
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Sanna Ottka

Comparison of mobile application de-
velopment tools for multi-platform in-
dustrial applications

Master’s Thesis
Espoo, March 26, 2015

Supervisor: Professor Petri Vuorimaa
Advisors: Zhongliang Hu M.Sc. (Tech.)

Pasi Koivumäki M.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80714898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Sanna Ottka

Title:
Comparison of mobile application development tools for multi-platform industrial
applications

Date: March 26, 2015 Pages: vii + 68

Major: Media Technology Code: IL-3011

Supervisor: Professor Petri Vuorimaa

Advisors: Zhongliang Hu M.Sc. (Tech.)
Pasi Koivumäki M.Sc. (Tech.)

The mobile device base is strongly divided between different mobile platforms,
most importantly Android, iOS and Windows Phone. Applications developed for
one platform with traditional development methods only work on that platform,
and supporting multiple platforms requires developing the application separately
for each of the platforms. Different cross-platform methods have been introduced
as a solution to this problem. They allow deploying the application for multiple
platforms from a single code base.

This thesis studies when a cross-platform solution is a viable alternative to de-
veloping the application separately for each target platform. The focus is on
industrial applications that communicate wirelessly with electric drives. Three
main development methods are identified as native, web and hybrid applications.
Native applications are developed for a single platform with the platform’s stan-
dard development tools and conventions. Web applications are developed with
web technologies and hosted as web sites. Hybrid applications utilize web tech-
nologies but are installed on the device like native applications and are developed
with specialized cross-platform tools such as PhoneGap.

Each method is evaluated by various criteria. The evaluations show that on
average the methods are almost equal, and their suitability depends on the target
application. A matrix is generated that calculates the best fitting method for a
given application with the help of application-specific weight values. The weight
values represent how important each individual criterion is for that application.
The matrix is then used to select the best method for three study cases. The
results show that a cross-platform solution can sometimes be a viable option,
based on the needs of the application.

Keywords: mobile, cross-platform, native, web, hybrid, industry

Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Sanna Ottka

Työn nimi:
Vertailu mobiilisovelluskehityksen työkaluista teollisuuskäyttöön tarkoitetuissa
monialustaisissa sovelluksissa

Päiväys: 26. maaliskuuta 2015 Sivumäärä: vii + 68

Pääaine: Mediatekniikka Koodi: IL-3011

Valvoja: Professori Petri Vuorimaa

Ohjaajat: Diplomi-insinööri Zhongliang Hu
Diplomi-insinööri Pasi Koivumäki

Mobiililaitekanta on voimakkaasti jakautunut eri mobiilialustojen välille, joista
tärkeimmät ovat Android, iOS ja Windows Phone. Yhdelle alustalle perinteisillä
kehitysmenetelmillä kehitetyt sovellukset toimivat vain sillä alustalla, ja usean
alustan tukeminen vaatii sovelluksen kehitystä jokaiselle alustalle erikseen. Rat-
kaisuksi tähän ongelmaan on esitetty erilaisia alustariippumattomia menetelmiä,
jotka mahdollistavat sovelluksen julkaisemisen useammalle alustalle yhteisestä
lähdekoodista.

Tässä työssä tutkitaan milloin alustariippumaton ratkaisu on varteenotetta-
va vaihtoehto sovelluksen kehitykselle erikseen jokaiselle alustalle. Päähuomio
on teollisuussovelluksilla, jotka kommunikoivat langattomasti taajuusmuuttajien
kanssa. Kolme tarkasteltavaa menetelmää ovat natiivi-, web- ja hybridisovel-
lus. Natiivisovelluksia kehitetään yhdelle alustalle alustan tyypillisillä kehitys-
työkaluilla ja menetelmillä. Websovelluksia kehitetään webtekniikoilla ja tarjo-
taan nettisivuina. Hybridisovellukset käyttävät webtekniikoita mutta ne asenne-
taan laitteeseen natiivisovellusten tavoin. Niitä kehitetään erikoistuneilla alusta-
riippumattomilla työkaluilla kuten PhoneGap:llä.

Jokainen menetelmä arvostellaan erilaisten kriteerien perusteella. Arvostelut
osoittavat että keskimäärin menetelmät ovat lähes yhtä hyviä, ja niiden sovel-
tuvuus riippuu kohdesovelluksesta. Tähän kehitetään matriisi joka valitsee par-
haan menetelmän kohdesovellukselle sovelluskohtaisten painokertoimien avulla.
Painokertoimet kuvaavat kuinka tärkeä tietty kriteeri on sovellukselle. Matriisia
käyttämällä valitaan parhaat kehitysmenetelmät kolmelle esimerkkisovellukselle.
Tulokset osoittavat että alustariippumaton ratkaisu voi tietyissä tapauksissa olla
mahdollinen, riippuen sovelluksen tarpeista.

Asiasanat: mobiili, alustariippumaton, natiivi, web, hybridi, teollisuus

Kieli: Englanti

iii

Acknowledgements

Thank you Zhongliang (Ross) and Pasi for your invaluable advice and sup-
port. Thank you Petri for keeping me on the right track. Thanks to Mikko,
Martti, Teemu, Kimmo, Lauri and Steffen for sharing your expertise. Thank
you Helge and Antti for your support. And thank you Ossi for reminding me
that there’s life after thesis.

Espoo, March 26, 2015

Sanna Ottka

iv

Abbreviations and Acronyms

HTML HyperText Markup Language
CSS Cascading Style Sheets
URL Uniform Resource Locator
API Application Programming Interface
SDK Software Development Kit
UI User Interface
GUI Graphical User Interface
IDE Integrated Development Environment

v

Contents

Abbreviations and Acronyms v

1 Introduction 1
1.1 Background . 3
1.2 Problem Statement and Research Questions 3
1.3 Structure of the Thesis . 4

2 Methodology 5
2.1 Literature Review . 5
2.2 Searching and Choosing Cross-Platform Tools for Analysis . . 6
2.3 The Evaluation and Comparison Methods 6

3 Mobile Application Development 10
3.1 Mobile Platforms . 10

3.1.1 Android . 11
3.1.2 iOS . 13
3.1.3 Windows Phone . 15

3.2 Mobile Applications . 17
3.2.1 Native Applications . 17
3.2.2 Web Applications . 18
3.2.3 Hybrid Applications 19
3.2.4 Other methods . 19

4 Cross-Platform Development Tools 21
4.1 PhoneGap . 22
4.2 Titanium . 23
4.3 Qt . 24
4.4 Xamarin . 24
4.5 RhoMobile Suite . 25

vi

5 Evaluation Criteria 26
5.1 End-user’s Perspective . 26
5.2 Development Perspective . 28
5.3 Business Perspective . 28

6 Evaluation of Mobile Development Tools 30

7 The Tool Selection Matrix 40
7.1 Target Applications . 40
7.2 The Selection Matrix . 46

8 Discussion 50
8.1 Answering the Research Questions 53
8.2 The Industrial Internet . 54
8.3 The Future of Web Applications 55

9 Conclusions 57

A First appendix 64

vii

Chapter 1

Introduction

Today mobile devices are everywhere. Nearly everyone has a smartphone,
and often a tablet as well. Over 1,8 billion mobile phones and 270 million
tablets were shipped in 2014.[25] By the end of year 2014 over 5,6 billion
people worldwide had at least one mobile device, with an average of 1,36 de-
vices per user.[39] Mobile devices offer new possibilities for service providers,
as users can access their services anytime, anywhere, and carry the entire in-
ternet in their pockets. Mobile applications can replace traditional tools like
calendars, contact lists or maps in a compact and portable form. They also
bring new tools to the consumers, such as activity trackers, navigation ser-
vices or communications with other devices. In the industrial setting, a user
could monitor and control the machinery around them right at the factory
floor, with their handheld device communicating wirelessly with the machin-
ery. There is no need to set up a stationary desktop system or carry around a
heavy laptop, when most tasks can simply be carried out with a smartphone.
Therefore, it becomes increasingly useful to offer the services and function-
alities as mobile applications, accessible with smartphones or tablets. But,
offering services as mobile applications comes with its own challenges.

The mobile environment is highly fragmented. There are different mobile
platforms, such as Android, iOS, Windows Phone and BlackBerry, and each
has multiple versions in active use. The devices themselves are physically
different depending on the manufacturer, and the device vendors often offer
their own customized versions of the standard operating systems. In such a
world offering an application for just a single mobile platform would severely
limit the potential userbase, thus limiting the usefulness of the application.
Each platform has its own programming language, device interface, develop-
ment tools and style conventions. An application developed for one platform
with the platform’s own development tools will not work on other platforms.
But developing a dedicated application separately for each individual plat-

1

CHAPTER 1. INTRODUCTION 2

form is a time-consuming and expensive undertaking. There needs to be a
better solution for handling an application intended for multiple platforms.

There are two main solutions for this problem. The first option is to
offer the service over the internet, as a web application. Web application is a
specific type of web site that is dedicated for mobile devices. The application
is accessed through the device’s browser like any other web site, and the same
application works for all platforms. The second option is to use a cross-
platform tool. These tools can create the application for different platforms
from a common code base. They operate under the philosophy of write
once, run anywhere. There are several cross-platform tools available, as both
commercial and open-source versions.

But, are these cross-platform solutions a viable alternative to developing
a dedicated application separately for each platform? The aim of this thesis
is to compare the methods to each other and find the factors that determine
which method should be chosen. As different applications have different
needs and it is unlikely that one solution will suit everything, three appli-
cations are included as study cases. The thesis introduces a methodology
for choosing the most suitable development method for a given application,
based on the comparison of methods and the needs of the application. The
methodology is tested on the three example applications to validate it.

Figure 1.1: ABB’s low voltage drive ACS580-01.

CHAPTER 1. INTRODUCTION 3

1.1 Background

The thesis studies mobile application development in ABB, a multinational
industry corporation, operating in fields such as robotics, power and automa-
tion technologies. ABB employs over 140 000 people in a hundred countries,
and roughly 5200 in Finland.[1] ABB is expanding its service range to mobile
platforms and this thesis supports the process. The context of the thesis is
industrial mobile applications, but the majority of the results apply to other
types of mobile applications as well.

