is publish-subscribe. In this
model the client can subscribe to specific events from the server. The client
does this by registering a listener for certain events or topics. The server on
the other hand can send messages to interested parties by publishing certain
events, or messages with a specific topic. Based on the topic or event type,
subscribers are able to filter only those messages they are interested in. Some
publish-subscribe implementations allow the subscriber to send a reply back
to the original publisher. These systems allow the publisher to specify a
callback that should be called, with the reply message as parameter, when
the reply message arrives. In comparison to the request-response model,
publish-subscribe model is better suited to event based systems with high
real-time requirements, because it allows the client to receive low overhead,
server-initiated push notifications as they are generated.

Both request-response and publish-subscribe models are useful for imple-
menting information exchange between HMI clients and OPC UA servers.
Web applications support the request-response model natively by using the
Hypertext Transfer Protocol (HTTP). It has also been possible to imple-
ment web applications that perform real-time data exchange, but up until
now it has required web browsers to resort to expensive polling and long-
polling techniques, whereby the browser continuously keeps requesting the
same resource, with varying frequencies. In recent years however, HTML5
has standardized new real-time, event-based messaging systems for use in
web applications. First, there is the Server-Sent Events (SSE) specification,
which enables a one-way event stream from web servers to client web appli-
cations. Second, the WebSocket interface enables an efficient two-way com-
munication channel between clients and servers, serving as a basis for both
request-response and publish-subscribe style web applications. The following
sections provide an overview on these technologies, listing their advantages
and disadvantages, and discusses their applicability in industrial monitoring
systems.

4.3.2 REST

Nowadays, HTTP APIs are often inspired by the REST architectural style,
introduced by Fielding in his dissertation [23]. REST is a technology inde-
pendent architectural style for designing distributed hypermedia systems for
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the web. Fielding defines REST in terms of the following constraints:

Client-server The client-server constraint separates data presentation con-
cerns from data storage concerns, improving the overall scalability and
portability of the architecture.

Stateless The stateless constraint dictates that session state should be main-
tained at client-side, and that clients should not depend on server-
maintained state when issuing requests. Thus a request should have
all the information necessary to understand it. This constraint sim-
plifies the architecture of the server, and improves its scalability and
recoverability.

Cache The cache constraint states that the server should inform the client
whether response data may be cached for later use. The advantage of
using a cached value is that performance is increased by reducing the
number of requests to the server. The disadvantage is that a client may
use a cached value that has been expired.

Uniform interface The uniform interface constraint means that the service
implementation should be able to evolve independent of its public in-
terface. To achieve this, resources should be uniquely identifiable, and
it should be possible to manipulate them through their representations,
which in turn should be self-descriptive and present the current valid
transitions in terms of resource identifiers.

Layered system The layered system constraint ensures that clients need
not know past the first layer of the system, simplifying system archi-
tecture and allowing the intermediate layers to perform for example
load balancing and caching on passing requests.

Code-on-demand The optional code-on-demand constraint grants servers
with the flexibility to respond to requests with client-executable pro-
gram code, which relieves the client from implementing the respective
features themselves.

The REST architectural style consists of the following three elements:
components, connectors, and data. REST components are the user agent as
the sender of the original request, origin server as the final destination for the
request, and proxies and gateways as intermediary components forwarding
and potentially manipulating the requests and responses [23]. Connectors are
the interfaces that components use to communicate with each other. They
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abstract away the details of resource access and expose the resources as rep-
resentations. Finally, the data element is the actual data that is exchanged
between components. It includes resources and resource identifiers, resource
representations, and control data. A resource is an abstract concept signi-
fying a set of information that may change over time. Resources can be
referenced with a unique resource identifier. Representations encompass the
current or desired state of a resource at a specific time. Representations serve
as the medium by which resources may be manipulated. Representations can
have metadata associated with them, such as the time of last modification.
The actual resources may also have metadata, such as information on the
available alternative presentation formats.

In the recent year the implicit hypermedia constraint of REST has gained
special attention. This constraint dictates that resource representations
should reflect the application state by presenting the valid state transitions.
In earlier implementations of the REST architectural style, this constraint
was often overlooked and off-the-band information about the interface was
used instead, resulting in a high level of coupling between services and clients
consuming them. The hypermedia constraint is closely related to the seman-
tic web, which attempts to introduce structure and semantics to the informa-
tion found in the Internet, and by doing so enable machines to understand
and process the information. There are several ongoing efforts to define a
standardized hypermedia format including for example JSON-LD, HAL, and
Siren.

4.3.3 WebSocket

WebSocket is an application level protocol which allows a web browser to
initiate bidirectional, real-time connections to remote web servers. It does
so by dividing communication into handshake and data transfer phases. The
actual data transfer is designed to have a low overhead, requiring only a
framing of two bytes in addition to the payload to differentiate between bi-
nary and UTF-8 encoded strings [18]. WebSocket is an independent protocol
but it uses the HTTP Upgrade header to request an upgrade to a WebSocket
connection. It is designed to work with the existing web infrastructure. First,
it can use the standard HTTP and HTTPS ports, which allows it to bypass
firewalls and integrate with the existing web infrastructure. Second, it is able
to handle intermediaries such as proxy servers.

The WebSocket API [36] specifies the interface which WebSocket clients
use to communicate with remote WebSocket servers. WebSocket is supported
by the recent versions of all major web browsers, including Chrome, Firefox,
Internet Explorer, Opera and Safari. In addition, many WebSocket server
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implementations developed in different programming languages are available,
so developers do not generally need to develop their own implementations.

In comparison to plain HTTP-based techniques, WebSocket’s main bene-
fit is that it uses a persistent connection to exchange real-time data. Reusing
the same connection results in lower overhead compared to HTTP, where each
HTTP request and response carry a large overhead in HTTP headers [21].
This overhead accumulates quickly if messages are exchanges frequently. In
addition, the data transfer has very low overhead with only 2 bytes of framing
added to each data frame.

A WebSocket server can protect itself against malicious requests by check-
ing the Origin header field [21]. If the value of the Origin header field is dif-
ferent than expected the server may reject the request. However, the server
should be careful when trusting the authenticity of the Origin header field,
as untrusted clients, or malicious extensions in trusted clients may spoof the
Origin field.

4.3.4 Server-Sent Events

Server-Sent Events (SSE) is a technique used to deliver unidirectional push
notifications from server to clients [37]. In practice most web browsers sup-
porting SSE do so over the HTTP protocol but SSE specifies a generic in-
terface that may be extended to add support for dedicated push notification
protocols. In order to receive server-sent push notifications, a client opens
an HTTP connection to the server. On the web browser level push notifi-
cations generate normal DOM events. Where HTTP long-polling issues a
new GET request after each consecutive response it gets, SSE maintains the
same HTTP connection for receiving events. SSE events support four dif-
ferent fields: event, data, id and retry. If one entry point is used for many
different kinds of events, the event field can be used to differentiate between
them. The default event type is message. The data field should specify the
payload of the message. The id field should include an incremental ID which
the client can use to keep track of the last event it has received. Finally, the
retry field may be used to define the reconnection time in milliseconds.

The advantage of SSE in comparison to WebSocket is that it is much eas-
ier to implement both on the client side and especially on the server side. The
server only needs to be capable of sending HTTP responses with content-type
set to text/event-stream, and adhere to a simple message format. SSE also
keeps track of the last event ID received and supports automatic reconnection
on connection failure. From security’s point of view, the server is relieved
from the burden of validating user input since the data stream is unidirec-
tional. The disadvantage of SSE is that in only supports sending events with
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UTF-8 encoded payloads, so it is not well suited to transmitting binary data.
One more limitation comes with the HTTP protocol, which limits the num-
ber of simultaneous connections the web browser can have to a web domain.
As a work-around, the specification proposes the use of shared web work-
ers in order to share one EventSource instance between multiple open pages
belonging in the same domain. The specification also addresses the nega-
tive effects a constant event stream may have on the battery consumption
of mobile devices. As a solution the specification outlines a connectionless
push mode wherein the client may offload connection management to a proxy
server [37].



Chapter 5

Frontend development

This chapter discusses the development of industrial HMI by using standard
web technologies. The emphasis is on modern web technologies falling under
the HTML 5 umbrella. First, Section 5.1 gives an overview of rich Internet
applications, describing how common HMI functionality can be implemented
with modern web technologies. Section 5.2 describes how the emerging web
components specification enables modular, reusable HMI components in a
standardized way. Finally, Section 5.3 presents some popular client-side
JavaScript frameworks available today.

5.1 Rich Internet applications

Rich Internet Applications (RIA) are web applications that provide a user
experience similar to that of a native desktop application. RIA web applica-
tions implement a thin-server architecture (TSA), wherein the server merely
serves data to the clients. This is in contrast to thin-client applications, which
are designed to minimize independent processing and depend heavily on the
server to render HTML and to perform application logic. Thus, thin-client
applications are characterized by frequent communication over the network,
whereas thick-client applications need network resources only occasionally.

A systematic mapping study conducted by Casteleyn el al. [11] on the
current state of RIA research suggests that new RIA research might be in-
creasingly more often identified as standard web research, instead of RIA
specific research. They propose that such change might be the result of new
RIA enabling technologies, such as widgets, rich media types, and client-side
storage, being added under the HTML5 standard. Among the considered
research papers, the study also distinguishes three main drivers for RIA:
the need for better interaction capabilities, richer user interfaces, and bet-

36
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ter responsiveness. They conclude that these goals can be achieved with
asynchronous communication, distribution of operations between clients and
servers, and the use of specialized RIA toolkits.

5.2 Reusable components

Component-based design is by no means a new concept to software engineer-
ing. Desktop applications have long taken advantage of this design pattern
for added structure, minimized code reuse, and easier maintenance. Web
standards in contrast have had poor support for the component based design
paradigm. Until recently, web browsers have served mainly as thin-clients,
with remote servers handling everything from database access to rendering
HTML. These servers have served the thin-clients with pre-rendered HTML.
The HTML has contained a relatively small amount of JavaScript to update
the dynamic content of the web site using XHR requests.

Nowadays a wide variety of JavaScript frameworks exist for the frontend.
Most of these frameworks enable a developer to encapsulate HTML, CSS
and JavaScript into reusable components. There are varying solutions for
implementing reusable components for web applications, which has called for
a new standard that could unify existing approaches and allow components
in one framework to be used in other frameworks.

The Web Components specification, which is being standardized by W3C
and WHATWG, attempts to solve this problem. The specification consists of
four independent parts: HTML templates, custom elements, shadow DOM,
and HTML imports [66]. The first one, HTML templates, was later moved
to be part of the core HTML5 specification.

HTML templates are reusable fragments of HTML, CSS, and JavaScript,
that can be declared within an HTML document by using <template> tags,
and accessed from JavaScript through the browser DOM [6, 38]. Tem-
plates are not rendered by default, nor do they incur side-effects such as
resource fetching or script execution. In order to render a template, it first
must be imported to the document. This is achieved by using the docu-
ment.importNode() API method, which clones a node from another docu-
ment, allowing it to be inserted into the DOM of the current document.

The custom elements specification allows page authors to define reusable,
custom HTML elements [4, 28]. By default all custom elements inherit from
the HTMLElement object, but elements can also extend standard elements
such as <p> or other custom elements. The power of custom elements lies in
the fact that they can encapsulate HTML markup, CSS styles and JavaScript
code into a reusable component. The document.registerElement() API may
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be used to declare custom elements. In order to add functionality to the
element, a developer attaches handlers to different element life cycle events.

Shadow DOM is a new way to encapsulate HTML markup, CSS styles
and JavaScript code within a DOM element, and hide the implementation
details from the user of the element [7, 29]. A special shadow root may
be created for a DOM element by using the myElement.createShadowRoot()
API. An element with a shadow root, called a shadow host, is rendered based
on the DOM tree of the shadow root. The content of the shadow host itself
does not get rendered. The main advantage of shadow DOM is that it allows
an element to hide its internals from developers using the element. Styles
defined within a shadow root are applied in the context of the shadow root
and do not leak outside. The shadow boundary also protects the internal
styles of the element from style definitions external to the shadow root. This
encapsulation avoids conflicting class and id attributes, and the developer
can be assured that attributes of a custom element do not conflict with the
other attributes of the page.

The HTML Imports specification adds support for importing markup,
style definitions, and scripts from external HTML documents [5, 30]. How-
ever, the imported content does not automatically get inserted into the DOM
of the importing document. Instead, the import statement returns a refer-
ence to a DOM document object. This object has a property called import,
which may be referenced in order to access the content of the imported file.
Scripts in the imported file have access to the parent document, and can
therefore embed markup to the parent document. The only content that
is processed automatically, affecting the parent document, are inline style
definitions and scripts. Inline style definitions are applied straightly to the
importing document, and scripts within the import are executed in the con-
text of the parent document, in sequential order, but without blocking the
processing of the main page. This implies that imports can be used to run
scripts asynchronously relative to the main page. HTML imports can be used
to bundle different types of resources, such as scripts, style definitions, and
images together. However, the normal cross-origin policy restrictions apply
also to HTML imports, so remote file imports should support CORS.

5.3 Frameworks

Exposing data through a uniform service interface has the benefit of decou-
pling client implementations from the service interface. Thus the role of the
service is reduced from rendering complete hypertext documents to serving
domain specific data to the clients. For client application development this
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separation implies an unprecedented degree of freedom as web application
development takes a step closer to resembling native application develop-
ment. As a result, web application developers can benefit from new kinds
of tools and frameworks that speed up the development process by adding
structure to client-side applications, and by providing solutions to commonly
encountered problems.

