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Mobile operating systems are rapidly expanding into new areas and the impor-
tance of mobile apps is rising with them. As the most popular mobile operating
system, Android is at the forefront of this development. However, while other
mobile operating systems have introduced newer, officially-supported languages
for app development, the only supported language for Android app development
is an older dialect of Java. Android developers are unable to take advantage of
the features and styles available in alternative and more modern languages.

The Clojure language compiles to Android-compatible bytecode and is a promis-
ing language to fill this gap. However, the development of Android apps with
Clojure is hindered by performance concerns. One recognized problem is the
slow startup time of Clojure on Android apps. Alternative “lean” Clojure com-
piler projects promise to improve Clojure performance including startup time.
However, the performance of Clojure on Android and the lean compiler projects
has not been systematically analyzed and evaluated.

We benchmarked and analyzed the startup and run time performance of Android
apps written in Clojure and compiled using both the standard Clojure compiler
and experimental lean Clojure implementations. In our experiments the run time
performance of Clojure on Android is similar to that of Clojure on the desktop.
However, Clojure on Android apps take a significant amount of time to start,
even on relatively new hardware and the latest Android versions. Long startup
times scale upwards quickly with larger apps and the problem is closely tied to
the Clojure compiler implementation. We also found that while the Skummet
lean Clojure compiler project significantly reduces Clojure on Android startup
times, more changes are necessary to make Clojure practical for general Android
app development.
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Chapter 1

Introduction

Clojure is a promising alternative language for Android application devel-
opment. Clojure inter-operates well with Java code, allowing developers to
use familiar tools from the Android Java ecosystem, while bringing modern
functional, dynamic, and concurrent features. However, the performance of
Clojure on Android is largely unknown. Slow startup time is a recognized
issue but Clojure on Android performance has received little study. Alterna-
tive “lean” Clojure compiler projects attempt to address these performance
concerns but their results have not been systematically evaluated. This thesis
fills these gaps by benchmarking and analyzing Clojure on Android startup
and run time performance using standard Clojure and alternative lean Clo-
jure implementations.

Android and other mobile platforms are increasingly important targets
for software development. Smart phones with modern operating systems
have spread quickly in recent years and provide widespread access to a broad
array of software services. Mobile platforms are also expanding rapidly be-
yond phones and tablets and into other realms such as watches, media cen-
ters, home automation, and automobiles. The Internet of Things is growing
rapidly and mobile operating systems strive to be their platform of choice.

Android is the most widely used mobile operating system. As such An-
droid is also a strong contender in the expansion into new computing do-
mains. Android has historically benefited from its relatively open ecosystem.
Since Android was released, the Android ecosystem has seen substantial im-
provements in the breadth and quality of tools and libraries for application
development.

One area that has seen relatively little progress, however, is in program-
ming languages for developing Android software. Android apps are typically
developed using a Google implementation of Oracle’s Java programming lan-
guage. Since Android was originally released, the Oracle Java language has
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CHAPTER 1. INTRODUCTION 7

advanced from version 6 to 8, bringing numerous incremental improvements
along with larger features such as lambda expressions, streams, and better
type inference. While some of these changes have slowly made it into Android
Java, many have not and the process has been slow. Meanwhile, competing
mobile platforms iOS and Windows Phone have introduced official support
for the alternative functional and more modern languages Swift and F#,
respectively. Android has no official alternatives to Java for typical app de-
velopment. Unofficial alternatives exist but no single contender has achieved
widespread support.

One promising contender for Android app development is Clojure. Clo-
jure, like Java, compiles to bytecode that can be executed on Android. It
inter-operates well with Java code, allowing developers to continue to use
familiar tools and libraries from the Android ecosystem. In addition, Clo-
jure has a number of potential advantages over Java due to its functional
style, concurrency support, and dynamic development style. As a functional
language, Clojure encourages the use of first-class functions and immutable
data structures. This can make programs easier to reason about and test.
Android is an inherently concurrent environment for development, and Clo-
jure’s immutable data structures can simplify concurrent programs. Clojure
also has strong support for concurrency through various built-in constructs
such as software transactional memory. Finally, the dynamic style of de-
velopment typically used in Clojure development can shorten development
feedback loops and potentially increase development speed.

1.1 Problem

As an alternative to Java, Clojure could provide Android developers with
powerful tools for faster development of more reliable, maintainable, and
performant software. However, Clojure on Android performance is largely
unknown. Clojure on Android apps are known to start more slowly than
Java apps but the problem has received little study. Possible solutions to the
slow startup time problem for Android exist but the solutions have not been
evaluated.

This thesis bridges this gap by attempting to answer the following ques-
tions:

1. How well does Clojure perform on Android?

2. What are the largest performance barriers to use of Clojure on An-
droid?
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3. How much do the lean Clojure compiler projects improve Clojure on
Android performance?

4. Can Clojure ever become a practical language for Android develop-
ment?

We focus on the development of standard Android apps using JVM Clo-
jure. By standard apps we mean apps that would typically be developed
using Java and do not require native C or C++ tools or third party frame-
works such as PhoneGap [31] or Cordova [7]. By JVM Clojure we mean the
implementation of Clojure for the JVM and not for other platforms such as
the Microsoft Common Language Runtime or JavaScript. This is the most
common case both from the Android perspective, where apps are typically
developed using only the standard Java tools, and from the Clojure per-
spective, where the most popular Clojure implementation is for the JVM.
This is also the most promising approach for Clojure on Android. It reaches
the most common Android development use cases, allows access to the stan-
dard Android ecosystem of tools and support, and uses the most stable and
performant Clojure implementation.

1.2 Methodology

This thesis analyzes the performance of Clojure on Android using experi-
mental benchmarks and the YourKit Java profiler. Specifically, we provide
the following contributions.

Startup benchmarking

We benchmark the startup time of minimal Java, Clojure, and lean Clojure
apps on both Android and the desktop. We found that the minimum Clo-
jure startup time is significantly longer than Java startup time and that the
Skummet lean Clojure compiler reduces this time considerably.

Startup profiling analysis

We profile the startup process of minimal Clojure and lean Clojure apps
on Android and the desktop. On both platforms we break down startup
time based on class loading event timestamps. On the desktop we further
examine startup performance using the YourKit Java profiler. We found
that the large majority of Clojure startup time is consumed by the Clojure
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runtime in loading the core Clojure libraries. This is true both on Android
and the desktop and for both standard and lean Clojure.

Execution performance benchmarking

We benchmark the run times of a selection of programs from the Computer
Language Benchmarks Game [20], supplemented with a few of our own bench-
marks. The benchmarks are written in Java and Clojure and compiled using
the Java, Clojure, and Skummet lean Clojure compilers. We found Clojure
on Android execution performance to be worse than Java performance but
comparable to Clojure desktop performance. Clojure startup times were
found to scale upward markedly for larger programs, suggesting that typical
Clojure app startup times would be much larger than the minimum times
found in the prior experiments. The Skummet lean Clojure compiler started
up much more quickly than Clojure across the benchmarks and had mixed
execution performance compared to Clojure.

1.3 Structure of the thesis

In the first half of the thesis we provide sufficient background information
about Android and the Clojure language to understand the experiments and
analysis presented in the second half. Chapter 2 provides an overview of the
Android app ecosystem and the way Android apps are developed and run.
Chapter 3 introduces the Clojure language, with a focus on possible bene-
fits for Android development and the features relevant to the experimental
portions of the thesis. Chapter 4 describes in more detail aspects of the
compilation and execution of Clojure programs relevant to later chapters.
The limited research about Clojure performance is summarized in Chapter
5, along with relevant works on Android, JVM, and Java performance.

The second half presents experimental analysis of Clojure on Android
performance and conclusions about the state and direction of Clojure on
Android. The startup time performance of Clojure on the JVM and Android
is characterized and analyzed in Chapter 6. Chapter 7 analyzes the execution
performance of Clojure on Android. Chapter 8 provides broader discussion
of the performance results and implications for the future. Finally, Chapter
9 summarizes the thesis work and its implications.



Chapter 2

Android Apps

The use of mobile phones has grown dramatically in recent years. Mobile
phones are used more than any other electronic device and by a wider range
of people. The most common mobile phone operating systems are Windows,
iOS, and Android. Of the three, Android is the most popular, with 84% of
all mobile phone shipments in the third quarter of 2014 [11].

This section describes the the environment in which Android applica-
tions are run first on a general level for mobile applications and then more
specifically from both Android user and developer perspectives.

2.1 Mobile platforms

Mobile platforms are an increasingly important target for software devel-
opment both because of the wide and growing using of mobile phones and
because of the unique opportunities present in mobile applications. The ubiq-
uity and availability of mobile phones means they are used in a wider variety
of situations than traditional computers such as desktops or specialized com-
puters such as servers. Mobile phones typically contain hardware allowing
applications to see a user’s location, take pictures, detect movement, record
sound, interpret touch gestures, and connect to different devices. These are
features that in most cases cannot be accessed on traditional computers or
can be used only in limited contexts. Phones are also much more personal
than computers and will usually have personal information such as contacts.

In addition, consumer-centric computing is spreading beyond phones to
other devices. This spread is primarily happening not through desktop op-
erating systems but through mobile operating systems. Mobile operating
systems are used in tablets, TVs, cars, media centers, and other devices.
All three major mobile operating system companies, Google, Apple, and Mi-
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crosoft, have released watches that use or inter-operate with their mobile
operating systems in 2014.

The primary way that companies interact with users in mobile operating
systems is through apps. All three of the major mobile platforms, Android,
Windows, and iOS, package and distribute programs to users as apps. Apps
perform many different functions. Widely used apps such as Facebook or
Twitter are a more accessible interface to the company’s web applications.
Apps such as Google Maps provide a map of the world and GPS navigation to
users, supplanting other services such as automobile GPS navigators. Other
popular apps such as WhatsApp, Snapchat, or Skype provide different ways
for people to communicate. There are also countless games, from Clash of
Clans to Angry Birds to Candy Crush Soda Saga. All of this functionality
is accessed by users as apps.

Users typically find and install apps through an app store like the Google
Play Store on Android or the Apple App Store. Apps may be free or paid
or have in-app purchases or advertisements. Once installed, the app icon
appears in a prominent place on the phone. On Android devices the icon
appears on the home screen and within the user’s list of apps. A user opens
the app by selecting its icon and the app displays and loads. An app may
also be opened in other contexts. On Android apps may directly launch other
apps for purposes such as sharing.

In both of these cases the time it takes for the app to display is crucial.
Jakob Nielsen in his book on software usability titled Usability Engineering
gives three rule of thumb times for responding to user actions. Times under
about 0.1 seconds are perceived as instantaneous and do not require special
feedback because the user can clearly see that what happens is a direct and
instantaneous result of their action. Up to one second of delay is noticeable
but not enough to lose the user’s train of thought. Delays of up to ten seconds
will probably not lose the user’s attention. Longer delays cause users to find
other tasks to do while waiting for the operation to complete [44]. Studies
of web site users similarly suggest a limit of two seconds for web pages to
load to reduce risk of user abandonment and corresponding revenue loss [43].

User expectations about response times are likely to be much stricter for
mobile phone apps. Some actions such as saving an item to another service
or sharing a picture with friends must happen quickly or users are unlikely
to perform the action.
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2.2 Android software stack

The Android software stack can be divided into four main levels: applications,
the application framework, the libraries and runtime, and the Linux kernel.

At the top level of Android are the applications themselves. Android apps
as discussed in the previous section present most of the interface that the user
interacts with on mobile and newer embedded devices. Android takes this
idea even further than competing platforms by implementing many functions
typically performed in the operating systems as apps instead. The home
screen, where users can view, launch, and organize installed apps, is itself
just an app like any other. The contacts list is its own app, as is the phone
dialer for making calls and the messaging app for sending text messages.

Android apps are typically written in the Java language and rely heavily
on the application framework on the next level of the software stack. The
application framework provides a large number of APIs and services for UI
elements, making phone calls, finding the user’s location, displaying notifi-
cations to the user, interacting with other apps, and so forth. The APIs are
provided in Java.

Below the application framework level are native libraries and the An-
droid runtime. Native libraries are libraries compiled specifically for the
mobile phone hardware and provide tools for creating secure connections,
storing SQL data in SQLite, rendering web pages, and displaying graphics
for games, among other things. Apps can take advantage of these native li-
braries. The Android runtime is a virtual machine on which apps are run. It
provides an interface similar to the Java Virtual Machine, which allows apps
to be compiled once for the virtual machine and run in many different envi-
ronments. Most current Android phones use the Dalvik runtime and newer
devices use the Android runtime (ART). The Android runtime is described
in more detail in Section 4.

At the lowest level of Android is the Linux kernel. The Linux kernel
provides a large number of low level functions for interacting with hardware
components such as the screen, the camera, or USB devices.

2.3 Android app development

Android apps run on a virtual machine. The use of a virtual machine in
Android means apps can be developed in any language that compiles to the
virtual machine and executed on any device that has an implementation of
the virtual machine.

