
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Tomi Salminen

Flexible and transparent buffering of
radio astronomy measurements:

VLBI-streamer and Flexbuff

Master’s Thesis
Espoo, April 27, 2015

Supervisor: Professor Heikki Saikkonen
Advisors: Ari Mujunen D.Sc.(Tech.)

Vesa Hirvisalo D.Sc.(Eng.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80714934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Tomi Salminen

Title:
Flexible and transparent buffering of radio astronomy measurements: VLBI-
streamer and Flexbuff

Date: April 27, 2015 Pages: 58

Major: Embedded Systems Code: T-106

Supervisor: Professor Heikki Saikkonen

Advisors: Ari Mujunen D.Sc.(Tech.)
Vesa Hirvisalo D.Sc.(Eng.)

Radio astronomical data recording poses three challenges for its users: High vol-
ume, high bandwidth and large geographical distances. The solutions have been
custom hardware and physical shipping of data sets. Performance of commercial
off-the-shelf hardware for streaming data recording has been steadily improving
and is starting to surpass the challenges. If the use of custom hardware can be
dropped, the solution can benefit from successive hardware generations without
added development efforts.

This thesis will present VLBI-streamer software for simultaneous read and write
data streaming and Flexbuff as the hardware housing this software. Volatile and
non-volatile memory are used as pools of resources in a user space confined best-
effort relaxed architecture. Since hardware will keep changing and it takes time,
developers and money to port software to different hardware, VLBI-streamer
was not bound to any specific hardware. VLBI-streamer will run on virtually any
Linux-system with a few package requirements and was made modular to support
different stream types (UDP/TCP/RDMA) and disk I/O backends.

In this thesis Flexbuff combined with the software VLBI-streamer developed by
the author is shown to be capable of 10Gb/s and beyond recording and streaming,
meeting current radio astronomical data recording needs.

Keywords: network, data-acquisition, TCP, UDP, radio astronomy

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMA

Tekijä: Tomi Salminen

Työn nimi:
Joustavaa ja läpinäkyvää puskurointia radiotähtitieteen mittauksissa: VLBI-
streamer ja Flexbuff

Päiväys: 27. huhtikuuta, 2015 Sivumäärä: 58

Pääaine: Sulautetut Järjestelmät Koodi: T-106

Valvoja: Professori Heikki Saikkonen

Ohjaajat: Diplomi-insinööri Ari Mujunen
Tekniikan tohtori Vesa Hirvisalo

Radiotähtitieteellisten kokeiden nauhoittamisessa on kolme haastetta: Suuri da-
tamäärä, korkea kaistanleveys ja suuret maantieteelliset etäisyydet. Ratkaisu-
na ovat ennen olleet räätälöidyt komponentit ja tallenteiden fyysinen lähetys.
Helposti saatavilla olevien tietotekniikan yleiskomponenttien suorituskyky on
noussut tasaisesti ja tallennuskyky alkaa lähestyä asetettuja haasteita. Jos
räätälöidyistä komponenteista voidaan luopua, yleiskomponenteille tehdyt ohjel-
mistoratkaisut voisivat hyötyä jatkuvasti kehittyvistä komponenttisukupolvista
ilman ylimääräistä ohjelmistokehityspanostusta.

Tämä diplomityö esittelee VLBI-streamer ohjelman yhtaikaiseen datan tallen-
nukseen ja lähetykseen, sekä Flexbuff komponenttimäärittelyn, jolla ohjelma aje-
taan. Lyhyt- ja pitkäkestoisia muisteja käytetään varattavissa olevina resursseina
käyttäjätilaan rajatussa, parhaan yrityksen arkkitehtuurissa. Koska fyysiset kom-
ponentit tulevat aina vaihtumaan, VLBI-streamer toteutettiin ilman siteitä mi-
hinkään tiettyyn rautakomponenttiin, jolloin säästytään ylimääräiseltä ohjelmis-
tokehitykseltä komponenttien vaihtuessa. VLBI-streamer on ajettavissa melkein
millä tahansa Linux-järjestelmällä ja tarvitsee vain muutaman ulkoisen vapaasti
saatavilla olevan ohjelmistokomponentin. VLBI-streamer on myös modulaarinen
ja tukee erilaisia verkkoprotokollia (TCP/UDP/RDMA) ja kovalevytallennustek-
niikoita.

Tässä diplomityössä Flexbuff ja kehittämäni VLBI-streamer osoitetaan pystyvän
nauhoittamaan ja lähettämään yli 10Gb/s tietovirtoja, täten täyttäen nykyisten
radiotähtitieteellisten kokeiden tarpeet.

Asiasanat: verkko, datatallenus, TCP, UDP, radiotähtitiede

Kieli: Englanti

3

Acknowledgements

I’d like to thank Metsähovi Research observatory and its crew for the great
opportunity to develop and grow as a software developer with this project.
I’m especially grateful for the relaxed leading style of Ari Mujunen, where
I had freedom to explore different options for a best solution. I had a lot
of rough edges as a developer, but in an encouraging environment I think I
turned out alright.

Espoo, April 27, 2015, Tomi Salminen

4

Abbreviations and Acronyms

10GE 10 Gigabit Ethernet
AHCI Advanced Host Controller Interface
AIO Asynchronous I/O
API Application Programming Interface
ATX Advanced Technology eXtended
BOD Bandwidth On Demand
COTS Commercial Off The Shelf
CPU Central Processing Unit
DBBC Digital Base Band Converter
DMA Direct Memory Access
EVN European VLBI Network
FPGA Field-Programmable Gate Array
FS File System
FUSE File system in Userspace
Gb Gigabit
GB Gigabyte
GNU GNU’s Not Unix
HPC High Performance Computing
IT Information Technology
JIVE Joint Institute for VLBI in Europe
LFN Long Fat Network
NAPI New API
NCQ Native Command Queuing
NFS Network File System
NIC Network Interface Card
OS Operating System
PCI Peripheral Component Interconnect
PPS Pulse Per Second
RAID Redundant Array of Independent Disks
RAM Random Access Memory

5

RDMA Remote Direct Memory Access
RTT Round Trip Time
SSD Solid State Drive
SATA Serial Advanced Technology Attachment
SCTP Stream Control Transmission Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
VFS Virtual File System
VLBI Very-long-baseline interferometry
VSI VLBI Standard Interface

6

Contents

Abbreviations and Acronyms 5

1 Introduction 10
1.1 Data recording in radio astronomy 10
1.2 A commercial off-the-shelf solution 11
1.3 Structure of this Thesis . 12

2 Hardware 13
2.1 Network interface cards . 14

2.1.1 Interrupt mitigation 14
2.1.2 Infiniband . 14
2.1.3 Remote Direct Memory Access 15
2.1.4 NIC tuning . 15

2.2 VLBI standard interface . 15
2.3 SATA controllers . 16

2.3.1 Advanced Host Controller Interface 16
2.3.2 Native Command Queuing 16

2.4 Disk Drives . 16
2.4.1 Spinning disk drives 16
2.4.2 Solid state drives . 17

3 Software concepts 18
3.1 Network scenario and correlation 18

3.1.1 Transmission Control Protocol 19
3.1.1.1 TCP with multiple streams 20

3.1.2 User Datagram Protocol 20
3.1.3 Stream Control Transmission Protocol 21

3.2 From the network to main memory 21
3.2.1 Sockets . 21
3.2.2 Packet Memory Map 22
3.2.3 PF RING . 22

7

3.2.4 Splicing . 22
3.3 From main memory to non-volatile storage 23

3.3.1 Virtual file system . 23
3.3.2 Direct I/O . 23

3.4 VLBI backends . 24
3.4.1 DBBC and FILA10G 25

3.5 Data formats . 25
3.5.1 Mark5b . 25
3.5.2 FILA10G . 25
3.5.3 VLBI data interchange format 26

3.6 Related work . 26
3.6.1 Mark series . 26
3.6.2 Mark6 . 26
3.6.3 Xcube . 26

4 VLBI-streamer 28
4.1 Overview . 28
4.2 Design principles . 28

4.2.1 The Linux Kernel and hardware 28
4.2.1.1 Packet receiving 28
4.2.1.2 Hard drives 29

4.3 Architecture . 29
4.3.1 Active file index . 29

4.4 Modularity . 29
4.4.1 Back ends for network 30
4.4.2 UDP packet receiver 31
4.4.3 RX-ring . 31
4.4.4 TCP packet receiver 32

4.5 Back ends for writing . 32
4.5.1 Default writer . 33
4.5.2 Asynchronous I/O writer 33
4.5.3 Splice writer . 33
4.5.4 Writev writer . 33

4.6 Packet manipulation . 34
4.6.1 Packet resequencing 34
4.6.2 Header stripping . 34

4.7 Daemon mode . 34
4.7.1 Scheduling . 35
4.7.2 Priority . 35

4.8 FUSE . 35
4.8.1 Read acceleration . 35

8

4.8.2 Data manipulation . 36

5 Experiments 37
5.1 Local receive with UDP . 37

5.1.1 10GE local receive . 38
5.1.2 2x10GE local receive 38

5.2 Simultaneous receive and send 40
5.3 TCP performance . 41

5.3.1 TCP reference values 41
5.3.2 Local network TCP tests 42
5.3.3 Long range TCP tests 42

5.4 Distributed performance . 45

6 Discussion 48
6.1 Performance . 48
6.2 UDP considerations . 49
6.3 TCP considerations . 49
6.4 Software development considerations 50

7 Conclusions 51
7.1 UDP results . 51
7.2 TCP results . 52

A Appendix 57
A.1 Test machines . 57
A.2 Used network cards . 58

9

Chapter 1

Introduction

1.1 Data recording in radio astronomy

Continued advances in digital signal processing enable radio astronomy in-
struments to generate increasingly higher resolution measurements. Increas-
ing the sample rate allows the receiving of a larger bandwidth. These ad-
vances inevitably also increase the data rate at which the data is generated.
This poses challenges on handling the bandwidth and volume of the data.
Data sources generate continuous multi-gigabit streams like the ones de-
scribed in 3.5.2. Any recording system receiving these streams must be able
to continuously sustain the sent data rate or suffer packet loss, which results
in data loss and possibly a botched observation.

Multiple stations can observe the same target at the same time. When
this data is combined or correlated as it is called, the results emulate a
dish the length of the distance between the stations. These dishes with
diameters up to a hundred meters can be individual dishes separated by
whole continents or a collection of similar dishes within visual range of each
other. The former scenario is the more relevant one for this thesis, as it adds
the requirement of distributing the high data rate data sets of geographically
separated stations.

Recording astronomical data was started with tape drives and hardware
correlators but has moved to spinning hard disks combined with software
solutions and will most likely someday move to solid state drives and fully
to software correlators. Distributing the data has also moved from shipping
physical disks to data streams over network connections. The physical con-
nections between the devices has also changed from bulky custom cables to
basic network connections, from which the VLBI community benefits as the
network industry is being heavily developed.