In order to make a distinction to libraries, this section uses the term
library for small and focused software tools, that do not necessarily provide
structure to the project as a whole. In contrast, the term framework is used
to refer to collections of different functionality, usually provided in the form
of software modules. In general, frameworks offer more functionality than
libraries, but they often present more restrictions on the way the software is
written.

The large number of available JavaScript frontend frameworks requires
to survey the existing alternatives. This section gives an overview on some
of the popular alternatives for building single page applications (SPA) in
order to point out the similarities and differences between them, in addition
to the advantages and disadvantages of them. Four different frameworks
were evaluated: Backbone, Ember, Angular, and React. The following list
presents a summary of the evaluation.

5.3.1 Backbone

Backbone [1] is a light-weight frontend framework which adds structure to
client-side JavaScript projects by providing them with the missing structure.
This is achieved by specifying a way to create models and collections that
reflect the state of REST resources and allow for syncing between client and
server, views whose representation is bound to models via change events
generated by the models, and a router class for assigning request URIs to
actions and events. One of the design principles of Backbone is to remain
light-weight and flexible to work with, while providing only the most essential
functionality. It also purposefully avoids two-way data binding, claiming that
it is rarely needed in practice. Two-way data binding is a central feature of
many other frontend frameworks.

5.3.2 Ember

Ember [44] is a frontend framework designed for building large Internet ap-
plications. The design principle of Ember is to provide developers with best
practices solutions to common problems, while letting the developers con-
centrate on business specific problems. The drawback is that developers are
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more tied to the development style of the framework. Coding in Ember fol-
lows convention, so developers can save up on source lines by naming things
in a specific way. Ember provides a two-way mapping between the browser
URI and the state of the application, effectively allowing the URIs to uniquely
identify individual application states. Whereas Backbone leaves the choice
of view technology to the developer, Ember comes integrated with the Han-
dlebars template language. The Ember team claims to have adopted best
practices from native application development, thus allowing for single-page
applications (SPA) that resemble native applications.

5.3.3 Angular

Angular [35] is an SPA framework from Google. It has built-in support for
dependency injection (DI) which facilitates testing and allows to compose
applications from loosely coupled components. The architecture of Angular
resembles the MVC architecture. Models in Angular are achieved via objects
called scopes. Scopes are organized in a hierarchical structure within the
application, and serve as the context against which expressions are evaluated.

Models in Angular are simply variables and methods assigned to different
scopes of the application. The value of scopes may be watched, and a change
handler may be assigned to the watched expression. This is the basis of how
data binding works in Angular. Method invocations in Angular generally
cause the application to switch to the internal execution context of Angular,
containing a digest loop. The digest loop evaluates the watched expressions in
the current scope, and schedules the evaluation of expressions that should be
performed asynchronously. This loop is repeated until an algorithm based on
dirty checking does not detect any more changes in the watched expressions.

The view component of Angular are is HTML, coupled with directives,
which declare custom HTML elements and attributes. Directives help to
encapsulate functionality by linking it to different DOM elements. The pre-
ferred way to use directives is to perform all DOM manipulation in them.
Directives may create new scopes, which may either prototypically inherit
the parent scope or create a new isolate scope. Directives can add watches
to variables within their scope.

Controllers in Angular are classes, or constructor functions, which are
used to manage scope objects. Their intended use is to associate the scopes
with data and methods. Each controller has its own scope that is injected to
it via a constructor parameter. Controllers may also be injected with services
for accessing data from different sources. Services encapsulate reusable func-
tionality between controllers, including access to web services, local storage,
application configuration and constant definitions.
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In order to implement two-way data binding, the views in Angular have
to be compiled. This compilation is performed on the initial page load, and
consists of two distinct phases: compile and link. The compile phase creates
a special linking function by traversing the DOM of the web application.
It matches HTML elements to directives based on the configuration of the
directives. Next, the synchronization between the template and its scope
is achieved by creating a link between them. The link is created with the
linking function which assigns watches on the scope.

5.3.4 React

React [59] is a frontend JavaScript framework developed by Facebook. It
implements the view component of a client application, and can be used in
conjunction with other libraries and frameworks, such as Backbone for data
models and routing, and jQuery for manipulating the DOM. React does
not differentiate between view models and the templates representing them.
Instead, HTML is closely tied to the component definitions. In order to fa-
cilitate the writing of HTML in JavaScript, React introduces its own JSX
syntax extension to JavaScript, which is a syntax resembling HTML. React
introduces its own light-weight representation of DOM called virtual DOM.
React has an efficient algorithm for calculating differences between two ver-
sions of the virtual DOM, which upon change to the underlying view models,
allows it to quickly render only the changed parts of the view. Virtual DOM
also enables React views to be rendered on the server side. Similar to Ember
and Angular, React emphasizes the use of reusable view components, which
are also set to support the upcoming Web Components specification [59].

Unlike Ember and Angular, React does not embrace the concept of two-
way data binding, even though it can be achieved. Instead, React encourages
one way data flow, where data flows from the parent components to their child
components. This unidirectional data model behind React is called Flux [24].
There are three main components in Flux: the dispatcher, stores, and views.
Views present the current state of the application and serve as the interface
for a user to interact with the application. Views generate events on user
action, and these events are transformed to actions, which are sent to the
dispatcher. The dispatcher queues actions and only dispatches an action after
the previous action has completed. The dispatcher sends actions to stores,
which update the data model based on the data passed along the action.
Finally the view gets notified of a data change and updates itself based on
data it fetches from the store. If the change in the data model triggers more
actions, these actions are sent to the dispatcher, completing the one-way data
flow. The unidirectional data flow of Flux makes the application logic easier
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to understand. Since Flux is an architectural style, rather than a framework,
it can also be applied outside React.

5.3.5 Discussion

In addition to the above frameworks, a new wave of frameworks is starting
to take advantage of the new cutting edge features of HTML5, support for
upcoming ECMAScript edition 6 and 7, and the Web Components set of
specifications currently in the works. These frameworks directly target the
newest ECMAScript specifications by implementing temporary replacements
for those language features that are not yet implemented by web browsers.

In practice all of the listed frameworks possess many similarities. Perhaps
the main similarity between the frameworks is that every framework seems
to have adopted the Web Components mindset, and are providing their own
ways to implement reusable web components. Many frameworks are promis-
ing support for the Web Component specification when it finally arrives to
mainstream use. In addition, the syntax for declaring view models is largely
the same. Each framework is also well documented. All in all, the features of
the frameworks greatly overlap, making the comparison at a glance more dif-
ficult. However, by taking a brief look at the available frameworks provides
valuable insight into the state of modern web development and industrial
best practices.

Despite the many similarities, differences do exist, and the choice of
framework is largely dependent on use-case specific requirements. Backbone
is suitable for projects where a light-weight and industry-proven framework
is required. Backbone does not govern how the project should be struc-
tured, but provides the basic tools to do so. Additional libraries are easily
introduced to the project as the only hard dependency of Backbone is the
Underscore.js utility library. Ember is a large framework which attempts to
solve problems often encountered in the development of web applications,
and presents a more dogmatic way to the development of web applications,
depending on convention over configuration in order to reduce boilerplate
code and to allow the developers to focus on the application specific logic.

There are several advantages to adopting the thin-server architecture.
The main benefit is that application logic can be moved from the server to the
client, reducing the workload of the server, allowing it to stay stateless, and
thereby enabling it to scale horizontally. Another advantage is the possibility
to share data models between the client and the server, as is demonstrated by
for example the Ember.js framework. Other advantages include for example
the ability to see changes in real-time by utilizing file watchers, and the
possibility to use the same programming language both on the frontend and
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the backend.
There are also some disadvantages to having a thick client. Firstly, the

application code can be publicly seen by anyone who has access to the web
application. Depending on the use case, this may be undesired. Secondly,
JavaScript is loosely typed so the script engine or integrated development
environment (IDE) will not warn the developer about conflicting data types.
The dynamic nature of the language also makes the creation of tooling sup-
port, such as debuggers, more challenging. Finally, with an increasing num-
ber of user agents running in mobile devices nowadays, moving application
logic to the client-side has the adverse effect of increasing the battery usage
on already power-constrained mobile devices.

In terms of tools and frameworks, the vibrant nature of the current
JavaScript ecosystem provides many alternatives for new projects to choose
from. On the downside, the choice of a frontend framework has become seri-
ous investment to organizations, which may prefer the choice of a well main-
tained framework backed by a large corporation. The JavaScript ecosystem
is characterized by a high churn rate and in general there seems to be a high
overlap between different frontend frameworks, as was evident in the list
above. Frontend developers are also constantly faced with the need to sup-
plement missing browser features with their own implementations in order
to support older browser versions. This problem has been partly remedied
with the introduction of automatic update systems in modern web browsers.

With the emergence of the Industrial Internet, it should be evident that
the importance of web technologies is only set to increase in the coming
years. Many solutions for developing native desktop and mobile applications
using web technologies exist, including Phonegap, Ionic, and React Native
for mobile application development and Node Webkit for desktop application
development.



Chapter 6

OPC UA in a web browser

Several web-based SCADA solutions supporting OPC UA already exist on
the market. Many of these solutions depend on client-side browser extensions
or locally installed software components such as Java [62]. Among the avail-
able solutions that provide OPC UA connectivity from a web browser, three
different categories were identified: pre-rendered user interfaces (Section 6.1),
web APIs (Section 6.2), and native stacks (Section 6.3). This chapter gives an
overview on existing solutions that provide OPC UA connectivity to browser-
based clients. Section 6.4 compares the solutions in relation to the features
they offer. The focus of the survey is on solutions that are driven by standard
web technologies. The results of this chapter serve as a starting point when
deriving the requirements for the web client application.

6.1 Pre-rendered user interfaces

In the traditional client-server approach of developing web applications, the
web server renders complete hypertext documents, and serves them to the
client. Pre-rendering in this context means the act of generating web pages in
the form of HTML, which the client can consume, rather than predictive pre-
rendering of documents by the web browser [65]. The advantage of rendering
web sites on the server side is that it reduces the workload on client-side,
and allows for minimal to no JavaScript executed by the web browser. This
type of architecture is commonly referred to as the thin-client architecture,
in contrast to the thin-server architecture presented earlier.

The thin-client architecture is well suited to the development of industrial
HMI applications, as has been demonstrated by the configurable, purely web-
based SCADA systems developed by Prosys PMS Ltd. For instance, one such
system consists of a web server communicating with a remote SOAP server
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in order to provide data to its clients [62]. The architecture of the system
consists of four components: the web browser, presentation layer, service
layer, and OPC UA servers. The architecture resembles a typical client-server
architecture with the exception that the presentation and services represent
individual layers which are both separate from the client running in a web
browser. This separation has the benefit of effectively decoupling data access
from the business logic, and the business logic from the presentation logic.
The separation of the presentation logic also has the benefit that it renders
the web application searchable by web crawlers.

Another example of the thin-client architecture is Groov, developed by
Opto 22 [31]. Groov is a toolkit for developing monitoring and control sys-
tems for mobile devices of different display sizes. It advocates the use of high
performance HMI design guidelines presented by Hollifield et al. [40]. Groov
comes with two components: a user interface designer web application and
a server which can be deployed as an embedded device or as a service run-
ning in the Windows operating system. The user interface designer enables
an operator to build scalable operator interfaces by dragging and dropping
touchscreen ready components such as charts and indicators on a canvas,
and binding those components to the data found in the address space of
possibly multiple OPC UA servers. The Groov server on the other hand
performs the tasks of a web server and an OPC UA client, performing as
a proxy to forward service requests between the operator interface and the
OPC UA servers. Finally, the operator interfaces are loaded on to the server
and viewed with a web browser. A web browser initially loads the whole user
interface from the server, but subsequent partial updates are performed via
XHR requests. These partial updates along with client-side caching increase
the performance perceived by the user. By utilizing native web technologies,
Groov is able to function on a wide variety of devices as long as those devices
feature a modern web browser. Operator interfaces composed in Groov are
rendered on client-side, which opens the possibility to package them as native
mobile applications by using Phonegap.

One more example is the Atvise SCADA system [2], which delivers func-
tionality that is similar to Groov. It includes an editor for creating web-based
operator interfaces, along with a default set of user interface components.
Similar to Groov, the user interface components are implemented using Scal-
able Vector Graphics (SVG) which allows them to scale to different display
sizes and layouts.
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6.2 Web APIs

Web-based application programming interfaces (API) are a common way to
implement re-usable web services which can be easily consumed by various
end devices connected to the Internet. The web API approach effectively can
hide the implementation details of the OPC UA communication and allows
to develop an interface that is customized to the needs of the client applica-
tions. Web APIs also allows for service composition and can be utilized by
a large number of end devices including smart phones, tablets and desktop
computers.

HyperUA by Projexsys is one example of the web API approach. It is a
JVM-based server application providing a REST compliant HTTP interface
to OPC UA servers. It works by mapping OPC UA services to REST col-
lections and resources. HyperUA complements the OPC UA security model
with HTTPS and its own implementation of user roles and privileges.