Android apps are typically written in Java. A developer writes Java that
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is transformed by a Java compiler into bytecode. On a desktop computer
this bytecode is executed directly by the Java Virtual Machine. On Android,
there are a few additional steps to package and convert the code to a format
suitable for Dalvik or ART. The entire process of converting Java code to a
package executable on Android is shown in Figure 2.1.

Figure 2.1: Android Build Process

Android apps are started by users but are typically stopped by the An-
droid system. When a user leaves an application, the app is paused in the
background but kept in memory. When a user returns to a paused applica-
tion, the application is restored. If a user never returns to an application, at
some point the Android system may decide to shut down the app and free
up the memory the app is using [22]. This has important implications for
the memory consumption of apps, as apps that use more memory will be
terminated more quickly.

One important aspect for developing Android applications is concurrency.
Android apps are inherently concurrent. Most Android apps interact directly
with the user. By default all action in an Android app occurs on a single
thread. This means that if an action needs to do a lot of processing or needs
to wait for a network call to return the thread can be blocked. Blocking this
main thread freezes the app for the user until the action is complete. This
is not only poor for the user experience but may cause Android to prompt
the user to shut down the app [23]. For this reason any processor-intensive
or asynchronous tasks need to be handled on another thread. When results
need to be displayed on the UI, the other thread needs to communicate the
results to the UI thread.

As writing concurrent applications properly at a low level is notoriously
difficult, Android provides a few different tools for handling actions off the
UI thread and communicating results back to the UI thread. As in Java,
Android provides low level tools such as the Thread and Future classes and
locks. The low abstraction level makes them difficult to work with correctly,
and the developer has to carefully consider concurrency concerns such as
deadlock, starvation, and liveness.

The main tool suggested by Google for handling concurrency is the Async-
Task class [22]. AsyncTask allows one to define a sub-class which performs
a specific task off the main thread. When the task is complete it provides
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a way to call another method on the UI thread with the results of the task.
An example is shown in Figure 2.2.

pr i va t e class DownloadFilesTask extends AsyncTask<URL, Integer , Long> {
protec ted Long doInBackground (URL . . . u r l s ) {

// Long−running work on background thread
}

// This i s c a l l e d when doInBackground ( ) i s f i n i s h e d
protec ted void onPostExecute (Long r e s u l t ) {

// Result obta ined on UI thread
showNot i f i c a t i on ( ”Downloaded ” + r e s u l t + ” bytes ” ) ;

}
}

Figure 2.2: AsyncTask

There are several problems with using AsyncTask. AsyncTask is easy
for simple, one-off tasks where the app does a single request and returns a
response. For more complicated pictures it becomes much more difficult. For
instance, a login process may require three different calls. If one of the calls
fails, the whole process may need to be aborted, or the call may need to
be repeated. There may be dependencies between the asynchronous tasks,
where one call depends on a previous call or must be canceled if a user cancels
the action. Using AsyncTask the logic for this login call is scattered across
many methods and several different classes. There is no straightforward way
to handle errors.

Android developers have come up with different solutions to this problem.
Promises are one approach used in many other languages, where the results of
an asynchronous call are wrapped in an object that can be later unwrapped
in order to get the results. Callbacks are another approach. With callbacks,
asynchronous methods are passed an anonymous class which is called on the
resulting thread when the action completes. Another more flexible approach
is the use of the Reactive Extensions (Rx) library [41] originally developed
by Microsoft and in use at companies such as Netflix [10].

Other languages that compile to JVM bytecode can also provide addi-
tional tools for managing concurrency. One such language is Clojure, which
is discussed in the next section.



Chapter 3

The Clojure Language

This chapter briefly introduces the Clojure language and provides an overview
of Clojure features relevant to later sections of the thesis.

3.1 Clojure overview

Clojure is a functional, dynamic, Lisp-based language with strong support
for concurrency that runs on the JVM [16, 27, 28].

As a functional language, Clojure has first-class functions and emphasizes
pure functions and immutable state. Functions can be defined and passed
around in Clojure like any other variable, which provides a large amount of
expressiveness and flexibility. Clojure encourages pure functions, which have
no side effects, but does not require them. Pure functions reduce the men-
tal burden of the developer, who only has to know what values are passed
in to know what value a function will return. One way Clojure encour-
ages pure functions is by making most program state immutable by default.
Immutability can simplify software development by reducing the number of
ways in which a program state can change. A program with fewer moving
parts is conceptually easier to understand. Immutable state also simplifies
concurrency challenges because immutable state can be passed freely between
threads without fear of one thread changing another thread’s data.

Clojure is a dynamic language, allowing the developer to perform many
actions at run time that are typically available only at compile time. This is
discussed in greater detail in Section 3.2.

Clojure also belongs to the Lisp family of languages. Like other Lisps,
Clojure uses the same representations for code and data and has strong
support for macros. This makes the language very extensible. For example,
some features can be implemented using macros in Clojure that in other

15
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languages require extensions to the language itself.
Clojure has strong concurrency support. Besides immutable data as a de-

fault, Clojure provides a number of different tools for handling state changes
safely. Vars, atoms, refs, and software transactional memory each provide a
different thread-safe way to alter program state.

Finally, Clojure is a JVM language and inter-operates well with Java
code. As a JVM language, Clojure can be executed in most environments
that support Java, including Android. In addition, Clojure has various tools
to ease the use of Java libraries and features from Clojure. Java classes
can be extended, referenced, and used directly. Existing Java libraries can
be used directly in Clojure code. These are important features for Android
development, as the Android framework and libraries are provided almost ex-
clusively in Java. Clojure also provides some support for the other direction,
using Clojure from Java.

3.2 Dynamic features

Clojure is a dynamic language. The term dynamic is overloaded but static
and dynamic are frequently used to distinguish between compile time and
run time. Clojure is a dynamic language because it gives the user a larger
amount of flexibility at run time than many languages.

Important dynamic features relevant to later discussion in the thesis are
the REPL, dynamic compilation, reified language constructs, and dynamic
binding of vars and namespaces. Together these features allow Clojure de-
velopers to use a dynamic, REPL-driven style of development.

Read-Eval-Print-Loop

The Read-Eval-Print-Loop or REPL is a console for interacting with Clojure.
Clojure forms can be entered at the console to be read and evaluated and
their results are printed. The REPL is the primary programming interface
for developing Clojure programs and derives much of its power from the
dynamic features presented subsequently.

Dynamic compilation

Clojure supports dynamic compilation and evaluation. Any Clojure code
can be loaded, compiled, and evaluated at run time. The code is compiled
to JVM bytecode on the fly when the forms are loaded. One implication of
this is that the Clojure runtime comes with a fully functional compiler. A
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second implication is that the entire Clojure language is available to Clojure
programs at run time.

Reified language constructs

Clojure makes a number of constructs available at run time that are in many
languages only available implicitly at compile time. This process of making
implicit language constructs explicit is called reification. Symbols, vars, and
namespaces are all examples of reified constructs in Clojure. A symbol is an
identifier typically used to refer to another object. A var is a pointer to a
storage location holding for example an integer or a function. A namespace
is a mapping of symbols to vars, which in turn map to other values. All three
of these constructs are explicitly available at run time in Clojure and can be
used and manipulated like other language constructs. This is in contrast to
many other languages, where similar concepts may be used internally during
compilation without being available to the developer.

Dynamic binding of vars and namespaces

One important example of dynamism in Clojure relevant to this thesis is the
dynamic binding of vars and namespaces. A var is a pointer to a value such
as a function or an integer and is usually defined using the “def” special form
or “defn” macro. The “defn” macro is a wrapper around “def” used to define
functions. In practice most functions in a program are defined using “def”
as a var pointing to an anonymous function value.

Clojure vars reside in namespaces, which are the basic unit of organization
for Clojure programs. A namespace is a mapping from symbol identifiers to
vars or Java classes.

The following example presents namespaces and vars in a simple but com-
plete Clojure program. The first Clojure form defines a namespace named
“hello”. The next two forms define two vars, “foo” and “print-foo”, pointing
to an integer value “1” and a function to print the value of “foo”.

(ns h e l l o )

(def f oo 1)

(defn pr int− foo [ ]
( println f oo ) )

Vars and namespaces are reified and can be inspected at run time. They
are also dynamically bound, and can be added, removed, or given new values
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at run time. For example, if the statements of the previous example were
executed in a REPL console, the user could later switch back to the “hello”
namespace and inspect the values of the vars. The var “foo” could also be
given a new value.

=> ( in−ns ’ h e l l o )
#<Namespace he l l o>
=> f oo
1
=> ( pr int− foo )
1
ni l
=> (def f oo 5)
#’ h e l l o / foo
=> f oo
5
=> ( pr int− foo )
5
ni l

Anywhere the var “foo” is used elsewhere in the program the new value
will now be used. This happens without recompiling the namespace “hello”
or the function “print-foo”. This point has important implications. For
development it makes it easier to write and test new code. If something
doesn’t work it can be redefined, recompiled efficiently, and tested until it
does. The second important implication is more subtle. All places that use
the “foo” var in the code will see the new value immediately, without being
recompiled. This means that the value of var “foo” is not used directly but
is looked up every time it is used. Every use of “foo” must first fetch the
value of “foo” from its namespace “hello” in order to use it.

Dynamic binding works similarly for namespaces. Every time a var in a
namespace is used, the namespace is looked up from a global table mapping
namespace identifiers or symbols to the namespace objects themselves. Then
the var is fetched from the namespace based on its own identifier, and finally
the value of var can be used.

Dynamic binding of vars and namespaces is an exceptional feature for
a language that otherwise emphasizes immutability and pure functions. In
most cases it is recommended to define namespaces and vars only once in pro-
duction code, and to use dynamic binding of vars and namespaces only during
development. This convention allows vars and namespaces to be generally
treated as immutable in production code. Treating them as immutable gives
developers much of the simplicity and maintainability of actual immutable
objects, though without the same guarantees.
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Dynamic development

The REPL, dynamic compilation, reified language constructs, and dynamic
binding of vars and namespaces together provide Clojure developers with a
powerful environment for a dynamic style of development. Clojure programs
are typically developed in an iterative, interactive fashion that makes heavy
use of the REPL. Developers may write, evaluate, and test individual pieces
of functionality interactively in the REPL. Reified language constructs mean
program values can be inspected at the REPL. Dynamic binding of vars and
namespaces allows program functions and values to be changed on the fly.
Dynamic compilation and evaluation means programs can be redefined and
recompiled efficiently on the fly or in the REPL as needed.

This style of dynamic or “REPL-driven” development is an integral part
of the Clojure language. It deeply affects the way Clojure code is evaluated,
as discussed in Chapter 4, and, ultimately, the performance of the Clojure
language (Chapter 6 and Chapter 7).



Chapter 4

Clojure Compilation & Runtime

This section provides background on Clojure compilation and the Clojure
runtime helpful for understanding the analysis and conclusions presented in
following sections. It shows how the dynamic features discussed in Chap-
ter 3.2 connect to design choices in the compiler and runtime, in particular
with respect to how Clojure programs start. These design choices have an
impact on the performance of Clojure on Android as will be seen in Chap-
ter 6.

Program compilation and execution is discussed first on a general level
and then from the perspective of virtual machines and the Java Virtual Ma-
chines. This is followed by more specific discussion of Clojure compilation,
the Clojure runtime, and the Clojure startup process.

4.1 Compilation and interpretation

At a low level computers understand and execute commands expressed in
binary machine language. For convenience these binary operations are given
corresponding names in assembly language. For instance, a computer may
have a command to add two numbers together and put the result in a specific
memory location. For many tasks this is too low of an abstraction level to do
useful work, however, and for that reason programs are developed in more
powerful and expressive high level languages. High level languages need to
be converted to machine language in order to be executed.

Two broad approaches for executing code written in high level languages
are compilation and interpretation. Compilation takes program source code
written in a high level language and converts it ahead of time to low level
machine code understandable by a computer. The machine code can then
later be executed by the machine.

20
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Interpretation takes an opposite approach. Instead of converting the
source code to binary code ahead of time, the machine may interpret the
original high level language source code directly. One extreme form of inter-
pretation is decode-and-dispatch interpretation [54]. In decode-and-dispatch
interpretation the interpreter steps through the original program source code
one line at a time, decodes each instruction, and dispatches it to the appro-
priate routine to be executed. For each source code command there are
corresponding routines that execute the command in machine code. The
program source code is executed directly without the need of a complete
intermediate machine code representation.

One basic tradeoff between compilation and interpretation is between
execution speed and implementation flexibility. Compilation can produce
highly optimized machine code that executes quickly. The whole source code
is available during compilation, which allows the compiler to take shortcuts
not available to interpreters. A drawback of ahead of time compilation is
that the source code must be separately compiled for each targeted machine
architecture. Writing the compiler code itself can also be quite complex. In-
terpreters can be much easier to write and modify, allowing easier innovation
with new languages. For the same reason interpreted languages can be easy
to port to different architectures. Interpreted code typically executes more
slowly than compiled code, however, because interpreters do not have the
entire source code available and can make fewer optimizations.

4.2 Virtual machines

Between the extremes of ahead of time compilation and decode-and-dispatch
interpretation are a large number of variations. One such variation is to
insert a layer between the source program and the underlying hardware called
a virtual machine [54]. Program code can be compiled or interpreted to an
intermediate virtual machine code representation. The virtual machine then
executes this code on the underlying machine.