10

CHAPTER 1. INTRODUCTION 11

If there are consistent requirements in the research sector, they are af-
fordability and compatibility. Anything saved in facilitating the data can be
invested in better instrumentation for generating the data itself. Also build-
ing a solution around a single data type would restrict the solutions lifespan
to that particular type of data.

1.2 A commercial off-the-shelf solution

The requirements explained previously form the basis of this thesis. The
work itself is divided into a hardware and a software solution. The former of
which is a collection of hardware components recommended for housing an
efficient data recording system, which we will call Flexbuff . The latter is the
software running on the Flexbuff, which was named VLBI-streamer.VLBI-
streamer is freely available open source software developed by the author and
available at https://code.google.com/p/vlbi-streamer/

As the IT industry drives the development of Commercial off-the-shelf
(COTS) hardware, it stands to reason to develop custom hardware solutions
for components. A mold for a recording element was sketched and called
Flexbuff [31]. Individual components are surely replaced by each successive
generation, but the overall component types will probably remain similar.
There will be slow non-volatile memory, faster volatile memory and some
sort of interconnectivity between machines.

Assuming the evolution of underlying hardware is driving our instruments
forward, software developed for a custom hardware platform would not sur-
vive competitive in a longer time period. This would require redevelopment
of the software on every hardware generation. The software VLBI-streamer
was developed to abstract away the hardware it is running on, but still work
efficiently with the hardware and allow advanced features when available. As
the development is done on a Linux system, there is a lot of benefit to be
had from advances in kernel development. This also hints that development
should be restricted to user space without creating custom kernel patches,
which would again require redevelopment and maintaining or the software
would be bound to a moribund kernel.

The challenge of large distances between observing stations is met by the
increase in network connectivity globally. To make use of this connectivity,
VLBI-streamer aims to use the common network protocols efficiently, while
also allowing new solutions into its architecture.

The use of Flexbuff and VLBI-streamer is not restricted to radio astron-
omy. There are startups selling solutions for data acquisition, which have
customers in for example the auto industry [37]. The main focus is captur-

https://code.google.com/p/vlbi-streamer/

CHAPTER 1. INTRODUCTION 12

ing sensor data at high rates. Within interferometry, the target of interest
can also be for example sea level variations. [10]

The hardware side of Flexbuff was researched by Esa Turtiainen, Jouko
Ritakari, Ari Mujunen and Minttu Uunila[31]. VLBI-streamer was designed
and developed on top of this research by me and molded by almost daily
dialogue with the authors of the original Flexbuff design.

1.3 Structure of this Thesis

Chapter 2 goes through the individual hardware components Flexbuff uses
and considerations in using those hardware components. Chapter 3 lists the
operating system software considerations and motivations. After the back-
ground chapters, chapter 4 describes the developed software and important
design considerations that were found during development. Chapter 5 has
experimental results showing VLBI-streamer working with network loads up
to 20Gb/s on local receive and distributed performance between several sta-
tions. The remaining chapters 6 and 7 are where the results and future uses
are examined.

Chapter 2

Hardware

This chapter describes each relevant hardware component for high speed
networked data recording. What exactly is relevant for this particular project
was studied earlier by Esa Turtiainen et al.[31]. During the spring of 2012
the components of Flexbuff were roughly:

• 10 Gigabit ethernet (10GE) network card.

• Large pool of hard drives (24+).

• Enough serial advanced technology attachment (SATA) controllers to
control the hard drives.

• 12 or more gigabytes (GB) of modern high speed memory.

• Modern multi core central processing unit (CPU).

• Advanced technology eXtended (ATX) motherboard and rack mounted
chassis to house it all.

It should be noted that all of these components will probably be replaced
by more advanced components shortly after, probably sporting decade larger
performance values. The term Flexbuff was coined to describe this type of
hardware arrangement. Next are a few issues that were relevant during the
spring of 2012 and which influenced VLBI-streamers design.

The coming topics will cover different techniques along the data sets path
from the network to a persistent storage. These can be segmented by looking
first at the network card receiving the data packets, then at the bus connect-
ing the network card to memory, how the data is moved from memory to the
buffer of a persistent storage device and finally the techniques in writing to
a persistent storage.

13

CHAPTER 2. HARDWARE 14

2.1 Network interface cards

Flexbuffers are mostly equipped with 10GE network cards for data transfer
and 1GE links for management. There are a plethora of features supported
by the various 10GE network cards. As will be explained in 3.4 the first part
of the transfer is connectionless UDP-packets so there will be less emphasis
on TCP-specific techniques.

2.1.1 Interrupt mitigation

The default behaviour for packet receiving in an operating system (OS) is
invoking of an interrupt routine to handle the packets transfer from the
network card to the kernel memory space. Since interrupt routines are high
priority and can cause trouble if they perform too long operations, these
interrupt routines usually simply set flags for the default OS threads to handle
the raw data transfers. With 10GE ethernet, the rate of interrupts can
rise very high as the number of packets per seconds increases. With for
example 2048 byte packets: 10Gb/s

(2048∗8)b = 655360p/s. So there would be 655360
interrupts per second. Since network card interrupts are usually bound to a
single core of a multicore processor the core would most likely be congested
in context switches, which could result in packet loss and poor efficiency. [15]

The problem is addressed with interrupt mitigation, which sets a time
limit during which only one interrupt is allowed. The network card will
buffer the packets, until the OS in the next interrupt handles a group of
packets. This reduces the amount of context switches and testing showed
this feature to limit the interrupt rate to consume about 10% of the cycles of
a single core. The time limit should not be too long though, as it increases
the latency and with high enough bit rate the network card’s buffers can
overflow. [15]

On the Kernel software side interrupt mitigation is handled by the new
application programming interface (NAPI), which does not require any action
from the user space developer’s side. [19]

2.1.2 Infiniband

Infiniband is an interconnect used mostly for high performance computing
(HPC) and data centers. Infiniband potentially could provide fast intercon-
nects abstracted away from common network I/O concepts and troubles. The
largest benefit would come from remote memory accesses described below.

In VLBI the distances between stations is large, which means relying
on existing network connections, Bandwidth On Demand (BOD) links and

CHAPTER 2. HARDWARE 15

the public Internet, in where infiniband-connections have no quarter. It
should be noted though that VLBI-streamers modular architecture allows
the development of an infiniband module. [21]

2.1.3 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) enables sending between process
and memory of interconnected nodes without the continuous involvement of
either sides CPUs. It is a sort of bypass without extra copying through kernel
space. Infiniband sports RDMA, but some normal NICs have similar capa-
bilities through a protocol called iWARP, which shows promise in bandwidth
utilization. [23]

The RDMA draft is quite new though and has some security considera-
tions with exposing a memory segment in public Internet. [24] Again it is
not ruled out, as a module for it can be developed for VLBI-streamer.

2.1.4 NIC tuning

Network card improvements can be gained through adjusting several param-
eters:

• Increasing kernel receive buffer size.

• Interrupt mitigation and interrupt intervals.

• Adjusting backlog length for TCP-connections.

• Experiment and research a suitable congestion control protocol for TCP
depending on the connection

For UDP connections most of the tests have the kernel receive buffer set to
16MB.

2.2 VLBI standard interface

VLBI standard interface (VSI) described in [36], is a custom parallel inter-
connect for VLBI data. In addition to data pins it sports clock signals that
enable connected devices to share a pulse per second (PPS) between them
for synchronization. Flexbuff comes into play after the data has already been
structured into packets, but a module for a peripheral component intercon-
nect (PCI) lane connected VSI-card is a possibility.

CHAPTER 2. HARDWARE 16

2.3 SATA controllers

2.3.1 Advanced Host Controller Interface

Advanced Host Controller Interface (AHCI) is a data movement engine which
abstracts the SATA 2 control away from the host machine and implements a
standard interface. I/O requests are scheduled by signaling with appropriate
AHCI ports. Completed requests are signaled by aggregated (mitigated)
interrupts. [39]

2.3.2 Native Command Queuing

Native Command Queuing (NCQ) is a feature implemented in SATA 2 that
runs in the disk firmware rearranging access requests to optimize throughput
and reduce head seeks. [39]

NCQ for VLBI-streamer means that small request are aggregated to larger
ones when they are targeted to a sequential file strip. Most of modern hard
drives have implemented NCQ through AHCI and using it does not require
any extra tuning.

2.4 Disk Drives

VLBI data recording has evolved from tuned tape drives, video cassette
recorders to hard drives. The emergence of solid state drives might even-
tually replace spinning disk drives, but currently the capacity and price of
spinning disk drives makes the older technology more usable. Spinning disk
drives can also be used as efficient recording media if their characteristics are
taken into account.

Everything described in this section can be found more thoroughly written
in [6].

2.4.1 Spinning disk drives

Traditional hard drives have spinning platters, where data is preserved mag-
netically. Most of the performance costs occur when seeking for data from
another location on the platter. The cost of physically moving the read head
is very large when comparing it with CPU cycles. Also the seek head must
seek to the correct location on the track.

In data access patterns this means that random accesses are very costly.
Again in data recording, this encourages to use sequential writes and reads

CHAPTER 2. HARDWARE 17

to get the largest bandwidth. When reading or writing sequential data the
data rate depends if the data is on the outer or inner tracks. The difference
is due to inner tracks requiring more frequent seeks, since they contain less
data per track.

There is a possibility that all disks of a system would start to converge on
the inner tracks at the same time as all the disks are the same size and model
with uniform performance characteristics. This would cause the total system
throughput to drop dramatically. If this is seen as a real threat scenario, the
suggested fix is to repartition the disks with non-uniform block division and
mounting them randomly as write points. This way different tracks fill up
first and the performance will stay randomly uniform during operation.

Modern disk drives also have large caches to mitigate random data access
costs. This means the data might not be yet written to the hard drive, but
is sitting in the cache. For our purposes, these caches have no function, since
they are minuscule when compared to the data volume recorded in regular
VLBI sessions.

Most spinning disk drives have also an internal request queue. Since the
mechanical delay of seeking is quite large, all incoming requests for data are
set in a queue, which the disk drive can arbitrarily rearrange to minimize me-
chanical delay. As will be explained in 3.3.1 the OS also does this rearranging
and combining.

2.4.2 Solid state drives

Solid state drives (SSD) are NAND-flash based storage units. In addition to
more read or write speeds, a bit advantage of SSDs is their ability to perform
random access data operations almost as fast sequential ones, due to the
absence of moving parts. During the spring of 2012 the capacity and price
per gigabyte on SSD drives is still way behind traditional hard drives, but
SSD technology might someday replace traditional hard drives.