The service conforms to the hypermedia constraint of REST, which means
that after the initial API entry point has been discovered, all subsequent re-
quests can be made to the links found in the response. The set of available
links depends on the state of the requested resource and represents the valid
state transitions. The advantage of conforming to the hypermedia constraint
is that the state of a resource can be discerned from its representation. As a
result, any changes to an URI other than the API endpoint becomes trans-
parent, as the actual resource and links to it are separated. The API of
HyperUA is traversed by applying CSS selectors on hypermedia responses.

HyperUA generates unique URIs for the nodes of the address space. Ac-
cessing these URIs with a web browser displays information about the cor-
responding node. An example application would be to attach QR codes to
the machines of an industrial plant. These QR codes would point at spe-
cific nodes in the UA address space, providing the operator with detailed
information about the machine and its state.

The current version of HyperUA supports the OPC UA Data Access,
Historical Access and Alarms and Conditions specifications. Future plans
for HyperUA include for example support for server-sent push notifications
and cloud integration [42].

6.3 Native stack

Generally, web-based monitoring systems implement OPC UA connectivity
via the use of an intermediate server, which serves both as a web server and
an OPC UA client. However, most browsers support executing JavaScript
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code, so there is no reason why a standard web browser could not directly
communicate with an OPC UA server, provided that an OPC UA stack for
JavaScript is available. Indeed there exist efforts at introducing OPC UA to
client-side and server-side JavaScript alike.

The JasUA stack by Hennig el al. [34] is currently the only OPC UA stack
written in JavaScript, and usable in the web browser. It implements OPC
UA binary encoding and UA secure conversation directly in the browser.
Motivated by the recent improvements in the performance of JavaScript en-
gines, the authors evaluated the performance of the implementation, claiming
to have achieved sufficient response times for the stack to be usable. The
benefit of this approach is that it does not require the installation of any
external plugins. Instead, a web browser capable of running JavaScript code
is sufficient. The authors reported problems with being able to support only
a single OPC UA server due to cross-origin restrictions, and the failure to
achieve a permanent secure channel, due to HTTP requests always creating a
new socket connection. As a solution to these problems the authors proposed
the use of a proxy server to bypass the cross-origin policy, and the use of the
WebSocket protocol to create a reliable secure channel.

The JSUA framework by Freund et al. [26] enables the development of
OPC UA client applications in pure JavaScript. It is an SDK level imple-
mentation of the OPC UA specification, based on the JasUA stack, and
implements a hybrid stack profile which combines the binary encoding of
the binary profile with the HTTP(S) transport and SSL/TLS security of the
web service profile. The JSUA framework is currently limited to HTTP(S)
connections, but according to the authors this could change in the future as
a raw socket API becomes standardized.

An alternative to the JasUA stack is presented by Node OPC UA [60],
which is a Node.js implementation of the OPC UA stack. Node OPC UA
enables the creation of OPC UA clients and servers in the asynchronous and
non-blocking way of Node.js. Node OPC UA is based on Node.js so it is
tied to the server-side, and not strictly in the scope of web browser based
implementations. Nevertheless, it serves as an example of the applicabil-
ity of JavaScript to both frontend and backend side OPC UA application
development.

6.4 Discussion

In this chapter, three different approaches for accessing OPC UA data from
a web browser were examined, along with existing real world use cases. The
main difference between the different architectures lies in the way workload is
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distributed between clients and servers. The most conventional way of serv-
ing pre-rendered pages to the client is the most flexible approach in terms
of client CPU processing, as client interaction can be achieved with little to
no client-side JavaScript code. The thin client architecture along with web
services reduces CPU usage on the server side by moving the responsibility
for rendering web pages to the clients. The client can use the web service to
communicate with the system and the API of the service creates an abstrac-
tion layer between the client-side rendering and server-side business logic.
For added flexibility, web applications may issue XHR requests on the ser-
vice APIs to dynamically update their data models. Client-side interaction
with web services is further facilitated by client-side JavaScript frameworks,
which abstract away the interaction with the web services, providing a simple
interface to query data.

Following the hypermedia constraint of the RESTful architectural design
has many benefits. For example, user agents without JavaScript support and
without off-the-band information about the API, such as search engine bots,
can traverse the API. Finally, it was observed that the web browser is not
a limiting factor, and that direct connectivity from the web browser to the
OPC UA servers is possible through the use of JavaScript and the HTTP(S)
protocol supported by the OPC UA specification. At the time of writing
this thesis, there two JavaScript frameworks for OPC UA. One of these is a
proprietary framework which works in web browsers, while the other one is
an open-source Node.js module.

The different solutions reviewed in this chapter demonstrate the opportu-
nities introduced by web-based monitoring of industrial data. Each approach
has its advantages and disadvantages, and the choice of technology should
be made depending on each project’s specific requirements.



Chapter 7

Requirements

This chapter lays down the specific requirements for the web client. Sec-
tion 7.1 begins by identifying the problem, the potential users, and needs
of the users. Section 7.2 presents the different use cases that the web client
should support. Section 7.3 discusses the general requirements associated
the monitoring system as a whole. Section 7.5 determines the requirements
for the user interface, and Section 7.4 completes the analysis by deriving the
requirements for the backend system from the requirements of the HMI.

7.1 Overview

The plant floor of an industrial facility usually encompasses a large number
of interconnected devices. Performing routine maintenance and pinpoint-
ing cause of system failures is costly and time consuming if the automation
engineer must pay an individual on-site visit to each device. To make the
monitoring of the whole system easier, industrial facilities employ SCADA
systems, which allow the automation engineers to oversee the operation of
the whole facility from a central location, called the control room. However,
the problem with most today’s SCADA solutions is that they require the in-
stallation of dedicated SCADA software, which must be separately installed
on each device that is to be used for monitoring purposes. Furthermore, sup-
port for the software is often limited to certain operating systems [62]. The
solution is to deploy the monitoring system on the web by using standard
web technologies such as HTML5 and JavaScript.

49



CHAPTER 7. REQUIREMENTS 50

7.2 Use cases

In order to establish a connection, the OPC UA client needs the URI endpoint
of an available OPC UA server. It can find this information either by the
means of manual user input, or even automatically by using the OPC UA
discovery services. Since the OPC UA web client being developed is a proof-
of-concept in nature, implementing server discovery is out of the scope of
this thesis. After obtaining a valid endpoint URI, the client should be able
to use it to connect to an OPC UA server.

A client that has connected to a server should be able to view the server
address space and find information in it. The user interface should convey
the hierarchical structure of the address space to the user by displaying the
address space as a mesh network of UA nodes. The root node constitutes the
entry point of the server address space, and as such it should be presented in
a way that makes it possible to navigate to each node of the address space.
This can be achieved by issuing browse requests and following the references
that are returned in response. The user can select a node in the hierarchy
and immediately see its details.

After browsing to a node, a user can view its attributes, including its
value. The user may also write a new value to the value attribute. Reading
an attribute should always display a value that represent its current state at
the time of the request.

Reading variable values manually is not practical, especially if there is
a large number of nodes values that need to be monitored. The UI should
present the user with means to subscribe to value changes. The UI should
then automatically update to reflect changes in the subscribed values.

In addition to data changes events, the user should be able to subscribe
to events and notifications originating from the OPC UA server. Incoming
events should be presented to the user in the order that they were generated.
A user should also be able to acknowledge events by calling the appropriate
method in the server address space.

Besides reading the current value attribute of a node, the user should be
able to fetch value history from the OPC UA server. The user should be able
to specify history read parameters such as the date and time range of the
data to be fetched. Large responses should be paginated, in order to reduce
the processing load on the web browser.

Finally, the user should be able to call server-defined OPC UA methods.
Method nodes should be visually distinct in the address space browser, and
include controls for specifying method parameters and calling the method.
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7.3 General requirements

The web client is targeted at automation engineers who need to gain remote
access to the devices connected to an industrial network, and the data resid-
ing in them. The web client should allow the user access to remote OPC UA
servers by using the web browser of a modern smart phone. The connectivity
between a web browser and an OPC UA server provides the browser-based
clients with a standardized way to access the data of the automation system.

Since the web application is an application prototype, it is designed
with modern web technologies in mind. Supporting old browser versions
is thus not required. In the context of this thesis, a modern web browser is
taken to mean browsers that support standard HTML5 features such as the
EventSource interface for sending push notifications. Web-based applications
have many advantages over their counterparts on the desktop. For example,
web applications do not require installation. Web applications are also more
portable, as they can be used with any client device with a web browser.
However, these advantages can only be achieved if the web application does
not require external dependencies such as browser plugins or other software
installed on the user’s operating system.

Requirement 1. The web client should not depend on external software
components.

The development of a web based SCADA solution is a reoccurring prob-
lem. As such, it would be beneficial to develop a solution that allows for code
reuse. By developing the view logic and business logic as separate compo-
nents, the generic business logic of interacting with OPC UA servers can be
reused and only a customized SCADA interface needs to be developed from
scratch, when customizing the monitoring system for different use cases.

Requirement 2. The service and presentation layers of the web client should
be decoupled from each other.

Table 7.1 lists the OPC UA related functional requirements of the web
client, along with the profiles that encompass them. According to the OPC
UA specification, the minimum requirement for an OPC UA client is that
it should support the Core Client Facet and at least one transport protocol.
The Core Client Facet includes essential session management and security
features, such as connection handling and encryption.

Requirement 3. The web client should conform to basic OPC UA client
facets.
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Required feature Profile
Transport protocol UA-TCP UA-SC UA Binary Profile
Security and session management Core Client Facet
DataAccess Client Facet Browsing the server address space
Reading attribute values Attribute Read Client Facet
Writing attribute values Attribute Write Client Facet
Subscribing to data changes DataChange Subscriber Client Facet
Subscribing to events Event Subscriber Client Facet
Reading historical data Historical Access Client Facet
Calling server-defined methods Method Client Facet

Table 7.1: The requirements in relation to OPC UA client profiles [53].

When defining the requirements, a question that arises is how to docu-
ment them. One way to specify the application’s requirements is to write
them as unit tests. Writing unit tests has the added benefit of documenting
the requirements directly in the code. Many software companies doing agile
development also advocate the use of test-driven development for specifying
the requirements in the form of desired behavior of the system [10].

Requirement 4. The web client should incorporate unit tests.

The OPC UA specification defines a security model which addresses the
information security of OPC UA communication, including issues with au-
thentication, authorization, integrity and confidentiality [49]. However, in
the scope of this thesis it becomes important to ensure that the communi-
cation between an HMI and the service interface remains secure, in order to
maintain proper end-to-end security between HMIs and OPC UA servers.

Requirement 5. The web client should respect the end-to-end security prin-
ciples of OPC UA.

In order to support varying deployment options, the web client as a whole
should be configurable. For the service layer this means that it should be
possible to specify in a configuration file the endpoints for the service interface
and push notifications. In addition, there should be a separate configuration
file for the presentation layer, where the respective API endpoints can be
configured. A separate configuration file is needed, so that the client can
be configured independent from the service, and a loose coupling can be
achieved.

Requirement 6. The web client should be configurable.
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7.4 Service requirements

Nowadays, the use of JavaScript on the server-side has become common.
However, the large number of different JavaScript frameworks and libraries
makes it increasingly more difficult to decide on an appropriate framework. It
is difficult to know how long a specific library or component will be supported.
This is much unlike the Java EE platform where the future of a particular
component can be predicted more easily. Therefore, the service component
should be designed to be modular to allow for substituting the libraries later
on. For example, the service interface should be defined independently from
the module used to realize the web services.

Requirement 7. The source code of the service layer should inhibit a mod-
ular structure.

The service layer provides the interface for the presentation layer to in-
teract with the OPC UA servers. The service layer should be decoupled from
the presentation layer, meaning that any HTTP-capable client application
should be able to use it. The API should be simple, scalable, reusable and
discoverable.

Requirement 8. The service should expose a request-response based API
which is usable by standard web browsers.

Unlike traditional desktop applications, web applications have to support
potentially large number of concurrent users. For the web client this means
that it must be possible to maintain multiple OPC UA sessions. Users should
only be able to access their own sessions, but not the sessions of other users.

Requirement 9. The service should support multiple simultaneous users.

As a prerequisite to conforming to the OPC UA client facets above, the
service layer should be capable of communicating with remote OPC UA
servers. This communication should be possible both on-demand by sending
OPC UA service requests, but also in real-time by assigning event listeners.

Requirement 10. The service should provide connectivity to OPC UA
servers.

The high-level service methods of the OPC UA SDK return OPC UA
service response data as Java object references. In order to return the re-
quested data to the web clients, it is necessary to serialize and encode the
response data to an appropriate format. This format should be simple and
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human readable. Simplicity of the format makes debugging the service layer
easier, and also facilitates the implementation of web clients that consume
the service. It should also accommodate the structure and semantics of plain
Java objects.

Requirement 11. The service should serialize OPC UA response data.

In order to conform to the subscription related client facets, the service
layer should be capable of sending event notifications to clients, who have
subscribed to specific events in the address space. This means that the service
layer must be able to send real-time push notifications to web browsers.

Requirement 12. The service should be capable of sending real-time push
notifications to web browsers.

7.5 User interface requirements

Upon entry to a website, it is common for the site to ask the user whether a
mobile optimized website should be served instead of the typical one. Many
organizations maintain a separate mobile-optimized website, instead of hav-
ing one website that properly adapts to the user’s display size. By using
a responsive design approach, the style definitions of the website can be
parametrized based on the display size of the client device. The main advan-
tage of this approach is that only one version of the website needs to be kept
up-to-date. The mobile-first methodology supports this approach.