The main focus is on applications that operate with electric drives, such
as the low voltage drive ACS580-01 shown in figure 1.1. A drive is a system
connected to an electric motor that controls how much energy the motor
receives. An electric motor’s rotating speed depends on the amount of energy
it uses. Using a drive makes it possible to match the motor’s speed to the
current demand and therefore save energy and minimize waste.[15]

1.2 Problem Statement and Research Ques-

tions

This thesis has two main purposes. The first purpose is to provide an
overview of the currently relevant technologies in the mobile environment to
support businesses looking to expand their services to mobile devices. This
overview contains the current major mobile platforms, types of mobile appli-
cations and mobile application development methods and tools. The second
purpose is to produce a comparison of the currently available methods for
developing mobile applications targeting multiple platforms and providing
guidelines for choosing the most suitable development method for a given
use case. Only applications that need to support more than one platform are
included in the scope of this thesis. The comparison is used for selecting the
best fitting tools for three different use cases in ABB. The following research
questions will aid in this task:

• What are the key differences between the mobile application develop-
ment methods?

• How do the required technical features limit the choice of mobile ap-
plication development tool?

• Is a cross-platform solution a viable alternative to developing separate
applications for each platform?

CHAPTER 1. INTRODUCTION 4

1.3 Structure of the Thesis

The second chapter gives a brief overview of the methodology used in this
thesis. The third chapter examines the different mobile platforms and their
current standings in the market, as well as the different types of mobile ap-
plications and their development methods. The fourth chapter contains a
summary of the available cross-platform tools that are likely to be suitable
for ABB’s use cases. The fifth chapter determines the criteria to be used for
comparing the development methods. The sixth chapter contains the evalua-
tions for each of the different methods for creating mobile applications based
on the criteria presented in fifth chapter. The summary of the evaluations is
collected in a results matrix for later use. The seventh chapter expands the
results matrix into a tool selection matrix and uses it to select the best tool
for three example applications. The findings and the future are discussed in
the eighth chapter, and finally the ninth chapter draws the conclusions of the
thesis.

Chapter 2

Methodology

2.1 Literature Review

Background information on mobile platforms and applications is researched
through a literature review. Online search engines and databases, including
Google Scholar and IEEE Xplore, provide general information on the subject
with keywords such as ”mobile applications”, ”mobile application develop-
ment” and ”cross platform mobile application development”. More informa-
tion on individual platforms is gained by searching with the platform’s name
and visiting the developer’s sites. For application types and their differences
keywords ”native applications”, ”web applications”, ”hybrid applications”
and ”native vs. web comparison” are used.

Up to three pages of results for each search are included in the following
process:

• Only include papers that are available in digital format through Aalto
University library collections, and are written in English or Finnish.

• Read the title and abstract of the paper. Discard the paper if it is not
relevant to the topic.

• Glance over the paper to get an overview of the contents and quality.
Discard the paper if it is not of sufficient quality or it is not relevant
to the topic.

• Read the remaining papers in full.

In addition, any relevant references in the articles are examined for addi-
tional material.

5

CHAPTER 2. METHODOLOGY 6

2.2 Searching and Choosing Cross-Platform

Tools for Analysis

During the literature review, the cross-platform tools mentioned in the read
articles are collected in an initial list. The next step is to perform a search in
Google using keywords ”cross platform mobile development tools” and check
the first two pages of results for any additional tools and add them to the
list. Each tool is then briefly reviewed by visiting the developer’s web site
and doing a general web search with the tool’s name.

The tool must support at least the two most popular mobile platforms:
Android and iOS, to be considered a viable choice. Additionally, as many
of the articles are few years old, the tools mentioned in them may not be
maintained anymore. Therefore, the tool also needs to be in an actively
developed state. Finally, one of the main uses cases examined in this thesis
includes communication between the drive and mobile device over Bluetooth.
Therefore, another requirement is that the tool has some way to access Blue-
tooth functionality, either as a standard feature or a plugin, or offers the
possibility to customize the tool or write platform specific native code. Any
tools that do not fulfill these three criteria are disregarded. Then, the list of
tools is narrowed down to a maximum of five most promising tools. This is
done based on the tool’s popularity among developers, amount of supported
platforms and hardware features, and the maturity of the tool. The selected
tools should also represent different technological approaches. The remaining
five tools are discussed in this thesis.

2.3 The Evaluation and Comparison Meth-

ods

The criteria for comparing the tools are gathered from multiple sources. The
initial list is gathered from criteria encountered during the literature review,
and then modified and extended for ABB’s use case. This is done by taking
into account ABB’s guidelines for developing mobile applications and the
results of an external user study performed by Idean for ABB’s applications.
The list of criteria is then presented to mobile development experts in a series
of interviews and further refined based on their feedback. The interviews
are performed with the active interview methodology with semistandardized
structure.[14] The interviews follow a set schedule, where the subject is first
presented with the list of criteria and asked to give their opinion on each.
Then they are asked the following set of questions:

CHAPTER 2. METHODOLOGY 7

• Which platforms do you think are important to support and why?

• What are the most important differences between the different devel-
opment methods?

• How would you decide whether to develop an application as a native,
web or hybrid application?

• Have you used cross-platform tools, and if so, which one and how was
your experience?

• How would you expect the mobile application development to evolve
in the next five years?

The semistandardized interview also allows unscheduled questions and
probes during the interview if any new subjects emerge that are not suffi-
ciently covered by the standard questions. The interviews are recorded and
their results are used to validate and modify the list of criteria.

The three development methods: native, web and hybrid are then eval-
uated against the criteria. One cross-platform tool will represent the hybrid
application, as the results for different tools would be similar. A verbal de-
scription examines how well the method performs on that criterion, and a
numeric value from 1 (very poor) to 5 (very good) is given for comparing the
methods. The first set of evaluations are based on the author’s knowledge of
the subject, other evaluations in literature and the results of the interviews.
In addition, a web questionnaire is used to gather another set of evaluations
by gathering the opinions of mobile application developers. The survey is
produced with Google Forms and distributed via a web link. The survey will
ask the subject to rate each of the methods by each of the criteria from 1
(very poor) to 5 (very good). If the subject has no opinion on some crite-
ria or method they can leave the field empty. Screenshots of the survey are
included in Appendices A.1 to A.4 The survey is distributed to 5 LinkedIn
discussion groups, each with several thousand members, and to developers
of ABB subcontractor company. The survey received 10 replies. The values
gained from the survey are compared to the previous evaluations and used to
validate the evaluations. Also, based on the results it is decided if the survey
is a suitable method for collecting data for the evaluation.

The evaluation results will be processed in an Excel table, as illustrated
in figure 2.1. The evaluation method used in this thesis is similar to the
Decision Matrix method[12], with application-specific multipliers for each
criteria. The numeric evaluations for each of the tools are gathered in a
table, forming an evaluation matrix. Below the matrix are two results vectors.

CHAPTER 2. METHODOLOGY 8

Figure 2.1: The tool selection matrix formula.

The first vector contains the sums of the evaluations for each method. The
second vector shows the averages of the results for each method. Adding
weight multipliers for the criteria will form a tool selection matrix for choosing
the best approach for a specific use case. The weight values describe how
important the criterion is for the use case and are determined as 1 (not very
important) to 3 (very important). Individual criteria can also be excluded
from the comparison if they do not apply for the use case by setting their
weights to zero. The weight values for a single application are collected in
a weight vector and shown on the right side of the matrix. The final result
vector then shows the weighted average for each method for that application.
The weighted results represent how well the method fits for the application,
and the method with the highest average is the best fit for the application.
The entire table with the evaluation matrix and weight and result vectors
forms the tool selection matrix.

The selection matrix is validated with two existing ABB applications by
comparing the approach that was used for creating the application to the one
suggested by the matrix. Then the matrix is used to recommend a tool to
use in creating a third application in a future project in ABB. For the three

CHAPTER 2. METHODOLOGY 9

example applications the weight values are gathered by interviewing their
product managers. The interviews follow a standardized structure.[14] The
interviewee is asked to go through the list of criteria and tell how important
each criterion is for the application on a scale of 1 to 3 and why. The ratings
gained from the interview are used as weight values in the tool selection
matrix. If the answers from different people differ, their averages are used.
Short summaries of the reasons for the weight values are presented in the
criteria weight lists.

Before using the selection matrix to choose the best method, the methods
are prescreened to remove impossible solutions. In the context of this thesis,
the only case where this is used is when a certain native functionality is
needed, but is not supported by some methods. The prescreening does not
affect the calculations, as the matrix calculates the results automatically for
each method with no extra work from the user. It is therefore enough to
acknowledge that a certain method is not a possible solution, regardless of
the rating given by the matrix.

Chapter 3

Mobile Application Development

3.1 Mobile Platforms

According to a market share study by IDC [29], the smartphone market is
currently clearly dominated by Android, which held over 84 percent of the
market during the second quarter of 2014. Meanwhile, iOS still remains
strong with 11,7 percent of the market share, although it has lost 6,5 per-
centage points over the last three years. Windows Phone has grown steadily,
and currently holds 2,5 percent of the market, while BlackBerry OS has
plummeted from 12,6 percent in 2011 to a mere half a percent of the market
share today. This leaves just 0,7 percent of the market to other platforms,
such as Firefox OS by Mozilla and Sailfish OS by Jolla. The market shares of
the top four mobile platforms and the remaining market during the second
quarter of each year between 2011 and 2014 are shown in table 3.1.

On the tablet side, the market is more evenly divided between the two
giants, Android and iOS. A tablet sales study by Gartner [24] shows that
Android and iOS were almost even in 2012 with market shares of 45,8 and
52,8 percent, respectively. In 2013 Android claimed a clear lead with 61,9
percent of the market, and iOS’s share has decreased to 36 percent. Microsoft

Period Android iOS Windows Phone BlackBerry OS Others
Q2 2014 84,7% 11,7% 2,5% 0,5% 0,7%
Q2 2013 79,6% 13,0% 3,4% 2,8% 1,2%
Q2 2012 69,3% 16,6% 3,1% 4,9% 6,1%
Q2 2011 36,1% 18,3% 1,2% 13,6% 30,8%

Table 3.1: Smartphone Operating System market shares from years 2011 to
2014.[29]

10

CHAPTER 3. MOBILE APPLICATION DEVELOPMENT 11

Operating System 2013 Market Share (%) 2012 Market Share (%)
Android 61,9 45,8
iOS 36,0 52,8
Microsoft 2,1 1,0
Others <0,1 0,3

Table 3.2: Tablet Operating System market shares in 2012 and 2013.[24]

held 2,1 percent of the market in 2013 with its Windows 8 system. Other
platforms are nearly nonexistent in the tablet market, holding less than 0,1
percent of the market. The market shares for tablet operating systems are
also displayed in table 3.2.