Virtual machines can provide portability and flexibility without sacrific-
ing all of the speed of strict interpreters. Portability is achieved because the
program source code only needs to be compiled once for the virtual machine.
The virtual machine is compiled for different underlying architectures, and
the program can be executed without recompilation on any architecture sup-
ported by the virtual machine. The virtual machine provides an abstraction
over the underlying hardware and the executing program uses this abstrac-
tion in place of the hardware.

The intermediate abstraction layer of a virtual machine gives a large
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amount of flexibility to language developers and users. A language developer
can develop a language for a single virtual machine that is able to execute
on all machine architectures that the virtual machine supports. Virtual ma-
chines provide their own run time environment for programs. A language
may take advantage of the virtual machine’s handling of threads, the file sys-
tem, and security, for example, without needing to implement these features
at a low level within the language.

Performance in virtual machines can be obtained through techniques such
as just-in-time (JIT) compilation. In JIT compilation program source code
is compiled to machine code on the fly as needed during execution of the
program. A JIT compiler may take advantage of run time information about
how a program is executing in order to optimize the code. It may initially
compile source code quickly to inefficient code, and then recompile code
that is used often to be more efficient. When using JIT compilation in
virtual machines, the original source code will typically be compiled to virtual
machine code and then JIT-compiled by the virtual machine to machine code.

One widely used virtual machine is the Java Virtual Machine used by
Java, Clojure, and other languages and discussed in the following section.

4.2.1 Java Virtual Machine

The Java Virtual Machine (JVM) is a layer between high level languages
such as Java, Scala, JRuby, or Clojure, and the underlying platform [37].
Programs written in high level languages are compiled to JVM bytecode
contained in class files. The JVM reads and executes bytecode from the
class files.

The JVM refers to the JVM specification, a JVM implementation, or a
JVM instance. The specification defines what is required in a conformant im-
plementation. An implementation is a compiler and runtime that meets the
specification and can compile and execute JVM programs. A JVM instance
is a JVM process executing a single program. In this section we primarily
discuss the JVM specification.

The class file format is the interface of the JVM from a programming
language perspective. Any language that conforms to this interface can run
on the JVM. Class files contain JVM instructions or bytecodes along with
the data necessary to execute the instructions. Each class file contains a
description of a class and the methods defined in the class. The general
format is presented in Figure 4.1 [37].

Before any code from a JVM class can be executed, the JVM must load,
link, and initialize the class.

Loading a class is finding the binary representation of a class and creating
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Figure 4.1: Class file

a corresponding internal JVM representation. A JVM class does not need to
be stored as a file, but can also be loaded over the network or generated on
the fly as in Clojure dynamic compilation.

Linking a class is adding the class to the current state of the JVM run-
time. The linking process also verifies that the representation of the class or
interface is structurally correct and prepares static fields by creating them
and setting them to default values. The linking step may also resolve sym-
bolic references to the actual classes or interfaces that contain them.

Initialization is executing the class initialization method of the class so
that the class is ready to be used. In class files this class initialization method
is named “clinit”.

Classes are initialized only when needed. A class is initialized at JVM
start up if it is the main specified class. Classes are also initialized when they
are referenced using JVM instructions like “new” or static method invoca-
tions, or when a sub-class is initialized. When a class needs to be initialized,
it must first be loaded and linked. The JVM specification allows loading
and linking to occur at any time before initialization, leaving room for im-
plementers to optimize the process.

The JVM class file structure is designed around the needs of the object
oriented language Java. For this reason the mapping between Java constructs
and JVM constructs is fairly straightforward. A Java class, for instance,
maps directly to a single JVM class file. For other JVM languages such as
the functional Clojure language the mapping is less straightforward.
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4.2.2 Dalvik virtual machine

The Dalvik virtual machine is a virtual machine developed by Google for
executing Android apps. Android apps are typically written in Java, which is
compiled to JVM bytecode. Dalvik can execute JVM bytecode by converting
JVM bytecode in class files to Dalvik Executable files. Dalvik Executable
files, which have a “.dex” extension, are comparable to JVM class files but
have changes designed for the mobile environment. In particular Dalvik is
optimized for a low memory footprint and fast program startup times [15].

Dalvik achieves a lower memory footprint by sharing constants between
classes and merging many JVM class files into typically a single “.dex” file.
In standard Java, each class in the source code is compiled to a single JVM
class file. A large portion of the class file may be devoted to the constant
pool, which contains all literal constants used within the class. When the
Dalvik conversion tool dx is used to convert JVM class files to “.dex” files,
all class files for a single application are converted into a single Dex file and
their constant pools are merged. Duplicated constants appear only once in
the merged constant pools. This can result in files of less than half the size
of the corresponding JVM files [15]. Memory use is also reduced because the
Dalvik virtual machine needs to load and keep in memory fewer bytes.

Reducing the number of bytes to load can also decrease app startup time,
but the primary way Dalvik targets app startup time is through the Zygote
process. The Zygote is a virtual machine process started when an Android
system is booted. When it starts, it loads a Dalvik VM instance with partially
initialized core library classes.

For security reasons each Android app is run in its own virtual machine
instance, which is requested from the Zygote process. The Zygote process
spawns new Dalvik instances by forking the initial Dalvik VM process. In
the Linux kernel, forking a process does not actually copy the memory from
the old process to the new process. Instead it uses a “copy on write” strategy
where memory is copied only when it is written to. For these core libraries,
the majority of the time they are read from and not written to, so the memory
can be largely shared between processes [15].

Thus new processes start quickly because they are forked from a pre-
loaded process and can share use of existing libraries that may be already
loaded into memory. Sharing memory for core libraries is also another way
in which Dalvik reduces application memory footprint.
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4.2.3 Android runtime

With the Android 5.0 release Google replaced the Dalvik virtual machine
with the Android runtime (ART). ART is a virtual machine runtime with two
important changes compared to Dalvik: ahead-of-time (AOT) compilation
and improved garbage collection [24].

Dalvik is a Just-in-Time (JIT) compiler. It compiles Dalvik bytecode to
machine code dynamically during run time when needed. ART, by contrast,
compiles app code ahead of time. App code is compiled to machine code
when the app is first installed. This is designed to improve the memory and
speed performance of Android apps.

The second major change with ART is the way garbage collection is han-
dled. Garbage collection is the process of reclaiming app memory which is
no longer being used. Dalvik garbage collection in certain cases would freeze
apps for relatively long periods while garbage collection was happening. ART
improves garbage collection by reducing the number of pauses and keeping
the pauses shorter [24].

From a user or developer perspective the change from Dalvik to ART is
almost transparent. ART apps take a longer amount of time to install and
are expected to perform better.

4.3 Clojure compilation and runtime

4.3.1 Compilation

Clojure code can be run on a number of platforms, including the Microsoft
CLI, C, and JavaScript through the Clojure-like ClojureScript language. The
most popular and best-supported platform for Clojure, however, is the Java
Virtual Machine. Clojure code can be either Ahead of Time (AOT) com-
piled or dynamically compiled when needed. In the former case the code
is compiled to Java class files that can be read by the JVM. In the latter
case source code is compiled on the fly into an intermediate Java bytecode
representation in memory which is not written to disk. Clojure code is never
interpreted, although dynamic compilation makes this a subtle distinction
from a developer perspective. All Clojure code is compiled to JVM bytecode
before execution, while dynamic compilation and evaluation provide much of
the flexibility of interpretation without the performance penalty.

The Clojure compiler works by sequentially reading and evaluating each
Clojure source code form in turn. For each form, the compilation executes
four stages: reading, macro expansion, analysis, and emission. Reading takes
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in a text form and converts it to a Clojure data structure. In practice this
means a Java object corresponding to a Clojure data structure such as a list.

Macro expansion expands any macros in the source code into regular
Clojure forms. After this stage, with possible recursive calls for further macro
expansion, the resulting form contains Clojure forms free of macros.

Analysis and emission occur in the same phase in the standard Clojure
JVM compiler. Analysis parses the Clojure data structure into the language
expressions that it represents. Emission occurs as a side effect of analysis.
This is where dynamic class generation and loading occurs. When the Clojure
compiler encounters a form that needs to be compiled to a new class file, it
generates the new class. If Ahead of Time (AOT) compilation is being used
the generated class is saved to a class file on the file system. If the form is
just being evaluated, it is evaluated directly in memory without saving the
generated classes to disk.

Most of the standard Clojure compiler is written in Java. The main
exceptions to this are the Clojure language core functions, which are mostly
written in Clojure. It is not uncommon, however, for core functions to defer
directly to Java libraries in order to perform their tasks.

4.3.2 Compilation for Android

Clojure compilation for Android works in the same way as Java compila-
tion for Android. Clojure source, including the Clojure runtime, is compiled
ahead of time to JVM bytecode. The bytecode is then converted and pack-
aged into an Android application just as with Java. The process is shown in
Figure 4.2.

Figure 4.2: Android Build Process

One fundamental limitation of the Android platform for Clojure code is
that dynamic class loading is not supported by Dalvik. This means that all
Clojure code must be compiled ahead of time and the dynamic development
features such as runtime evaluation of arbitrary code described in Section 3.2
are not available in the same way. This also limits the utility of the dynamic
binding of vars and namespaces described in Section 3.2. One important use
of dynamic var and namespace binding is for dynamic development at the
REPL, which is not possible in the same way in Clojure on Android.
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4.3.3 Runtime

A programming language runtime is the environment in which the devel-
oper’s code executes. The JVM provides a runtime in the form of the virtual
machine itself. As part of this runtime the JVM provides an interface to ac-
cess underlying hardware features, a standard set of Java libraries, a garbage
collector, and features such as the ability to dynamically load and execute
Java code.

Clojure has its own runtime. A Clojure program is executed within the
Clojure runtime, which in turn executes on the JVM runtime. The dynamic
features described in Section 3.2 are available through the Clojure runtime.
This includes dynamic loading and execution of Clojure source code, gener-
ation of Java classes and objects, and redefinition of vars and namespaces.

All of the functions defined in the Clojure language also come from the
Clojure runtime. Clojure’s core functionality, including most of the basic
functions defined in the language, is defined within the core namespace “clo-
jure.core”. The core namespace is created and loaded like any other names-
pace in Clojure. All other namespaces depend on the core namespace in order
to use basic Clojure functions. The core functions are accessed through vars
defined in the core namespace. In order for any of these functions to be
used, they need to first be loaded. The process by which they are loaded is
described in the following section.

The Clojure language and runtime in its entirety is distributed as a single
JAR file. Java programs and libraries are typically distributed packaged as
JAR files. The Clojure JAR file can be treated as an ordinary Java package
and can be loaded and used by the JVM like any Java package. Clojure
functionality is available by including this package in other Java bytecode.

4.3.4 Startup process

A Clojure program is typically started in one of three ways:

1. By loading a Clojure REPL and executing Clojure code in the REPL.

2. By manually calling the Clojure language JAR and passing it a Clojure
source file to execute.

3. By AOT-compiling Clojure code into JVM bytecode and executing the
main class in the same way as a Java program.

The first two options dynamically load Clojure source code, compile it
to Java bytecode, and execute the resulting bytecode. In the third option
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Clojure code is first compiled and then executed in two completely separate
stages.

Production code will often be executed as AOT-compiled code for per-
formance discussed in Section 4.3.2. For this reason the discussion of the
Clojure startup process focuses on AOT compilation, although much of the
process is the same for other ways of execution.

In broad terms a Clojure program is run by loading the main Clojure
namespace and using functions from this namespace to load and execute
one’s own code. The main Clojure namespace is named “clojure.core”. This
namespace contains all of the functions defined by the Clojure language. Ex-
cept for a few critical functions, these functions are written in Clojure. This
Clojure core namespace is compiled like any other Clojure namespace. Un-
like every other Clojure namespace, however, the core namespace is included
with every Clojure program and is loaded before any user Clojure code.

Clojure source files typically begin by declaring a new namespace with a
call to the namespace macro “ns”. The prototypical AOT-compiled Clojure
Hello World program could be defined as in Figure 4.3.

(ns h e l l o . core
( : gen−class ) )

(defn −main [& args ]
( println ”He l lo world” ) )

Figure 4.3: Clojure Hello World

This example defines a single function “-main”, which is defined within
the namespace “hello.core” and prints the text “Hello world” when called.
The “gen-class” option on the “ns” macro tells the compiler to create gen-
erate the bytecode compatible with a Java class of the same name. The
program can then be run like any other Java program by executing the “-
main” function or “main” method on the class file containing the “hello.core”
class.

The macros “defn” and “ns” and the function “println” are all defined
within the Clojure core namespace. Clojure macros are expanded at com-
pile time into macro-free Clojure code, so the bytecode generated from this
example corresponds to the macro-expanded Clojure code in Figure 4.4.