Requirement 13. The layout of the user interface should adapt to different
display sizes.

Existing SCADA toolkits usually come with a set of reusable user inter-
face components for displaying various information about the process being
monitored. These components can range from simple indicators displaying
for example the monitored values and their limits, to the representation of
physical devices such as boilers, valves, and thermometers. The HMI com-
ponents allow the automation engineer to monitor and control the process
by simply interacting with the UI.

Requirement 14. The web client should support reusable user interface
components.

In addition to the above requirements, the user interface should incor-
porate controls that the operator can use in order to realize the use cases
described in Section 7.2. In practice this means that the user interface should
support the features presented in Table 7.1.
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Implementation

This chapter describes the implementation of the OPC UA Web Client. The
goal is to address the requirements set in Chapter 7. First, Section 8.1
addresses the first three requirements by giving a brief overview of the chosen
architecture and technology stack. Then, Section 8.2 presents the various
technology choices that had to be made in order to realize the web client.
Next, the different parts of the implementation are discussed individually,
addressing the suitability of the chosen technologies to the project at hand,
and describing the challenges faced during the application’s development.
Section 8.3 describes how the service layer requirements were met, while
Section 8.4 describes the user-facing part of the system, the presentation
layer, and how its requirements were met. Finally, Section 8.5 discusses the
testing and debugging of the web client, Section 8.6 explains the security
features of the web client and Section 8.7 presents how the web client can be
configured.

8.1 Overview

In the practical part of this thesis two compatible but independently deploy-
able software components were implemented: a web service that exposes a
RESTful interface for interacting with remote OPC UA servers, and a sim-
ple OPC UA web application that uses this interface to provide an HMI.
Together with the OPC UA servers these components form the three-tier
architecture portrayed in Figure 8.1. The web application was developed
and tested together with the service in order to verify that the overall so-
lution meets the requirements set in Chapter 7. The implementation of the
OPC UA servers is out of the scope of this thesis. The monitoring system
was tested by connecting the web client to a locally deployed instance of the
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Prosys OPC UA Simulation Server. The Prosys OPC UA Java Client and
Unified Automation’s UaExpert were used as an example and starting point
when designing the user interface of the web client. They were also used as
a basis when choosing which features to implement, along with the OPC UA
specifications and software solutions examined in Chapter 6.

Figure 8.1: The architecture of the OPC UA Web Client.

The web client was designed to support standard web browsers. Aside
from the service layer, it does not impose any external dependencies, such
as Java, on web browsers. However, it does target modern, HTML5-enabled
web browsers. This was done on purpose, because the purpose of this im-
plementation was to serve mainly as a prototype implementation. If desired,
the features of the web client that depend on technologies not found in older
web browsers can be easily enabled by the use of various polyfills.

The service and view components of the web client are decoupled from
each other. This is achieved by using a uniform HTTP interface between
the web client and the service. The drawback of the current implementation
is that the various API endpoints are hard-coded in the web client. This
makes it difficult to introduce changes to the API without breaking support
for existing client implementations. From the perspective of loose coupling, a
better approach would have been to make the API more easily discoverable to
client implementations by following hypermedia formats such as JSON-LD.

The web client conforms to basic OPC UA client facets both on the ser-
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vice layer and presentation layer levels. This is facilitated by the use of the
Prosys OPC UA Java SDK, which provides high-level interfaces for interac-
tion with OPC UA servers. The service implementation is thus more focused
on application-specific aspects such as session management, response data
serialization, and forwarding of real-time events to web browsers. Section 8.4
describes how the web client implements the required client facets.

8.2 Technology choices

The first choice that had to be made was whether the web client should be
developed in pure Java or by using one of the emerging polyglot frameworks
for the JVM. The latter approach was chosen for a few reasons. First, by
using a polyglot platform, the number of programming languages supported
by the Prosys OPC UA Java SDK could be increased. Second, this approach
would allow Node.js applications to leverage the functionality of the SDK
and on the other hand Node.js scripts could be embedded into existing Java-
based OPC UA applications. Third, there is currently only one commercially
supported JavaScript SDK for OPC UA, so there is a potential demand for
an additional JavaScript API to the Java SDK. Finally, there are potential
differences in developing the application code in JavaScript, which are worth
investigating. As a side note, an alternative solution that was not explored
in this thesis is the node-java Node.js module which provides access to Java
classes from within Node.js scripts. However, this approach is limited to the
embedding of Node.js scripts in existing Java applications.

The decision to write the experimental client application in JavaScript
prompted for a choice between the available JVM-based server-side JavaScript
frameworks. The evaluated frameworks included Avatar, Nodyn, and Trireme,
all of which implement the popular Node.js API. The decision was to go with
Avatar to the early availability of a public release. The fact that Avatar is
developed by Oracle also affected the decision, because it was deemed at the
time that it would most likely be supported in the future and take benefit
of the existing Java EE ecosystem. At the time of choosing the framework,
the documentation of Avatar, albeit lacking, was the best among the can-
didates. The potential of a full-stack framework, including both view and
service components, was also intriguing.

The third choice was to decide how communication between the web
browser and the service layer should be accomplished. Since one of the re-
quirements was to rely on standard web technologies, the most basic need of
transferring hypermedia was achieved with the HTTP protocol. The REST
architecture was chosen to implement the service API, with HTTP as the
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transport protocol. The reason to use REST was that when implemented
correctly it could make applications more easily scalable to multiple server
instances. Additionally, the REST architecture complies with Internet stan-
dards and is widely used and supported by clients. Finally, a protocol for
transmitting periodic events was required. Two protocols introduced by the
HTML5 standard were evaluated: SSE and WebSocket. The SSE proto-
col was chosen because only unidirectional server-to-client push notifications
were required. Specifically, the use cases of the web client did not require
a two-directional low latency connection between the client and the server.
Another reason for choosing SSE over WebSocket was its simplicity compared
to WebSocket.

After fulfilling the requirement of transmitting data between the client
and server, it was required to display the data and controls in a client-
side user interface. On the most basic level the web browser would request
JavaScript files from the web server and execute them locally to add rich-
client functionality to the downloaded HTML. The jQuery library is often
used to create dynamic web sites that can manipulate the content of the web
site and to issue HTTP requests without causing a full page reload. Since a
requirement was to implement a rich user interface for the web client, it was
justifiable to experiment with existing frontend frameworks for JavaScript.
The evaluated frameworks were Backbone, Ember, Angular and React. The
decision was to use Angular because it has the potential of catering to Java
developers familiar with JSF. The syntax of embedding directives in view
templates is very similar to the syntax of Facelets used in JSF. Additionally,
in Angular user interfaces are defined declaratively.

The final choice to be made was how the user interface components would
be composed. Industrial user interfaces are often component based. One
component may be reused to show information from different device in-
stances. For example, a component to display a temperature value could
be reused across boiler instances. Three methods were evaluated: Angular
directives, React components, and WebComponents. The Angular directives
were chosen for simplicity and because they seemed to be the most easiest
to integrate with Angular scopes. In any case, using any of the three tech-
nologies would separate component declaration from their use, facilitating
changes to the underlying technology at a later time if deemed necessary.

8.3 Service layer

The service layer implements a uniform, web-accessible interface for interact-
ing with OPC UA servers. In order to do so, it serves as a proxy between the
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browser-based HMIs and the OPC UA servers, concurrently fulfilling both
the responsibilities of a web server and an OPC UA client. The service layer
maps incoming HTTP requests from the web browsers to OPC UA service
requests, which it sends to the corresponding OPC UA servers. A server
responds to a service request by sending a response message, which the ser-
vice then forwards back to the requesting clients in response to the original
HTTP request.

The service layer is implemented in JavaScript, and it uses the Avatar
framework for session management, creation of REST and SSE endpoints,
and threading coupled with a inter-thread communication mechanism through
messaging. The OPC UA client functionality of the service is implemented
by using the OPC UA Java SDK, a feature which was made possible by the
underlying Nashorn JavaScript engine.

The service layer is organized into modules which each have their own
distinct responsibilities. This separation of concerns enables to test each
module individually. Moreover, clear interfaces between modules ensure that
functionality of one module can be changed without affecting the others.
The most important modules are the main module for starting up the service,
wrapper modules for the OPC UA Java SDK, modules that define the service
endpoints exposed by the server, and a module for defining listeners to events
generated by the SDK.

8.3.1 Service interface

A RESTful architecture was chosen for implementing the service interface.
The architecture was chosen because its architectural restrictions promote
scalability, simplicity and re-usability through statelessness. REST is a pop-
ular architecture among web developers, and maps conveniently to the HTTP
protocol supported by web browsers.

The REST interface enables communication between web browsers and
the OPC UA client service. It does so by mapping OPC UA services and
nodes to RESTful collections and resources. For example, an OPC UA node
can be logically represented as a resource, and a browse service request can
be realized with a GET request to a collection of node resources. Given
below is an extract of the RESTful interface.

/api/sessions{/sessionId} Represents a server connection.

GET Lists all session resources or retrieves a specific one.

POST Connects to a server by creating a new session resource.

PUT Updates a session resource by replacing it.



CHAPTER 8. IMPLEMENTATION 60

DELETE Disconnects from a server by removing a session resource.

/api/sessions/{sessionId}/nodes{/nodeId} Represents a node.

GET Retrieves the root, or a specified node, from the address space.

POST Adds a new node into the server address space.

PUT Updates the structure of an existing node in the address space.

DELETE Removes a node from the server address space.

The services module of Avatar framework follows the popular request-
response model. Services are defined by implementing service handlers for
the desired URL patterns. The handlers receive request and response objects
as parameters and are tasked with constructing and sending a response. The
service handlers perform three duties. First, the request object is checked
for the user parameter, which tells whether the client sending the request
has authenticated. If not, a new session is created and the client associated
with that session. Next, the session ID of the current session is fetched and
the JsClient instance associated with that session is fetched. Finally, the
service handler calls the method of the JsClient instance that corresponds to
the requested service, spawning a new operating system thread for it, and
immediately returning a promise object. When the operation finishes the
promise also gets resolved, and the service handler sets the CORS headers
on the response object and sends it.

Since the service interface was designed to be consumed by web browsers,
it was only natural that the interface should accommodate the needs of the
potential web client implementations. In practice these needs were often
found to be in conflict with simplicity of the web service. For example, one
question during development was whether the service layer should directly
mirror the API of the OPC UA SDK. The initial version took this approach.
It was found out that this approach significantly complicated the develop-
ment of the client component, as several consecutive requests had to be made
to the service API to achieve the desired result. For example, the root node
had to be fetched first. Then the references of the root node were to be
fetched. Finally, the nodes referred to by the root node had to be fetched.
Thus, a total of three requests were required in order to acquire the informa-
tion required to display the initial state of the address space browser. The
later versions of the service fixed this issue by complementing the response
JSON with embedded resources.

The REST API supports hypermedia traversal by embedding hyperlinks
to response JSON. The hyperlinks use a standard template URI syntax,
where the client can substitute URI parameters with appropriate values, as
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shown above. The initial version did not incorporate support for hypermedia
traversal, but support was later added by introducing a simple URI based
format, where the service simply embeds a uniquely identifiable URI to each
resource representation. In practice, this turned out to be easy to achieve
as it only required the addition of one additional URI property. These URIs
can be referenced to attain the corresponding representations. A resource
always includes a URI to itself, but may also include URI references to other
resources. These additional URIs signify the available state transitions, and
may be used by a client implementation to automatically discover the API.
A client may also cache the links and at a later point in time obtain an up-
to-date representation of the cached resource, without having to traverse the
whole API starting from the API entry point again. This URI based approach
was inspired by the public API of Github. An alternative approach that was
first evaluated would have been to use an existing hypermedia format such
as HAL or JSON-LD, but this would have added extra complexity to the
response JSON, without adding any significant benefits, as there currently is
no clear consensus on what hypermedia format clients should support.

One problem with the service interface was how history read should be
handled. Reading history from an OPC UA server is a potentially slow oper-
ation, and responding slowly to a request would degrade the user interface of
the web client. The first solution to this problem was to limit the amount of
data that could be requested. In practice the service always returned the last
hour worth of history data. However, even with this kind of restriction the
service would take several seconds to return the history data. This response
time was clearly unacceptably long, so the next attempt was to split the
history read into multiple separate chunks. Fortunately, OPC UA specifies
that services should support continuation points. The continuation points
were combined with the deferred.progress API which allowed to easily send
progress notifications via the message bus of Avatar to the push service. The
push service then sent subsequent notifications with the data as payload, as
new chunks from the OPC UA server were received. This allowed the service
to respond to the request immediately, notifying the client that history read
had commenced. The drawback of this approach was that it complicated the
implementation of the history view, because of the added responsibility of
handling the push notifications and updating the chart dynamically.