The next section will take a closer look at the three most popular mobile
operating systems, Android, iOS and Windows Phone.

3.1.1 Android

Android is a full set of software for mobile devices and includes an operating
system, middleware and key mobile applications. Android was originally cre-
ated by Android Inc., which was bought by Google in 2005.[21] Google pub-
lished Android in 2007 and formed the Open Handset Alliance (OHA) with
a group of other technology companies, device manufacturers and wireless
carriers.[4] Today Open Handset Alliance houses more than 80 companies,
dedicated to developing and distributing Android.[2]

Google offers Android as an open source solution, with anyone being able
to download the source and modify it. Several handset vendors, such as
Samsung, HTC and LG, offer their mobile devices with the Android OS,
usually as their own customized version.[17] While this offers more variety
for the user looking for a mobile device, it has caused the Android version
landscape to become fragmented. The vendors need time to update their
own versions of Android, and therefore the updates often become available
for the users later than the official releases. The vendors may also skip some
smaller version changes, and only update their versions for major releases.
In addition, the devices use different hardware, for example, different sized
screens and physical buttons. Application developers need to take this into
account, and ensure their applications are compatible with older platform
versions or some users may be unable to use them.[31]

Android is designed as a stack of various components, divided into five
layers. Figure 3.1 illustrates the different layers of the system. Android is
built on a modified Linux 2.6 series kernel that provides core system ser-
vices such as security, memory management, process management, network

CHAPTER 3. MOBILE APPLICATION DEVELOPMENT 12

Figure 3.1: Android system architecture.[43]

stack and driver model. The kernel and low level tools are contained in the
bottom layer, colored red in the illustration. The basic libraries included
in Android are programmed in C and C++, and are accessed through the
Android application framework.[43]

The Android runtime contains a set of Java core libraries and the Dalvik
virtual machine (VM). The Dalvik VM executes files in Dalvik Executable
(.dex) format, usually transformed from Java byte code to Dalvik byte code.[16]
Every Android application runs in its own process with its own sandboxed
instance of Dalvik VM. Dalvik has been optimized so that a device can run
multiple VMs at the same time efficiently.[43] The kernel also provides an
abstraction of the underlying hardware for the rest of the software stack.[23]

The application framework layer gives the developers access to the same
framework Application Programming Interfaces (API) used by the core ap-
plications. [43] The frameworks are written in Java and provide abstractions
of the Android libraries and the features of the Dalvik VM.[16]

On top of the stack reside the applications. Both core and third-party
applications have equal access to the device’s capabilities, such as making

CHAPTER 3. MOBILE APPLICATION DEVELOPMENT 13

calls or using the camera. They can also access capabilities of other applica-
tions, within security constraints. Users can also replace any core application
with another application, and have their device use the new application by
default.[3]

Applications for Android are developed through the Android Software
Development Kit (SDK), usually with the Java programming language. The
SDK provides the API libraries and developer tools for building, testing and
debugging for Android. Development can be done in any of the current ma-
jor operating systems and an integrated development environment (IDE) of
choice, although Google recommends using Android Studio. Another com-
mon option is to use Eclipse IDE with Android Developer Tools (ADT) plug-
in, provided by Google, which integrates the Android SDK into Eclipse. The
ADT allows the developer to test the application with an Android emulator
or a connected device, and provides a graphical editor for building the user
interface (UI) of the application.[5]

The main distribution channel for Android applications is the Google Play
Store, formerly known as Android Market, where developers can publish their
applications after registration. Unlike the process used by Apple, Google does
not require the application to be pre-approved to appear in the Play Store.[23]
Android applications can also be freely distributed through other channels
as well, such as the developer’s own web page or third-party application
stores.[6]

3.1.2 iOS

Apple’s iOS was originally released in 2007 along with the first iPhone, and
known as iPhone OS. Since then it has been extended to support other Apple
devices as well, such as iPad and iPod and renamed iOS. Unlike Android, iOS
has a relatively small number of versions, all provided by Apple. It also has
only a small number of different devices, also only supported by Apple. This
severely reduces the number of versions of the OS and hardware application
developers need to support.[47]

The iOS system architecture is divided into four layers, illustrated in fig-
ure 3.2. The layers provide different levels of abstraction between the applica-
tions and the underlying hardware. The various core frameworks are written
in the Objective-C programming language. The Core OS layer contains the
low-level features most of the other technologies are built upon. Applica-
tions rarely use these technologies directly, but rather use them through the
other frameworks. However, the layer contains frameworks for features such
as security, Bluetooth support and communicating with external hardware,
that can be used by applications if needed. The layer also contains the kernel

CHAPTER 3. MOBILE APPLICATION DEVELOPMENT 14

environment, drivers and low-level UNIX interfaces of the operating system.
Access to the kernel and drivers is restricted to a limited set of system frame-
works and applications.[9]

Figure 3.2: iOS system architecture.[9]

The various system services used by applications are contained in the
Core Services layer. This includes technologies to support features like loca-
tion, iCloud storage, peer-to-peer services and networking. The Media layer
above it contains the graphics, audio and video technologies needed to im-
plement multimedia features in applications. Finally in the top layer resides
the Cocoa Touch framework, providing the key frameworks for building iOS
applications. This includes high-level programming interfaces for making
animations, networking and modifying the appearance of the application.
Cocoa Touch also handles touch-based inputs and multitasking.[8]

Building iOS applications requires using Apple’s Xcode IDE on a Mac
computer running OS X 10.8 or later and iOS SDK. Xcode provides the
standard tools to code, debug and design the interface for the applications.
Generally iOS applications are written in Objective-C language.[8]

Applications for iOS are distributed to consumers exclusively through
Apple’s App Store. Developers enroll in Apple Developer Program and pay
a yearly fee to be able to publish applications in the App Store, and ap-
plications go through an approval process by Apple before appearing in the
store.[8] The approval process causes longer development times, but lowers

CHAPTER 3. MOBILE APPLICATION DEVELOPMENT 15

the number of low-quality applications in the store.[17] The approval process
can pose a challenge for applications developed with various cross-platform
methods. For example, in 2010 Apple maintained that apps must be ”orig-
inally written in Objective-C, C, C++ or JavaScript” to be accepted into
the store. The restrictions have been eased since then, but applications still
sometimes get rejected for being too slow or not feeling native enough. Apple
App Store can also reject apps that download executable code or interpret
code not contained within the application archive.[32]

3.1.3 Windows Phone

Windows Phone is a mobile operating system developed by Microsoft. The
first version, Windows Phone 7 was released in 2010 as a successor to Win-
dows Mobile. It was based on Windows CE with the user interface redesigned,
and was targeted more towards the consumer market unlike its predecessor,
which was designed for corporate use. Windows Phone is carried by several
different mobile device vendors, such as Nokia, HTC and Samsung. Windows
Phone 7 had severe limitations in place regarding hardware, causing major
challenges for the device vendors especially towards the end of its life-cycle.
The update to Windows Phone 8 removed or reduced most of the limitations
and, for example, added support for multi-core processors and higher screen
resolutions.[46]

Figure 3.3 provides a high-level overview of the architecture of Windows
Phone. The bottom level contains the drivers required to support the phone
hardware, supplied by the device vendor. The second level contains the ker-
nel. Windows Phone 8 switched to Windows NT kernel, which is also used by
Windows 8 for tabletop computers, instead of the Windows CE used by Win-
dows Phone 7. The operating system and kernel largely come from Windows
with Windows Phone specific modifications. This simplifies the process of
porting applications between tabletop and mobile devices. Windows Phone 8
uses Core System from Windows, which handles system features such as boot-
ing, managing hardware and resources and communications with networks.
The Core System is supplemented by the Mobile Core, a set of Windows
Phone specific binaries for handling phone-specific tasks. Above the kernel
are the shared services of the system and APIs used by applications to access
the underlying functionality. The layer contains many of the same features
used by Windows 8, such as the NTFS file system, DirectX graphics engine,
networking stack and security elements.[53]

Developing applications for Windows Phone 8 requires a computer with
64-bit Windows 8. However, applications for the most recent update, Win-
dows Phone 8.1, can be developed with 32-bit Windows 7 or higher. Devel-

CHAPTER 3. MOBILE APPLICATION DEVELOPMENT 16

Figure 3.3: Windows Phone system architecture.[53]

opment is done through the Windows Phone SDK and Driver Kit offered by
Microsoft. The SDK includes all the tools needed for development, including
Microsoft Visual Studio Express for Windows Phone and Windows Phone
emulator. The SDK can also be integrated into Visual Studio Professional
or higher. Applications can be programmed in C#, Visual Basic.NET or
C++.[53]

Similar to Apple, Windows Phone applications can only be distributed
through the Windows Phone Store, and they must first go through an ap-
proval process performed by Microsoft.[53]

CHAPTER 3. MOBILE APPLICATION DEVELOPMENT 17

3.2 Mobile Applications

Mobile applications can be divided into two groups: integrated and nonin-
tegrated applications. Integrated applications consist of a package that is
installed on the device. The application is integrated into the system when
installed, it appears in the default application list and can access system
functionalities. Integrated applications include native applications that use
platform-specific technologies and libraries, and applications that combine
web and native technologies, known as hybrid applications. Nonintegrated
applications on the other hand do not run directly on the device. Instead
they are invoked through another application, generally a web browser. Ap-
plications that run in the web browser are known as web applications.[32]

3.2.1 Native Applications

Native applications are developed for a specific target platform, using that
platform’s SDK and frameworks, and the app is tied to that specific envi-
ronment. For example, an Android application is developed with Java using
the Android SDK and the APIs provided by Android and uses platform-
provided elements for rendering the UI.[5] If the developer wants to support
multiple platforms with pure native applications, the applications need to be
developed separately for each platform. Native applications are installed on
the device from the platform’s app store or by using other platform-specific
installation methods. They have access to all the native features offered by
the device.[27]

Individual platform’s SDKs usually provide graphical editors for building
user interfaces, and have efficient abstractions for common UI controls and
experiences. Each platform also has its own guidelines and best practices for
building UIs, so that different applications for the same platform have the
same visual style and feel. Common UI elements and conventions also vary
from platform to platform. For example, Android devices have some form of
a back button by default, whereas iOS applications usually have a button in
the application itself with the same functionality. Native application built
for a specific platform can easily follow these guidelines and provides the best
user experience expected for that platform.[18]

The developer can also use a cross-platform development tool to create
native applications for multiple platforms from the same code base. Applica-
tions developed this way are very similar to native applications, but cannot
be considered true native as they have some key differences to applications
developed using the platform-appropriate SDK and development methods.