Expanding the Clojure macros reveals the underlying imperative nature of
Clojure programs. A Clojure program is compiled by sequentially evaluating
each form in turn, converting them to bytecode in the process, and saving
the resulting bytecode. Pre-compiled Clojure code is executed similarly by
sequentially stepping through the equivalent bytecode of each original source
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(do
( c l o j u r e . core /in−ns ’ h e l l o . core )
( ( fn∗

l o a d i n g 4 9 1 0 au t o
( [ ]

( . c l o j u r e . lang . Var
( c l o j u r e . core /pushThreadBindings
{ c l o j u r e . lang . Compiler /LOADER
( . ( . l o a d i n g 4 9 1 0 au t o ge tC la s s ) getClassLoader ) }) )

( try
ni l
( c l o j u r e . core / refer ’ c l o j u r e . core )
( f ina l ly

( . c l o j u r e . lang . Var ( c l o j u r e . core /popThreadBindings ) ) ) ) ) ) )
( i f ( . ’ h e l l o . core equa l s ’ c l o j u r e . core )

ni l
(do

( . c l o j u r e . lang . LockingTransact ion
( c l o j u r e . core / runInTransact ion

( fn∗
( [ ]

( c l o j u r e . core /commute
@#’ c l o j u r e . core /∗ loaded−libs∗
c l o j u r e . core /conj
’ h e l l o . core ) ) ) ) )

ni l ) ) )

(def −main
( fn∗ ([& args ]

( println ”He l lo world” ) ) ) )

Figure 4.4: Clojure Hello World with expanded macros

code form in turn.
A Clojure namespace is compiled into a namespace initializer class file

and a class file for each var and Java class defined in the namespace. The
“gen-class” option also creates an additional wrapper class compatible with
a Java class of the same name.

The expanded example of Figure 4.4 compiles to five classes: a namespace
initialization class, a namespace wrapper class, a “-main” var class, and
two classes for the two anonymous functions in the “ns” macro (defined
via “fn*”). The program is executed by calling the “main” method of the
namespace wrapper class.

In order for any Clojure namespace or function to be used, it must first be
loaded via a method defined in the Clojure runtime class “clojure.lang.RT”.
In the initialization of this Clojure runtime class, the Clojure core namespace
is loaded and initialized. This means that one of the very first things any
Clojure program does is load the “clojure.core” namespace.

The core namespace is defined primarily in the source file “core.clj”, which
is compiled to an initialization class file “core init.class” and a large number
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of class files corresponding to functions defined in the namespace. This is
represented in Figure 4.5.

Figure 4.5: Clojure core compilation

The core namespace is loaded by loading the “core init.class” file and
executing its static initializer. The decompiled bytecode for the core names-
pace static initializer is represented in Figure 4.6. This bytecode is exactly
the same for every single Clojure program.

s t a t i c {
// Create Vars and metadata

i n i t 0 ( ) ;
i n i t 1 ( ) ;
i n i t 2 ( ) ;
i n i t 3 ( ) ;

// . . . i n t e rmed ia t e l i n e s omitted
i n i t 2 3 ( ) ;

Compiler . pushNSandLoader ( Class . forName ( ” c l o j u r e . c o r e i n i t ” ) .
getClassLoader ( ) ) ;

try{
// Assign Vars and metadata , load ex t e rna l f unc t i on s
load ( ) ;

Var . popThreadBindings ( ) ;
}
f ina l ly
{

Var . popThreadBindings ( ) ;
throw f ina l ly ;

}
}

Figure 4.6: Clojure core static initializer

The static initializer executes a number of “init” methods and then calls
the “load” method within a certain context.

The “init” methods create vars and metadata corresponding to each func-
tion defined in the core namespace. The “load” method then adds those vars
to the namespace object for the core namespace, adds the metadata to the
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vars, and points the vars to a new instance of the corresponding function
class.

For example, the core namespace defines a function “cons”. The function
itself is compiled to a class file named “core$cons.class”. Loading the core
namespace creates a var in the core namespace object pointing to an instance
of this class.

The end result of loading the core namespace and executing the core
namespace initializer “core init.class” is the creation of a “clojure.core”
namespace object with core function mappings. For each function in the
core namespace, the object contains a var pointing to the class instance
which implements the function. This mapping is represented in Figure 4.7.

Figure 4.7: Core namespace vars

A core function can then be invoked in the user’s code with JVM bytecode
corresponding to the Java code of Figure 4.8, using the core function “cons”
as an example.

RT. var ( ” c l o j u r e . core ” , ” cons ” ) . getRawRoot ( ) . invoke ( args ) ;

Figure 4.8: Fetching and invoking a var

The call to “RT.var” first looks up the core namespace by name to get
its namespace object. It then fetches the var corresponding the the “cons”
function and returns it. An instance of the class corresponding to the function
itself is obtained with “getRawRoot” and finally the function can be invoked
by calling “invoke”.
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Each invocation of a var, such as a Clojure function, requires two levels
of indirection. First the namespace object is fetched, then the var is fetched
from the namespace, then the function itself is fetched from the var. This
indirection is necessary because both namespaces and vars are mutable at
run time. They can be redefined at any point to point to other namespaces
and vars, and all code that uses the given namespace or var will then use the
updated value. This feature is obtained only because namespaces and vars
are looked up explicitly on every call.

To support this dynamic behavior, the Clojure compiler loads all core
namespace functions at the beginning of every Clojure program. This has a
cost on startup performance, as discussed in Chapter 6 and Chapter 7.

4.4 Lean Clojure

The Clojure startup behavior discussed in the previous section has associated
cost in the start time of Clojure programs. For this and other performance
reasons over the summer of 2014 two alternative Clojure compiler imple-
mentations were developed. The compiler projects are named Skummet and
Oxcart and are designed to trade aspects of Clojure’s dynamic behavior for
improved startup and execution performance.

In this section we first discuss the shared goals of the projects and the
intended changes. We then describe individually the results of the Skummet
and Oxcart project.

4.4.1 Lean Clojure changes

The basic premise of both lean compiler projects is to trade dynamic features
of Clojure for performance. In particular, the projects statically compile Clo-
jure vars and namespaces and eliminate dynamic code evaluation in order to
reduce Clojure memory consumption and startup times and improve execu-
tion performance.

Static var and namespace binding

Both compilers bind vars and namespaces statically instead of dynamically.
The Skummet compiler allows specific vars to be marked to be compiled in
the normal dynamic way. The Oxcart compiler compiles all vars statically.

As discussed in Section 3.2, a Clojure var is a pointer to a value such
as an integer or function. Most functions in a Clojure program are defined
using vars. The vars are dynamic, which mean their values can be updated
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at run time and the changes are visible within the same thread without
recompilation. A namespace is a mapping of var names to vars.

With static compilation in the lean compilers, the vars can only be defined
once at compile time and are fixed at run time. One implication of this is
that lean compilation cannot be used with the REPL-driven, dynamic style
of development discussed in Section 3.2. With lean-compiled code if a var is
changed, all of the code that depends on the var must be recompiled for the
changes to be visible.

Static var and namespace compilation is expected to improve Clojure
startup times, memory performance, and execution speed. Statically com-
piled vars and namespaces can be compiled more compactly than dynamic
vars and namespaces. Where the standard compiler compiles each namespace
and var to its own class file, static compilation would allow vars to be stati-
cally compiled within namespaces. This would overall reduce the amount of
work needed to set up namespaces and their functions, variables, and values
and reduce the amount of bytecode needed to be loaded. This in turn is
expected to reduce Clojure program startup times.

This is also expected to improve memory performance and execution
speed by reducing indirection. As discussed in Section 3.2, most function
calls in Clojure result in two indirect lookups. First the var must be fetched
from the namespace, then the function is fetched from the var, then the func-
tion is invoked. Under static compilation the function can simply be invoked
directly. This is expected to improve performance by reducing the amount
of work and making it easier for the underlying virtual machine to optimize
function calls.

Removal of dynamic code evaluation

The lean compilers also explicitly remove support for run time evaluation of
arbitrary code. As discussed in Section 3.2, Clojure includes support for run
time evaluation of arbitrary code via functions such as eval. This severely
limits the scope of compiler optimizations. Language features or user code
that are unused at compile time must be included in the compiled code
because the compiler cannot know what will be evaluated at run time. In
addition the compiler itself must be included in the compiled code.

Removing dynamic code evaluation allows code that is unused at compile
time to be removed. This should reduce Clojure startup times, because
the Clojure runtime needs to set up fewer namespace vars and values on
start. In addition removing the code supporting run time evaluation from
the compiled code slightly reduces the amount of functionality that needs to
be loaded. Both of these changes also correspondingly reduce the sizes of
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compiled program packages.
ClojureScript, a dialect of Clojure that compiles to JavaScript, made a

similar decision to not support dynamic code evaluation [18]. Removing
dynamic evaluation allows the ClojureScript compiler to aggressively remove
unused code in order to reduce the resulting code size to a minimum. This
is important for ClojureScript because it compiles to JavaScript and larger
file sizes increase web site loading times.

4.4.2 Skummet compiler

The Skummet lean compiler is an ahead of time compiler based on the stan-
dard JVM Clojure compiler [55]. It was created by Alexander Yakushev in
a Google Summer of Code project in the summer of 2014. The Skummet
project focuses on using static compilation to improve Clojure performance
while preserving as much compatibility with standard Clojure as possible.

Specifically the Skummet compiler “lean compiles” or statically compiles
vars, skips macro emission, and removes unused metadata. Lean compilation
of vars removes the indirection discussed in Section 3.2. In standard Clojure,
the cons function is typically called as in the following way:

RT. var ( ” c l o j u r e . core ” , ” cons ” ) . getRawRoot ( ) . invoke ( args ) ;

Under the Skummet compiler the same call is made in this way:

c l o j u r e . core$cons . invoke ( args ) ;

Instead of fetching the namespace and var dynamically, both of them are
directly referenced. Lean var compilation can also be toggled on or off for
specific vars to allow dynamic vars to still be used where necessary.

In addition to lean compilation of vars, the Skummet compiler skips emis-
sion of macros, which are only used at compile time. It also improves the
removal of unused metadata associated with vars.

The resulting compiler project is able to compile the Clojure runtime
and arbitrary Clojure programs. The performance results of the project are
analyzed in Chapters 6 and 7.

4.4.3 Oxcart compiler

The second lean compiler project, Oxcart, was created by Reid McKenzie
based on the Clojure in Clojure project [38]. The Clojure in Clojure project
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aims to replace part or all of the Clojure and ClojureScript compilers written
in Java and JavaScript with Clojure equivalents. Oxcart was developed as a
Google Summer of Code project over the summer of 2014 with similar goals
as the Skummet compiler.

Specifically the Oxcart compiler had goals of eliminating indirect function
calls via vars and avoiding compiling Clojure functions to individual classes
in most cases to avoid the class overhead [39]. Additional goals for Oxcart
include “tree shaking” to remove vars that are not used at runtime from
compile program code and inlining of functions [38].

As of the end of the Google of Code project in August 2014 the Ox-
cart compiler is able to compile a limited subset of Clojure programs. The
compiler statically compiles vars, performs reach analysis to remove unused
dependencies at compile time, and removes support for dynamic compilation
and evaluation [40].

The Oxcart compiler is not able to compile the Clojure runtime, however,
nor many typical Clojure programs. This is due to lack of time to complete
the necessary features and not necessarily a fundamental limitation. In par-
ticular Oxcart programs cannot extend Java classes. This renders many
comparisons on Android meaningless, as typical Android app development
depends heavily on extending Android library classes written in Java.



Chapter 5

Related Work

The Clojure language has not been studied extensively in the literature.
The author is aware of only two studies of Clojure performance, which are
described in Section 5.1. However, as Clojure is a JVM language, bench-
marking Clojure performance touches on many of the same issues as other
JVM languages. These are discussed in Section 5.2. Android also introduces
its own challenges for benchmarking as described in Section 5.3. Finally,
studies of the performance of the Java language itself demonstrate many of
the challenges of benchmarking virtual machine programs as is discussed in
Section 5.4.

5.1 Clojure

Clojure language performance has received little study and there are no es-
tablished benchmark suites for Clojure. The closest to a benchmark suite
available for Clojure is the Computer Language Benchmarks Game [20]. The
Computer Language Benchmarks Game provides implementations of specific
algorithmic benchmarks in numerous languages including Clojure. A set of
these benchmarks for Clojure is maintained by Andy Fingerhut [17].

The author is aware of only two studies of note that analyze Clojure per-
formance. Both of them rely on benchmark programs from the Computer
Language Benchmarks Game. Sarimbekov et al. [51] developed a suite of
metrics for characterizing dynamic JVM languages and a toolchain for col-
lecting the metrics. The metrics exercise the differences between Java and
non-Java JVM languages and include metrics related to immutability and
object lifetimes. In [50] they use the metrics and toolchain to characterize
and compare the behavior of programs written in Clojure, Python, Ruby,
and Java. The study uses ten programs taken from the Computer Language

36
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Benchmarks Game, supplemented by a real-world program for each language.
Among other results, they found that 77.5% of Clojure classes are immutable
compared to 58.8% of Java classes. Clojure also performed the largest per-
centage of unnecessary zeroing of the studied languages. Unnecessary zeroing
occurs when a field is unnecessarily set to the value that it already defaults
to.