Another problem had to do with how the OPC UA stack performs con-
versions between service parameters and their string representations. The
conversion is important because the SDK must be able to correctly parse the
string formatted parameters as they are passed through the REST interface.
For instance, NodeIds are composed of three components: namespace index,
type and value. Encoding of NodeIds to strings is performed according to
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the following syntax [52]:

ns=<namespaceindex>;<type>=<value>

According to OPC UA Part 6 the conversion of NodeIds is done by con-
verting the namespace index and value part to strings, and concatenating
them with a semicolon (;). The Internet standard for Uniform Resource Iden-
tifiers (URI) however reserves the use of semicolons in URIs, and thereby
prevents the use of standard string formatted NodeIds in HTTP requests.
Replacing the semicolons with an unreserved delimiter such as a dash (-)
was not an option as it could not be guaranteed that a server would not use
a specific character in NodeIds. Moreover, deviating from the specification
could confuse clients. The solution was to encode the NodeId URI parameter
before passing it to the server as part of the URI. This was achieved by using
the encodeURIComponent() JavaScript function.

8.3.2 Session management

In order to support multiple simultaneous users, each one connected to pos-
sibly different OPC UA server, the web client needs to store client related
session data somewhere. There are two options. First option is to store all
session data on the service layer. This is the approach that was taken by
the web client, because it has the benefit of integrating well with the session
model of OPC UA, as browser sessions can be directly mapped to related
OPC UA sessions. The added benefit is that existing OPC UA access control
mechanisms can be extended to the web client. The drawback is that, by
storing sessions on the server, the service layer breaks the stateless constraint
of the REST architecture. This in turn makes it more difficult to scale the
service horizontally, as services need a way to access shared client session
information with one another.

The other approach would have been to store client related session data
directly in the client. This approach is in line with the REST architectural
style, because it allows the requests of the client to contain the session data
that the server needs to understand the request. It also has the advantage
of freeing resources from the server-side and allowing it to freely scale hor-
izontally. Taking this approach would have required additional work, as a
stateless abstraction layer between the service interface and stateful OPC
UA servers would have had to be devised. This feature is subject to future
work.
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8.3.3 Retrieval of data

In order to be able to server browser-based clients, the service must be capa-
ble of communicating with remote OPC UA servers. The Nashorn JavaScript
engine made it possible to use classes of the OPC UA Java SDK within
JavaScript code. The SDK consists of a set of jar files that had to be placed
in a standard location where the Glassfish application server could find them.
Next, the required packages were imported in the top of the source file in
similar fashion to Java. After the desired classes were imported and aliased,
they could be transparently used in JavaScript code. The syntax of access-
ing the methods and properties of a Java class is conveniently the same as
for native JavaScript objects, but on the other hand it made it difficult to
discern Java objects from native JavaScript objects. This problem could be
alleviated by improved IDE support, but for now a convention to prefix Java
objects with the letter ‘j’ was assumed.

The service layer uses the Nashorn JavaScript engine to gain access to
classes of the Java SDK. Using the proxy objects provided by Nashorn is
convenient but requires to keep track of which JavaScript variables refer to
Java classes and instances. The service layer’s convention is to prefix proxy
objects wrapping a Java class with the letter ‘j’. For example, an instance
of the Java class UaNode is referred to as jUaNode. To further facilitate the
development of JavaScript based OPC UA application against the SDK, the
service layer defines the JsClient class which encapsulates access to the Java
SDK. For added convenience, most of JsClient’s functions return promises.

For simplicity, the service uses the synchronous service methods of the
OPC UA Java SDK. These methods provided a higher level of abstraction
compared to the asynchronous alternatives, and were easier to use. In stan-
dard Node.js using synchronous calls would be a bad idea since JavaScript
is single-threaded. OPC UA service calls could easily block the event loop
and no other requests would get served during the blocking operation’s exe-
cution. The service layer is able to work around this issue by using Avatar’s
threading module, which it uses to spawn a worker thread for each new ser-
vice call. Starting to execute a thread returns a promise object which makes
it easy to chain asynchronous operations together. Listing 8.1 shows how
the getRootNode function handles the asynchronous method call getNode
by returning a promise to the calling function. Replacing the synchronous
API calls with the asynchronous alternatives is subject to future work.

The call to getNode returns a promise, so it is necessary to also wrap the
getRootNode function with a promise. Otherwise the function would return
prematurely.

In practice the deferred API was misused in the early iterations of the
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1 /**
2 * Returns the root of the server address space.
3 * @returns {Promise.<UaNode >} The root node.
4 */
5 JsClient.prototype.getRootNode = function getRootNode () {
6 var deferred = Promise.defer();
7 if (!this.jUaClient.isConnected ()) {
8 deferred.reject(new exceptions.ClientException("Not

connected"));
9 } else {
10 this.getNode(this.rootNodeId)
11 .then(function(rootNode) {
12 deferred.resolve(rootNode);
13 }, function(error) {
14 deferred.reject(error);
15 });
16 }
17 return deferred.promise;
18 };

Listing 8.1: The getRootNode method of the JsClient proxy object.

service layer, as it should not be used only for the sake of providing a promise
API. Instead, it should be used to provide the promise interface to an existing
asynchronous API that does not return promises, but depends on callback
functions to handle asynchronous results.

When a client issues its first request on the service API, a new JsClient
instance is created and linked to the client’s session ID. Subsequent requests
continue to use the existing JsClient. The UA sessions exist separately from
the browser sessions. While the current implementation forces a one-to-one
mapping between a browser session and an OPC UA session, future versions
might associate multiple OPC UA sessions with a single browser session,
enabling the web client to maintain multiple simultaneous server connections.

The response payload varies in size depending on the service request.
For example, browsing the server address space returns the requested node,
along with its references. Each reference if returned in its full JSON object
representation would take around 1 KB in size, thus a node with a thousand
references would take around 1 MB including headers. While HTTP does not
limit the content size [22], especially mobile devices with limited computing
resources might be too slow to process the response data. For this reason the
service layer supports dividing the response into multiple messages, delivered
as push notifications. The JavaScript interface to the history read service
takes advantage of this feature.
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1 /* Importing a single Java class. */
2 var HashMap = Java.type("java.util.HashMap");
3 var ArrayList = Java.type("java.util.ArrayList");
4 /* Importing a Java package. */
5 var ClientImports = new JavaImporter(com.prosysopc.ua.client);
6 var ClientNodes = new JavaImporter(com.prosysopc.ua.nodes);
7 /* Accessing individual Java classes. */
8 var jUaClient = (new ClientImports.UaClient ()).setUri(uri);
9 var jEndpoints = jUaClient.discoverEndpoints ();

Listing 8.2: An example of using the JavaImporter class.

In similar fashion to plain Java, using Java classes in Nashorn requires
that the containing packages are first imported. According to the Avatar
framework source code, the best practice seems to be to import the pack-
ages at the top of the file, like in Java. In practice the list of imported
packages quickly grows as classes from different packages are required. One
of the problems in developing the service layer was managing the growth of
Java class dependencies. The task of dependency management was especially
challenging as the IDE did not provide any auto completion for importing
Java classes. It also did not provide any other help in managing the depen-
dencies, such as warning messages about missing imports. Therefore, the
introduction of new Java classes to the JavaScript source code often resulted
in confusing runtime exceptions, if the import statement was missing. How-
ever, the Nashorn runtime does provide a useful extension to the JavaScript
language, which helps to address these problems: the JavaImporter class.
The JavaImporter class allows to import specific packages, creating a scope
which may be assigned to a local variable, as shown in Listing 8.2. This is
in contrast to having to manually import each individual Java class that is
to be used in the JavaScript application.

One problem related to working with the Java classes had to do with ex-
ception handling. Initially the service layer used try/catch blocks to handle
errors. This worked well when the API calls were performed synchronously,
but when the code was made asynchronous with the use of the threading
module of Avatar, strange bugs started to occur. The reason for this is
that the throw/catch exception handling model does not work with asyn-
chronous functions. Because of the asynchronous processing model, asyn-
chronous function calls are deferred to a later point in time. When this kind
of function throws an error, the function that made the call and contained
the catch block has already exited. As a result, the error does not get han-
dled and the application will crash. The correct way to handle these errors
would have been to pass the potential error as a parameter to the callback
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function, as is the convention is Node.js.

8.3.4 Serialization

One of the requirements for the web client was to implement serialization
between Java and JavaScript objects. The requirements for the serialization
format were that it should be simple and human readable, and that it should
be capable of representing the data structure of plain Java objects. The
JSON data format was chosen because it is natively supported in JavaScript
and fills the set requirements.

The next problem was how the actual serialization between Java and
JavaScript objects should be performed. Two Java-libraries were investi-
gated for this purpose: Google GSON and Jackson data-binding. Upon
evaluation it was discovered that while the serialization worked performed
well for simple Java objects, more work have been required to support more
complex Java objects with several references to other objects. The Jackson
data-binding library depends on annotations on the Java classes. This can
be a problem for developers who only have access to the binary version of
the Java SDK. GSON on the other hand required to implement special seri-
alizer and deserializer classes in Java. This approach presents an interesting
subject for future work, but for now implementing the serialization in plain
JavaScript was more straightforward. Furthermore, implementing the JSON
serialization of SDK classes could be better suited to be done on the SDK
level. This way future implementation could take advantage of the shared
serialization functionality.

The first iterations of the web client implemented a module for converting
Java objects to plain JavaScript objects. The advantage of this approach was
that JavaScript objects could then be easily converted to the JSON string
format. The converter module separated the task of serialization from the
actual model that was to be serialized. The problem with this approach was
that in practice the converter implementation was tied to the specific type
of object it was supposed to serialize. For this reason the converter was later
replaced with JavaScript wrapper classes, which wrapped the Java objects
returned by the OPC UA SDK. Encoding the returned objects was then
reduced to a matter of calling JSON.stringify on the JavaScript wrapper ob-
jects. This method serializes JavaScript objects to the JSON format required
by the service interface, stripping all methods from the resulting JSON.

The wrapper classes allowed to use the exact same data model on the
server-side and client-side. However, the JSON serialization phase strips all
functions from the serialized objects, so it is not possible to use them on the
client-side. Nevertheless, this did not turn out to be a major problem, as
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most of the OPC UA related functionality of the web client is driven by the
service interface.

In order to retain special characters in query parameters, all requests
sent to the service layer need to have their request URI query parameters
encoded before transmission. Thus, it is the responsibility of the service layer
to decode all query parameters by using the standard decodeURIComponent
JavaScript function. Similarly, the service layer encodes all query parameters
in the resource URI embedded in the response data by using the standard
encodeURIComponent JavaScript function.

8.3.5 Subscriptions

The timely delivery of up-to-date process data is an essential feature of any
monitoring system. In the context of web applications, the conventional
way to transmit real-time data to the web browser is to have the client
poll the server for new data with frequent intervals. However, polling is not
optimal for frequently changing data as it incurs the extra overhead of HTTP
request headers. HTML5 introduced the SSE and WebSocket protocols for
the delivery of real-time push notifications to browser-based clients. Since
only one-way data flow was required for implementing the transfer of OPC
UA events, the more simple SSE protocol was used.

Nashorn specifies a simple syntax for extending existing Java classes in
JavaScript. The service layer uses this feature to extend the listener classes of
the OPC UA SDK with event handling logic. When a new event is received,
it is transformed into a JSON object and published to all interested sub-
scribers by using the MessageBus class of the Avatar framework. The push
service receives the published events and pushes them to the corresponding
clients by using SSE. The advantage of SSE is that it supports automatic
reconnection and that an SSE server is considerably easier to implement
than its WebSocket alternative. The main disadvantage, aside from being
unidirectional by design, is that the HTTP specification limits the number
of concurrent HTTP connections on domain basis, which prevents the user
from opening the web client in multiple browser windows at the same time.
The SSE specification suggests the use of HTML5 web workers to circumvent
this problem.

One of the requirements for the web client was that it should take ad-
vantage of modern web technologies. While all of the technologies covered
in this thesis are well supported by modern web browsers, the availability of
fallback strategies is still relevant. For example, the latest version of Internet
Explorer is yet to support the Server-Sent Events specification. Moreover,
despite the automatic update feature of modern web browsers, considerable



CHAPTER 8. IMPLEMENTATION 68

number of web browsers in use today represent older releases. For instance,
automatic updates may be hindered by restrictive company policies. Such
cases present a relatively small but real motivation for fallback technologies,
which are commonly referred to as polyfills.

The service sends heartbeat messages to the web client. The absence of
heartbeat messages informs the connected web clients that connection to the
service has been lost. This allows the user interface to display the connection
status to the user. Heartbeats are sent through a separate push endpoint.
The drawback is that it does not solve the problem with HTTP proxies that
close the connection after a specific timeout [37]. A better approach would
have been to send a periodic comment line in the event stream, as suggested
in the SSE specification.

One problem encountered with the push notifications was related to the
buffering of notifications. The service layer maintains a buffer of outbound
events. This is done in order to maintain control of the rate with which
messages are pushed out to the clients. The push service uses a shared buffer
for outbound events. Events are added to the buffer via a single message
bus shared by all service instances and worker threads. Avatar enables the
automatic load-balancing between these threads. Running several service
threads caused events to be produced from multiple threads simultaneously.
These events were then then received by the push handler. Access to a
shared buffer from multiple threads resulted in race conditions. The issue
was finally solved by implementing a simple critical section around the part
of the code which deals with the shared buffer. This approach is not optimal.
More work is required to refactor the code so as not to require in the use of
shared buffers. This would have the added benefit of better scalability of the
application to multiple servers.