Chapter 3

Software concepts

The path of data from the wire to a persistent storage is laden with different
software boundaries and concepts. These can be roughly divided to:

1. Network protocols transferring the data.

2. Sockets as gateways between the network and volatile memory.

3. Transferring data between volatile and non-volatile memory.

4. File systems as non-volatile memory.

In this chapter we go examine alternatives and design considerations for each
step. In addition to performance, the qualifying factor for an alternative was
also its probable life span, which means how probable it is that the same
alternative can be usable in the future without added development effort.

3.1 Network scenario and correlation

The advantage of VLBI is that a dish is emulated that is of the size of the
baseline between the antennas. The dishes can be separated by thousand
of kilometers. This inherently sets the network scenario to include large
distances and so also increases the round trip time (RTT) of data transfers.
Resolution is also affected by the measurement bandwidth, so more data
bandwidth results in higher resolution data. This forces our network scenario
to be a long fat network (LFN).

In a correlation, each stations data needs to be available at a single lo-
cation, where data from same time spans are compared to correlate a result
through processes not described in thesis. The relevant part is that data
needs to be made available at a high bandwidth with matching time spans.

18

CHAPTER 3. SOFTWARE CONCEPTS 19

There are numerous on the network protocols described here and for
more in-depth information I recommend [27], in which are described all the
protocols in this section.

3.1.1 Transmission Control Protocol

Transmission Control Protocol (TCP) is the default transport layer protocol
between nodes on the Internet. It hides packet loss and reordering of packets
from applications and avoids congestion by keeping track of acknowledge-
ments. TCP also has states as it is connection oriented.

A simple description of TCP is where the sending side has a window
of packets that are en route to the destination. The size of the window
determines how many packets can be en route at a time. Packets are cleared
from the window when an acknowledgement is received for each packet. The
classic algorithm for TCP is Reno, which has a small initial transfer rate that
climbs up to match the bandwidth to the destination. If a packet is lost, the
rate is dropped dramatically and the slow start is started again. [22]

Although a very well functioning protocol for open Internet usage, the
problem in our domain with TCP is that it has a history of not performing
optimally with LFNs. [13].

With a large RTT, achieving the networks full capability takes longer,
since the sending side has longer iteration times when it tries to increase its
window size. Combine this with the possibility of a few packets dropping
will result in a zig-zag shape demonstrated later in 5.3.3

Many of the older problems were addressed in [32] from which spawned
new TCP-algorithms to replace the Reno-algorithm. The default on Linux
systems currently is Cubic described in [11]. Tests like [29] with modern
TCP algorithms show promise in total bandwidth even with 40GE network,
though the study had relatively fast path of 49ms. Similar tests with a very
long baseline of 32372km show that TCP will start using the bandwidth
optimally, but only after a fairly long ramp up time. The problem with this
study is the use of Linux kernel 2.6.12, which is fairly old and most likely
still using the old Reno-algorithm. [38]

An important advantage with using TCP in a correlation process is its
inherent and automatic buffering and rate control. The protocol stops send-
ing when the readers buffer is full and vice versa. In the correlation phase
the correlator needs each stations data at the same rate and buffering this
data would force buffering mechanisms to the receiving side, or conversely
rate throttling to the sending side. For a scenario where multiple stations
are sending to a correlator with different network paths and capabilities, the
TCP streaming rate from each station would converge to a shared minimum

CHAPTER 3. SOFTWARE CONCEPTS 20

without added software complexity.

3.1.1.1 TCP with multiple streams

In addition to the already listed problems and improvements for TCP, there
is also the possibility of using multiple TCP streams instead of one. This
mitigates the problems of long fat networks explained in 3.1.1 and in essence
divides the LFN into multiple virtual thinner networks. Also the losses in
speed when cutting the individual streams speed by half is mitigated consid-
erably.

The problem then becomes that of how to speed up individual transfers
with this method. Since mostly dealing with data that is divided into packets,
the data stream can be divided by the packets and then distributed into an
arbitrary amount of TCP pipes. The only requirement is that both ends
know how many TCP connections there are, so they know which packet
belongs to which spot. This method could be named single data, multiple
streams. The study [14] referred to it as cascaded TCP.

3.1.2 User Datagram Protocol

User datagram protocol (UDP) is a transport layer protocol that has only
header fields for source port, destination port, length and a checksum. This
means it does not resequence the packets or resend lost packets. Another
way of putting it: It lets a higher level application take care of data loss and
reordering. UDP also does not take congestion into account and so can cause
congestion collapses on nodes with heavy load. [4]

UDP is the main workhorse in observations and important in the VLBI-
streamer software itself. This itself poses a challenge with rate limiting. As
there is no inherent rate limiting in the UDP-protocol, the sending side has to
take the network capacity of the full path into consideration. Since recording
machines themselves are locally connected to high speed network switches,
having them take only the first network hop into consideration would most
likely drop most of the traffic as packet loss in some hop in the network
connection. So anyone sending UDP-traffic has to take the paths weakest
bandwidth into consideration.

Sending UDP packets at a constant rate is not a trivial task. It was
quickly noticed in the developing of VLBI-streamer that simply sleeping until
the next packet should be sent is not as straightforward as it seems as the
default non-preemptive Linux scheduler only wakes threads during scheduling
intervals [26]. These problems are solved in section 4.4.2.

CHAPTER 3. SOFTWARE CONCEPTS 21

3.1.3 Stream Control Transmission Protocol

Stream Control Transmission Protocol (SCTP) is a sort of a hybrid of TCP
and UDP. Since TCP abstracts the sending of data to a point where the
only consideration is the number of sent bytes, there are no clear packet
boundaries in TCP. SCTP adds this packet boundary consciousness. Packets
are also kept in order, which makes SCTP connection oriented. SCTP Is
only introduced here, but not used in VLBI-streamer or in the observations
themselves.

3.2 From the network to main memory

A simplification of a packet receive is as follows:

1. A packet is read from the wire into one of the network cards internal
memory queues

2. The network card generates an interrupt to signal the operating system
of a new packet

3. The interrupt handler eventually copies the packet to the correct kernel
space socket buffer, which was reserved for the receiving program

4. The receiving program copies the packet from the kernel space buffer
to its own user space buffer.

3.2.1 Sockets

Sockets are endpoints of an inter-process communication flow. There are
three types of socket types, each of which was used during this thesis:

• Datagram sockets or connectionless sockets

• Stream sockets or connection oriented sockets

• Raw sockets

From a software developer perspective, sockets are reserved kernel memory
spaces, to which the Operating System (OS) copies packets. The packets are
bound to specific sockets according to their port numbers. The packets can
be read to user space with system calls. If the buffer is full and more packets
arrive, the extra packets are dropped and the kernel registers this as packet
loss.

For more in-depth information on the operating systems handling of net-
work related functionality, I recommend [26].

CHAPTER 3. SOFTWARE CONCEPTS 22

3.2.2 Packet Memory Map

The Linux kernel offers in addition to traditional sockets packet memory
map sockets. These specify a ring-type memory area into which the kernel
can directly write packets to. After initialization the interface operates in
promiscuous mode, which means it will capture all packets arriving to the
interface. In practice this requires the user space program to poll for events
in the memory mapped socket, after which it processes the packets and marks
them as free to be used for more packets arriving for the network.[20]

Also if the socket is created with AF PACKET and PACKET FANOUT,
the packets will be spread evenly to threads which have registered to use the
interface [1].

3.2.3 PF RING

There is also a custom packet capture module and driver named PF RING
described in [8]. Since the module had not made its way into the Linux kernel
mainstream, there was concern that it could die out and take any software
built upon it with it. Also it might not offer drivers for a specific network
card or might force the use of an older kernel. Again it is not ruled out as a
module can be easily added for it in to VLBI-streamer.

3.2.4 Splicing

Linux user space can make use of splicing, which is data transfer between
kernel memory pipes. A feature that caught my attention is giving splice-
commands flags, which enable it to move data between locations without
copying. This means that the packets could be copied from their kernel
space socket buffer efficiently directly to disk. [18]

Splicing is currently only supported for TCP [25]. Also for our purposes,
splicing from the socket would require that the write point would have to
keep up with the receiving process. This in turn means that VLBI-streamer
would be forced to a raid-solution with fast enough write speeds. Also in
redundant array of independent disks (RAID) systems it would be more
optimal to perform large writes, as they can be spread to more disks due to
stripe size and subsequently utilize more of the disks bandwidth.

It should be noted though that memory mapped spaces can have a file
descriptor associated to them. This means that packets could be spliced
directly to memory. There is some evidence that direct splicing is superior
to manual send or write-commands [29].

CHAPTER 3. SOFTWARE CONCEPTS 23

Splicing UDP-packets to the network is supported, but with it the packet
size cannot be properly determined.

3.3 From main memory to non-volatile stor-

age

As the data is in memory, it is organized in so called memory pages of
power of two in size. Operating systems often have extensive caching systems
for reducing hard drive transactions. Since VLBI-streamer handles its on
caching, such caches will be avoided.

3.3.1 Virtual file system

The Linux virtual file system (VFS) provides a disk cache named the page
cache for keeping pages in memory which are used regularly. These pages
are only flushed on request or when the system runs out of usable memory.
In addition all written pages are copied to the VFS for efficient combination
of writes and sharing of pages between processes. In this application, this
does not serve much purpose and also causes an extra memory copy. Since
its desired to utilize the maximum disk write bandwidth from the start of
a recording, keeping pages in memory delays the data write and can cause
a jerk when memory goes low enough for the writes to begin: The memory
is suddenly full of pages that need to be written to disk and processes are
blocked from getting its share of memory until the pages are written.

The write to disk can forced though, but it still might not release the
memory that was allocated for the cache and does not remove the extra
memory copy. [3]

3.3.2 Direct I/O

The GNU/Linux user space also provides a DIRECT IO flag, which can be
specified when opening a file. This flag will skip all page caches and write
the data directly to disk. There is a requirement though: All writes must be
multiples of the block size, which is traditionally 512 bytes and 4096 bytes
in newer mediums. [16]

Due to this requirement, many issues must be taken into consideration:

• It might not be possible to write an integer amount of packets, as the
byte count might not be divisible by the block size.

CHAPTER 3. SOFTWARE CONCEPTS 24

• Dummy data might have to be written at the end of a file.

• When writing to the same file, only n-packets can be written, where
n × packet size is divisible by the block size. This means extra data
not divisible by block size cannot be written, unless partial packets are
written.

• Packets sequentially in memory cannot be stripped of header data with-
out an extra memory copy, since the packet size minus bytes stripped
most likely will not align.

A motivational graph for Direct I/O is shown in figure 3.3.1. As the data
is written to a raid, it benefits from using large writes that parallelize better
to the disk drives as the write is split into stripes. Without direct I/O, the
blocks are automatically grouped to larger writes as they are copied into
the VFS page cache. The downside of the copying is the CPU overhead of
copying the data. dd is a widely used Unix command line tool for copying
data. During the writes the dd-process with direct I/O consumed only about
14% of the cycles of a single CPU core, when the non-directs consistently took
100% of the cycles of a core and so was probably bottlenecked to a single
cores performance.