CHAPTER 3. MOBILE APPLICATION DEVELOPMENT 18

The Other Methods section will cover such cases.

3.2.2 Web Applications

Mobile Web applications take advantage of the standardized Web technolo-
gies and good browser support of mobile platforms. The application is im-
plemented as a single Web site optimized for mobile devices. The site can be
accessed on any mobile device, and behaves largely the same way regardless
of platform. The application is not installed on the device, but instead it is
retrieved via a Uniform Resource Locator (URL) using a mobile browser on
the device, and most of the functionality is stored on the web server. This
makes maintenance of the application simple, as an update only requires the
user to reload the page. It does, however, require constant network con-
nection in most cases, and disconnections may cause serious issues in some
applications.[27]

Developing a mobile web application is very similar to developing a web
site. It uses the same technologies and languages with mobile-specific modi-
fications such as accessing the platform API and adapting to different screen
sizes. Web applications often follow the standard three-tier architecture,
where the application is divided into presentation, logic, and data tiers.
Client side of the applications includes the presentation tier, and server side
includes the logic and data tiers. Each tier can have its own selection of
programming languages and concepts and therefore require a different set of
skills. Recently new unified solutions have also been introduced, that allow
developing all three tiers with a single tier’s technologies.[30]

Web applications by default have the look and feel of a web site, and
are mostly consistent across different platforms. Different browsers can still
have small differences in how they render the sites, and some platform-
specific programming is usually required due to differences in hardware and
platform conventions, especially when targeting both tablet and smartphone
markets.[18] The Graphical User Interface (GUI) can also be made to imi-
tate native GUIs by using OS-specific Cascading Style Sheets (CSS) files if
wanted. This must be done separately for each platform, and getting the
GUI to be accurate enough imitation of a native GUI can be challenging.[32]

The main disadvantage of web applications is their limited access to de-
vice functionality. Since they run in the web browser they are in a heavily
restricted sandbox, and do not have direct access to lower-level APIs operator
systems offer to native applications. These APIs include, for example, access
to storage, device sensors, camera, and Bluetooth connection.[18] The lat-
est version of HyperText Markup Language (HTML), HTML5 seeks to solve
many of these problems. It has been gaining popularity over several years

CHAPTER 3. MOBILE APPLICATION DEVELOPMENT 19

now, but the browser support is still somewhat lacking especially on desktop
browsers. However, nearly every mobile browser supports most HTML5 fea-
tures by now.[28] It adds many new features over its predecessor, HTML4,
including APIs that provide access to some device functionalities that were
inaccessible to web applications before. For instance, web applications using
HTML5 can access the device camera and save data for offline use.[48]

3.2.3 Hybrid Applications

Hybrid applications are an attempt to resolve the issue with web applications’
limited access to hardware, while still employing common Web technologies,
by combining web and native technologies. Generally, the application is im-
plemented as a web page using standard HTML technologies, but instead of
displaying it in a web browser, it is wrapped as a native application using
a specialized engine. The page is displayed in a regular WebView or sim-
ilar feature inside the application, and the engine provides frameworks for
accessing the device’s native functionalities, usually through JavaScript.[27]

Hybrid applications are installed on the device the same way as native
applications. Hybrid application caches its data locally on the device on
installation, removing the need for constant data connection. This also in-
creases its speed and responsiveness over a pure web application.[26] Like
web applications, hybrid applications can use web technologies to render a
web-like GUI or imitate native GUIs. Alternatively, they can use native
methods for rendering a native GUI if the engine provides support for it.
Different engines provide different levels of abstraction for building a native
GUI, and determine how much of the GUI code base can be common for all
platforms and how much must be written separately for each platform.[32]

3.2.4 Other methods

There are still other methods of creating mobile applications that do not
directly fall into any of the previously examined categories. These are appli-
cations that run on the device like native applications, but have been created
from a common code base for multiple platforms using a cross-platform devel-
opment tool. These tools provide varying layers of abstraction between the
application code and native functionality, allowing the developer to separate
the common business logic from device-specific code.[52]

Ohrt and Turau [32] identify the following four types of applications cre-
ated with cross-platform tools:

• Purely native applications that access the system API directly

CHAPTER 3. MOBILE APPLICATION DEVELOPMENT 20

• Purely native applications that access the system through an abstrac-
tion provided by the library

• Interpreted applications that include the VM in the application package

• Interpreted applications that require the VM to be installed as a sep-
arate application.

A common way to create native applications for multiple platforms is to
use a technique called cross-compilation. The used framework provides an
abstraction of the platform-specific features that can be accessed through
an API by some mainstream programming language, such as Java or Ruby,
that the developer uses for building the mobile application. The code is
then translated by the cross-compiler provided by the tool into a native
application that can be deployed and executed on the device. The code is
often divided into business logic and user interface. In some cases it is easier
to only cross-compile the business logic and implement the UI separately for
each platform. Unlike hybrid applications that display a web page inside
the app, this method has the look and feel of an actual native application,
and access to all the same features. However, cross-compilers can be difficult
to create and need to be kept consistent with the wide variety of mobile
platforms and operating system versions available. It can be a challenge to
find a cross-compiler tool that is kept up-to-date and provides access to all
the latest features of the platforms, and they are often limited to only the
most popular platforms. [26]

Unlike native applications that run directly on the device, interpreted
applications use a virtual machine (VM) to abstract the target platform’s
features from the application’s running code. This method installs a separate
VM on the device, which not only provides the API but also the runtime
environment in which the application will run on. The VM acts as a layer
between the application and the operating system, and all the instructions
pass through it. This tends to cause the application to run slower, but
the benefit is that the VM is much easier to maintain and extend when
new features are added to the operating system. The VM can be included
in the application package, or it is downloaded and installed as a separate
package.[26]

The next chapter will take a closer look at the individual cross-platform
tools.

Chapter 4

Cross-Platform Development Tools

Developing mobile applications for several platforms with the native develop-
ment tools typically means that the development cycle must be repeated for
each individual platform. Each platform has its own family of devices, pro-
gramming languages, APIs and distribution markets, and requires a specific
set of skills to support it. As chapter 3 demonstrated, the mobile device user
base is strongly fragmented between the different platforms, and choosing
which platforms to support determines the amount of potential customers
for the application.[19]

Different solutions to this problem have evolved over the years. Designing
the application as a web application run in the native browser of the platform
is a popular solution, but it suffers from limited access to the device hardware,
and to some extent has a poorer performance and UI than a native appli-
cation. Cross-platform tools seek to solve this problem by offering a way to
package applications for different platforms from a common code base. The
designing and development is done only once, producing a single code base.
It can then be deployed to any supported platform by selecting target-specific
customizations from the tool, and the application is distributed and installed
on the device like a native application. Cross-platform tools generally rely
on an abstraction layer between the shared application code and the target
platform’s native API, although the technical implementations and details
vary between the different tools. Also, different tools require different skill
sets and additional resources.[19]

Cross-platforms tools can be loosely divided into three groups depending
on the level of functionality they offer: libraries, frameworks and platforms:[26]

• Libraries are small standalone toolkits that offer the developer func-
tionality in a specific subject, such as 3D graphics or GUI controls.
They are generally used in combination with other libraries and tools
to create the full mobile application.

21

CHAPTER 4. CROSS-PLATFORM DEVELOPMENT TOOLS 22

• Frameworks contain multiple libraries, software components and archi-
tecture guidelines for building entire mobile applications from start to
finish.

• Platforms consist of a set of frameworks, tools and services that allow
the developer to build and distribute mobile applications. They offer
functionalities to debug, configure and package the application, and
usually come with their own IDE, along with documentation, support
and automation tools.

Figure 4.1 illustrates the market shares of different cross-platform tools
in 2013.[40] Although there are dozens of tools available, only a handful
are in wide use and they should be the main focus in this thesis. Also,
some of the popular tools such as Unity 3D and Marmalade are primarily
designed for game development and not suited for industrial applications.
Next section will take a closer look at a few tools which are likely to be suited
for ABB’s use. The chosen tools are PhoneGap, Titanium, Qt, Xamarin and
RhoMobile.

Figure 4.1: Usage distribution among cross-platform tool users in 2013, ac-
cording to market analysis by Research2guidance [40]

4.1 PhoneGap

PhoneGap was originally created by Nitobi Software, which was acquired by
Adobe Systems in 2011. It is an open source cross-platform mobile develop-
ment framework under Apache License Version 2.0. PhoneGap can be used

CHAPTER 4. CROSS-PLATFORM DEVELOPMENT TOOLS 23

for developing free, open-source or commercial applications. PhoneGap sup-
ports a wide range of mobile platforms, including Android, iOS, BlackBerry
and Windows Phone.[34]

PhoneGap allows the developer to use web technologies, including HTML
and CSS for the UI and JavaScript for the application logic, for developing
hybrid applications that run in a WebView in a native application. As the
UI is written using web technologies, the application has the look and feel of
a web application unless extra measures are taken to mimic a native applica-
tion’s UI with platform-specific CSS files.[27] PhoneGap can also be used in
combination with other development frameworks to improve the UI building.
As PhoneGap itself lacks support for native UI components it is common to
use tools such as JQuery Mobile or Sencha Touch to build the UI and use
PhoneGap for the rest of the application and for wrapping the application
in a native shell.[20]

Device’s hardware functions are accessed through a JavaScript API pro-
vided by PhoneGap’s engine. A table of the currently supported features for
different operating systems is displayed in appendix A.5. PhoneGap can also
be extended with plugins that grant access to additional features, such as
Bluetooth[36]. As PhoneGap is an open source software, developers can also
create their own plugins and features for it.[34]

PhoneGap does not come with a dedicated IDE so the developer can use
any IDE for writing the code base. The code can then be ported to the target
platform’s own IDE for building, or built using the Cordova command-line
interface. PhoneGap requires the native SDK of the target platform to build
the final application. Adobe also offers the PhoneGap build service to build
applications in the cloud. This allows the developer to build applications
without installing the native SDK. [35]