8.4 Presentation layer

The presentation layer implements the HMI functionality of the web client,
providing operators with access to OPC UA servers. It can be used to man-
age OPC UA connections, browse address spaces, read and write attribute
values, subscribe to data changes and events, and call server-defined OPC
UA methods. The user interface has controls such as buttons, lists, and links,
which upon user interaction send requests to the service layer. The user in-
terface updates itself based on the response data it receives from the service
layer, displaying an up-to-date representation of the servers it is connected
to.

The web client implements the thin-server architecture. This means that
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aside from the initial page load, subsequent user interaction need only gen-
erate asynchronous requests for the changing data, without causing a full
page reload. The changing data is retrieved either on demand with asyn-
chronous HTTP requests or in real time by subscribing to server-sent push
notifications.

One of the requirements set for the user interface was that it should
adapt to different display sizes. The user interface achieves this by the use
of CSS3 media queries, which allow specifying different style definitions for
different display sizes. The use of Bootstrap framework since the beginning
of the project made adding mobile support to the web client’s user interface
slightly easier, as its style definitions support responsive design principles out
of the box.

At first, the web application was developed for desktop first. The main
benefit that this approach brought was that it was easy to add new features,
because the design was not limited by a small screen size. However, convert-
ing the desktop optimized user interface to mobile devices was found to be
difficult, because of the significantly smaller display size of mobile devices.
For this reason a mobile first approach was adopted later on in the develop-
ment. The advantage of a mobile first approach was that it was much easier
to adapt the mobile optimized layout to a desktop environment, than the
other way around.

Using Bootstrap allowed to quickly build a relatively good looking user
interface with little effort. The drawback of littering the HTML markup with
Bootstrap specific classes was that the GUI library was soon tightly coupled
with the application. Defining custom styles become more obscure, as it often
required overriding existing styles defined by Boostrap. Another drawback
was the lack of some more complex GUI components, such as horizontal and
vertical splitters, tree views, and editable span elements. These deficiencies
were corrected with the addition of external library dependencies, which
on the other hand increased the overall size of the user interface, having a
negative impact on mobile clients that need to download it from the server.

All of the evaluated frameworks could have been used to create a single-
page application, so making the choice between them was not straightfor-
ward. Finally, the Angular.js framework was chosen because of its declar-
ative syntax which extends HTML with new tags and attributes, a feature
thought to be useful for the creation of reusable SCADA components.

8.4.1 Server connections

The web client enables a user to connect to an OPC UA server. The landing
page presents an input field where the user can specify the server to connect
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to, by entering a standard OPC UA server URI, and clicking the connect
button. Optionally the user may enter user credentials to be used when
connecting to the server. The input field is automatically populated based
on the configuration options of the web client.

The API for managing server connections is as follows:

/api/sessions

The service interface represents server connections as session resources.
This is because a server connection is always associated with a session. A new
connection is created by sending an HTTP POST request at the collection of
session resources. Similarly, a client can disconnect from a server by sending
an HTTP DELETE request.

8.4.2 Address space browser

The address space browser is used to view and navigate the address space of
an OPC UA server. A tree view was chosen to visualize the server address
space as it is a common and intuitive way to represent the mesh-like tree
structure of OPC UA. The custom Angular Tree Control directive was used
to provide a graphical representation for the tree view.

The web client uses the following API of the service layer to fetch the
references of a node:

/api/sessions/{id}/nodes/{nodeId}/references

Here id is the session ID assigned by the service layer, and nodeId is the
nodeId of the node for which references are to be fetched. Besides linking
to itself, a reference representation contains links to its source and target
nodes. In order to reduce round-trips to the service layer, the representa-
tions of both source and target nodes may also be embedded directly to
the reference representation. The support for embedded representations was
found to significantly improve the performance of the client. With embedded
resources, fetching references for a node with five references was reduced to
a single request, whereas in the old system six separate requests would have
been required.

8.4.3 Node details

The details view is used to present detailed information about a selected
node, including its attributes and references. The reference list has controls
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for filtering references by their type. Angular makes filtering data particu-
larly easy by its built-in filters, which can be applied directly in HTML in
conjunction with the ng-repeat directive. Figure A.1 shows a screenshot of
the node details view with the root node being selected. The header bar
allows for customization and features a label which indicates whether the
client is currently connected to a server. The current version of the web
client supports only one consecutive server connection, but future versions
will allow for switching between active OPC UA sessions.

8.4.4 Subscriptions

The subscriptions view presents a tabular view of the current subscriptions
and the monitored items associated with them. Subscriptions can be added
either by dragging them to the subscriptions view, or by right clicking the
specific node and choosing monitor. The controller of the subscriptions view
listens for incoming data change events and updates the values of the sub-
scribed nodes which have changed. The service buffers data change notifica-
tions and sends a notification every fixed interval. Therefore the notification
may contain multiple value updates. Figure A.2 shows a screenshot of the
subscriptions view with several monitored data items assigned to a subscrip-
tion. The current version of the web client supports only one subscription,
but future versions will allow the user to choose which subscription a moni-
tored data item should be assigned to.

The web client uses the following API of the service layer to manage
subscriptions:

/api/sessions/{id}/subscriptions

The web client has two views for displaying subscribed data values and
events. These are the subscriptions view and the events view. The subscrip-
tions view displays a list of all subscribed variables with their most recent
values and timestamps indicating the time when the value was last updated.
In addition, it also shows some additional information about the variable,
such as its data type and display name. The following API is used to man-
age monitored data items:

/api/sessions/{id}/subscriptions/{subId}/dataitems

The events view differs from the subscriptions view by displaying in-
coming events as they are received from the service layer. A new event is
appended to the end of the list regardless of whether an event from the same
event source had already been received or not. The current version only
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shows the events as they are received. Future versions will also allow for
filtering the list of events, and support for easily acknowledging the received
events by using the standard OPC UA methods defined in the address space.
The following API is used to manage monitored event items:

/api/sessions/{id}/subscriptions/{subId}/eventitems

8.4.5 Historical data

The history view displays value history read from the server in tabular and
graph formats. Figure A.3 shows a screenshot of the history view. The
amount of history data requested from the OPC UA server can be large.
For example, the client may decide to fetch value history data of a counter
variable from the last three months. In this case the requested data set
is too large to fetch in one go. The solution is to divide the history read
request into multiple steps by using continuation points. The service reads
a specific number of data points and processes the result, after which it uses
the continuation point returned by the server to carry on with the history
read. The service uses push notifications to inform the client of its progress,
and the client can update its visual representation as more data gets pushed
to it.

The web client uses the following APIs of the service layer to issue history
read requests. The first collection represents value history, while the second
collection represents event history.

/api/sessions/{id}/nodes/{nodeId}/values

/api/sessions/{id}/nodes/{nodeId}/events

8.4.6 Server-defined methods

In order to remain RESTful, the service layer represents each method call
made by the client as an individual resource. Issuing a GET request on
the calls collection would conceptually return a list of all method calls ever
issued since the startup of the server. This could be useful for accountability
reasons, but is not implemented in the current version. The web client may
call a server-defined method by issuing an HTTP POST request on the calls
collection. The three parameters expected by the call service are passed as
HTTP POST parameters. These are the NodeId of the method, the NodeId
of the object on which the method should be called, and an array of input
arguments.
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The web client uses the following API of the service layer to call server-
defined methods:

/api/sessions/{id}/nodes/{nodeId}/methods/{methodId}/calls

8.4.7 User interface components

Generic user interface components can speed up the development of SCADA
HMIs. A generic design should not cater to one specific type of application
area, but rather support different use cases, and thereby promote reuse across
different projects. The web client provides reusable components in the form
of Angular.js directives. An example component is the graph component of
the history view, shown in Figure A.3, which is used for displaying trends of
various kinds to the operator. The source code of the graph component is
presented in Listing B.1.

8.5 Testing and debugging

In order to ensure the correct functioning of the application and reduce the
chance for introducing new bugs through regression, it is important to test
the application continuously. The application was tested mostly by running
it in a web browser and trying different use cases manually. In addition,
some unit tests were written with Karma and Jasmine. Karma is a test
runner which allows to run tests written in JavaScript from the command
line. Jasmine is a test framework which emphasizes specifying the expected
behavior of the application.

Regardless of the amount of testing, bugs sometimes find their way into
the source code, so a way to debug the code is needed. At the time of writ-
ing this thesis, at least Eclipse, Netbeans and WebStorm have added support
for debugging Java applications that use Nashorn to embed JavaScript into
Java. The debugging process is the same as for normal Java applications with
the exception that the debugger stops at breakpoints assigned to embedded
JavaScript files. The first attempt was to setup a development environment
around Glassfish and the Avatar framework. A Glassfish project comple-
mented by Avatar was created and the web application was deployed in it. In
practice debugging the web application in this way turned out to be impossi-
ble since none of the IDEs included support for running Glassfish projects on
Java 8. The other option for debugging JavaScript running on the Nashorn
JavaScript engine was to use the debug module of Node.js. However, this
module depends on the debugging capabilities of the V8 JavaScript engine,
and is not supported by Avatar.
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8.6 Security

The web client supports full end-to-end security. Client-server security be-
tween web browsers and the service layer is achieved by using HTTPS, while
communication between the underlying system and OPC UA servers is se-
cured with UA Secure Conversation.

One of the requirements was that the user interface should be decou-
pled from the web service. This requirement includes use cases where the
user interface and service are deployed under different domain names. Nev-
ertheless, modern browsers enforce the same-origin policy, which prevents
resources with different origins, that is a combination of protocol, hostname
and port, from accessing each other’s DOM and communicating with XHR.
The service layer supports Cross Origin Resource Sharing (CORS) which by
setting specific HTTP headers enables it to specify which origins should be
allowed access to the resource. Without CORS, it would not be possible to
host the presentation layer and the service layer under different domains.

The web client uses a cookie-based authentication scheme. A session
cookie is set when the user enters the web application for the first time.
Each browser session has its own hash map for storing OPC UA sessions. A
new OPC UA session is assigned to the hash map each time a user connects
to an OPC UA server. Disconnecting from a server removes the session from
the hash map. The hash map is indexed by a server ID local to the browser
session.

8.7 Configuration

All the configuration options of the web client are present in a configuration
file. The configuration file is a normal JSON formatted JavaScript file. One
section of the configuration options is reserved for user interface specific set-
tings such as the name of the application, and the various display options for
the graph element. Another section is dedicated for the service configuration,
having settings for configuring the service’s location and a list of pre-defined
OPC UA server endpoints. The configuration options are defined in their
own module, providing a clean encapsulation and allowing to easily inject
them in the modules that require them.



Chapter 9

Discussion

9.1 Summary and results

The general goal of this thesis was to evaluate the suitability of standard
web technologies when developing monitoring applications for the Industrial
Internet. The constraints were that the application should be deployed on
the OPC UA platform and programmed by using the OPC UA Java SDK
of Prosys PMS Ltd. In order to perform the evaluation, a generic OPC
UA client application was developed. The results show that it is indeed
possible to develop applications for the Industrial Internet using standard
web technologies.

Section 9.2 of this chapter presents an evaluation of the finished imple-
mentation in terms of requirements met and a comparison to alternative
solutions in the market, while also discussing problems faced during devel-
opment, and how the finished implementation fits in within the Industrial
Internet. Section 9.3 then answers the research questions, and Section 9.4
discusses alternative approaches that could have been taken. Finally, Sec-
tion 9.5 discusses the potential future work.

9.2 Evaluation

9.2.1 Meeting the requirements

In Chapter 7, several requirements for the generic client implementation were
specified. Fulfilling these requirements was then addressed in Section 8.

Five general requirements were identified: independence of external soft-
ware components, separation between business and presentation logic, sup-
port for basic OPC UA features, end-to-end security, and configurability.

75



CHAPTER 9. DISCUSSION 76

Independence of external software components was achieved by using only
those standard web technologies that were natively supported on all target
web browsers. The target web browsers chosen were Google Chrome and
Mozilla Firefox. Later on it was discovered that Internet Explorer could also
be supported by employing a polyfill for the server-sent events feature. The
fact that no browser plugins or locally installed components were required
demonstrates that rich Internet applications can be developed by depending
only on standard web technologies. The client-server, service-oriented archi-
tecture of the web client ensured a proper separation of concerns, fulfilling
the second requirement. Conformance to basic OPC UA client facets was
facilitated by the use of the OPC UA Java SDK. In order to reduce develop-
ment time, this requirement was changed to providing JavaScript wrappers to
the Java interfaces of the SDK. The SDK has been officially certified against
the test suite of OPC Foundation, so it is perfectly possible to develop fully
conformant clients by using it. It is therefore reasonable to assume that the
JavaScript API conform to the client facets to the extent that they replicate
the Java API. End-to-end security of OPC UA was extended to web browsers
by forcing web browsers accessing the presentation and service layers to use
SSL. The configuration of the web client is based on JSON-formatted config-
uration files that are located at the server hosting the service. This approach
works well for small deployments where the effort required to update config-
uration files is relative low, but a separate configuration backend could be
more suitable to larger deployments, where central management of service
configuration is desired.