0

200

400

600

800

1000

256KB 1MB 4MB 16MB 64MB 256MB

W
ri

te
sp

ee
d

(M
B

/s
)

Write block size

dd with oflag=direct
dd with conv=fdatasync

dd with conv=fdatasync in reverse order

Figure 3.3.1: Write speed to 14 disk
software raid 0 with 4096MB file from
memory

The first dd command without
reverse order performed better with
smaller writes, but this was most
likely due to still having free memory
at the start of the test run, which did
not cause cycles to be used on flush-
ing the memory. For confirmation,
the test was restarted with a reverse
order, so first the very large block
sizes were tested.

3.4 VLBI backends

Since the project was aimed at
recording astronomical data, some
parts of the recording process should
be explained. After the signal is fo-
cused to the receiving unit, it travels
through a shielded cable to a digital back end. The digital back end does
base band conversion and sampling of the data. The end results is an array
of power values divided by band and time.

CHAPTER 3. SOFTWARE CONCEPTS 25

3.4.1 DBBC and FILA10G

The Digital Base Band Converter (DBBC) developed by Gino Tuccari et al.
can be connected with VSI cables to a FILA10G boards which convert the
antenna data into network packets. FILA10G uses stateless UDP traffic[30].
The conversion from a data stream to network packets is usually done by
field programmable gate arrays (FPGA) that fit multiple data samples to a
packet and send it to the network.

3.5 Data formats

3.5.1 Mark5b

The mark5b data format is specified by [33]. The relevant bits are:

• Frame number within second

• Julian day

• Second of day

• Fraction of second

When the receiving end gets a full seconds worth of data, the number of
frames per second is known. After this the frame number and second con-
stitute an index for the data by which the amount of missing data and the
location of out-of-order packets can be determined. Each header combined
with a payload constitute a 10016 byte frame.

3.5.2 FILA10G

For network transfer the rather large 10016 byte mark5b frames are split
into two 5008 byte frames and the FILA10G adds a 32-bit filler and 32-bit
counter in front of each frame. This means the network packets are 5016
bytes. During the spring of 2012 most correlator software could only process
the mark5b frames without the net frame. For the receiver at the correlator
this means it has to strip away the extra bytes from each packet.

The FILA10G had limited network functionality during the spring of
2012. It was tested by the author to generate a 4Gb/s UDP data stream
correctly and its documentation showed at least the ability to configure 8Gb/s
UDP streams.

Some information on FILA10G can be scraped from [12], but most parts
were discovered through experimenting with the hardware itself.

CHAPTER 3. SOFTWARE CONCEPTS 26

3.5.3 VLBI data interchange format

VLBI data interchange format (VDIF) is a stream-based packetized data
format, which is meant to standardize VLBI data storing. The relevant bits
are the second from epoch and data frame number withing second, which
can be used to resequence the data stream. [35]

3.6 Related work

VLBI data recording is not a new problem. Its history is mostly dominated
by the Mark-series. There was also a new arrival in 2012 called Xcube.

3.6.1 Mark series

The mark series is a set of VLBI-data recording devices, which started with
modified tape drives, moved to hard drives and is currently somewhat of
a standard in the VLBI-community with the Mark5 disk recorders. The
Mark5 series has banks of disk drives, which are controlled by StreamStor disk
interface cards. The series from Mark5A to Mark5C supported input modules
from VSI to Ethernet. Though sold as separate hardware, the machines are
mostly COTS components.

3.6.2 Mark6

Mark6 is the newest in the VLBI recording series. The design has 4 bays
for hard drives, which are each dedicated to its own NIC resulting in a total
maximum recording rate of 16Gb/s. All the hardware is COTS, but with a
different casing. The software is open source.[34]

Browsing the source code[9] in the autumn of 2011 showed that the soft-
ware is using the PF RING driver for packet capture. This could also be
deduced from the 4Gb/s limit on individual network cards, as the interrupt
rate spikes beyond that rate. The implementation uses only the PF RING
aware drivers, which might be to ensure the network card has its regular
network capabilities still working.

3.6.3 Xcube

Xcube is a modular data recording and analysis platform, which is used in
the automotive industry but is marketed also to the VLBI-community. The
system is quite similar to Mark6. [28]

CHAPTER 3. SOFTWARE CONCEPTS 27

Additional features are Burst mode, which offers larger speed recording
than is supported by the disk system for a limited amount of time. This
is most likely simply using memory buffers that allows some flexibility in
recording. The receive medium can be chosen freely, so the design is most
likely modular. During a visit in the spring of 2012, a staff member informed
that they were using the PF RING aware driver.

Chapter 4

VLBI-streamer

4.1 Overview

VLBI-streamer is a software designed by the author in collaboration with
the designers of Flexbuff. Development was done mostly between 2011 and
2012 by the author. VLBI-streamer can record and send high speed network
packet streams. The main focus of development was the recording and storing
of radio astronomy sessions and the subsequent sharing of those sessions.

4.2 Design principles

4.2.1 The Linux Kernel and hardware

Linux is a powerful operating system kernel which is widely developed. In
addition to all the benefits it facilitates it also restricts certain data paths.
The need for high speed transfer of data from network to disk calls for the
minimization of memory copies en route to disk, but the kernel forces ker-
nel/user space separation and so causes extra memory copies.

4.2.1.1 Packet receiving

As described in Chapter 3 the kernel copies the packet from the network
cards memory to a socket buffer which is then copied with the for example
the recv-command to a user space buffer. The corner cut version would be
the copying of packets straight from the network card memory to disk with
a direct memory access (DMA) operation. This could be done by writing or
augmenting a network card driver. The openness of the Linux kernel permits
this sort of augmentation to the drivers and the kernel.

28

CHAPTER 4. VLBI-STREAMER 29

With limited development time, VLBI-streamer would be restricted to
a single or few network cards, which would cause the software to only run
on those few cards. This would also mean more software development costs
when developing the software to run on the next generation hardware. Also
all ongoing development with the existing drivers and receiving would be
either lost or would need manual integration with our code base. There would
most likely be issues with using the card for normal network operations with
the custom driver, not to mention the security risks.

Weighing all these toils together, the few extra memory copies start to
look more appealing. Especially if its desired that the software lasts over
hardware generations.

4.2.1.2 Hard drives

VLBI-streamer is not tied to any specific hard drive or other non-volatile me-
dia. The current implementation is geared toward utilizing large sequential
writes and avoiding simultaneous operations to single targets. The non-
volatile media targets are set as reservable resources, which are used by the
buffer elements to read or write their data on. They can also be used as
queues, for example when a certain file is required by a buffer entity, it will
queue itself to the drive and be woken up when the resource is free to use
again.

4.3 Architecture

4.3.1 Active file index

As the software might be receiving a stream that it wants to send simul-
taneously for correlation, a central data structure and access interface for
file meta data is required. The active file index handles loading and saving
of file meta data thread safely. This way active recordings can be mirrored
to multiple sites and the transmission medium changed. This way a UDP
stream from a FiLA10G can be received, while simultaneously sending it to
a remote location with TCP-packets.

4.4 Modularity

Structuring software as modular can give much better results in software
quality [5]. There are also many characteristics in this project that suggest
a modular approach. As explained in 3.1.1 TCP does not utilize a networks

CHAPTER 4. VLBI-STREAMER 30

Scheduler

Memory buffers

Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer

Buffer
Buffer
Buffer
Buffer

Buffer

Buffer

Buffer

Buffer

Buffer

Buffer

Recpoints

HD
HD
HD
HD
HD
HD
HD
HD
HD
HD

HD

Writing

HD

Writing

HD

Reading

HD

Writing

Data Receiver

Receiving packets

Grab new

Timed start

Socket

Data Sender

Sending packets

Grab next

Socket

free
busy

loaded

Figure 4.3.1: VLBI-streamer architecture. The scheduler starts receivers
and senders. Receivers reserve free buffers from the queue as buffers filled
by the receiver write themselves to available hard drivers. Senders order a
number of buffers to fill themselves from disk and send them sequentially to
the network.

bandwidth optimally in some scenarios. This is why the software sports a
modular send and receive side supporting UDP, TCP and multi streamed
TCP described in section 3.1.1.1. The transfer between volatile and non-
volatile memory is also modular with different capabilities described in sec-
tion 4.5.

4.4.1 Back ends for network

The network sides access to the memory buffers consists of asking for buffers
and their memory space and then releasing so their threads can write them-
selves to disk. Other than that, the module for networking can operate quite
freely. Using the modules is split to three phases: Initialize, run and close.

As existing packet packers like FiLA10G use stateless UDP packets for
data transfer, the first back end developed for receiving sending was a UDP
packet receiver.

CHAPTER 4. VLBI-STREAMER 31

4.4.2 UDP packet receiver

The UDP packet receiver creates a simple SOCK DGRAM socket and mostly
only tunes its size in the kernel memory space to the maximum size allowed.
The operational parameters are a port and time spent recording or a target
for mirroring, which means re-sending the packet to network immediately to
a third target. Although a very simple solution in subsequent tests it showed
to perform very well and did not strain a multi core even with close to 10Gb/s
line rate packet receiving.

The challenging part was developing sending side that could regulate the
speed at which it was sending. We cannot send UDP packets in a busy loop,
since they cause congestion at the intermediate network nodes, which with
great certainty will not have the same speed network connectivity due to the
large distances between stations. If for example the network card connected
to the sending machine can output 10Gb/s, but an intermediate link to the
correlator has only 2Gb/s capacity, one fifth of the data will be dropped at
the choke point. There must be a wait time between individual packet sends
on the application level.

The wait time can be implemented with a busy loop or a sleep call. In a
non pre-emptive kernel with normal priority threads, the minimum amount
slept was tested to be the schedulers rate. This translated into about 50ms
minimum sleep, which was too low for sensible transfer rates on a 10GE
network. For example with 8888 byte packets: Rate = Size of packet in bits

Time between packets
=

8888∗8
5×10−5 b/s ≈ 1356Mb/s

Due to the minimum sleep time, the implementation has an optional busy
loop waiter for systems without a pre-emptive kernel. This waiter has dire
performance consequences on systems with more sending processes, as each
sending process requires a core in busy loop. This means severe scalability
problems with multiple sending threads.

With a proper pre-emptive kernel, low latency scheduler timer and proper
real time priority the sleeping timer works as intended and provides an opti-
mal resource rate limiter for VLBI-streamer.

4.4.3 RX-ring

As described in 3.2.2 there is a ready load balancing packet capturer capable
of writing into mapped memory areas. At first this sounded like the perfect
solution for this project, not counting the forced capturing of all packets.
This was implemented and tested, but it showed very high interrupt rate
usage which resulted in packet loss on larger that ≈ 5Gb/s data rates.