Li, White, and Singer perform similar experiments to analyze the dif-
ferences between the dynamic behavior of JVM languages including Java,
Clojure, JRuby, Jython, and Scala [36]. As in [50], Li et al. use benchmark
programs from the Computer Language Benchmarks Game and additional
real-world applications written in each language. They used both static and
dynamic analysis to collect metrics such as the percent of Java code executed,
method hotness, and objects allocated. They found that Clojure objects
have longer lifetimes than Java objects and these objects tend to be smaller.
Clojure used a large number of slower boxed primitives, even though faster
direct primitives can be used in Clojure. Scala, by contrast, requires the use
of boxed primitives but at run time used much fewer boxed primitives than
Clojure. They also found that non-Java JVM languages including Clojure
rely heavily on Java code for significant parts of their language runtimes and
libraries. This implies that Clojure and Clojure on Android performance also
depend heavily on the underlying Java library implementations.

Both the Sarimbekov et al. [50] and Li, White, and Singer [36] studies
use relatively specific metrics to characterize language performance. This is
helpful for optimizing programming languages but does not provide a com-
parison of overall language performance. The results of the Computer Lan-
guage Benchmarks Game itself suggest that Clojure execution and memory
performance will be within a factor of four of Java performance, with typi-
cally values within a factor of two [20]. Notably lacking for Clojure is a set
of macrobenchmarks such as the Da Capo benchmark suite for Java [52] and
Scala [53].

5.2 JVM languages

There are many languages other than Clojure that compile to JVM-compatible
bytecode. Some of the more popular JVM languages are Scala [47], Groovy [48],
and the JVM implementations of Ruby [3] and Python [4].

While a statically-typed language, Scala is similar in many ways to Clo-
jure with its emphasis on immutable data structures and higher-order func-
tions. Besides the Li et al. [36] study mentioned previously, a few studies
compare the performance of the Scala language with Java and other lan-
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guages. Sewe, Mezini, Sarimbekov, and Binder designed a benchmark suite
for Scala comparable to the Da Capo benchmark suite for Java [52]. This
benchmark suite is a set of real world programs written in Scala and is de-
signed to characterize the performance of Scala programs. They subsequently
use this suite to compare memory behavior of Scala and Java programs [53].
Among other findings, they found that Scala generally has shorter-lived and
smaller objects than Java and a larger proportion of immutable objects.

Hundt in [30] compare C++, Java, Scala, and Go performance on a sin-
gle, well-defined benchmark utilizing higher level data structures and several
different algorithms. Here Scala used about half as much memory as Java
and took between 1/6 and 1 times as long to execute. Binary package sizes
for Scala were between twice and three times as large as Java packages. They
also note the difficulties in characterizing the virtual machine languages Java
and Scala, for which garbage collection parameter settings have a large effect
on benchmark performance.

5.3 Android

There are few studies of JVM language performance on Android, but several
comparisons of benchmark suites to actual Android app performance.

Nurminen and Denti examine the performance of Scala on the Android
operating system and found that it used more energy and less memory than
Java while having a larger package size [13].

Gutierrez et. al in [26] studied the characteristics of Android applications
and compared them to SPEC CPU2006 benchmarks. They found that their
interactive Android applications spent a large portion of time in shared li-
braries and some fraction in operating system code while the SPEC CPU2006
benchmarks spent almost all of their time only in user code. This suggests
that the SPEC CPU2006 benchmarks poorly model interactive Android apps.

In [46] Pandiyan, Lee, and Wu analyze the performance of Android ap-
plications at the microarchitectural level. They note that smart phones are
typically used for short-term actions followed by long idle periods, that com-
putation can be off-loaded into the cloud, and that applications need to be
interactive to handle bursts of data in short periods.

In a study comparing Dalvik and JVM performance [45], Oh, Kim, Choi,
and Moon found similarly that real Android apps spend more time running
kernel and library code than user code. This was not the case for the compar-
ison EEMBCC embedded Java benchmarks, which spent most of their time
executing benchmark code. They further remark that actual Android apps
tend to execute methods only hundreds of thousands of times per second
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while benchmark methods were called millions of times per second.
The aforementioned studies [26], [46], and [45] all suggest that current

benchmark suites are unsuitable for modeling modern interactive Android
applications. The studies [46] and [45] also show that mobile applications
depend heavily on operating system and library functions. In addition, about
one quarter of Clojure language instructions are actually Java code [36]. The
combination of these factors suggests that existing benchmark studies are
likely to poorly represent actual Clojure applications and that Clojure run
time performance depends significantly on underlying Java, virtual machine,
and operating system library performance.

5.4 Java

Commonly used benchmarks for evaluating Java performance include
SPECjvm98 [6], DaCapo [8], SPECjvm2008 [1], and Java Grande [12].
SPECjvm98 is a set of seven benchmarks for computing performance metrics,
five of which are derived from real programs. The DaCapo benchmarks were
developed in response to issues found with the SPECjvm98 benchmarks.
In particular, they found that typical Java programs had different mem-
ory behavior than the SPECjvm98 programs. They provide larger and more
complex benchmarks for general purpose Java benchmarking. SPECjvm2008
updates the SPECjvm98 benchmarks with support for multithreading and
server systems and with additional startup benchmarks. The SPECjvm
benchmarks explicitly have low dependence on file and network I/O. The
Java Grande benchmarks, by contrast, were developed to study the perfor-
mance of Java programs that use large amounts of processing power, I/O,
network bandwidth or memory.

Computer system performance benchmarking is notoriously difficult and
virtual machines add additional challenges. Time may be spent within appli-
cation code, system libraries, the underlying runtime, dynamic compilation,
native libraries, or operating system services. Performance can vary markedly
based on the hardware, virtual machine, system parameters, and workloads
being executed. Mytkowicz, Diwan, Hauswirth, and Sweeney found mea-
surement bias to be common and significant, and that introducing presum-
ably insignificant changes to an experimental setup can markedly change the
results [42]. Benchmarking virtual machine programs adds additional chal-
lenges, with additional non-determinism introduced by just-in-time compila-
tion behavior, thread scheduling, and garbage collection [21].

Existing benchmarks designed to overcome many of these problems can
still be difficult to apply and interpret. Zaparanuks and Hauswirth in [56]
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found that the SPECjvm98 and DaCapo benchmarks do not accurately rep-
resent the workloads used by interactive Java programs. The DaCapo bench-
marks, for instance, explicitly exclude GUI programs because of the complex-
ities of benchmarking. Zaparanuks and Hauswirth found that actual GUI
programs behave quite differently than the DaCapo benchmarks and thus
the DaCapo benchmarks are poor indicators of interactive program perfor-
mance.

Eeckhout, Georges, and Bosschere in [14] found that for the SPECjvm98
benchmarks, runs with small input sizes were mostly dependent on the vir-
tual machine while runs with larger inputs depended either on the virtual
machine or the benchmark program, depending on the program. Pinpointing
the source of performance differences requires differentiating between these
factors.



Chapter 6

Clojure Startup Performance

As discussed in Section 5, there are very few studies of Clojure performance
and none that the author is aware of that characterize Clojure performance
on Android. In this chapter we benchmark and profile the startup process
of Clojure on the desktop and Android. The following chapter, Chapter 7,
presents further experiments focused on run time performance of Clojure on
Android across a wider variety benchmarks.

6.1 Experimental setup

6.1.1 Goal

The startup time of Clojure on Android apps is recognized within the Clojure
community as an issue. However, there are few reliable measurements avail-
able of this startup time and the reasons for slow startup are inadequately
understood. The goals of the experiments in this section are to determine the
minimum startup time of a Clojure on Android app and identify the main
factors contributing to the startup performance.

Minimum startup time is chosen as a target metric because, as discussed
in Section 4.3.4, even the most trivial Clojure program loads and prepares
the entire Clojure runtime. Any Android apps developed with Clojure must
thus consume a minimum amount of time performing this work.

Startup time measurements are also taken with the same programs com-
piled with the lean Clojure benchmarks in order to gauge their effects on
performance. Comparable Java measurements are taken for reference. The
startup measurements are repeated on the desktop JVM. The JVM exper-
iments are included for several reasons. First, it allows us to determine
whether the problem is specific to Android or if it appears also on the JVM.

41
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Second, the desktop JVM has higher quality profiling tools which allow us
to get more detailed information. For instance, neither the Dalvik VM [9]
nor the newer Android Run Time supports the Java Virtual Machine Tool
Interface, which is used by many profiling tools to inspect the runtime state
of the virtual machine. Third, a comparison with Clojure on the desktop
can provide insight into the problems that are particular to the Android
environment.

6.1.2 Methodology

On Android, we run a benchmark program twenty times without profiling
and twenty times with logging of class loading events. On the desktop, we
run a benchmark program twenty times each without profiling, with class
load event logging, and with the YourKit profiler attached.

Runs without profiling are averaged to estimate the minimum startup
time of a Clojure app both on Android and the desktop. Our benchmark
program is a trivial program that prints “Hello world”. While a Clojure
program could be written that performs even less work, it is unlikely that
a useful Clojure program would do less work. In addition, even this trivial
program will load and prepare the entire Clojure runtime. The process of
loading the Clojure runtime is the same for every Clojure app as discussed
in Chapter 4.

Runs with class load event logging are averaged to estimate the amount
of time consumed by various startup tasks. Logging class loading events
is useful because the Clojure runtime is loaded in the same sequence on
every program execution. By observing when different classes are loaded, we
can estimate the time breakdown between the virtual machine, the Clojure
runtime, and the main task of the program.

On the desktop we also perform the same number of runs with the YourKit
profiler attached. The run times are averaged to estimate the overhead of the
profiler. The profiler uses method sampling at 20 ms intervals to estimate the
amount of time spent in each method. We use this information to analyze the
results and provide a rough breakdown of time spent loading classes overall
and loading specific classes.

6.1.3 Test programs

The desktop JVM test programs are shown in Figure 6.1 and 6.2 for Java
and Clojure, respectively. On the JVM a minimal program can be simply a
class that prints “Hello world” in Java and a namespace that compiles to a
class that does the same in Clojure.
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On Android, the most trivial “real world” program is still an app. It
must be packaged and installed as an APK file, runnable from the app list,
and display a main Activity view. This means it has a class that extends
“android.app.Activity” and constructs the main view. It is also packaged
into an APK using the Android tools as a standard app. This introduces a
certain amount of overhead when compared to the JVM programs. When
the app is executed, it is fetched, loaded, and run within the context of the
Android framework. The Java “Hello world” app is shown in Figure 6.3.
The Clojure version in Figure 6.4 is a straightforward translation of the Java
version.

pub l i c class Hel lo {
pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {

System . out . println ( ”He l lo world” ) ;
}

}

Figure 6.1: Profiled Java program

(ns h e l l o . core
( : gen−class ) )

(defn −main [& args ]
( println ”He l lo world” ) )

Figure 6.2: Profiled Clojure program

package com . android . h e l l owor ld j ava ;

import android . app . Ac t i v i t y ;
import android . os . Bundle ;

pub l i c class HelloWorld extends Act i v i ty
{

@Override
pub l i c void onCreate ( Bundle savedIns tanceSta te )
{

super . onCreate ( savedIns tanceSta te ) ;
setContentView (R. layout . main ) ;

}
}

Figure 6.3: Java on Android Hello World
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(ns com . android . he l lowor ldmin imal . HelloWorld
( : gen−class
: extends android . app . Ac t i v i t y
: exposes−methods {onCreate superOnCreate })

( : import [ android . app Act i v i ty ]
[ android . os Bundle ] ) )

(defn −onCreate [ t h i s #ˆandroid . os . Bundle bundle ]
( . superOnCreate t h i s bundle )
( . setContentView t h i s com . android . he l lowor ldmin imal . R$layout/main ) )

Figure 6.4: Clojure on Android Hello World

Version (Desktop) Version (Mobile)
Device model Lenovo Yoga 2 Pro Nexus 5

Processor i7-4500U 1.8 GHz (2 cores) 2.3 GHz Krait 400 (4
cores)

Memory 8 GB RAM 2 GB RAM
Operating System Ubuntu Linux 13.10 64 bit Android 4.4.2 (SDK

19)
Virtual Machine Java HotSpot(TM) 64-Bit

Server VM (build 24.51-b03,
mixed mode)

Dalvik 4.4.4

Runtime Java(TM) SE Runtime Envi-
ronment (build 1.7.0 51-b13)

Dalvik

Java Target 1.7.0 1.6
Clojure 1.6.0 1.6.0

Table 6.1: Experimental Setup

6.1.4 Hardware and software

The desktop JVM experiments are performed on a laptop computer and the
mobile experiments on a recent mobile phone. The specific details of the
respective setups are presented in Table 6.1.

6.1.5 JVM setup

On the JVM, the programs are executed without profiling, with a simple
profiling agent, and with the YourKit profiler. Run times are estimated
using the elapsed wall times given by the Linux “time” command-line tool.