Six requirements were specified for the service layer: modular design,
client-server architecture, support for multiple simultaneous users, connec-
tivity to OPC UA servers, serialization of OPC UA data, and the delivery
of OPC UA events to the connected clients. The requirement for modularity
was met both on the client-side and on the server-side. On the client-side
the Angular.js framework encouraged a division of the source code into three
main categories: controllers, services, and view directives. Essentially this
enabled to define view components independently of their data sources de-
fined in the services. The controllers, encapsulating the applications state
within scope declarations, connected data sources to view components. Mod-
ularity on the client-side allowed to define data sources once and define those
definitions across all controllers. Similarly, code on the server-side was orga-
nized into several modules, each with their own distinct responsibilities. For
example, all OPC UA communication was performed in the JsClient object
which encapsulated the client interface of the OPC UA Java SDK, expos-
ing a JavaScript API. This JavaScript API was then used in the REST and
SSE service modules in order to pass request data to OPC UA services and
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to send responses with the corresponding results of the service calls. The
requirement for client-server architecture was met by using HTTP as the
transport protocol. Moreover, the decision was made to try to conform to
the REST architectural style because of the potential benefits listed in Chap-
ter 4. The HTTP protocol turned out to map easily to OPC UA service calls.
However, adhering to the RESTful style was not straightforward with OPC
UA, and some of the problems that were encountered are described later in
this chapter. For supporting multiple simultaneous users the thread module
of Avatar framework was used. This module facilitated the creation of asyn-
chronous API for the JsClient object. Another, better approach would have
been to take advantage of the asynchronous method calls of the OPC UA
Java SDK, and to provide an asynchronous interface that returns promise
objects, or the possibility for configuring a callback. Connectivity to OPC
UA servers was achieved by complying to the OPC UA client facets. The
serialization of OPC UA data was performed by creating JavaScript wrapper
classes for core classes of the OPC UA Java SDK. This way each JavaScript
class could provide its own methods for serializing and deserializing between
Java and JSON representations of the OPC UA data objects. Performing
serialization manually instead of relying on a JSON serialization library such
as GSON provided more flexibility and allowed to encapsulate the function-
ality within the respective JavaScript wrapper classes. Finally, the service
layer meets the requirement for the sending of periodic push notifications.
Using the SSE protocol proved to be sufficient for the purposes of the web
client, with the exception of the problems caused by the HTTP request limit
imposed by web browsers.

Finally, two requirements were identified for the presentation layer: re-
sponsive layout and reusable user interface components. The Bootstrap
framework was used as a starting point for implementing the responsive user
interface of the web client. Initially the web client was tested on the desktop.
It was later discovered that a mobile-first approach would have been better
as fitting all the user interface components into a smaller screen size proved
to be difficult. With a mobile-first approach, the mobile-optimized interface
could be later optimized for desktop use by using for example CSS media
queries and a progressive enhancement methodology. The web client also
features some sample web components developed as Angular.js directives.
Aside from trivial examples, the syntax for declaring Angular.js directives
was rather complex.
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9.2.2 Comparison to existing solutions

This section compares the generic client implementation to the solution cat-
egories presented in Chapter 6. These categories included pre-rendered user
interfaces represented by Groov, web APIs represented by HyperUA and na-
tive stacks represented by the JSUA framework. The solutions are compared
based on available features and usability.

In relation to the evaluated solutions, the generic client implementation
offers a basis for building web-based HMI applications, while also exposing
a JSON-based web API for interacting with OPC UA servers. It offers an
inexpensive way to expand existing OPC UA Java SDK based OPC UA
applications with web capabilities.

Both the generic client and HyperUA expose a web-based API for access-
ing OPC UA servers. HyperUA is capable of exposing OPC UA services as
RESTful services. Its API seems to conform to the hypermedia constraint
of the REST architectural style. Resources are represented as HTML can be
traversed by using standard CSS selectors. The web client takes a different
approach by providing a JSON-based resource format. This format is in-
spired by the Hypertext Application Language (HAL) format and is capable
of representing references between individual resources. Depending on the
use case, the more traditional JSON responses may be easier to program
against. However, the advantage of the API of HyperUA is that the same
HTML5 API can be consumed both by a machine, and by a human. The ma-
chine uses standard CSS selectors to navigate the HTML5 response, while
the human clicks the links in the HTML5 response. All in all, the REST
design principles followed by HyperUA and the web client are likely to gar-
ner extra benefits when it comes to scaling the applications horizontally to
multiple threads, CPU cores, and ultimately to the cloud.

Out of the evaluated solutions, Groov and HyperUA provide a graphical
user interface that can be used in the web browser. While HyperUA only
provides a simple HTML5 based presentation of its API, Groov comes with
tools for designing and viewing HMI views in web browsers. This comparison
focuses on Groov because it features plug-and-play HMI components, which
are an essential feature of an HMI toolkit. Groov comes with a collection
of user interface components which can arranged in the web-based editor
to create an HMI that scales to displays of different sizes. The web client
also supports reusable components, but it does not come with a designer
application. A similar feature could however be implemented on top of the
web client by allowing the user to drag-and-drop address space nodes on a
dedicated canvas in the user interface of the web client. Like Groov, the web
client does not depend on any external browser plugins or locally installed
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software, and in the same way as Groov it has been designed to work with
various display sizes. Groov seems to rely heavily on scalable vector graphics
(SVG) to ensure that graphics elements scale properly on different end-user
devices. The web client does not use SVG but instead most graphical ele-
ments aside from the address space browser are defined using plain CSS. The
advantage is that user interfaces can be more easily designed to work with
both large and small display sizes by using CSS media queries.

All solutions employ HTTPS in order to ensure that proper end-to-end
security is maintained between the web browser and the OPC UA servers.
Both Groov and HyperUA additionally implement their own access control
mechanisms based on configurable roles and permissions. The web client
depends solely on OPC UA authentication. The advantage of an additional
authentication layer is that permissions can be configured independent of the
underlying OPC UA servers. For example, web client users may be denied
access to a specific server, while still having the permission to access the
servers locally on organization premises.

The advantage of the web client compared to Groov and HyperUA is
that by developing the monitoring application against the OPC UA Java
SDK interfaces, full control over the application design can be retained. This
approach of developing directly against the OPC UA APIs means that ap-
plications can be more flexibly customized to conform to the case-specific
requirements.

The generic client and the other solutions all require an intermediate
proxy server for deployment, although in the case of the JSUA framework
the web server is only needed for bypassing the same-origin policy restrictions
enforced by most web browsers. On the other hand, securing the source code
of the browser-based implementation might prove to be an issue in some
cases. Moreover, the web server can be seen as an advantage as it provides
a centralized aggregation point and allows the service to pre-process data
before it sends it to the web browsers. Deployment consists of installing the
server software on the target server hardware. Alternative, a pre-installed
device ready to be installed in the factory network can be provided, as is
already done by Groov. Since the generic client was developed in Java it can
be easily deployed on a variety of platforms, including embedded systems.

Among the evaluated solutions Groov is the only one which does not
require any programming. Instead, HMI can be developed by merely drag-
and-dropping user interface components, and graphically connecting them to
the relevant data sources. The drawback is that it is more difficult to cus-
tomize the HMI to meet specific requirements. HyperUA on the other hand
provides the necessary APIs to integrate OPC UA data to the HMI but does
not itself come with tools that facilitate HMI development. The web client
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strikes a balance between these two approaches by on one hand providing the
developers with programmatic interfaces to access OPC UA data, an on the
other hand defining simple conventions for the implementation of reusable
user interface components. The web client does so by depending on the
OPC UA Java SDK and the Nashorn JavaScript engine of Java 8 to pro-
vide both Java and JavaScript APIs to OPC UA, along with a JSON-based
web API, accessible by all web-capable devices. The web client is therefore
not restricted to plain JavaScript such as is the case with the JSUA frame-
work. It also provides higher level OPC UA abstractions, likely resulting
in fewer number of source lines of code. The downside of the web client
is that it requires more programming work to implement HMIs. Moreover,
the level of skill required may be higher, as the programmer is required to
have knowledge of both Java and JavaScript, whereas in HyperUA only CSS
selectors known by web designers are required, and in JSUA only JavaScript
knowledge is required.

9.2.3 Problems with the implementation

This section discusses some problems that were faced during the development
of the web client, with the purpose of outlining some challenges that can
be encountered when developing web-based monitoring applications using
the proposed approach. Along with the problem statements, some potential
solutions are discussed.

The first problem was related to the mixing of Java and JavaScript code
when developing the web client. It was quickly noted that the mixing of
Java and JavaScript code made it more difficult to reason about the flow of
the program execution. Essentially, the solution was to encapsulate all code
using the OPC UA Java SDK in its own JavaScript wrapper modules, which
were then referenced and used in plain JavaScript modules. This separation
has the added benefit of allowing to reuse the JavaScript wrappers also in
other projects.

The second problem was that the Avatar framework deployed the service
layer written in JavaScript as a Java servlet which had to be re-compiled in
order to see the changes reflected in the web browser. Therefore the benefit
of not having to compile JavaScript when testing changes to the service layer
was lost, which made iterative development more difficult.

The third problem was that the Server-Sent Events used to push event
notifications from the server to the web browsers does not support running
the web application in multiple tabs of the web browser at the same time.
Currently, a new EventSource object is assigned to each individual event the
server might generate. The number of consecutively allowed HTTP connec-
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tions to the same server, governed by the HTTP protocol, is thus quickly
exceeded. This problem was partly solved by sharing the same EventSource
between server events, but multiple tabs could still open too many HTTP
connections. A better solution, suggested by the protocol specification [37],
would be to either create a single shared worker instance for the browser tabs
and use it to share the same EventSource between browser tabs. Alterna-
tively, the SSE protocol could be replaced with a protocol such as WebSocket,
which in most modern browsers has a separate, typically much higher con-
nection limit than standard HTTP. This however would add unneeded com-
plexity to the web client, as high performance two-way communication is
not strictly required by the current implementation. An alternative, Web-
Socket based implementation, could be considered in the future if a higher
performance implementation were to be deemed necessary.

The fourth problem was associated with the performance of the web client.
There was a performance bottleneck in the web client that was found in the
round-trip times between the client and the service. The measurements per-
formed using the Chrome developer tools reported round-trip times of several
seconds depending on the size of the request. This is likely due to the im-
plementation of the handling logic which upon loading the references of a
node also loads the referenced nodes. Thus, the overall performance could
be improved by separating the loading of references from the loading of the
node objects. Another way to increase the performance of browsing the
address space would be to pre-emptively cache frequently requested nodes
on the service side. In relation to the round-trip times the rendering times
were found to be negligible, averaging around 1 millisecond per requested
node. Nevertheless, the overall performance could be improved also on the
client-side by performing client-side caching of the JSON serialized nodes,
references and subscriptions to the local storage of the web browser. Client-
side caching could speed up the initial loading of the user interface because
seldom changing top level nodes could be loaded from cache. Storing appli-
cation state locally would also enable the user to browse the address space
in offline mode. Operations such as the creation of new nodes in the address
space could be stored and executed when a connection to the Internet be-
comes available. It would also allow the user to continue from a previous
state after closing the web browser.

The fourth problem was associated with debugging the application. The
dynamic nature of JavaScript made debugging the application more difficult,
because the IDE was not able provide as much support and error checking,
compared to for example the strongly typed Java language. One way to ease
the development of JavaScript applications that rely on strongly typed Java
classes, would be to use an intermediate, typed language that compiles to
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JavaScript. Such languages include for example TypeScript, CoffeeScript,
and Flow.

The final, most fundamental problem with the chosen approach was as-
sociated with the scalability of the web client. The web client maps browser
sessions to OPC UA sessions. OPC UA sessions are stateful, so the server has
to maintain them across requests. As described in Section 4.3, storing client
sessions on the server-side leads into scalability issues, as sessions need to be
shared between service instances. Due to this constraint, the web client is
incapable of supporting multiple service instances, let alone multiple service
threads executing on the same host.

There are a few ways to solve this issue. First, the load balancer can
be configured to always forward requests with a specific session ID to the
same server. The problem with this approach is that it does not evenly dis-
tribute the load between different servers. Moreover, this setup alone would
not allow multiple service threads to run on the same server, as each would
need access to the same session state. The second approach is to imple-
ment synchronization of browser sessions between servers. The drawback of
this approach is that the synchronization would create extra overhead and it
would be difficult to ensure session consistency between servers. The third
approach would be to move the browser sessions from each individual web
server to a shared database. This approach would eliminate the need to
perform synchronization between web servers, but the database server could
turn into a performance bottleneck if the number of web servers became
high. It would also add an extra layer to the architecture of the service,
thus making it more complex and increasing round-trip times between web
browsers and OPC UA servers. Finally, in some cases could be possible to
reuse OPC UA sessions. In this model a pool of OPC UA sessions shared
by all browser sessions would be created for each server. In practice this
approach would be the most difficult one to implement because of the need
to control concurrent access to shared session resources. It would also not
be possible to rely on the OPC UA session for application state, because
the OPC UA session used to communicate with the server could be differ-
ent across subsequent requests. OPC UA authentication would also not be
possible because anonymous connections would be required.

In practice, due to the stateful nature of OPC UA, it is difficult to ad-
here to the REST architectural principle of not maintaining client state on
the server-side. In this regard the server-side JavaScript frameworks lose in
comparison to the purely client-side JavaScript implementations, capable of
maintaining direct OPC UA connections between the web browser and OPC
UA servers.