The module source code is still in VLBI-streamer source code, but is

CHAPTER 4. VLBI-STREAMER 32

discontinued from development and will most likely not work. There is a
chance that this interface might prove useful for some scenario or when it is
developed to also use interrupt mitigation techniques.

4.4.4 TCP packet receiver

As described in 3.1.1 TCP would have many advantages for the network
transfer towards correlation after the data stream has been recorded from a
back end.

Since all connections from observatories to the correlation sites are unique,
its not guaranteed that the data rates are uniform between the stations. The
correlation itself requires the same time slices from each station and a delayed
send from one stations would inadvertently delay the whole correlation and
require the other streams to be buffered while the delayed stream tries to
catch up. If a TCP-connection was used instead of UDP-packets, the streams
would be automatically slowed through the TCP-stack to the lowest rate
sender by blocking the sending thread.

There is no data loss or packet resequencing. Also in the event of a
network connection failure, the sending sides would be automatically notified
of this, disconnected and would stop their transfers. If there was a sudden
unexpected extra traffic in switches en route, TCP could automatically react
to it without extra coding efforts. The rates would be slowed and all other
connections would slow down also adjust but not fail altogether.

4.5 Back ends for writing

The API for writing modules is quite simple. Upon acquiring a write element
as a resource, the write end will open a new file to which write the data or
open an existing file from which to read data from. The buffer will call the
back ends write or read function to transfer the data.

Each of these writers have different characteristics. For example as shown
in 3.3.2 a writer using DIRECT IO requires considerably less CPU cycles,
while being restricted to the underlying block size writes. While the use of
less CPU cycles enables the recording of a larger bandwidth data stream, the
restriction can for example prohibit the manipulation of the received data
headers to make it compatible for a specific correlator as explained in 4.6.2.

CHAPTER 4. VLBI-STREAMER 33

4.5.1 Default writer

The default writer uses the default read() and write() system calls with the
DIRECT IO flag.

4.5.2 Asynchronous I/O writer

The asynchronous I/O writer (AIO) uses a Linux native libaio-library to
query all the writes and poll for completion. The motivation is the ability to
query large writes, which can fill the target drives caches efficiently for data
flows.

4.5.3 Splice writer

The splice writer tries to benefit from moving data between file descrip-
tors without needing to copy data between kernel address space and user
address space. During the winter of 2012 splice had a more limited sup-
port for connectionless UDP sockets, which downplayed its importance for
VLBI-streamer. The splice writer in VLBI-streamer simply splices the file
descriptor associated with the memory mapped buffer into the persistent
storage file descriptor and hints the file system to write the memory area to
disk.

Although splicing could have been used to transfer bytes between a net-
work socket and a persistent storage file descriptor, this would have tightly
coupled the disk write end to the network receive end without the ability
to buffer the data. This could have caused packet loss if the physical hard
drive stalled, although the kernels virtual file system explained in section
3.3.1 could have probably handled the jolts.

4.5.4 Writev writer

The writev writer uses system calls to structure a write according to an array
of iovec structures. Iovec-structures allow for gathering output writes, where
a large batch of smaller memory areas are written in a single call. This is
useful when stripping the headers from the start of packets is required. It is
problematic though as the page cache is used, extra memory copies are made
and the writes will surely not be the size of pages, which might cause data
alignment overhead. [17]

CHAPTER 4. VLBI-STREAMER 34

4.6 Packet manipulation

4.6.1 Packet resequencing

UDP streams are connectionless, lossful and do not guarantee that the data
arrives in the sent order. Therefore a mechanism had to be implemented
into VLBI-streamer to take care of resequencing packets. Also its important
to fill in missing packets with dummy data, as the packets from multiple
stations have to aligned between themselves so the correlation does not have
to realign them. Looking into the metadata is also useful for specifying a
start time for data recording from the data stream.

The resequencing algorithm copies the packet from the socket to its pre-
sumed slot without looking at the metadata. If the packet is an earlier packet,
it is copied to its correct spot with. If a previously used buffer is missing
packets it is left to dangle on the receive end so the missing packets can be
written to it. If the packet arrived before it should have, the index is moved
to that packets position. This way keeping count is not required on which
packets were received and which not, since already received packets ahead of
our index will not be overwritten. Previous packets might arrive twice, but
it is not an issue.

Filling with the non-aligned packet with dummy data or setting it as non-
valid is done in the memory buffers, away from the critical receive process.

4.6.2 Header stripping

As explained in 3.5.2 VLBI-streamer has to occasionally manipulate the data.
Since writes with DIRECT IO require page size aligned data, this mode is
only supported on writev.

4.7 Daemon mode

The starting of a process that requires most of the system memory can be
time consuming. Also if multiple of such processes are desired to run on a
single system, they should be capable of sharing their resources, since they
cannot both have most of the system memory in their use. This is why VLBI-
streamer was converted by the author to run as a daemon process sharing
its memory buffers and disks with multiple receives and sends.

CHAPTER 4. VLBI-STREAMER 35

4.7.1 Scheduling

Instead of simply timing shell commands to start transfers, a scheduling
system was created as the base for spawning other threads. A scheduling
thread takes care of initializing all the resources and monitors a schedule file,
from which it schedules the data transferring threads for receiving or sending.

4.7.2 Priority

As explained in section 1.2 we wanted to limit VLBI-streamer to run strictly
in user space. It also required priority settings higher than allowed for normal
user space processes. The natural way of combining these was as a regular
OS service, which is started at boot time. After the software starts, it sets
its priority high enough and drops its privileges.

4.8 FUSE

Filesystem in userspace (FUSE) enables mounting file systems in userspace.
This relaxes the requirements for developing a custom file system and has
proliferated many novel file systems, such as sshfs for mounting a file system
over ssh.[7]

With this project FUSE was used to give the correlator single continu-
ous files from the split files it had received. This was developed, but with
limited development time proved a bit unstable. FUSE could have also been
used to change the data format on the fly without modifying the original
data. For example Mark5B network headers could have been changed to
the regular non-network headers. Also this could have been interfaces with
VLBI-streamer to utilized shared memory and accelerate the read process
itself without the need for a raid.

4.8.1 Read acceleration

The correlating programs have a slow start, which is caused by pre-checks
that try to determine the common starting point and clock skew between the
recordings. If the correlator were given a number of files instead of one, it
would have to do the pre-checks on each file separately and the correlation
run would be a lot longer. Although VLBI-streamer supports writing to a
single file, there is still reason to organize the correlation read through VLBI-
streamer. If the correlator would start by reading small blocks on disks which
are being written to, disk seeks would increase and total throughput would
dramatically drop.

CHAPTER 4. VLBI-STREAMER 36

By using shared memory and communicating through local domain sock-
ets, VLBI-streamer can serve the needs of a reading process by accelerating
and policing the read process. Since the correlator will sequentially read the
whole recording, it makes sense to treat it similarly to a send process. Even
most of the modules can be re-used for this purpose. Currently the VLBI-
streamer FUSE file system does its own reading through the mountpoints.

4.8.2 Data manipulation

Since there are pre-definable functions between the reading process and the
VLBI-streamer buffers, the data read can be manipulated to different for-
mats. Take the header stripping process described in 3.5.2. The header
stripping can be done and is already implemented on the FUSE level with
each recording being stripped of the headers without taking a performance
toll on the receive process.

When developing VLBI-streamer it soon became apparent that using DI-
RECT IO and byte stripping would not work well together. DIRECT IO
requires block size writes while byte stripping breaks up the data writes
from memory to disk into packet size minus the length of bytes stripped
segments. There would be several ways to go around this problem:

• Copy the data from the socket first to a temporary buffer, from which
transfer only the requested amount to the actual buffer to be written
do disk.

• Copy the packet segments to another memory buffer which will be
written to disk without the overheads

• Receive each strippable part to a fake buffer and the data to the real
buffer.

During development, no correct way was decided upon and so no implemen-
tation for DIRECT IO writers with byte stripping was developed.

Chapter 5

Experiments

In this chapter we look at how VLBI-streamer handles different network loads
in different network scenarios. The local experiments involve two machines
connected either directly or through a switch to each other. Machines used
in local tests were Ara and Watt in Metsähovi Radio Observatory, with
either optical or CX4 10GE interconnects. These tests mostly simulate the
recording of data sets from a digital backend at an observatory.

Remote tests have Flexbuff like machines on stations separated by rela-
tively large geographical distances. These tests simulate the sending of data
sets to a correlation facility after the experiment has been recorded. Also
the simulatenous recording of ongoing experiments is tested.

The goal of these experiments is to test if VLBI-streamer can send and
record any data rates available from the digital backends described in section
3.4. VLBI-streamers performance in these tests shows if its software archi-
tecture combined with Flexbuffs hardware housing can operate as a radio
astronomical data buffer on stations. VLBI-streamers main function is local
receiving of data, so the experiments are mostly focusing on local receive
capabilities

The hardware of the test machines can be found in Appendix A. All tests
show time as wall-clock time and speed as Mb/s. The measurements are
started a few seconds before the start of the data transfer and continued
long enough to check that performance is stable and would not regress over
time.

5.1 Local receive with UDP

In a local receive scenario a VLBI back end is spewing data as UDP pack-
ets from a non-regular network device, that is restricted to generating and

37

CHAPTER 5. EXPERIMENTS 38

sending the packets. In these experiments Flexbuff is used to record UDP
packets in a local network with a packet generator machine and a receiver
machine. Attributes of interest are the scalability according to memory and
disk drives and maximum throughput values.

5.1.1 10GE local receive

Four different scenarios were tested for local receive: Data streaming of one,
four, sixteen and 128 separate streams being received simultaneously. The
results are shown in 5.1.1 with the total bandwidth in red and other lines as
the individual streams. The data was sent in Metsähovi Radio Observatory
between Ara and Watt through a direct 10GE CX4 connector. The program
sending the data had separate threads for each stream and sent data in
a busy loop. After the streams were increased from four to sixteen the
sending program did not distribute the packets evenly anymore, but the
total bandwidth remained the same and no packet loss was monitored on the
receiving machines kernel level.

The receiving threads have a higher priority than normal user space pro-
cesses. This is to guarantee a fast access to the kernel socket buffer to prevent
it from overflowing. When a large amount of threads were run, as here with
128 threads, the system became slightly unresponsive but captured all pack-
ets without error. Setting the higher priority can be disabled, so when used
with a large amount of threads, higher priority could be disabled to keep
operability. The priority is not needed with large amounts of threads, since
individual streams are relatively slow. Also since each stream continuously
requires a memory buffer, the buffer size for 128 streams was dropped to
64MB. This increases the number of memory buffers, but it can also cause
performance issues as each buffer has a thread running on it.

5.1.2 2x10GE local receive

The 10GE test showed no special bottlenecks, so more tests were done adding
the Myricom fiber channel card and modifying the packet generator software
to fanout its connections on a comma-separated list of targets. Preliminary
tests showed that the increased priority in VLBI-streamer caused other ser-
vices on the system to stall. This might be because the system root FS is
mounted as a network file system (NFS), and might starve with large amount
of high priority threads run on the system. Since the high priority threads
are only needed for almost line rate single socket receives, the priority was
dropped to normal.