The profiling agent prints class load event times. As discussed in Sec-
tion 4.2.1, loading a class is the first step in preparing the class to be used.
Our class loading profiling agent prints the current time stamp whenever a
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class is loaded. The code for the profiling agent in its entirety is presented
in Figure 6.5. The agent is compiled to an executable JAR and given to the
JVM as a command line parameter.

import java . lang . instrument .∗ ;
import java . s e c u r i t y .∗ ;

pub l i c class ClassLoadTracer {
pub l i c s t a t i c void premain ( S t r ing agentArgs , Instrumentat ion i n s t ) {

f i n a l java . i o . PrintStream out = System . out ;

i n s t . addTransformer (new ClassF i l eTrans fo rmer ( ) {
pub l i c byte [ ] t rans form ( ClassLoader loader , S t r ing className ,

Class c la s sBe ingRede f ined , ProtectionDomain protectionDomain
,

byte [ ] c l a s s f i l e B u f f e r ) throws I l l ega lC la s sFormatExcept i on {

out . print ( ”” + System . cur r entT imeMi l l i s ( ) + ” ”
+ className + ” ( loaded by ”
+ loade r + ” ) \n” ) ;

r e turn nu l l ; // re turn c l a s s unmodified
}

}) ;
}

}

Figure 6.5: Class loading profiler agent

Every time the JVM loads a class it first hands the class off to the profiling
agent. The profiling agent gets the current time via “System.currentTimeMillis()”,
prints it, and returns “null” to indicate the class is returned unmodified. This
gives a time stamp for every class loading event which we can use to estimate
the time devoted to different startup tasks.

We use class loading events as a way to break down the loading time spent
on different tasks. As such we are interested in only a few of the class load-
ing events, which are summarized in Figure 6.2. We refer to time between
the start of the program and the loading of the first Clojure class, our class
“hello.core”, as JVM loading time. Up until this point none of our code has
been executed but only JVM initialization code. The time between the load-
ing of our main class and the loading of “clojure.core init” we call Clojure
runtime loading. Once “clojure.core init” starts being loaded the basic Clo-
jure runtime is already up and running. The Clojure runtime then loads the
core Clojure functions. When this is complete we see our program execution
starting when our namespace initialization class, ‘hello.core init‘, is loaded.
Finally the last event we see is the loading of ‘java.lang.Shutdown$Lock’ to
shut down the JVM.

In addition to profiling with a simple agent, we also use a profiler to esti-
mate the overall time spent loading classes. We start the program from the
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Class Loading Event Interpretation
hello.core JVM loaded

clojure.core init Clojure runtime loaded
hello.core init Clojure core functions loaded

java.lang.Shutdown$Lock Program execution complete

Table 6.2: JVM Class Loading Interpretation

command line with the YourKit JVM profiler attached and sample program
methods being executed at 20 millisecond intervals. From this sampling we
estimate the percentage of time consumed by different methods. As this adds
a certain amount of overhead to the run process of the program, these are
rough numbers and cannot be considered in absolute terms.

More detailed profiling allows us to estimate how much time was devoted
to loading and linking JVM classes and where this time was incurred. We
collectively estimate total JVM loading and linking time by seeing how much
time was spent in the Java method “java.lang.ClassLoader.loadClass”. This
is the Java method that loads and links new Java bytecode classes into the
running JVM. We further decompose this by looking at where the calls to
“loadClass” come from.

6.1.6 Dalvik setup

Setup for Dalvik is similar to setup for the JVM, except that we do not
perform detailed profiling. We run the test programs without profiling and
with small profiling changes introduced into the Dalvik framework.

We modify the Dalvik framework to print the class name and current
time to the Android log whenever a class is to be loaded. This allows us
to intuit the proportion of time spent on various tasks in the same way
as discussed for the JVM. Program start time is measured beginning when
Android prints a start message for the application activity. The loading of
our main class is used as indication that the virtual machine has been loaded.
Loading of the Clojure core namespace initializer is taken to indicate that the
Clojure runtime has loaded. Loading of our program’s namespace initializer
class file indicates that Clojure core functions have been loaded. The final
event is when the Android ActivityManager prints a message indicating the
activity has been displayed. These event interpretations are summarized in
Figure 6.3.

Time measurements come from the Android log timestamps. Times are
logged in milliseconds, have precision only up to tens of milliseconds, and are
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Log Message Interpretation
START HelloWorld JVM loaded

Load clojure.core init Clojure runtime loaded
Load HelloWorld init Clojure core functions loaded
Displayed HelloWorld Program execution complete

Table 6.3: Interpretation of Class Loading

likely accurate to less than that.

6.1.7 Skummet and Oxcart

The exact same Clojure programs are also compiled and run with the lean
compilers Skummet and Oxcart on the JVM and Skummet on Dalvik. Oxcart
tests are omitted on Dalvik due to lack of support for extending Java classes.
Without support for extending Java classes, a complete Android app cannot
be implemented using Oxcart alone because an Android app needs to have a
main view class that extends “android.app.Activity”. See also Section 4.4.3
for discussion of the limitations of the Oxcart project.

The Oxcart tests are performed using Oxcart-compiled code but the stan-
dard Clojure compiler, as the Oxcart compiler does not currently support
compiling the Clojure runtime.

6.2 Results

The program is executed twenty times without profiling and with class load
event logging on the JVM and Dalvik. The results are averaged over the
twenty runs. The average run times of all programs run without profiling are
presented in Figure 6.6.

6.2.1 Clojure

Figures 6.7 and 6.8 show the breakdown of Clojure startup time on the JVM
and Dalvik as described in the experimental setup.

For Clojure on the JVM, we estimate the proportion of time spent loading
classes (Figure 6.9) and the largest sources for class loading calls using the
YourKit profiler results (Figure 6.10).

The method sampling used to get this breakdown adds a large amount
of overhead to the startup process while printing class loading timestamps
added little overhead. This can be be seen in the Clojure JVM overhead
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diagram in Figure 6.11. The profiling technique used in Dalvik added a
smaller amount of overhead, as seen in Figure 6.12.
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Figure 6.6: Average Run Time for Minimal Java and Clojure Programs
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Figure 6.8: Clojure Dalvik Bootstrapping Times (ms)
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Figure 6.9: Clojure JVM Class Loading vs Total Run Time

6.2.2 Skummet and Oxcart

The bootstrapping breakdowns for Skummet and Oxcart on the JVM and
Dalvik are presented in Figures 6.13, 6.14, and 6.15.

On the JVM, printing class loading timestamps introduced about 14%
overhead for Skummet and 4% for Oxcart. On Dalvik, printing class loading
timestamps introduced about 17% overhead for Skummet app runs.
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Figure 6.10: Clojure JVM Class Loading Breakdown
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Figure 6.11: Clojure JVM profiling overhead

6.3 Analysis

6.3.1 Clojure

Minimal program execution for Clojure took about 19 and 9 times as long as
corresponding Java programs on the JVM and Android Dalvik, respectively
(Figure 6.6). On the JVM a minimal Clojure program took nearly a second
to execute. On Dalvik this was close to two seconds. In all cases these are
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Figure 6.12: Clojure Dalvik profiling overhead
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Figure 6.13: Skummet JVM Bootstrapping Times (ms)

minimal programs. Execution times for larger, actual programs are likely to
be longer.

On both the JVM and Dalvik the largest proportion of time, about 80%
in both cases, was consumed loading the Clojure core library (Figures 6.7 and
6.8). As described in Chapter 4, the Clojure core library defines the functions
of the Clojure language and is loaded before any user code is executed.

Loading the virtual machine itself consumes only about 6% of the run
time in both environments. This contradicts the seemingly widespread idea
that Clojure startup time is long because of JVM startup time. This time
is also longer than the total time to execute trivial Java programs, which
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Figure 6.14: Oxcart JVM Bootstrapping Times (ms)
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Figure 6.15: Skummet Dalvik Bootstrapping Times (ms)

suggests that executing our larger Clojure programs also affects what we
have defined as virtual machine start time. In absolute terms more time is
spent here on Dalvik than on the JVM, but the Dalvik program is also doing
more work. On Dalvik this also includes the time necessary to fetch and
start the Android app through the Android framework.

The time labeled “Load Clojure Runtime” consumes about 10% of JVM
execution time and 3% of Dalvik execution time. The actual numbers are
very similar, with 85 milliseconds on the JVM and 66 milliseconds on An-
droid. Android may be able to shave off time by virtue of loading fewer class
files.



CHAPTER 6. CLOJURE STARTUP PERFORMANCE 53

The most notable difference in JVM and Dalvik run times is in the ex-
ecution of the program itself. This is due primarily to the test setup. The
JVM test programs are executed by calling the main class directly. There
is very little overhead. The Android test programs are loaded and displayed
through the Android framework. They load and display a graphical user
interface with a text field, while the JVM test program simply prints text to
standard output.

On the desktop JVM about 40% of startup time is consumed by loading
and linking program classes when profiling via method sampling. This is
shown in Figure 6.9. The majority of these classes, about 60%, are loaded
directly when initializing the Clojure core namespace (Figure 6.10). A sig-
nificant fraction are also loaded during the loading of the Clojure runtime
before loading the core namespace.

The remainder of class loading time is divided between four large external
namespaces loaded during the core namespace initialization: clojure.core deftype,
clojure.java.io, clojure.core print, and clojure.string. These provide functions
for defining extendable data types and protocols, handling input and output,
printing output, and handling strings, respectively.

Printing class loading timestamps only added about 7.5% and 6.6% over-
head on the JVM and Dalvik, respectively, as shown in Figures 6.11 and
6.12. Profiling with sampling added much more overhead (about 84%).

6.3.2 Skummet and Oxcart

Skummet significantly outperformed Clojure on both the JVM and Dalvik in
these benchmarks, while Oxcart performed slightly worse than the standard
compiler on the JVM (Figure 6.6). The programs compiled and run with
Skummet take about 75% and 44% as long to execute as their standard
Clojure counterparts.

By profiling the Skummet program execution using the YourKit Pro-
filer method tracing it can be seen that the improvement in startup time
is almost exclusively due to changes to how the Clojure core namespace is
loaded. Where standard Clojure core namespace initialization is broken out
into 25 different classes the Skummet runtime uses only three. Even more
significantly the Skummet runtime takes about one fourth of the time of the
standard Clojure runtime to load the core namespace classes themselves.

The Oxcart-compiled program performed slightly worse than the standard
Clojure compiler. This is not a very meaningful difference. Most of the
run time is consumed in loading the Clojure runtime, which as discussed
earlier is the same Clojure runtime used in the Clojure tests. As it uses the
same runtime, the performance can be expected to be very similar for this
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trivial program test. A better test would take advantage of the tree-shaking
features of the Oxcart compiler and use larger programs. These tests were
not performed because Oxcart can compile only a limited subset of Clojure
programs.

6.4 Conclusions

On both the desktop and Android Clojure programs take significantly longer
to begin executing user code than comparable Java programs. Clojure pro-
gram startup shows the same pattern on both the JVM and Dalvik. The
large majority of time, about 80% in both cases, is consumed loading the
core Clojure functions. On the JVM it can be seen that much of this time
is spent loading the binary class files themselves before executing any code
from the files.

Dramatic improvements are necessary to achieve Java-like startup times.
In these experiments the Skummet compiler reduced startup times by about
a quarter on the desktop and more than half on Android. This is a large
improvement but still leaves a significant startup performance gap between
Clojure and Java.



Chapter 7

Clojure Execution Performance

In Section 6 we test and analyze the startup performance of Clojure and the
lean Clojure projects on Android Dalvik and the desktop JVM. The exper-
iments determine the minimum amount of time needed to run a Clojure on
Android app and profile the startup process. The results show that Clojure
apps start much more slowly than standard Java apps, with the Skummet
lean Clojure compiler reducing this time significantly.

But startup time is only one aspect in analyzing a programming lan-
guage’s performance. Other important aspects include run time speed, mem-
ory usage, and package sizes. The previous experiments also do not tell
whether startup time varies significantly for different programs.

In this section we benchmark a selection of programs compiled with Java,
Clojure, and Skummet for Android in order to answer some of these ques-
tions. The goals of these experiments are to compare the execution per-
formance of Java, Clojure, and Skummet across a sampling of benchmarks
and to gain additional insight into the startup performance of Clojure across
different programs.

7.1 Experimental setup

7.1.1 Methodology

We created seven different Android apps and benchmark their startup and
run times. The benchmarks are executed on two devices, the Nexus 5 phone
and the Nexus 7 tablet, using the Dalvik and ART runtimes on each for four
sets of executions total. Each benchmark runs as a normal Android app, logs
the time when user code from the main activity is first executed, executes a
benchmark-specific task, and completes. We execute each benchmark thirty
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times and record the startup time before user code is executed and the task
time taken to execute the benchmark task.

The hello benchmark is almost identical to the Android “hello world” app
from Chapter 6. The only change made is to log the timestamp when user
code is first executed for consistency with the other benchmarks.

The dependencies benchmark performs trivial data transformation and
JSON parsing using the Reactive Extensions libraries and the Transit li-
braries. The goal of the dependencies benchmark is to help see how the
startup time of Clojure and Java programs change when larger, real-world
dependencies are pulled into the program. The Reactive Extensions and
Transit libraries were chosen because they perform useful functions for a
client-side application and have libraries for both Clojure and Java. The
Reactive Extensions libraries, RxJava and RxClojure, are libraries originally
developed by Microsoft for composing asynchronous events [41]. They are
commonly used in Android app development to handle the concurrent and
asynchronous program flow. Transit is a format and set of libraries for trans-
ferring data. It was recently released by Cognitect, the developers of the
Clojure language, with libraries and bindings for several languages including
Clojure and Java [29].