4.2 Titanium

Titanium is an open-source application framework developed by Appceler-
ator and licensed under Apache Public License Version 2.0. It supports all
the major mobile platforms, including Android, iOS, Windows Phone and
BlackBerry.[7]

Titanium offers a different approach to cross-platform applications than
most hybrid application tools. Instead of HTML and CSS, applications are
written completely in JavaScript using the Titanium API. The code is pack-
aged with Titanium’s engine, which interprets the code at runtime and ren-
ders the UI. This allows the applications to have the look typical to native
applications, as the UI is made up of native elements through the API.[27]

CHAPTER 4. CROSS-PLATFORM DEVELOPMENT TOOLS 24

Appcelerator offers a free IDE for developing applications with Titanium,
called Titanium Studio. The IDE works on all the major operating systems:
Windows, Mac OS and Linux. Building the applications requires installing
the native SDK on the system, so building iOS applications requires a Mac
OS device.[7]

4.3 Qt

Qt is an application framework currently maintained by Qt Company, a sub-
sidiary of Digia. It was originally released in 1995 by Trolltech, which was
later acquired by Nokia in 2008. Nokia sold the commercial license of Qt to
Digia in 2011 and Digia transferred Qt’s copyrights to Qt Company in 2014.
Qt is available as a commercial and open-source version. The commercial li-
cense includes additional functionalities, libraries and support, and full rights
to modify the source code. The open-source version is available in different
versions of the GNU Lesser General Public License(LGPL). Qt has tradition-
ally been associated with desktop and embedded systems, but Qt 5.2 added
support for creating Android, iOS and BlackBerry applications.[38]

Applications are written in standard C++ enriched with Qt’s own macros.
This makes porting existing desktop applications to mobile platforms using
Qt especially easy, as desktop applications are often written in C++ and
some of the business logic may be reused as-is. Several language bindings are
also available for using other programming languages, including JavaScript,
Python and QML, although they may lack some of the features.[38]

Qt’s IDE is Qt Creator, which is included in every license option. It is
available for all the major desktop operating systems and as usual, requires
the native SDKs to be installed on the system as well.

4.4 Xamarin

Xamarin is a commercial application platform based on the Mono open source
project, launched in 2001 by Ximian. Ximian was first acquired by Novell
in 2003 and then by Attachmate in 2011. After the Attachmate acquisition,
part of the original team that worked on Mono formed Xamarin, which would
take over the Mono project. Xamarin currently supports iOS, Android and
Windows Phone.[54]

Xamarin’s main programming language is C# and with the release of
Xamarin 3 also supports F#. Most of the code can be shared between the
platforms, but the UI code is generally made separately for each platform

CHAPTER 4. CROSS-PLATFORM DEVELOPMENT TOOLS 25

using the standard native functions and following the platform’s UI conven-
tions. The UI can either be done programmatically or by using Xamarin’s
graphical UI designer for the target platform. The latest version, Xamarin 3,
also introduced the Xamarin.Forms that allows part of the UI design to be
done platform-independently. This way the data on the screen is separated
from the code that renders it, and only the renderers vary by platform.[10]

Xamarin offers developers its own standalone IDE Xamarin Studio. Alter-
natively, Xamarin can be integrated into Microsoft’s Visual Studio. Building
the applications requires the native SDKs.[54]

4.5 RhoMobile Suite

RhoMobile Suite is a commercial application platform currently developed
by Motorola Solutions. It is based on the open-source Rhodes framework,
originally released in 2009 by RhoMobile. Rhodes framework is available un-
der the MIT license.[42] Commercial use requires the RhoMobile Suite, which
includes an extended version of the Rhodes framework, called RhoElements.
RhoMobile Suite has a subscription, which is available for free or as a paid
enterprise version with additional features and support. RhoMobile supports
iOS, Android, Windows Phone and desktop Windows.[41]

RhoMobile uses the Model View Controller (MVC) pattern for develop-
ing applications. It separates data definitions (models) from business logic
(controllers) from interfaces (views) and provides the points that connect
the three elements. The view elements are made using HTML, CSS and
JavaScript, and the controllers use Ruby for backend support.[33]

RhoMobile Suite includes its own IDE called RhoStudio. RhoStudio is
based on Eclipse and can use standard Eclipse plug-ins. RhoMobile can also
be integrated into Visual Studio. Building applications requires the native
SDK to be installed on the device, but the applications can also be built
remotely using RhoHub.[45]

Chapter 5

Evaluation Criteria

This chapter establishes the criteria for comparing the different methods
for developing mobile applications. The basic criteria are collected from
other works in literature of comparing mobile development methods.[27] I
then modify and expand the list by examining other aspects presented in
literature and ABB resources and by having discussions with experts and
developers. The criteria are divided into three categories: the criteria based
on the end-user’s experience, the development process and the business need.

5.1 End-user’s Perspective

Here, the end-user is seen as the person who uses the final application. In
the context of this thesis the end-user is typically ABB’s own employee or an
employee of the customer that has commissioned a product from ABB. From
the end-user’s perspective, applications that are installed on the device are
expected to behave like native applications, regardless of their development
method.[44] Therefore, how well the development method can match the na-
tive user experience and how much additional work is required to accomplish
that goal are the main considerations. This is done from two angles, the UI
look and feel and the application performance are examined separately. In
addition, this section considers how well the different mobile platforms can
be supported with the development method.

The criteria derived from the end-user’s perspective are presented in ta-
ble 5.1.

26

CHAPTER 5. EVALUATION CRITERIA 27

UI consistency with the target platform
The end-user generally expects an application to behave a certain way on each
platform. This includes aspects such as the style of the UI components and
the location and behavior of buttons. From the application owner’s side the
application should be uniform between the platforms so that it is recognizable
regardless of platform, and users can easily switch devices and still have the
application behave the same way. This criterion examines how well the ap-
plication matches the native look and feel and how much work is required for
doing so.
Interaction and responsiveness
Represents the overall speed and performance of the final applications. This
includes for instance how quickly the application responds to inputs, moves
between views and how well it can utilize the touch-based interaction model
of mobile devices. Some cross-platform interfaces cause latency, because the
commands must cross an additional abstraction layer. Also, some tools cannot
utilize multi-touch functions without additional tools or libraries.
Supported platforms
This criterion examines the range of platforms that are available for the method
and how feasible it is to support multiple platforms with the method.
Energy consumption
High memory inefficiency and mobile data usage increase the energy consump-
tion of the application. While the application’s actual context and implemen-
tation have the biggest impact on its energy consumption, the type of the
application also affects it.

Table 5.1: Criteria based on the application’s end-user’s perspective

CHAPTER 5. EVALUATION CRITERIA 28

Shared code
Reusing the same code for multiple platforms significantly reduces development
time and makes targeting other platforms easier. This criterion examines how
much of the code base can be common between the different platforms.
Access to native functionality
Cross-platform development tools allow developers to use custom APIs for
accessing the device’s native functionality platform-independently. Therefore,
the array of available native functionalities depends on the tool and how quickly
it is updated when new features for the platform are released.
Competence availability
This criteria examines the availability of the skill-set required for using the
tool. Choosing a tool that uses uncommon programming languages or requires
extensive framework-specific knowledge limits the number of available qualified
developers. Training developers adds additional costs and slows down the
development process.
Ease of design
The design and prototyping process differs between the different methods.
Quick prototyping improves the development process and allows the developers
to easily share ideas and plans for the application.

Table 5.2: Criteria based on the developer’s perspective

5.2 Development Perspective

This category examines how the choice of method affects the development
speed and availability of proficient developers. Typically, the development
process needs to be done separately for each target platform when developing
native applications, and supporting an additional platform requires repeating
the work. Using a cross-platform solution, some of the development effort
can be shared between the platforms and only a small part of the application
needs to be programmed separately for different platforms. The most com-
mon part that needs to be done separately for each platform is the UI design.
Also, the programming languages and additional knowledge the tools require
are examined, as training the developers for using a specific tool extends the
development time. These criteria are listed in table 5.2.

5.3 Business Perspective

The development tool’s effect on business is explored in the criteria presented
in table 5.3. This includes aspects such as the financial implications of using

CHAPTER 5. EVALUATION CRITERIA 29

Cost
This criterion examines the total cost of developing the application for multiple
platforms using the method. This includes also subscriptions and additional
software needed.
Long-term feasibility
A mobile application in industrial use is likely to have much longer life-cycle
than mobile applications have on average. Developing the application with a
specific tool means that it needs to be supported and updated using the same
tool, as porting it to some other tool is generally not possible or requires a
heavy amount of manual work. This criterions examines the long-term fea-
sibility of the tool based on how actively it is updated, how well it supports
newest version of mobile platforms, and whether it has an active community
and commercials supporters.
Publishing and distribution
This criterion evaluates how easy it is to distribute the application to end-users
and how well the update process works.
Security
The choice of application type affects the security options available for it, such
as encrypted data storage, secure authentication and access to other appli-
cations. Industrial applications are likely to play a critical role in large-scale
systems and have access to sensitive information so good security is imperative.

Table 5.3: Criteria based on the business perspective

the tool to develop an application for multiple platforms and the possibil-
ity to support the application over a period of time. The section will also
consider how easy it is to get the application and its updates to the end-
user. Finally, any security issues with the development method are taken
into consideration.

Chapter 6

Evaluation of Mobile Develop-
ment Tools

The three different types of mobile applications examined in this thesis
are native applications developed with the platform’s standard development
tools, web applications developed with standard web development methods
and hosted as web sites, and hybrid applications created with cross-platform
tools. There are differences in development and performance of hybrid appli-
cations depending on the toolkit used, but they are minor compared to dif-
ferences between native, web and hybrid. Therefore, a single cross-platform
tool is selected as an example and evaluated as the hybrid method, and the
results will largely apply for other tools as well. PhoneGap will serve as the
evaluated tool, because it is the most popular and promising cross-platform
tool, and the tool supported by ABB’s mobile development guidelines.

Each method for developing mobile applications is evaluated against the
criteria set in the previous chapter. A written evaluation gives an overview
of how well the method fulfills the given criteria and a numeric value is
used for comparing the methods. The evaluation values are presented on a
scale of 1 (very poor) to 5 (very good). The evaluations are based on other
evaluations presented in literature and interviews with mobile development
experts. The evaluations for individual methods are displayed in tables 6.1
through 6.6. Finally, a summary of the evaluation results, with the sum and
average calculated for each method is shown in figure 6.1.