CHAPTER 5. EXPERIMENTS 39

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120

Mean = 8993.8Mb/sM
b
/s

Time(s)

Network speed with 1 stream

Stream

(a) 1 Stream

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120

Mean = 9634.8Mb/s

M
b
/s

Time(s)

Network speed with 4 streams

Total
Stream 0
Stream 1
Stream 2
Stream 3

(b) 4 Streams

4

16

64

256

1024

4096

16384

0 20 40 60 80 100 120 140

Mean = 9300.27Mb/s

M
b
/s

Time(s)

Network speed with 16 streams

(c) 16 Streams

4

16

64

256

1024

4096

16384

0 20 40 60 80 100 120

Mean = 9166.95Mb/s

M
b
/s

Time(s)

Network speed with 128 streams

(d) 128 Streams

Figure 5.1.1: 10GE Local receive on Watt with dummy UDP-streams created
from Ara. 64 buffers for used on all tests, except with 128 streams, where
256 smaller buffers were used.

CHAPTER 5. EXPERIMENTS 40

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20 40 60 80 100 120 140

Mean = 17767.4Mb/s

M
b
/s

Time(s)

(a) 24 Streams 2 NIC

10

100

1000

10000

100000

0 20 40 60 80 100 120

Mean = 13630Mb/s

M
b
/s

L
og

10

Time(s)

(b) 256 Streams 2 NIC

Figure 5.1.2: 2x10GE Local receive. Receive on Watt with dummy UDP-
streams created from Ara. The 256-stream test used 512 buffers and the
24-stream tests used the default 64-buffers.

Tests showed no packet loss on the receiving ends kernel. Results are
shown in 5.1.2. With a lower number of threads the sockets started to have
packet loss. Most likely acquiring a fresh buffer for writing took too long
with the heavy load and the kernel socket buffers started to overflow forcing
the kernel to drop packets.

5.2 Simultaneous receive and send

An important aspect of buffering astronomical data is the simultaneous send-
ing of older or current recordings for correlation. This means Flexbuff must
be able to send recordings it is currently receiving and must not compromise
the receiving processes to packet loss. 5.2.1 Shows Watt receiving 16 streams
and starting a send of another 16 streams through the 2 NICs. The receive
process lowers from an average of 1136Mb/s per thread to 891 Mb/s. Since
there was no packet loss registered on the kernel side, the receive process
drop must occur on the pathways between the machines. Nevertheless the
total bandwidth in and out averages at 24Gb/s, which can already start to
bottleneck on the PCI express side, since the NICs are connected with PCI-E
2.0 at only 8x and have shown capping to below specified speeds in earlier
tests.

CHAPTER 5. EXPERIMENTS 41

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120 140

Mean = 22529.5Mb/s

M
b
/s

Time(s)

(a) 16 Streams 2 NIC send and receive

Figure 5.2.1: 2x10GE Local receive and send in UDP. The red curve is the
total send and receive bandwidth. Next curve is the receiving process and
the lowest is the sending process. A total of 16 receiving processes and 16
sending processes.

5.3 TCP performance

On the TCP side the loss of packets is no more a concern. This allows
for metrics on maximum system performance with dummy transfers. These
metrics serve as a kind of hardware limit for our system, over which per-
formance improvements from software cannot be expected. The used test
scripts and programs for invoking these transfers are included in the VLBI-
streamer repository. The data for total network transfers rate was logged
with a bandwidth monitor named bwm ng [2].

Before the TCP tests began, the connection between Italy and Metsähovi
was tested to work at about 7.4Gb/s in UDP without packet loss. This works
also as a reference value as a probable upper limit of TCP-transfers.

5.3.1 TCP reference values

It should be noted that the bandwidth monitor does not take into account the
overhead of TCP-transfers and only measures the amount of bytes transferred
between the nodes. Also this overhead cannot be easily factored out from
the data, since variable size packets will cause a variable size overhead. One
could simply measure the total amount of sent payload divided by time sent
for transfer. This way each test stream would try to send its full data payload
and then stop. Due to TCP-transfers being very opportunistic about their
used bandwidth, the streams will exit at different times as others are faster
and others slower. This will cause a test of N-streams to have variable results

CHAPTER 5. EXPERIMENTS 42

as at the start there will truly be N-streams, but in the end N-1, N-2 and so
on depending on how uneven the transfers are.

A small test program was developed to send the same data amount evenly
over all of the streams. It was quickly noted though that this approach will
not utilize the whole bandwidth efficiently as other streams have to stall
while others are trying to catch up. This did not become a problem until 2
10GE NICs were used and performance started to lag behind.

Finally a small program named groupsend was modified to work in a
threaded mode and renamed to groupsend threaded. The program has a
main loop which connects the TCP or UDP connections, starts the sending
threads and monitors the threads for their amount of payload sent.

Since large buffers with TCP tend to cause a distortion in the values of
sent data as the initially empty buffers are filled rapidly, a similar program
working in reverse to receive data in a threaded mode was also developed
by the author and named grouprecv. A thread is spawned for each stream,
which empties the buffer in a busyloop. All test programs are included in
VLBI-streamer sources.

5.3.2 Local network TCP tests

In 5.3.1 the graphs 5.3.1a and 5.3.1b show the system performance on a
variable number of TCP streams. This works as a good estimate for a roof
value to which VLBI-streamer is tested against. 5.3.1a shows the receive
speed of the data payload on two 10GE links in the local network. 5.3.1b
shows how the system performs when simultaneously sending and receiving
with TCP. This is a relevant test as the receive process clearly caps at a
network limit, where as the input and output tests caps at some plethora of
system restrictions, most likely capping of the PCI-E lanes.

Figures 5.3.1c and 5.3.1d show VLBI-streamer working very closely and
exceeding these reference limits. This means the reference tester programs
were not fully stressing the system and could use some more development.

5.3.3 Long range TCP tests

As speculated in 3.1.1.1 the dividing the TCP streams into substreams could
give beneficial results on long fat pipes. Figure 5.3.2 shows just how this
technique raised the mean transfer rates on a particular pipe. A single trans-
fer stream here hits its congestion limit every 20 seconds shown by the sharp
drop in transfer speed. As explained in section 3.1.1 this is the visible effect
of a long ramp-up time which drops the mean transfer speed considerably.
The ramp-up time increases as the probing of the TCP-path is affected by

CHAPTER 5. EXPERIMENTS 43

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20 40 60 80 100 120

Mean(16) = 18282.4Mb/s

N
et

w
or

k
to

ta
l

sp
ee

d
(M

b
/s

)

Time(s)

2 streams
4 streams
8 streams

16 streams

(a) 2x10GE NIC dummy receive in TCP

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120

Mean(16) = 25665.7Mb/s

N
et

w
or

k
to

ta
l

sp
ee

d
(M

b
/s

)

Time(s)

2 streams
4 streams
8 streams

16 streams

(b) 2x10GE NIC dummy sending and receiving
with TCP

0

5000

10000

15000

20000

25000

30000

0 100 200 300 400 500 600 700

Mean(Total) = 20639.6Mb/s

M
b
/s

Time(s)

Network speed with 2 TCP stream using 2 NICs

Total
Recv 1
Recv 2
Send 1
Send 2

(c) 2 Streams 2x10GE send and receive in TCP
with VLBI-streamer

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120

Mean = 28469.4Mb/s

M
b
/s

Time(s)

Network speed

(d) 8 Streams 2x10GE send and receive in TCP
with VLBI-streamer

Figure 5.3.1: 2x10GE Local network receive and send.

CHAPTER 5. EXPERIMENTS 44

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120 140

Mean = 4630.67Mb/s

Mean = 5429.12Mb/s

Mean = 6773.87Mb/s

Mean = 6880.1Mb/s

N
et

w
or

k
to

ta
l

sp
ee

d
(M

b
/s

)

Time(s)

1 Stream
4 Stream

16 Stream
64 Stream

(a) Variable TCP-streams

Figure 5.3.2: Long range TCP transfer rates between Metsähovi and INAF
which had a 50ms delay. The mean value of the transfers rises as the number
of streams increases

CHAPTER 5. EXPERIMENTS 45

the delay. This is in contrast to the local receives, where ramp-up is not
visible in the graphs as the TCP stream gets feedback from the TCP path
almost instantaneously. The full path between the stations was measured to
exhibit packet loss after using UDP transfer over a rate of 7Gb/s. This gave
a good reference value against which to compare TCP results.

5.4 Distributed performance

Flexbuff is meant to operate on individual stations, which have long geo-
graphical distances between them. Flexbuff was tested running on 4 stations
in addition to the central correlator. Each station was set to send a pre-
recorded correlating dataset to the central correlator and record a stressing
stream at the same time. This emulates the default behaviour of receiving
an astronomical session locally from the FiLA10G and sending an already
recorded set onward for correlation. The test setup is illustrated in figure
5.4.1

As explained in 3.5.2 the receiving machine at the joint institute for
VLBI in Europe (JIVE) has to strip 8 bytes from each header. This adds
some processing overhead as each packet must be written separately with
the writev backend and DIRECT IO cannot be used. The different speeds
for the stressers are due to the station machines having different capabilities
for receiving. The Onsala graph 5.4.2 shows a very unstable receive rate,
where instead of a stable packet recording, the graph shows heavy undula-
tion between 4.8 Gb/s to 6.8 Gb/s. This was due to packet loss, which was
registered at the kernel level. The machine was probably lacking some opti-
mization steps, but there was insufficient time to optimize the machine and it
would have been quite risky to try to tune a machine 600km away just hours
before the experiment. Watt was unstable due to a long FUSE development
on it, that left a lot of defunct processes. The stalling behaviour would have
been fixed with a reboot, but went unnoticed during the experiments.

Jodrell bank was limited to 1890Mb/s payload speed on their so called
JBOD link. This set a common upload limit as the correlation was limited
by the lowest upload speed. While the data was still being received in JIVE
the correlation of the pre-recorded data set was tested successfully by the
engineers at JIVE. As the FUSE system was already in development, it was
also tested and shown to work. The FUSE-system enabled the use of single
large files as the correlation data, instead of the default separate memory
buffer size files. There were some lockups in FUSE though, that are likely
due to a deadlock situation.

Some of the correlation load was also distributed to the receiving machine

CHAPTER 5. EXPERIMENTS 46

Stresser Stresser Stresser Stresser

Jodrell Bank Onsala INAF Metsähovi

JIVE

Correlation

7.5Gb/s 5.8Gb/s 5.6Gb/s 7.3Gb/s

2.0Gb/s 2.0Gb/s 2.0Gb/s 2.0Gb/s

Correlate data

Figure 5.4.1: Distributed test setup

in JIVE, which showed no degradation in performance. Most likely the higher
priority in VLBI-streamer protected its receive-process.