CHAPTER 9. DISCUSSION 83

9.2.4 Web technologies and the Industrial Internet

When choosing the right tools and frameworks for implementing an industrial
web application, it is highly desirable that the chosen frameworks will con-
tinue to be supported in the future. This was also an important criterion for
the web client. However, the choice between different tools and frameworks
is made more difficult by the rapid pace of change within web development
libraries. The two main frameworks chosen to implement the web client,
Avatar.js and Angular.js, were chosen based largely on the fact that large
companies developed them. It was presumed that these frameworks would be
well supported in the future. Unfortunately this presumption proved to be
wrong with Angular.js announcing a new version of the framework without
backward compatibility, and Avatar.js being later discontinued by Oracle.
Therefore it is important that emphasis is placed on choosing future proof
technologies when developing web applications for the Industrial Internet.
This is especially true for software projects which have a long life-span and
require long-term support, such as industrial automation systems.

The recent efforts in the standardization of new web technologies show
that the way modern web applications are developed today is slowly starting
to converge with the way native desktop applications are developed. The
last years have seen a vast increase in client-side frameworks and software
development methods and tools originally conceived for native desktop pro-
gramming are slowly being introduced to the web world. Tools such as task
runners, build systems, package managers, source code verifiers, unit testing
frameworks, continuous integration systems, profiles, debuggers, optimizers,
and minifiers are helping developers to produce code of better quality more
efficiently. Web technologies are even used to power traditional desktop appli-
cations. For example, the JavaFX Scene Builder allows to define customized
user interfaces with the use of CSS. A project called node-webkit allows
to create native desktop applications by using HTML, JavaScript and CSS.
More and more focus is also put into enabling desktop like features on the
web browser. For example, cutting edge technologies such as raw sockets,
native data binding, web components, WebGL, and WebRTC are already
enabling developers to write native-like applications for the web browser.

9.3 Answering research questions

The first question, “What are the requirements for the generic OPC UA web
client?” was answered in Chapter 7, which listed the functional and non-
functional requirements for the web client. An important requirement was
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that the client should be generic enough to be easily reusable in different use
cases.

The second question, “How can the generic OPC UA web client be im-
plemented?”, was answered in detail in Chapter 8. The web client was
implemented by using a service oriented client-server architecture, where a
REST-like HTTP interface allows multiple concurrent clients to use the same
uniform interface for interacting with OPC UA servers. The integration with
OPC UA Java SDK was facilitated by the use of the Nashorn JavaScript en-
gine which allowed to access all the capabilities of the SDK from JavaScript.

The third question, “How does the generic OPC UA web client compare
to other solutions?”, was answered in the previous section. Due to its flexible
nature, the proposed architecture compares well against the other solutions,
with the benefits of an industry proven SDK and full control over the whole
application stack.

This chapter evaluated the web client in relation to the other solutions,
discussing both its advantages and shortcoming. To answer to the final ques-
tion, “Are standard web technologies compatible with the Industrial Inter-
net?”, the finished application shows that modern web technologies provide
developers with sufficient tools to develop efficient, feature-rich and usable
applications for the Industrial Internet.

9.4 Alternative approaches

This section discusses some alternative approaches that could have been
taken when developing the web client.

First, it could have been wiser to use the plain Avatar.js library instead of
project Avatar. The advantages of Avatar, easy creation of service endpoints
coupled with integration with the JMS, quickly eroded as compared to the
difficulties that a service container layer brought to the development of the
application. For example, deploying a simple debugging environment proved
to be difficult as the service would not run at all without a full Java EE
application server. Furthermore, the only supported deployment platform
was Glassfish, and choosing a heavy weight application server for one light
weight application instance could be difficult to justify to customers. One
important feature of Project Avatar was the capability of spawning Java
worker threads from JavaScript code. This was facilitated by the utility
functions provided by the framework, which return promises. The threading
module greatly simplified the code of the service layer as it was possible
to use straightly the synchronous versions of the OPC UA SDK method
calls. On the other one could argue that using multiple threads in a Node.js
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application beats the purpose of using Node.js in the first place, and that
standard JavaEE servlet technologies would fit the purpose better.

In addition to the Avatar framework, several other JVM-based Node.js
platforms were discussed in this thesis. The most obvious alternative ap-
proach would have been to use only the Avatar.js component of the Avatar
framework. The main benefit of this approach would have been that it would
have removed an extra layer from the implementation. Thus it can be argued
that debugging the application could have become easier, as the implemen-
tation would have been simpler.

Second, an entirely different approach would have been to use the polyglot
Vert.x framework, and altogether abandon the idea of integrating the SDK
classes straightly with the application code written in JavaScript. Instead,
a separate Java verticle containing the SDK would have been implemented,
alongside with a client verticle written in JavaScript, or any other language
supported by Vert.x. There is even a project called Nodyn which aims to
implement the Node.js API on top of Vert.x, allowing applications to leverage
the Vert.x APIs and run existing Node.js scripts on top of Vert.x. This
approach presents a direct replacement for Avatar.js. It could also be worth
exploring projects such as node-java, which is a Node.js module that adds
support for invoking Java methods from Node.js applications. In order to
test the portability of the service code, it could also be tested with a different
Java-based Node.js API implementation such as Nodyn.

9.5 Future work

Due to the emergence of the Industrial Internet, web-based industrial moni-
toring applications have increasing potential in the future. Industrial Internet
is often characterized by the increasing connectivity between industrial de-
vices and people operating them. Consequently operators need better tools
for monitoring and controlling the devices, and these tools must be usable
on-the-go with normal end-user devices such as mobile phones, tablets, and
laptops. This section outlines some potential future work associated with
the web client implemented as part of this thesis.

First, the view component that was developed was only a demonstra-
tion of what can be possible when the declarative syntax of HTML, custom
DOM elements and Angular.js directives were mixed together. Future ver-
sions could leverage this technology in order to provide more complex UI
components, such as gauges and thermometers, which the user can drag-and-
drop on the HMI. The upcoming standards for reusable web components [66]
could be adopted to create future-proof components which are compatible
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with most frontend frameworks.
Continuing with reusable components, the thesis by Boström [8] discussed

the implementation of custom and re-usable JavaFX user interface compo-
nents for the OPC UA product line. These components could potentially
be used also in the web client by running them in the embedded execution
mode of JavaFX. The web application could then communicate with the com-
ponents by using a JavaScript API provided by JavaFX. Similarly, JavaFX
provides embedded applications with access to the host web application. De-
veloping web-ready components using JavaFX could thus be an interesting
subject for future work.

Second, one key theme in the shift to the Industrial Internet is that
machines are becoming increasingly connected to each other through both
physical and wireless links, more intelligent through data mining, machine
learning and advanced heuristics, and more capable of independent decision
making. Industrial plants however generate huge amounts of data and higher
levels of semantics need to be assigned to the data in order to better analyze,
understand, and leverage it to meet various business needs. Adding support
for a linked data format such as the JSON for Linking Data (JSON-LD)
could thus be a subject for future work.

Third, the HTML5 standard offers many new technologies which could
be used to add support for offline usage to the web client and are thus worth
exploring. One of these technologies is local storage, which allows browsers
to store data locally, either across requests, or also across subsequent browser
sessions. This way the web client could maintain its state even after it has
been closed and reopened. The local storage could also be used for caching
references to interesting OPC UA nodes. For example, the address space
could maintain the state of opened folders and selected nodes.

Fourth, in the future, the web client should be expanded to support more
OPC UA features. Some examples for missing features, or features that
need more work, include parametric history reads, event handling, and server
discovery.

Fifth, the service layer makes it possible to reference individual nodes
of the address space by their node ID. However, unique URI references are
supported only on the service layer, and there is currently no way to refer
to specific application states in the browser address bar. In the future this
could be solved by taking advantage of the HTML5 History API.

Sixth, the performance issues related to the address space browser should
be addressed in future versions. The possible remedies include on one hand
the partitioning of large requests to a number of smaller requests in order to
reduce round-trip times, and on the other hand replacing the dirty-checking
Angular.js views with for example React views in order to minimize rendering
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times.
Finally, the web client could be turned into a native mobile application by

using for a example Phonegap. Alternatively, a user interface consuming the
same service API as the web client could be developed by using for example
the Ionic framework.



Chapter 10

Conclusions

This thesis set out to evaluate the applicability of web technologies to the
development of monitoring applications for the Industrial Internet. The eval-
uation was carried out by implementing a generic web client application for
industrial monitoring and control, and comparing it to existing monitoring
solutions on the market. The OPC UA standard for industrial data transfer
and information modeling was used as the target platform for the application.

The finished application consists of two parts, a service layer and a presen-
tation layer. The service layer exposes stateful OPC UA services as stateless
HTTP services conforming to the REST architectural style, and the presen-
tation layer consumes this service in order to provide a graphical human-
machine interface (HMI) for plant operators. The analysis part of the thesis
brings up some key issues in the development of web-based OPC UA appli-
cations.

The first finding was that the stateful OPC UA service calls cannot be
easily mapped to the stateless web resources of the REST architectural style.
The reason for this is that the service has to maintain connection to OPC
UA servers across HTTP requests, and client sessions are tied to the OPC
UA sessions. Several ways to circumvent this problems were discussed in
the thesis, including the implementation of a shared pool of OPC UA con-
nections. Solving this problem could increase the scalability, because new
service instances could be deployed independent of one another.

The second finding also related to service scalability was that the hy-
permedia constraint of REST could be applied also to HTTP services that
expose OPC UA services, and that at least one such system has already
found its way to the market. The benefit of passing application state in web
requests is that the server can be scaled out more easily, as new service in-
stances can be added without concern for sharing the client sessions between
them. In short, according to the hypermedia constraint of REST, the request
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itself should embody all the information that the server needs to process it.
The third finding was that asynchronous API are useful because they

allow to handle requests quickly, allowing for a better scalability to a large
number of users. Therefore all I/O handling should be performed asyn-
chronously and long taking synchronous processing should be avoided.

The fourth finding was that the new web specifications for reusable web
components and server-sent push notifications are among the key technolo-
gies enabling a new kind of web-based industrial monitoring applications to
emerge. The difference between what is currently possibly only with na-
tive desktop applications as compared to web applications is actively being
narrowed by the web community.

The fifth finding was that the service layer can benefit from a polyglot
application architecture, where multiple languages are tightly integrated, ca-
pable of utilizing the libraries and language features of one another. Es-
sentially this is true when pairing languages that are sufficiently different
with each other. In this thesis, JavaScript wrappers were developed for the
client API of the OPC UA Java SDK. The experience was that in the ab-
sence of compile-time type restrictions, features could be implemented more
easily and more quickly. However, developing the application code comes
with a trade-off between easier debugging through type checking, and faster
iterations through less stringent restrictions of a dynamic language.

The sixth and final finding was that the enormous number of different
tools and frameworks for the JavaScript programming calls for a careful con-
sideration when it comes to bootstrapping a new web application project.
The great number of tools and frameworks also means that most of the new
projects will no longer be used in the years to come. Choosing the wrong
tools for the job can become costly later on if the maintainer of the tool
decides to pull support for it.

The results of this thesis serve as a groundwork for further investigations
on web applications for the Industrial Internet. Future versions of the web
client will extend the support for OPC UA client features. In the future the
web client may be deployed in a cloud in order to provide an aggregating
point for multiple process controllers. The data residing on the OPC UA
servers could then be easily accessed by using the service layer, and the
presentation layer could be deployed for debugging purposes.
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Appendix A

Screenshots

Figure A.1: Screenshot of the node details view.
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Figure A.2: Screenshot of the subscriptions view.

Figure A.3: Screenshot of the history view.



Appendix B

Source code

1 /**
2 * A graph component for Angular.js.
3 * Uses the Dygraphs charting library.
4 */
5 uaclientDirectives.directive(’uaGraph ’, [function () {
6 return {
7 restrict: ’E’,
8 scope: { data: ’=’, opts: ’=’, active: ’=’ },
9 template: "<div class=’graphComponent ’></div >",
10 link: function(scope , elem , attrs) {
11 var graphData;
12 var graph;
13 scope.$watch(’data’, function(points) {
14 if (points.length == 0) return;
15 if (typeof graph === ’undefined ’)
16 graph = new Dygraph(elem.children ()[0],
17 scope.data , scope.opts);
18 graphData = points.map(function(point) {
19 return [new Date(point [0]), point [1]];
20 });
21 graph.updateOptions ({’file’: graphData });
22 graph.resize ();
23 });
24 scope.$watch(’active ’, function(value) {
25 if (value === true)
26 graph.resize ();
27 });
28 }
29 };
30 }]);

Listing B.1: The graph component used in the history view.
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1 /**
2 * A gauge component for Angular.js.
3 * Uses the C3.js charting library.
4 */
5 uaclientDirectives.directive(’uaGauge ’, [function () {
6 return {
7 restrict: ’E’,
8 scope: { data: ’=’ },
9 template: "<div class=’gaugeComponent ’></div >",
10 link: function(scope , elem , attrs) {
11 var gauge = c3.generate ({
12 bindto: ’#’+elem.attr(’id’),
13 data: {
14 columns: [
15 [’data’, scope.value]
16 ],
17 type: ’gauge’
18 },
19 color: {
20 pattern: [
21 ’#FF0000 ’, ’#F97600 ’,
22 ’#F6C600 ’, ’#60 B044’
23 ],
24 threshold: {
25 unit: ’value’,
26 values: [30, 60, 90, 100]
27 }
28 },
29 size: {
30 height: 128
31 }
32 });
33 scope.$watch(’data’, function(value) {
34 chart.load({
35 columns: [[’data’, value]]
36 });
37 });
38 }
39 }
40 }]);

Listing B.2: A gauge component.
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