The evaluation arrives in the average ratings 3,8 for native, 3,7 for web
and 3,5 for hybrid. Surprisingly, the values for the different methods are
very close to each other. Native application has slightly higher rating than
the other two, but only by a minor margin. Each method has its pros and
cons and they suit different kinds of applications. Therefore, the target
application needs to be taken into consideration in the selection process as

30

CHAPTER 6. EVALUATION OF MOBILE DEVELOPMENT TOOLS 31

well. The application’s requirements should be considered to select the best
tool for each use case.

A second set of values is gathered in an online survey distributed to
mobile developers, asking them to rate the methods by each criteria on a
scale of 1(very poor) to 5(very good). The values from the survey answers
are averaged and the results are displayed in figure 6.2.

The online survey produced similar results as the previous evaluation,
with slight favoring of web application. The averages are 3,6 for native, 3,9
for web and 3,6 for hybrid. However, survey based evaluations tend to favor
the middle values and do not highlight the differences between the methods.
There are only a few cases of very high or very low values and different
methods may get identical values for certain criteria, even though they are
not equal in reality. For example every method had the average value 4 for
ease of design, even though individual answers gave different values for the
methods. The sample size was also too small to reach sufficient statistical
power. Therefore using the survey results for choosing the best development
tool is not suitable for the selection method used in this thesis. Determining
the evaluations by a small group of experts was deemeed more suitable than
averaging the results from a larger group of people. The initial evaluations
will be used in the next step of the selection process, and the survey results
show that the general trends of the initial evaluation are correct.

CHAPTER 6. EVALUATION OF MOBILE DEVELOPMENT TOOLS 32

UI consistency with the target platform
Applications developed with the platform’s own development tools use
the platform’s native UI elements and can easily follow the conventions
and guidelines of the platform.

5

Interaction and responsiveness
Native applications offer the best performance and can utilize the full
extent of the device’s capabilities, such as multi-touch gestures and hard-
ware buttons.

5

Supported platforms
Every mobile platform has a method for developing native applications,
so in theory every platform can be supported. However, the native meth-
ods only support their own respective platforms and the applications need
to be developed separately for each platform. Therefore, native applica-
tion approach does not support cross-platform development. Developing
the application for an additional platform requires repeating most of the
work.

1

Energy consumption
Native applications require a lot of energy and a good network connection
to be downloaded and installed. In actual use, the application’s energy
consumption depends on its features, but should stay low as long as the
application has been developed properly.

5

Shared code
The different platforms have their own programming languages and APIs
and the code cannot generally be shared between them. Some common
logic can be shared as modules by cross-compiling.

2

Access to native functionality
Native applications have full access to the device’s hardware and na-
tive features. They can access the platform’s API directly and use the
functions as soon as they are released.

5

Table 6.1: Evaluation of native application, first part.

CHAPTER 6. EVALUATION OF MOBILE DEVELOPMENT TOOLS 33

Competence availability
The programming languages used are fairly common, such as Java or C,
but the languages vary by platform. This means that targeting multiple
platforms with native applications requires a broad selection of skills.
The developers also need platform-specific knowledge of the APIs and
conventions. However, they are generally very well documented with
numerous tutorials and examples.

4

Ease of design
Designing a native application is fairly straightforward, as each platform
has design guidelines that can be followed. Moving from the design to the
actual running prototype of the application is quite slow for native appli-
cations. The UI needs to be constructed from scratch as the wireframes
used in its design typically cannot be used in the actual application. Also,
the application needs to be built and sent to a device or the developers
have to rely on simulators.

4

Cost
The native development tools are generally available for free, although
some hardware restriction may apply such as needing a Mac to build
iOS applications. Some platforms also require a developer membership
for publishing applications to their app stores. For example, the Apple
Developer Program has a subscription of 99$/year and registering as a
Windows Developer costs 19$ for individuals or 99$ for a company. Also,
as applications need to be developed separately, the development costs
add up for each platform.

3

Long-term feasibility
The current mobile platform market is quite stable, and the top platforms
are likely to remain popular for several years. However, the smaller
platforms can drop unexpectedly, which makes supporting them with
native applications very risky. Also, new popular platforms may emerge
very quickly, and the developers may need to act fast to support the new
platforms.

4

Publishing and distribution
Applications are distributed according to the platforms’ conventions, usu-
ally through their respective app stores and for some platforms third-
party sites. They must follow the platforms’ policies and possibly go
through an approval process depending on the platform.

3

Security
Mobile platforms have powerful native functions for handling application
security and native applications have full access to them. Applications
generally run in a sandbox, and therefore cannot affect other applications.
Local stored data can be encrypted.

5

Table 6.2: Evaluation of native application, second part.

CHAPTER 6. EVALUATION OF MOBILE DEVELOPMENT TOOLS 34

UI consistency with the target platform
Web applications have the look and feel of web sites, and look mostly the
same regardless of platform. Imitating native UI requires using platform-
specific CSS-files, causing additional work for each platform. However,
as web application are accessed through the web browser instead of being
installed on the device, the end-user does not expect them to behave like
native applications.

3

Interaction and responsiveness
Web applications’ performance depends on the browser and internet con-
nection speed. Mobile browsers are highly optimized, and while they
cannot quite match the performance of native applications they are con-
stantly getting closer. Web applications require a constant internet con-
nection and disconnects can cause loss of data.

1

Supported platforms
As mobile web application are web sites, they can be accessed with any
web browser. Every mobile platform comes with its own native browser,
and several more can be installed separately, such as Mozilla Firefox.
Therefore, a single mobile web application works on every mobile plat-
form.

5

Energy consumption
Web application require constant network connection, which typically
uses a lot of energy. However, unlike native and hybrid applications web
applications do not have the same spike of initial energy consumption
before they can be used.

2

Shared code
The code can be shared completely between different platforms, unless
platform-specific CSS-files are used. Browsers have minor differences,
which may cause the application to look or behave differently on different
browsers. This can be avoided with browser-specific code, but with the
advancement of HTML5 and standardization of web development, it is
rarely necessary.

5

Access to native functionality
Web applications have very limited access to native functionality, and
hardware features are typically inaccessible. The situation has improved
with the introduction of HTML5, as many features that were previously
not available were added, such a local cache for offline use and access to
the device’s camera and microphone. More features will be added in the
future, but for now more advanced features, for example Bluetooth, are
still not available.

1

Table 6.3: Evaluation of web application, first part.

CHAPTER 6. EVALUATION OF MOBILE DEVELOPMENT TOOLS 35

Competence availability
Developing web applications requires knowledge of HTML, CSS and
JavaScript, and understanding of a mobile device’s characteristics such as
different screen sizes. Mobile web development is largely similar to con-
ventional web development, so a web developer should be able to easily
pick up mobile web development. Additional libraries have varying lev-
els of documentation and support, so using them adds another learning
curve.

5

Ease of design
The application can be designed using wireframes that are written in
HTML, and they can be used directly to build quick prototypes of the
applications. Also web applications do not need to be built to be tested,
making the entire development process faster.

5

Cost
The cost of developing a web application depends on the used devel-
opment environment and whether additional libraries are needed, but
usually free ones are enough. Additionally, hosting the web site and
any needed servers or databases add to the cost, but mobile applications
are rarely stand-alone services so the infrastucture should be available
anyway.

5

Long-term feasibility
Web technologies are very well established and stable and are actively
developed. Even if mobile platform market changes radically, web appli-
cations will likely work with the new platforms as well.

5

Publishing and distribution
The application is published as a web site, and the user only needs the
URL to access the application. Updating the application only requires
the user to reload the page.

5

Security
Web applications are typically more difficult to secure than native ap-
plications. The client side storage has weak encryption tools and appli-
cations are susceptible to the same web attack tactics as web sites in
general are.

2

Table 6.4: Evaluation of web application, second part.

CHAPTER 6. EVALUATION OF MOBILE DEVELOPMENT TOOLS 36

UI consistency with the target platform
PhoneGap uses web technologies for rendering the UI of the application,
causing it to have a web application look, which looks out of place in
an installed application. Platform-specific CSS can be used to imitate
the target platform’s native look, but it requires extra work and still can
rarely match the look perfectly.

2

Interaction and responsiveness
PhoneGap applications’ performance is almost comparable to native ap-
plications in light business applications with only minor latency, but
applications that use heavy graphics can struggle. The WebView that
PhoneGap uses is not as optimized as the mobile browser.

4

Supported platforms
PhoneGap currently supports 10 different platforms, including all the
major mobile platforms.

4

Energy consumption
Like native applications, hybrid applications need to be downloaded and
installed on the device. In use, hybrid applications are usually more
energy heavy than native applications due to their extra abstraction layer
and libraries.

4

Shared code
The entire code base can be shared between the different platforms if the
applications use the same UI. If the UI should mimic the native UI, the
CSS files need to be made separately for each platform. Building with
the native SDKs requires creating separate projects in each IDE and
configuring the settings for the platform, but the main code can then
simply be added to the project.

4

Access to native functionality
PhoneGap’s standard API grants access to the most common native func-
tionalities and more can be added using plugins. As PhoneGap is open-
source, anyone can develop new plugins if a functionality is missing or
the existing API does not fulfill their requirements.

4

Table 6.5: Evaluation of hybrid application developed with PhoneGap, first
part.

CHAPTER 6. EVALUATION OF MOBILE DEVELOPMENT TOOLS 37

Competence availability
Applications are developed with common web technologies: HTML, CSS
and JavaScript. PhoneGap’s APIs for accessing native functions are well
documented and easy to use, so a web developer will easily be able to de-
velop PhoneGap applications. Different functions are contained in their
own plugins and only the ones that are needed for the application are
imported into the project. Ready-made plugins exist for most of the
common functionalities, but more specialized or optimized features may
require developing a new plugin, which will also require knowledge of
native technologies.

3

Ease of design
As PhoneGap uses web technologies, some of the code used in build-
ing wireframes in HTML can be reused for the actual application, while
making changes to fit the code into PhoneGap’s API. Like native appli-
cations, hybrid applications need to be built and sent to a device to test.
Hybrid applications have no clear guidelines to follow, and designing a
suitable layout for multiple platforms is challenging.