CHAPTER 5. EXPERIMENTS 47

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500 600

M
b
/s

Time(s)

Total
Send

Receive

(a) Jodrell Bank

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600

M
b
/s

Time(s)

Total
Send

Receive

(b) Medicina

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500 600

M
b
/s

Time(s)

Total
Send

Receive

(c) Metsähovi

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600

M
b
/s

Time(s)

Total
Send

Receive

(d) Onsala

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600

M
b
/s

Time(s)

Total
Stream 0
Stream 1
Stream 2
Stream 3

(e) JIVE

Figure 5.4.2: Distributed test

Chapter 6

Discussion

6.1 Performance

The desired initial performance was set to the recording of at least a 4Gb/s
UDP stream described in 3.5.2 with hardware limits introduced in the intro-
duction of chapter2. For operational purposes an added requirement was the
sending of previous recordings while another recording was active, which en-
ables recoding of an active session and the correlation of a previously recorded
one. These were achieved fairly early on with the experiment in 5.4, where a
2Gb/s stream was simultaneously sent while receiving dummy data between
5.6Gb/s and 7.5Gb/s depending on the station.

After these experiments, the focus was shifted to testing VLBI-streamer
against the hardware limits of its underlying system. It was the authors
focus to create a non-hardware bound software solution that would give the
software a longer lifetime. Using two 10GE interfaces simultaneous showed
that larger than 10Gb/s transfers can be used, but seem to cap at the PCI-E
bus-limits as observed in 5.2. Larger than 10Gb/s UDP streams might still
result in packet loss, but in the spring of 2012 these could not be properly
tested yet. During the experiments, 40GE interfaces were still too rare to
get a hold of. Interface bonding could have been used, but was an unknown
method to the author.

An important factor in achieving good performance happens when the
packet is stored from the network into the random address buffer (RAM)
buffer. The receiving side of an UDP-stream gets a continuous stream of
data that has no flow control, but after the packet is in the memory buffers
introduced in 4.3, the processing can be laxed from real-time to best-effort.
Releasing the write to persistent storage from following a tight real-time
schedule takes the physical aspect of spinning disks better into considerations,

48

CHAPTER 6. DISCUSSION 49

as e.g. vibrations might cause a sudden drop in write speeds.

6.2 UDP considerations

Although all other tests went well, the ones with multiple NICs receiving
a few high speed streams showed packet loss. It seemed that when adding
another NIC into the tests, the packet capture immediately started to suffer
from packet loss. This might be due to a contest on resources. With two
NICs, the other will not have a monopoly on the structs and resources of
the packet receiving kernel resources. The overhead from serializing access
to these resources might be the cause of packet loss with the high speed
streams. Increasing the kernel socket buffer size is one way to avoid this, but
perpetually increasing a buffers size cannot be counted as a final solution.

During the spring of 2012 there existed no actual backends that could
hit this limitation on VLBI-streamer. The issue could be solved with simply
moving to a newer kernel with different scheduling parameters. Also a newer
hardware platform would at least alleviate the symptons.

6.3 TCP considerations

Although there was not enough time to test the TCP multistreaming with
real data sets, it showed that the mean transfer rate can be increased by
2.2Gb/s on the 50ms 7Gb/s line from Metsähovi to Italy. Further testing
and development could useful for future developments. Also since VLBI-
streamer is starting to be too large a software, this multiplication of TCP
streams could be done outside of it. A simple program could be develop to
either convert a single TCP stream into multiple streams or vice versa. This
software could then run on both ends of a long fat pipe converting in a nearly
transparent style.

Since the characteristics of the Metsähovi to INAF line suit a typical
inside European VLBI network (EVN) session, this could be a superior mode
of transfer in VLBI-sessions where a live recording could be available as a
high bandwidth TCP-stream at the correlator within seconds. The buffering
nature of TCP would also automatically limit the transfer rates to the slowest
of stations, which would be the correlation speed anyway.

CHAPTER 6. DISCUSSION 50

6.4 Software development considerations

The project was started with the assumption that memory copies should be
avoided at all cost. Though they should still be avoided, there are some
cases where the complexity of VLBI-streamer could have been reduced by
moving its features to smaller units that work as preliminary stages for the
data handling.

Examples of this are byte stripping as discussed in 4.8.2. If the byte
stripping was done on a very small program that simply spliced data from
an UDP socket and forwarded it via local domain socket to VLBI-streamer,
the large amount of byte stripping logic in VLBI-streamer could have been
avoided. Since byte stripping would have required extra memory copies any-
way a solution with separate programs and memory copies in between would
probably give even better performance results than implementing the fea-
ture directly into VLBI-streamer, especially from the software development
viewpoint.

During VLBI-streamer development a range of different utilities were de-
veloped. These range from network testing to metadata inspection. These
parts could be detached from the original project into separate toolkits for
the VLBI-community.

Chapter 7

Conclusions

The purpose of VLBI-streamer was to handle the receiving of high speed
astronomical data and subsequent sending of this data to remote correlation
sites. Benchmark values were set to the maximal data transfer rates ad-
vertised in the spring of 2013 and after those were achieved, the target was
extended to the hardware limits of the receiving system.

The experiments show that any current data rate generated by a back end
for astronomical data can be captured on COTS hardware with software con-
fined to the GNU/Linux user space. This means less software development
costs and better longevity for such software solutions.

VLBI-streamer can also handle the simultaneous sending of datasets as
shown in 5.2. This fills the original concept of VLBI-streamer as a flexible
buffer for VLBI data and enables it to perform as a general recording device
with less single points of failure.

7.1 UDP results

As section 5.1.1 showed VLBI-streamer can record any number and any speed
UDP traffic on a 10GE link. It is only a question of configuring the software
for the scenario, which might at this point be the softwares Achilles heel as
the considerations into the correct configuration are hard to arrive at.

Tests with multiple 10GE cards showed good performance with multiple
streams, but as discussed in 6.2 few very high speed streams resulted in
packet loss. This shortcoming will not affect the operational capabilities of
VLBI-streamer on current digital back ends. When 40GE networks become
relevant for VLBI, the hardware will also most likely bring the software up
to speed.

51

CHAPTER 7. CONCLUSIONS 52

7.2 TCP results

TCP outperformed UDP on local network by a large margin. Also due to
its stream-oriented and buffering nature, it should be an obvious choice for
short to medium range transfers. The stream splitting feature was not tested
enough, but should be further researched.

Bibliography

[1] AF PACKET fanout support. http://lists.openwall.net/netdev/

2011/07/05/30. July 2011.

[2] Bandwidth Monitor NG. https://sourceforge.net/projects/bwmng/.
Apr. 2013.

[3] D.P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly
Media, 2008. isbn: 9780596554910. url: http://books.google.fi/

books?id=h0lltXyJ8aIC.

[4] Bob Braden et al. “Recommendations on queue management and con-
gestion avoidance in the Internet”. In: (1998). RFC 2309. url: https:
//tools.ietf.org/html/rfc2309.

[5] C.A. Conley and L. Sproull. “Easier Said than Done: An Empirical
Investigation of Software Design and Quality in Open Source Software
Development”. In: System Sciences, 2009. HICSS ’09. 42nd Hawaii
International Conference on. 2009, pp. 1–10. doi: 10.1109/HICSS.

2009.174.

[6] Yuhui Deng. “What is the future of disk drives, death or rebirth?”
In: ACM Comput. Surv. 43.3 (Apr. 2011), 23:1–23:27. issn: 0360-0300.
doi: 10.1145/1922649.1922660. url: http://doi.acm.org/10.1145/
1922649.1922660.

[7] Filesystem in Userspace. May 2014. url: http://fuse.sourceforge.
net.

[8] José Luis Garćıa-Dorado et al. “High-Performance Network Traffic Pro-
cessing Systems Using Commodity Hardware”. In: Data Traffic Mon-
itoring and Analysis. Springer, 2013, pp. 3–27. doi: 10.1007/978-3-
642-36784-7_1.

[9] Github: MIT Haystack VDAS (Mark6) public repository. Nov. 2013.
url: https://github.com/MITHaystackObservatory/VDAS.

53

http://lists.openwall.net/netdev/2011/07/05/30
http://lists.openwall.net/netdev/2011/07/05/30
https://sourceforge.net/projects/bwmng/
http://books.google.fi/books?id=h0lltXyJ8aIC
http://books.google.fi/books?id=h0lltXyJ8aIC
https://tools.ietf.org/html/rfc2309
https://tools.ietf.org/html/rfc2309
http://dx.doi.org/10.1109/HICSS.2009.174
http://dx.doi.org/10.1109/HICSS.2009.174
http://dx.doi.org/10.1145/1922649.1922660
http://doi.acm.org/10.1145/1922649.1922660
http://doi.acm.org/10.1145/1922649.1922660
http://fuse.sourceforge.net
http://fuse.sourceforge.net
http://dx.doi.org/10.1007/978-3-642-36784-7_1
http://dx.doi.org/10.1007/978-3-642-36784-7_1
https://github.com/MITHaystackObservatory/VDAS

BIBLIOGRAPHY 54

[10] R.E. Glazman. “An experimental implementation of interferometric
techniques for sea level variation measurements and reflection coeffi-
cient phase determination”. In: Oceanic Engineering, IEEE Journal of
7.4 (1982), pp. 155–160. issn: 0364-9059. doi: 10.1109/JOE.1982.

1145536.

[11] Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC: A New TCP-
friendly High-speed TCP Variant”. In: SIGOPS Oper. Syst. Rev. 42.5
(July 2008), pp. 64–74. issn: 0163-5980. doi: 10.1145/1400097.1400105.
url: http://doi.acm.org/10.1145/1400097.1400105.

[12] Hat-Lab home page. http://www.hat-lab.com/hatlab/. 2013.

[13] Van Jacobson and RT Braden. “TCP extensions for long-delay paths”.
In: (1988). RFC 1072. url: http://tools.ietf.org/html/rfc1072.

[14] U. Kalim et al. “Cascaded TCP: Applying pipelining to TCP for effi-
cient communication over wide-area networks”. In: Global Communi-
cations Conference (GLOBECOM), 2013 IEEE. Dec. 2013, pp. 2256–
2262. doi: 10.1109/GLOCOM.2013.6831410.

[15] Ilhwan Kim, Jungwhan Moon, and Heon Y. Yeom. “Timer-Based In-
terrupt Mitigation for High Performance Packet Processing”. In: In
Proc. 5th International Conference on HighPerformance Computing in
the Asia-Pacific Region, Gold. 2001.

[16] Linux Programmer’s Manual: open (2). Feb. 2013.

[17] Linux Programmer’s Manual: readv (2). Nov. 2010.

[18] Linux Programmer’s Manual: splice (2). May 2012.