The remaining five benchmarks are based on programs from the Computer
Language Benchmarks Game [20]. As discussed in Section 5.1, the Computer
Language Benchmarks game is the only benchmark suite available for Clo-
jure. The Computer Language Benchmarks Game programs each perform a
different algorithmic task. Programs in different languages are encouraged
to be written in the idiomatic style of the language and using the same al-
gorithm to provide some level of comparability. Even with this restriction,
however, there remains a large amount of flexibility in the ways the programs
can be written.

We selected five of these benchmark programs from the collection pro-
vided by Andy Fingerhut [17]. Each of these five benchmark programs has
been written in both Java and Clojure by Andy Fingerhut or his sources. In
each case we have selected the newest available version of the program where
possible. This is typically the fastest version of the program. There are no
other modifications to the task programs themselves except to change their
namespaces. The selected programs and their respective workloads are listed
in Figure 7.1.

The Computer Language Benchmarks Game programs are wrapped in an
Android activity in order to be run as normal apps. For example, the activity
wrapper for the fannkuch-redux benchmark is shown for Java in Figure 7.1
and for Clojure and Skummet in Figure 7.2.

Benchmark inputs are chosen to increase the app run time while keeping
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Benchmark Workload
hello Prints hello world

dependencies Trivial data manipulation via
external libraries

binary-trees Tree depth 9
fannkuch-redux Sequence length 8

n-body 50000 steps
pidigits 1000 digits of pi

spectral-norm 1000 approximations

Table 7.1: Benchmark Programs

package benchmark ;

import android . app . Ac t i v i t y ;
import android . os . Bundle ;
import android . u t i l . Log ;

pub l i c class MainActivity extends Act i v i ty
{

@Override
pub l i c void onCreate ( Bundle savedIns tanceSta te ) {

super . onCreate ( savedIns tanceSta te ) ;
setContentView (R. layout . main ) ;
Log . d( ”benchmark−fannkuchreduxJava” , ” onCreate ” ) ;
fannkuchredux . main (new St r ing [ ] { ”8” }) ;

}
}

Figure 7.1: Main Activity for fannkuch-redux benchmark

(ns benchmark . MainActivity
( : gen−class
: extends android . app . Ac t i v i t y
: exposes−methods {onCreate superOnCreate })

( : require [ benchmark . fannkuchredux ] )
( : import [ android . app Act i v i ty ]

[ android . os Bundle ]
[ android . u t i l Log ] ) )

(defn −onCreate [ t h i s #ˆandroid . os . Bundle bundle ]
( . superOnCreate t h i s bundle )
( . setContentView t h i s benchmark . R$layout/main )
(Log/d ”benchmark−fannkuchreduxClojure” ”onCreate ” )
( benchmark . fannkuchredux/−main ”8” ) )

Figure 7.2: Clojure on Android Hello World

the entire app run time under ten seconds. On the test devices if an app
takes longer than about ten seconds to start, blocking the UI thread during
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this time, the process will time out and the app will not run to completion.
The Clojure and Skummet benchmark apps are compiled from the exact

same source code. Java apps have different source code that performs the
same task using the same general algorithm.

Each benchmark program is executed thirty times in order to compute
average startup and task times. Before each set of executions for a given
benchmark program the device is restarted. This is to reduce the impact of
other processes in memory on the test results. There is a delay of two minutes
after restarting to allow all system initialization to complete before running
the programs and a short delay between individual program executions.

From each program execution we obtain three timestamps indicating
when the program was called to start, when the “onCreate” print state-
ment is reached, and when the program has run to completion. We define
the period between the first two events as the startup time and the period
between the latter two events the task time.

7.1.2 Hardware and software

The benchmarks are executed on two different devices, the Nexus 5 phone
and Nexus 7 tablet, for two different operating system versions each. This
makes a total of four repetitions, which we refer to by device and virtual
machine name as Nexus 5 Dalvik, Nexus 5 ART, Nexus 7 Dalvik, and Nexus
7 ART. Hardware and software setup details are listed in Figure 7.2. It
should be noted that the ART tests for the two devices use different versions
of Android. This is because each device supports only one specific version
of Android that is compatible with ART. The Clojure ART tests also use a
different version of the Clojure compiler than the Dalvik tests, as this was
the only version of Clojure compatible with the ART runtime.

7.2 Results

The benchmarks were executed thirty times on each of the four different
environments: Nexus 5 Dalvik, Nexus 5 ART, Nexus 7 Dalvik, and Nexus 7
ART. The averaged run times, divided into startup time and task time, are
presented in Figure 7.3.

The startup times from the same benchmark runs are presented alone in
Figure 7.4 for each platform setup. The sizes of the packaged Android apps
for each compiler before installation are shown in Figure 7.3.
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Nexus 5 Nexus 7
Tool Dalvik ART Dalvik ART

Android version 4.4.4 5.0.1 4.4.4 5.0.2
Clojure version 1.6.0 1.7.0-alpha4 1.6.0 1.7.0-alpha4

Skummet version 1.7.0-skummet-SNAPSHOT
Java version 1.7.0 72

Android build tools 19.0.1
Processor Krait 400 (quad-core) Krait 300 (quad-core)

Processor speed 2.26 GHz 1.5 GHz
RAM 2 GB LPDDR3-1600 2 GB DDR3L

Table 7.2: Hardware and software

Java Clojure 1.6.0 Clojure 1.7.0-alpha Skummet
hello 12 1352 1515 908

dependencies 1464 2889 3047 2416
binary-trees 13 1352 1520 912

fannkuch-redux 14 1358 1522 912
n-body 14 1360 1524 915
pidigits 13 1357 1519 911

spectral-norm 14 1359 1521 912

Table 7.3: Benchmark App Sizes (KB)
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Figure 7.3: Benchmark results
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Figure 7.4: Benchmark startup times
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7.3 Analysis

7.3.1 Overall

Java outperformed Clojure and Skummet by a large margin on all tests, with
overall run times between 2 and 12 times faster. This is mostly due to long
Clojure startup times, as times were closer for longer tests less dependent on
startup times.

Skummet overall run times were lower than Clojure across all benchmarks
and environments. Skummet run times ranged from just under half as long
as Clojure in benchmarks dominated by startup time to values very close to
Clojure in benchmarks with longer task times.

The relative performances of the three languages were largely unaffected
by different devices and Android versions.

7.3.2 Startup

Two patterns can be seen in the startup time results of Figure 7.4: Skummet
startup times are significantly lower than Clojure startup times and Clo-
jure and Skummet startup times scale upwards relatively quickly with more
dependencies.

Skummet benchmarks started in about half the time of identical Clojure
benchmarks across all test runs. The most dramatic difference can be seen in
the benchmark with in most cases the longest startup time, the dependencies
benchmark. In this benchmark Clojure started in between 2 and 3.5 seconds
while Skummet started in around 1 to 1.2 seconds. The reduction in startup
time was consistent across devices and Android versions.

The upward scaling of startup times for programs with more dependen-
cies can be seen most clearly in the comparison of the hello and dependen-
cies benchmark results. The dependencies benchmark differs from the hello
benchmark in including two external library dependencies and performing a
trivial task with the libraries. The task time itself is insignificant, as can be
seen in Figure 7.3. Startup times, however, increase by 20 to 50% between
the hello and dependencies benchmarks for Clojure and Skummet.

The dependencies test increases startup times because it adds additional
libraries that are loaded by the Clojure runtime when the program starts.
The Clojure runtime performs work in loading all of the code from referenced
library namespaces even if only a few functions from the libraries are used.
One reason for this is that the Clojure compiler compiles each source code
form sequentially in a single pass. If a form is found that loads another
namespace, the namespace is immediately loaded and executed. With only a
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single pass, the compiler must assume that any referenced dependencies will
be used later and there is no opportunity to remove unused dependencies.
This is also discussed in Section 4.3.1.

The Skummet compiler works in the same way in this respect. This can
be seen in the results, as the Skummet startup times scale upwards in a
similar manner to Clojure startup times.

The Java dependencies benchmark had slightly higher startup times but
the increase was less than for Clojure and Skummet. The Java compiler
removes unused class dependencies, but does not remove unused methods
from a given class. In this case we are only using a fraction of the methods
in the referenced classes, but the whole classes must be loaded. The increase
in startup time is less than in Clojure, where entire namespaces, which are
typically larger than Java classes, must be loaded if a single entity from the
namespace is used.

The Nexus 5 tests saw more variation in startup times, with a similar
pattern exhibited by all three compilers. On the Nexus 5 in most cases the
spectral-norm benchmark ended up take longer than even the dependencies
benchmark. The reason for this variation is unclear. It may be that the
benchmark programs are executed non-linearly on the Nexus 5, with the
task execution beginning before the startup time is complete.

7.3.3 Dalvik versus ART

The newer ART runtime in the Android 5.0.1 and 5.0.2 tests generally im-
proved the speed of the benchmarks, although the effect is inconsistent. The
n-body benchmark, for example, saw reductions in total run times of as much
as 73% in the Java Nexus 5 tests. On the other hand other benchmarks, such
as the hello benchmark, saw varying or negligible changes in run times.

7.3.4 Package size

The sizes of compiled Android packages before installation are shown in Fig-
ure 7.3. For all but the dependencies benchmark, the program source code
itself is trivially small and the package size is dominated by the Clojure run-
time and libraries. For these benchmarks the Clojure and Skummet packages
are two orders of magnitude larger than their Java equivalents. The Java
benchmarks have sizes of 12-14 KB compared to between 0.9 and 1.5 MB for
the Skummet and Clojure benchmarks.

The difference in size between Java and Clojure/Skummet benchmarks is
almost entirely due to inclusion of the Clojure runtime and core libraries in
the Clojure and Skummet packages. Java apps do not have this limitation
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because the standard Java and Android framework libraries are already in-
cluded in Android and are loaded by the system when Android starts. For
this reason Java apps that do not have library dependencies or significant
binary resources can be tiny.

The dependencies benchmark, which includes external libraries, presents
a different picture. The Skummet and Clojure benchmarks are between 1.7
and 2.1 times larger than the Java counterpart, but the difference is largely
due to the inclusion of the Clojure runtime. Removing this from the package
size, the resulting packages are very similar to the Java package size in all
cases. This is weak evidence to suggest that larger Clojure and Skummet
apps may be similar in size to Java apps. However, this is only a single app
comparison with a few comparable library dependencies. Use of tools such
as ProGuard could also significantly reduce these sizes.

Excluding the dependencies benchmark, Skummet packages were about
two thirds the size of corresponding Clojure packages. This is mostly a com-
parison of their respective runtime and core library sizes, as the benchmarks
apps themselves have very little code. In the dependencies benchmark the
Skummet compiler reduced the total package size by about 16% compared
to Clojure 1.6.0.

The Clojure 1.7.0 alpha packages were about 12% larger than their Clo-
jure 1.6.0 counterparts. This in and of itself means very little, as the 1.7.0
compiler is at an alpha stage and will likely have significant changes before
being released.

7.4 Conclusions

Java outperformed Clojure and Skummet by a wide margin across the bench-
marks, with the gap narrowing for longer benchmarks less dependent on
startup time. On longer benchmarks Clojure and Skummet performance
was within a factor of two of Java performance.

Clojure startup time exceeded 1.5 seconds across all benchmarks and
scaled upwards significantly for a benchmark with a few library dependencies.
Skummet programs started in about half the time of Clojure programs across
all benchmarks. The resulting time remains four to six times longer than
comparable Java programs.

The results suggest that Clojure runtime execution performance can be
within at least a factor of two of Java performance, while startup time re-
mains at least four to six times longer even with the changes introduced by
Skummet. This points to Clojure startup time being a larger problem than
execution time in the Android context.
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Discussion

In this chapter we discuss the current state of Clojure on Android and the
lean Clojure projects. Based on our experimental results, we speculate about
the feasibility of Clojure on Android and future directions for Clojure on
Android development.

8.1 The state of Clojure on Android

The experiments of Section 6 and Section 7 had a minimum time of nearly two
seconds to start a Clojure on Android app. The experiments were performed
on two relatively recent high-end Android devices, which suggests that longer
times would be seen on many other devices.

The dependency benchmark in Section 7 shows that this startup time
scales upwards when more dependencies are added to an app, with the ex-
perimental startup time jumping by nearly a second on the Dalvik tests and
by about a half a second on ART runtime tests (Figure 7.4). This suggests
that startup times for actual apps, which will be larger than our presented
benchmarks, will be much longer.

Based on these results, it seems likely that actual apps would have startup
times exceeding three seconds and perhaps much higher. This is an unfeasible
length of time for many Android apps. Android apps are used in very flexible
situations which often demand quick response times. For instance, a user
may need to share information quickly from one app to another and then
return to the original app after sharing. This situation occurs when sharing
a picture on WhatsApp, for instance, or saving a file to DropBox or Google
Drive. In other situations by the time the user navigates to the app and
waits for it to load the opportunity has passed. This happens, for instance,
when a user needs to snap a quick picture or write a note to themselves.