3

Cost
PhoneGap is open-source and allows creating commercial software for
free, so the cost is the same for a single platform as for native appli-
cations. Supporting more than one platforms is cheaper as most of the
development work can be shared between the platforms. Adobe also of-
fers PhoneGap Build service for building the application in the cloud,
avoiding the need for native SDKs and hardware.

4

Long-term feasibility
PhoneGap is currently one of the most popular cross-platform develop-
ment tools and has been stable for several years. It has an active de-
veloper community providing updates and new features, and its plugin-
based architecture offers great flexibility. It also has the financial support
of Adobe Systems. PhoneGap is likely to stay active for the foreseeable
future, and in the worst case the application can be salvaged into a web
application or another cross-platform tool that uses web technologies
with a reasonable amount of work.

3

Publishing and distribution
Applications developed with PhoneGap are distributed like native appli-
cations. PhoneGap applications have at times been rejected from Ap-
ple’s App Store due to Apple’s strict policy regarding applications that
use primarily web technologies for not feeling native enough or being too
slow. PhoneGap has released guidelines that should be followed when
developing applications targeting Apple’s App Store.

3

Security
As the application is wrapped as a hybrid application and installed on
the device, it has access to most of the same security features native
applications have.

4

Table 6.6: Evaluation of hybrid application developed with PhoneGap, sec-
ond part.

CHAPTER 6. EVALUATION OF MOBILE DEVELOPMENT TOOLS 38

Figure 6.1: Development method evaluation results based on literature and
interviews with experts.

CHAPTER 6. EVALUATION OF MOBILE DEVELOPMENT TOOLS 39

Figure 6.2: Development method evaluation results from the online survey.

Chapter 7

The Tool Selection Matrix

The previous chapter showed that each of the mobile application develop-
ment methods has its strengths and weaknesses and they suit different kinds
of applications. The numeric evaluation gave very close average ratings for
each of the methods, but the ratings for individual criteria show the differ-
ences between the methods. Therefore, the requirements of the application
affect the choice as well, as different applications have different needs for the
various features. For example, the need for the device’s hardware function-
ality such as camera, storage or wireless communication depends completely
on the intended use case of the application. For this reason, the selection
process needs to take the target application into account. This is achieved by
introducing weight multipliers for the individual criteria. This weight value
depends on how important the criterion is for the target application, and
is determined as 1 (not very important) to 3 (very important). Then, the
matrix can include the weights as multipliers for the criteria and calculate
a new, weighted average for each method. The results will determine which
method is the best choice for that specific application. This extended matrix
is named the tool selection matrix and is displayed in figure 7.4.

7.1 Target Applications

Three mobile applications in ABB are used as study cases for the selection
process. Two of the applications already exist and will serve as examples for
validating the selection matrix by comparing the method suggested by the
matrix to the method that was actually used in developing the application.
The third application is not yet in development and the selection matrix will
be used to find the best development method for it. The features and the
use purpose of the applications will determine the importance of the different

40

CHAPTER 7. THE TOOL SELECTION MATRIX 41

criteria for the application. The applications’ actual names are not included
in the thesis.

The first application will be known as application A. The application is
used by both customers’ and ABB’s employees for managing and controlling
drives. The application communicates with the drive via a two-way Bluetooth
connection and collects data for diagnostics and fault analysis, and it can be
used to set the drive’s parameters and state. It also communicates with
web resources and ABB databases. Figure 7.1 illustrates the communication
methods of the application. The application is intended to be a complete
package for managing drives with a large set of features and more are to be
added in updates. The application was developed as a native application
for Android and iOS. As the application requires Bluetooth support, a web
application is not a possible option for it at this time. Therefore, the result
for a web application is discarded for application A.

Figure 7.1: Application A’s communication model.

Figure 7.2: Application B’s communication model.

The second application used for validating the matrix is application B. It
is used by a customer to register their drive and get support. The user can

CHAPTER 7. THE TOOL SELECTION MATRIX 42

Figure 7.3: Application C’s communication model.

scan the drive’s serial number from a barcode or a QR code using the device’s
camera and then register the drive. The application also offers links to online
resources, including manuals and customer support contact info, and can be
used to receive maintenance recommendations for registered drives. It was
developed as a hybrid application for Android and iOS using PhoneGap.
Figure 7.2 shows the application’s communication model.

A third application is also introduced, known as application C. It is an
upcoming project in ABB and the result of the tool selection matrix will
form a recommendation for a development method for it. The application
is a mobile version of an existing web based service offered by ABB. It is
used by a potential customer to find the best product setup for their need.
The user selects the appropriate category of products and then fills in fields
according to their use case. The application then calculates the products
needed to match the use case and displays them in a list. The user can send
the list to an ABB representative to receive an offer on it or save it to a file
on their device for later use. The application communicates with ABB’s web
resources, as shown in figure 7.3.

The weight multipliers for these three applications and their reasoning
are collected in tables 7.1 through 7.4. The weight values are gathered in
interviews with the target applications’ product owners. Each interviewee
is asked how important each criterion is for the application on a scale of 1
(not very important) to 3 (very important) and why. The results are used
as weight multipliers for the applications.

CHAPTER 7. THE TOOL SELECTION MATRIX 43

UI consistency with the target platform
The application should follow the usual platform guidelines where possi-
ble, but the layout and UI features will be almost identical between the
platforms.

2

Interaction and responsiveness
Main focus for the application. Interaction needs to be smooth and have
minimal latency.

3

Supported platforms
The application needs to support at least the two major platforms, An-
droid and iOS. The application will be used in an industrial environment
by workers so they can be expected to have an Android, iOS or Windows
Phone devices available, but they may have older versions of the devices.
Also, the application should support both mobile phones and tablets.

2

Energy consumption
Application will typically be used for only a short amount of time in one
session, so energy consumption is not an issue.

1

Shared code
As much of the codebase as possible should be shared between the plat-
forms, and it should not be detrimental to the application quality.

3

Access to native functionality
The chosen communication method with the drive requires access to
Bluetooth functionality. In addition, camera and GPS should be avail-
able.

3

Competence availability
The development is done by subcontractors so any additional training is
to be avoided. The tool should already be familiar to the developers or
require very little tool-specific knowledge.

2

Ease of design
The application is developed with agile development methods and the
tool should support quick prototyping and development. Also, the direc-
tion of the design may change during the development, so quick demon-
strations are highly important.

3

Cost
The development cost should be reasonable, while other criteria are ful-
filled.

2

Long-term feasibility
A drive is generally in use for 10 years or more, and the application should
theoretically support the drive over its entire life-cycle. While this seems
improbable for a mobile application, the tool should be chosen so that
the application can be supported for as long as possible.

2

Publishing and distribution
The application should be easily available to the customer. The appli-
cation will have regular updates, and the possibility to distribute from a
third-party site is considered a plus.

2

Security
The application can be used to control the drive directly so security
should be taken into account.

2

Table 7.1: Criteria weights for application A.

CHAPTER 7. THE TOOL SELECTION MATRIX 44

UI consistency with the target platform
The application has a simple and clean UI. It should follow the platform-
specific guidelines where possible, but its not the highest priority.

2

Interaction and responsiveness
Good usability is one the main priorities for the application. Interaction
should be smooth and have minimal latency.

3

Supported platforms
The three main platforms, Android, iOS and Windows Phone should be
supported.

2

Energy consumption
Application will typically be used for only a short amount of time in one
session, so energy consumption is not an issue.

1

Shared code
Sharing some of the code is beneficial, but it is not the focus in choosing
the development method.

1

Access to native functionality
The application needs access to typical native functionalities, such as
camera and GPS. Also the option to have access to Bluetooth in the
future should be available.

3

Competence availability
Proficient developers that already know how to use the development
method need to be available.

1

Ease of design
Design process is not a high priority. 1
Cost
The development cost should be reasonable. However, there are enough
resources available that it does not take priority over the other criteria.

2

Long-term feasibility
The application is expected to stay active for several years and the de-
velopment method should be able to support it over its entire life-time.

3

Publishing and distribution
The application should be easily available to the customer, and will have
some updates. The application uses external resources for storing large
files such as manuals and user guides. They are stored on a web server
and not included in the application package.

3

Security
The user is required to create an account and supply personal information
to register drives. The application needs to have authentication for the
account and keep the information secure. It also has a connection to
online databases.

3

Table 7.2: Criteria weights for application B.

CHAPTER 7. THE TOOL SELECTION MATRIX 45

UI consistency with the target platform
The application is intended for personal use, so it should follow the plat-
form conventions the user is familiar with. The application UI does not
need to be identical between platforms.

2

Interaction and responsiveness
All the heavy computing is done in the cloud instead of locally, so local
performance does not need to be high. Filling the information should be
smooth, but short loading time to get the end result is acceptable.

1

Supported platforms
As the application is targeted toward potential customers looking to pur-
chase drives and other products, it should be widely accessible. Not sup-
porting the customer’s device could cause a loss of customer. Therefore,
as many platforms and versions should be supported as possible.

3

Energy consumption
The energy consumption should be reasonable, but the application is not
intended to be used continuously so it is not a high priority.

1

Shared code
It is highly important that the different versions of the application tar-
geted for different platforms have identical logic. The application is a
sales tool and the information it offers needs to be up-to-date and consis-
tent. Also, the application is targeted for multiple platforms and sharing
the code between them will greatly reduce the development cost.

3

Access to native functionality
The application does not need access to advanced native features. Possi-
bility to access the user’s contacts would be beneficial but not mandatory.

1

Competence availability
Competent developers should be easily available when needed and the
used technology well known. The application will not have constant
development or a regular development team, instead a team is hired for
a larger batch of updates at a time.

3

Ease of design
The application should be stable, and only rarely receive updates. There
needs to be a clear and easy way to design the application, as the devel-
opers may not be familiar with the application beforehand.

3

Cost
The application is a sales support tool and is not critical for business. It
is also an alternative version of an existing service, so the development
cost needs to be low.

3

Table 7.3: Criteria weights for application C, first part.

CHAPTER 7. THE TOOL SELECTION MATRIX 46

Long-term feasibility
The application is a stand-alone service and can be updated or replaced
if needed.

1

Publishing and distribution
The application needs to be easily available to end-users. The existing
service only requires the user to visit a website and installing the mobile
application on their device requires more effort. The user should also
always have the latest version of the application, as an outdated one
may have critical flaws. Different versions of the application need to
receive the updates at the same time.