[19] New API driver design. http://www.linuxfoundation.org/collaborate/
workgroups/networking/napi. Nov. 2009.

[20] Packet MMAP. http://www.mjmwired.net/kernel/Documentation/

networking/packet_mmap.txt. Feb. 2013.

[21] Gregory F Pfister. “An introduction to the InfiniBand architecture”. In:
High Performance Mass Storage and Parallel I/O 42 (2001), pp. 617–
632.

[22] Mrs Reena Rai and Maneesh Shreevastava. “Performance Improvement
of TCP by TCP Reno and SACK Acknowledgement”. In: Performance
Improvement Vol. 2.1 (March) (2012).

[23] M.J. Rashti and A. Afsahi. “10-Gigabit iWARP Ethernet: Comparative
Performance Analysis with InfiniBand and Myrinet-10G”. In: Parallel
and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE In-
ternational. 2007, pp. 1–8. doi: 10.1109/IPDPS.2007.370480.

http://dx.doi.org/10.1109/JOE.1982.1145536
http://dx.doi.org/10.1109/JOE.1982.1145536
http://dx.doi.org/10.1145/1400097.1400105
http://doi.acm.org/10.1145/1400097.1400105
http://tools.ietf.org/html/rfc1072
http://dx.doi.org/10.1109/GLOCOM.2013.6831410
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://www.mjmwired.net/kernel/Documentation/networking/packet_mmap.txt
http://www.mjmwired.net/kernel/Documentation/networking/packet_mmap.txt
http://dx.doi.org/10.1109/IPDPS.2007.370480

BIBLIOGRAPHY 55

[24] Allyn Romanow and Stephen Bailey. “An Overview of RDMA over
IP”. In: Proceedings of the First International Workshop on Protocols
for Fast Long-Distance Networks (PFLDnet 2003). 2003.

[25] StackOverflow: Linux splice() returning EINVAL (“Invalid argument”).
http://stackoverflow.com/questions/7084254/linux-splice-returning-

einval-invalid-argument. Aug. 2011.

[26] William Stallings. Operating Systems: Internals and Design Principles.
6th. Upper Saddle River, NJ, USA: Prentice Hall Press, 2008. isbn:
0136006329, 9780136006329.

[27] W. Richard Stevens. TCP/IP Illustrated (Vol. 1): The Protocols. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1993. isbn:
0-201-63346-9.

[28] Mikael B Taveniku and Jeffrey E Smith. SYSTEM AND METHOD
FOR HIGH-SPEED DATA RECORDING. US Patent 20,130,091,379.
Apr. 2013.

[29] Brian Tierney et al. “Efficient data transfer protocols for big data”. In:
E-Science (e-Science), 2012 IEEE 8th International Conference on.
IEEE. 2012, pp. 1–9.

[30] Gino Tuccari et al. “DBBC2 backend: Status and development plan”.
In: IVS General Meeting Proceedings. 2010.

[31] Esa Turtiainen et al. “Hardware design document for simultaneous I/O
storage elements”. In: (2011). url: http://www.jive.nl/nexpres/lib/
exe/fetch.php?media=nexpres:2011-02-28_wp8-d8.2.pdf.

[32] D. Borman V. Jacobson R. Braden. “TCP Extensions for High Perfor-
mance”. In: (1992). RFC 1323. url: http://tools.ietf.org/html/

rfc1323.

[33] Alan R. Whitney and Roger J. Cappallo. Mark 5B design specifications.
Tech. rep. Massachusetts institute of technology, 2004.

[34] Alan R Whitney et al. “Demonstration of a 16 Gbps Station-1 Broadband-
RF VLBI System”. In: Publications of the Astronomical Society of the
Pacific 125.924 (2013), pp. 196–203. doi: 10.1086/669718.

[35] Alan Whitney et al. “VLBI Data Interchange Format (VDIF)”. In: Pro-
ceedings of the 8th International e-VLBI Workshop, PoS (EXPReS09).
Vol. 42. 2009.

[36] VLBI Standard Hardware Interface Specification – VSI-H. Aug. 2000.
url: http://www.vlbi.org/vsi/docs/VSI_H_paper_for_IVS_TOW.pdf.

http://stackoverflow.com/questions/7084254/linux-splice-returning-einval-invalid-argument
http://stackoverflow.com/questions/7084254/linux-splice-returning-einval-invalid-argument
http://www.jive.nl/nexpres/lib/exe/fetch.php?media=nexpres:2011-02-28_wp8-d8.2.pdf
http://www.jive.nl/nexpres/lib/exe/fetch.php?media=nexpres:2011-02-28_wp8-d8.2.pdf
http://tools.ietf.org/html/rfc1323
http://tools.ietf.org/html/rfc1323
http://dx.doi.org/10.1086/669718
http://www.vlbi.org/vsi/docs/VSI_H_paper_for_IVS_TOW.pdf

BIBLIOGRAPHY 56

[37] XCube Website. http://www.x3-c.com. Nov. 2013.

[38] Takeshi Yoshino et al. “Analysis of 10 Gigabit Ethernet using hardware
engine for performance tuning on long fat-pipe network”. In: Proceed-
ings of PFLDnet 2007 (Fifth International Workshop on Protocols for
FAST Long-Distance Networks). 2007, pp. 43–48.

[39] Young Jin Yu et al. “NCQ vs. I/O Scheduler: Preventing Unexpected
Misbehaviors”. In: Trans. Storage 6.1 (Apr. 2010), 2:1–2:37. issn: 1553-
3077. doi: 10.1145/1714454.1714456. url: http://doi.acm.org/10.
1145/1714454.1714456.

http://dx.doi.org/10.1145/1714454.1714456
http://doi.acm.org/10.1145/1714454.1714456
http://doi.acm.org/10.1145/1714454.1714456

Appendix A

Appendix

A.1 Test machines

Name CPU OS Motherboard
Ara AMD Phenom II

X6 1090T
Debian 6.0.7 Ker-
nel 3.8.6

Crosshair IV Ex-
treme

Watt 2x Intel Xeon
E5620

Debian 6.0.7 Ker-
nel 2.6.32

Supermicro
X8DTH-i/6/iF/6F

JIVE 2x Intel Xeon
E5620

Debian 6.0.7 Ker-
nel 2.6.32

Supermicro
X8DTH-i/6/iF/6F

Jodrell 2x Intel Xeon
E5620

Debian 6.0.7 Ker-
nel 2.6.32

Supermicro
X8DTH-i/6/iF/6F

Medicina 2x Intel Xeon
E5620

Scientific Linux X8DTH-i/6/iF/6F

Onsala AMD Phenom II
X6 1090T

Debian 6.0.7 Ker-
nel 2.6.32

Crosshair IV

57

APPENDIX A. APPENDIX 58

Name Memory Drive con-
trollers

HD Network

Ara 16GB 1333Mhz
DDR3

LSI Logic
/ Symbios
Logic

24 2x10GE +
2x1GE

Watt 24GB 1066Mhz
DDR3

Fusion-MPT
SAS-2 Falcon

36 2x10GE +
2x1GE

JIVE 24GB 1066Mhz
DDR3

Fusion-MPT
SAS-2 Falcon

36 2x10GE +
2x1GE

Jodrell 24GB 1066Mhz
DDR3

Fusion-MPT
SAS-2 Falcon

36 2x10GE +
2x1GE

Medicina 12GB 1066Mhz
DDR3

Supermicro
3ware
Inc 9750
SAS2/SATA-
II RAID
PCIe

12 1x10GE +
2x1GE

Onsala 16GB 1333Mhz
DDR3

Fusion-MPT
SAS-2 Falcon
Extreme

24 2x10GE +
2x1GE

A.2 Used network cards

Manufacturer Model Capacity PCI-Express Stations
Chelsio T240-CR 10GE 2.0 x8 Jodrell Bank
Intel 82598EB 10GE 2.0 x8 JIVE, INAF, Metsähovi
Intel 82599EB 10GE 2.0 x8 Metsähovi
Myricom Myri-10G-PCIE-8A 10GE 2.0 x8 Onsala, Metsähovi

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Data recording in radio astronomy
	1.2 A commercial off-the-shelf solution
	1.3 Structure of this Thesis

	2 Hardware
	2.1 Network interface cards
	2.1.1 Interrupt mitigation
	2.1.2 Infiniband
	2.1.3 Remote Direct Memory Access
	2.1.4 NIC tuning

	2.2 VLBI standard interface
	2.3 SATA controllers
	2.3.1 Advanced Host Controller Interface
	2.3.2 Native Command Queuing

	2.4 Disk Drives
	2.4.1 Spinning disk drives
	2.4.2 Solid state drives

	3 Software concepts
	3.1 Network scenario and correlation
	3.1.1 Transmission Control Protocol
	3.1.1.1 TCP with multiple streams

	3.1.2 User Datagram Protocol
	3.1.3 Stream Control Transmission Protocol

	3.2 From the network to main memory
	3.2.1 Sockets
	3.2.2 Packet Memory Map
	3.2.3 PF_RING
	3.2.4 Splicing

	3.3 From main memory to non-volatile storage
	3.3.1 Virtual file system
	3.3.2 Direct I/O

	3.4 VLBI backends
	3.4.1 DBBC and FILA10G

	3.5 Data formats
	3.5.1 Mark5b
	3.5.2 FILA10G
	3.5.3 VLBI data interchange format

	3.6 Related work
	3.6.1 Mark series
	3.6.2 Mark6
	3.6.3 Xcube

	4 VLBI-streamer
	4.1 Overview
	4.2 Design principles
	4.2.1 The Linux Kernel and hardware
	4.2.1.1 Packet receiving
	4.2.1.2 Hard drives

	4.3 Architecture
	4.3.1 Active file index

	4.4 Modularity
	4.4.1 Back ends for network
	4.4.2 UDP packet receiver
	4.4.3 RX-ring
	4.4.4 TCP packet receiver

	4.5 Back ends for writing
	4.5.1 Default writer
	4.5.2 Asynchronous I/O writer
	4.5.3 Splice writer
	4.5.4 Writev writer

	4.6 Packet manipulation
	4.6.1 Packet resequencing
	4.6.2 Header stripping

	4.7 Daemon mode
	4.7.1 Scheduling
	4.7.2 Priority

	4.8 FUSE
	4.8.1 Read acceleration
	4.8.2 Data manipulation

	5 Experiments
	5.1 Local receive with UDP
	5.1.1 10GE local receive
	5.1.2 2x10GE local receive

	5.2 Simultaneous receive and send
	5.3 TCP performance
	5.3.1 TCP reference values
	5.3.2 Local network TCP tests
	5.3.3 Long range TCP tests

	5.4 Distributed performance

	6 Discussion
	6.1 Performance
	6.2 UDP considerations
	6.3 TCP considerations
	6.4 Software development considerations

	7 Conclusions
	7.1 UDP results
	7.2 TCP results

	A Appendix
	A.1 Test machines
	A.2 Used network cards