65
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Slow response times in the context of web sites have been shown to lead to
user abandonment of the site and corresponding revenue losses [43].

The startup delay can be managed in part by displaying a splash screen
to the user while the rest of the app loads in the background. This does not
reduce the delay, but it does provide feedback to the user and would probably
make it less likely for the user to close the app before it loads.

One workaround would be to manually load required namespaces in the
background in a staggered fashion. This is against Clojure general conven-
tions but would push much of the loading delay further back. This delayed
loading can only be performed with the developer’s code and libraries, how-
ever. The Clojure runtime itself would still need to load and loading this
runtime would still consume a minimum of about two seconds based on our
experiments.

Future hardware and software improvements will decrease these startup
times. It seems unlikely, however, for performance improvements to be sig-
nificant enough to make Clojure viable in the near future. Supposing the
performance doubles every two years according to Moore’s Law, it will take
at least six years for Clojure startup performance to approach the current
startup time of Java apps.

The sampling of benchmarks in Section 7 show Clojure run time perfor-
mance within a factor of two or less of Java on most of the tests. This is
similar to the results seen in the Computer Language Benchmarks Game [20]
for Clojure on the JVM. As Clojure on the JVM has achieved a certain level
of popularity, this performance tradeoff is clearly reasonable for many devel-
opers. However, the performance benchmarks are limited in scope and can
only provide weak evidence to point towards Clojure performance in general.

Given the current startup performance as discussed, Clojure is currently
not a viable language for most professional Android development. Given
the scope of the problem, the situation seems unlikely to change without
dramatic changes to the Clojure language itself.

8.2 The state of Lean Clojure on Android

Lean Clojure performance

The Skummet lean Clojure compiler makes significant improvements to Clo-
jure startup times in the experiments presented in Chapter 7. In most of the
benchmarks, startup times were reduced at least by half from between 1.5
and 3 seconds to around 0.7 to 0.9 seconds. These run times represent the
minimum amount of time to start a Skummet Clojure on Android app. Typ-
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ical apps on typical devices are likely to have longer times due to increased
code size and library dependencies as discussed in the previous section.

This is a large improvement on Clojure on Android startup times but is
insufficient for many development purposes. It remains between about four
and six times longer than startup times for corresponding Java apps.

One reasonable goal for Clojure startup time might be to bring it to
within a factor of two of Java startup time. This would put it under half of a
second in the minimal case. Achieving this goal would require an additional
reduction of one half to two thirds of the current Skummet startup time.

One way to achieve this reduction might be to reduce the number of items
to load by removing unused dependencies at compile time. Achieving a two
thirds reduction would require roughly two thirds of the Clojure runtime to
be removed as unused on compilation. There is no experimental evidence to
support this, but it does not seem far-fetched.

The Oxcart lean Clojure compiler performs this type of dependency shak-
ing, but the experiments presented in this thesis tell little about its impact on
startup performance. The Oxcart compiler is unable to compile the Clojure
runtime itself, which consumes most of the startup time of a minimal app, so
we were unable to gauge its effect on startup times. The Oxcart compiler is
also unable to compile many other programs including the benchmarks used
in our Android experiments and was thus excluded from those tests as well.

The execution performance experiments in Chapter 7 provide weak ev-
idence to suggest Skummet steady-state performance is similar or slightly
worse than standard Clojure. However, the experiments cover only a nar-
row range of cases and it seems likely that lean Clojure would outperform
standard Clojure at run time with further development. The more statically
compiled lean Clojure code would provide many opportunities for perfor-
mance improvements over the dynamic code in standard Clojure.

For the goal of making Clojure on Android startup time viable for gen-
eral app development, the Skummet lean Clojure project makes large but
insufficient gains. If the lean Clojure projects were taken forward to include
features such as dependency shaking, it seems likely the resulting code would
start up and execute quickly enough to be used on Android.

Lean Clojure tradeoffs

For reducing Clojure startup time, the lean Clojure projects work. However,
the “lean” compilation can only compile source code for a subset of the
Clojure language. In particular, as discussed in Section 4.4.1, code that
depends on dynamic binding of vars and namespaces or dynamic evaluation
of code cannot be lean-compiled.
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The Skummet compiler handles this issue by allowing some vars to be
lean-compiled while others are compiled normally. Lean compilation cannot
be used for dynamic, REPL-driven development (as discussed in Section 3.2),
but standard compilation could be used for development and lean compilation
for production code.

This approach adds additional complexity to the Clojure compiler and
ecosystem. Development and production code would be executed in slightly
different ways. Lean-compiled and standard-compiled code would differ in
subtle ways. Branching of lean-compiled code and dynamic code would in-
troduce additional complexity into the Clojure ecosystem as well, with some
libraries able to be lean-compiled and others dependent on standard compi-
lation.

In exchange for this additional complexity, Clojure would perform faster
for a subset of Clojure code. As it currently stands, based on the experi-
mental results of this thesis, the benefits are insufficient to balance out the
drawbacks. Clojure on Android even with the current changes is not suffi-
ciently performant. With further development this situation could change.

In essence the lean Clojure compiler forks the Clojure language. Another
Clojure language fork is ClojureScript. ClojureScript is a Clojure dialect
that compiles to JavaScript. It differs from standard Clojure in a few notable
ways. In particular, it optimizes ClojureScript code by removing unused code
at compile time via the Google Closure compiler. This dead code removal is
only possible because run time evaluation of arbitrary code is also removed.

One key way in which ClojureScript differs from lean Clojure is the en-
vironments in which it can be run. ClojureScript compiles to JavaScript,
not JVM bytecode, and can only be run in JavaScript environments. Lean
Clojure, on the other hand, compiles to JVM bytecode and is run on the
JVM in the same environments as Clojure code. The separation of environ-
ments with ClojureScript mean that compatibility with standard Clojure is
less of a concern as the programs are run in different environments. With
lean Clojure this is not the case.

8.3 Future directions

Future directions for Clojure on Android include further performance re-
search, additional lean Clojure changes, and alternative approaches using
other frameworks or the ClojureScript dialect.
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Performance benchmarking

As discussed in Section 5.1, there is little research about Clojure perfor-
mance. This thesis analyzes and benchmarks Clojure startup performance
and provides some hints toward the runtime performance of Clojure on An-
droid. Another important aspect to study would be the memory performance
of Clojure on Android. Computer Language Benchmark Game [20] suggests
that Clojure consumes more memory than Java but the issue has not been
properly studied. In addition, memory performance may be less important
on the desktop than on Android, where background apps will be terminated
by the system based in part on memory consumption. An Android app that
consumes more memory is thus more likely to have to be reloaded every time
it is accessed.

Additional lean Clojure changes

There are at least three different ways in which the lean Clojure compiler
projects could be continued to further improve Clojure performance.

The first way is by removing unused dependencies at compile time. The
amount of improvement that can be expected from this change has not been
tested. The Oxcart compiler removes unused dependencies but unfortunately
does not compile a large number of valid Clojure programs and thus cannot
be used to test this approach. If the Oxcart work was continued so that it
was able to compile more programs and importantly the core Clojure libraries
the efficacy of unused dependency removal could be tested.

The second way to improve lean Clojure performance further would be to
load vars lazily. As described in Section 4, Clojure namespace bootstrapping
sets up a var class to point to every function or var value in the namespace.
This work is performed when the namespace is loaded. By default this means
the work is performed at the beginning of program execution, as Clojure
namespaces typically begin with statements that load dependent namespaces.
Loading the Clojure core namespace occurs before a single line of user code
is executed.

Many of these vars will never be used or are not used immediately af-
ter loading the program. Both vars and namespaces could be loaded lazily.
Instead of setting up a namespace at the beginning of a program, the names-
pace could be initialized only when it is first used. Similarly, vars could be
initialized only on first use. This shifts the setup time from the beginning
of the program, when namespaces are loaded, to later in program execution.
This should significantly improve start times, as not all of the namespaces
or vars are needed immediately at program start.
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This change could also lead to unexpected variations in run time perfor-
mance. Currently the loading penalty is paid immediately at the launch of
the program. This is simple for the developer to understand, predict, and
manage. It is also sensible for server-side apps, for which startup time is not
an important factor. With lazy function initialization, the penalty would be
paid across the run time of a program. For example, a function may unex-
pectedly take a long time to execute the first time if it depends on a large
number of uninitialized vars or namespaces.

The third way to improve the lean compiler projects is to compile Clojure
functions as static methods on namespace classes. Currently in both the
standard Clojure compiler and the Skummet compiler, Clojure functions
are each compiled to individual class files. In Skummet these functions are
referenced from a namespace class using direct, static references. These static
references could be replaced by inlining the functions themselves as static
methods. This would likely improve startup times by reducing the overall
number of classes and amount of bytecode to be loaded at startup.

Alternative approaches

The larger problem of finding a practical, modern language for Android app
development remains unresolved. General approaches to this problem include
compile-to-JVM languages, platform-independent frameworks, and the An-
droid Native Development Kit (NDK).

Many languages run on the JVM, from more popular languages such as
Scala [47], JRuby [3], Jython [4], Groovy [48], and Xtend [19] to less popular
ones like Kawa [5], Kotlin [35], Ceylon [49], and Fantom [2]. Scala as a
statically-compiled functional language provides many of Clojure’s functional
programming benefits without suffering from startup time problems. As it
currently stands, however, none of these languages has gained significant
traction for Android development.

Frameworks such as PhoneGap [31], Cordova [7], and Sencha [33] allow
one to develop Android applications using the web technologies of JavaScript,
HTML, and CSS. The resulting apps are wrapped as native applications and
have access to Android framework features through their specific framework
wrappers. Others like Xamarin [34] and Appcelerator Titanium [32] allow
native Android app development in C# and JavaScript. In this case the
resulting apps are not web apps wrapped as native apps but are in more
direct contact with the underlying platform.

Frameworks that allow one to build once and compile for many platforms
have many advantages in terms of portability and potential for reducing
overall work in porting apps. On the other hand, native APIs need to be
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accessed through various wrappers and native performance is more difficult
to achieve.

ClojureScript, a dialect of Clojure that compiles to JavaScript, could also
be executed on any framework supporting JavaScript. ClojureScript does not
suffer from the same startup problem as JVM Clojure. The disadvantage of
this approach is the additional layers of abstraction between the programming
language and the underlying system. JVM Clojure can inter-operate directly
with the standard Java libraries and tools, while ClojureScript would need to
be compiled to JavaScript and then access the underlying libraries through
some framework.

The Android Native Development Kit (NDK) can also be used to develop
Android apps with C or C++ [25]. In certain cases, such as game develop-
ment, using the NDK can improve the performance of apps. This approach
suffers from lack of access to the standard Android Java APIs and is difficult
to recommend for general app development.



Chapter 9

Conclusions

Clojure is a promising language for modern Android app development. How-
ever, long Clojure on Android app startup times are a recognized problem
which has received little attention. In addition, the overall performance of
Clojure on Android is poorly understood.

We benchmarked and analyzed Clojure on Android startup and execution
performance. Clojure on Android execution performance was found to be
comparable to that of the desktop. However, we found that Clojure on
Android apps start slowly, even on relatively new devices and on the new
Android ART runtime. Minimal startup times exceed 1.5 seconds and scale
upwards quickly with larger apps. The issue is closely tied to design choices
of the Clojure language and compiler. The Skummet lean Clojure compiler
attempts to improve Clojure performance by removing dynamic features. We
found that it succeeds in reducing Clojure on Android startup times by about
half across all benchmarks.

Based on these results, Clojure on Android is not currently viable for gen-
eral Android app development and is unlikely to be viable in the near future
without significant changes. The Skummet lean Clojure compiler greatly
reduces the startup time problem but requires additional improvements to
make Clojure on Android practical in the general case. There are also open
questions about the tradeoffs of the additional complexity brought by lean
Clojure changes.

Future directions for Clojure on Android include further performance re-
search, continuation of the lean Clojure projects, or pursuit of alternative
Clojure approaches such as ClojureScript. Further research is needed to esti-
mate the memory performance of Clojure on Android to determine whether
Clojure would be viable even with fast startup times. The Skummet lean
Clojure project could be continued by removing unused dependencies at com-
pile time, implementing functions as static methods on namespace classes,
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or initializing vars and namespaces lazily. Any one of these directions could
have an additional large impact on startup times and bring Clojure on An-
droid startup performance to an acceptable range. Finally, another direction
for Clojure on Android is to pursue alternative approaches such as use of the
ClojureScript language in place of JVM Clojure. ClojureScript compiles to
JavaScript and could be run in Android through various third party frame-
works. It does not suffer from the same same startup performance issues,
but also lacks the easy access to Java tools that JVM Clojure provides. The
practicality of this approach is an open question.

The larger question of finding a viable alternative language for Android
app development remains open. Clojure on Android is currently not viable
for many Android projects even with the implemented lean Clojure changes,
but further development of lean Clojure or alternative Clojure approaches
could still make Clojure on Android practical.
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