3

Security
The data provided by the application is public information, so security
is not an issue.

1

Table 7.4: Criteria weights for application C, second part.

7.2 The Selection Matrix

The previous chapter collected the evaluation results of the different meth-
ods into a matrix and calculated the sum and average of the results. Now,
the weight multipliers of different target applications are added to the ma-
trix, forming a tool selection matrix. Each criterion is multiplied with its
respective weight, and sum of the multiplied criteria is divided by the sum
of weight multipliers to get weighted averages. The final result shows how
well the method fits for the target application. This process can then be
repeated for each target application. The entire selection matrix with the
added weight values and final results for the three example applications is
displayed in figure 7.4.

The results of the two example applications: application A and B are
examined first. Application A receives the ratings 3,8 for native, 3,6 for
web and 3,5 for hybrid application from the matrix. The hard requirement
for Bluetooth support means that a web application is not a feasible choice
for application A and it is excluded from the results. In the current state
of HTML5, a web application would not be able to provide the required
native functionality. The ratings suggest that between a native and hybrid
application, native is a slightly better choice. In this case, only a couple
of platforms need to be supported so the main benefit of a cross-platform
solution is diminished. Also, good user experience and interaction are the
main focus points of the application, and a native application has a higher
quality in these areas.

CHAPTER 7. THE TOOL SELECTION MATRIX 47

Figure 7.4: The tool selection matrix

CHAPTER 7. THE TOOL SELECTION MATRIX 48

The benefit of using a cross-platform tool for developing the application
A would be somewhat minor in terms of development time and cost saving,
and it would risk compromising the quality of the final application. This rea-
soning supports the tool selection matrix’s result, and application A should
be developed as a native application separately for each target platform.

For application B the matrix produces the ratings 4,0 for native, 3,4 for
web and 3,5 for hybrid. Native application has clearly the highest rating
with a large margin. Once again, a web application would be a poor choice
due to hardware functionality requirements. However, HTML5 has added
some support for accessing the device’s camera so it might be feasible to
develop the application as a web application now, but the web application
would still be an inferior choice to the other options. As the application is
quite lightweight in terms of graphics and functionality, performance should
not be a problem. The UI is simple enough that customizing it for different
platforms would not require a lot of effort, and most of it can just be left the
same for all platforms. The application was developed as a hybrid application
with PhoneGap, and it would certainly benefit from hybrid application’s
cross-platform features such as shared code base and shorter development
times. However, the matrix’s results indicate that the application should
have been developed as a native application instead. Like application A,
application B’s main focus is high quality user experience. Native application
would have resulted in a higher quality final product, and the downsides like
higher cost and longer development time were not given a high priority. The
choice to use a hybrid application conflicts with the priorities set for the
application. The implications of this result are further discussed in the next
chapter.

The selection matrix has now found the best choice of development method
for both of the example applications and they can be compared to the meth-
ods that were used in actual development. The result of the selection matrix
matches the used development method for the first application, but differs for
the second. The method suggested by the matrix would have been a better
fit for application B than the one that was used based on the current prior-
ities set for the application. These results verify that the method of setting
application-specific weight multipliers for the different criteria and using the
matrix to calculate the best development method is valid. The matrix can
be used for any mobile application development project and the user only
needs to think of the project’s requirements and priorities and set the weight
values accordingly, without needing knowledge of the individual development
methods. The matrix then calculates the best fit for the project.

Having verified that the matrix works for existing applications, it can now
be used to select the best method for an upcoming development project. The

CHAPTER 7. THE TOOL SELECTION MATRIX 49

third application already has its weight values in the matrix in figure 7.4 and
the results can be read on the bottom row. The ratings are 3,4 for native,
4,3 for web which is the highest rating, and 3,4 for hybrid application for
the application C. Clearly a native application would be a poor choice. The
application needs to support as many platforms and versions as possible, to
make sure a potential user’s device is supported. Accomplishing this with
native applications would simply not be feasible, the development cost would
be too high and it would be near impossible to ensure that each version has
identical and up-to-date logic. The application does not need advanced na-
tive functionality and does not prioritize user experience, so the main benefits
of native application would be wasted. On the same note, there is no need
to use a hybrid application, as its main advantage over web application is
access to native functionality. A web application accomplishes everything
that is required of the application. It can support a wide range of platforms
with a single code base, with only minor modifications in UI code as per
platform basis. It will also ensure that the user has the newest version of
the application in use, and that the application has identical logic regardless
of platform. It is also easily accessible for users and does not require instal-
lation. Based on these results application C should be developed as a web
application.

Chapter 8

Discussion

As chapter 6 showed, each of the development methods has its strong and
weak points, but on average they are almost equal. Therefore, they all exist
for a reason. It would be very difficult to call one method the best one
for every situation, so instead they need to be analyzed on a case by case
basis. Adding multipliers to the criteria depending on the application being
developed emphasizes the differences between the methods by prioritizing
the features that are important for that specific use case.

The application type needs to be decided quite early in the design phase
of the application and cannot easily be changed later. The designer might not
have extensive knowledge of the different methods and how well they work
for different situations, and choosing the optimal method is challenging. The
main benefit of the selection matrix approach is that once the matrix has
been established, using it for a new application allows the designer to focus
on the needs of the application instead of the different development methods.
They can set the appropriate weight values and the selection matrix will then
match the best tool for the application with relatively little work. The weight
values for a new application should be decided in the early design phase by
the application owner. They should also be revised before starting the actual
development, as the method most likely cannot be changed after that time.

The results for application A and C matched the initial expectations.
Application A was developed as a native application, and the matrix rec-
ommended native application as well. Application C was planned as a web
application and the matrix confirmed that this is the best choice. The result
for application B was unexpected. The application was originally made as
a hybrid application with PhoneGap, but the matrix suggests that a native
application was a better choice. The choice to make a hybrid was made based
on the lower cost and faster development time and the competence that was
available at the time. Based on those priorities hybrid would indeed seem

50

CHAPTER 8. DISCUSSION 51

the best choice. However, the priorities have shifted since the application
was developed. The current view places priority on high quality user experi-
ence and usability. Things such as sharing a common codebase or available
competence are not as important now. In retrospect, developing application
B as a native application separately for each platform would have been a
better option. The development method cannot be changed anymore at this
point, but the result offers insight for future projects. It also demonstrates
that the selection matrix does indeed find the best development method once
the priorities have been identified.

The tool selection matrix will need to be updated regularly as the meth-
ods mature. Experiences with the online survey as discussed in chapter 6
showed that gathering data from a large group of people and averaging the
results does not highlight the differences between the methods. Therefore,
the suggested process is to update it once per year by a small team of experts.
Each will review the evaluations and decide if any ratings should be changed.
They can also consider if the criteria are still valid or if some should be re-
moved or added. Then, they will discuss their findings in group and update
the selection matrix accordingly.

Of course, the selection matrix has its shortcomings. The ratings will
need to be updated regularly as the development methods evolve or the
results will be outdated. Also, the list of criteria presented in this thesis
has been created with industrial applications in mind. Using it for other
kinds of applications, such as games, may require modifications. The rating
approach does not process hard requirements well, such as needing a certain
native feature. Therefore, it is necessary to manually prescreen the methods
to identify impossible solutions. Then, the selection matrix would only be
used for the remaining methods. This was done for application A, which
needs Bluetooth support. An alternative solution could be to introduce a
minimum threshold for certain criteria.

The selection matrix presented in this thesis only included one hybrid
method. PhoneGap was seen as the most interesting and widely used hybrid
development method and served as an example of hybrid methods in the
selection matrix. Other hybrid development methods could be a subject for
future study. They can be added to the selection matrix by following the
process presented in this thesis and then the tool can be used for comparing
the different hybrid methods as well.

The hybrid method’s ratings on the matrix follow an interesting trend.
It has the middle rating for most of the criteria, almost never being the best
or the worst. This demonstrates how a hybrid application is the compro-
mise solution. The cross-platform benefits come with a cost to performance
and user experience. A hybrid application can reach very good quality with

CHAPTER 8. DISCUSSION 52

enough effort and knowledge, but it is still very difficult to match a native
application. For some applications the downsides are insignificant or there
are too many platforms to support with native applications with a reason-
able amount of effort, and in these cases a hybrid should be chosen for the
reduced development costs and time. But if the resources are available to
develop a native application for each target platform instead, most of the
time it is the better solution. Perhaps when the hybrid methods mature,
their downsides will diminish and they become more feasible alternatives for
native applications.

Ultimately the context of the application plays the biggest role in choosing
the best development method. Generally, a web application is the cheapest
and fastest option, but it does not offer the same performance and functional-
ity as a native application. For lightweight business applications that do not
require advanced native functionalities a web application is a good choice.
Using a hybrid application gives access to native features, but comes with its
own downsides to look and feel of the application. It is a good alternative
when native functionalities are required meaning a web application is not an
option, and the application does not aim for the best user experience or is
simple enough that there is no difference between native and hybrid. Also, if
the application needs to support a high number of platforms, hybrid appli-
cation becomes a better choice as native’s application’s cost climbs too high.
The first two applications examined in this thesis needed to only support two
or three platforms, so they would not have benefitted from hybrid applica-
tion as much. Native applications tend to have the highest quality, offering
a smooth user experience, familiar UI look and feel and the full range of the
device’s capabilities, but they need to be developed separately for each plat-
form. The features of the application, available resources and the number
of platforms that need to be supported determine if a native application is
worth the extra effort.

Another consideration in the industrial setting is that the drives and other
devices that the application needs to work with have much longer life-cycles
than typical mobile applications. A drive can expected to be in use for 10
years or more, and during that time the entire mobile landscape is likely
to change dramatically. New platforms will emerge and old ones may fall
out of popularity, and the communication methods may change. The future
trends should be kept in mind especially when designing the communication
between a drive and a mobile device. Updating a mobile application or even
replacing it is a relatively simple and cheap process, but updating the actual
drive hardware is much more difficult.

CHAPTER 8. DISCUSSION 53

8.1 Answering the Research Questions

The first chapter of this thesis set three research questions to aid in the study
of mobile development methods:

• What are the key differences between the mobile application develop-
ment methods?

• How do the required technical features limit the choice of mobile ap-
plication development tool?

• Is a cross-platform solution a viable alternative to developing separate
applications for each platform?

The key differences between the development methods are the aspects in
the criteria list presented in chapter 5, and the choice between methods is
made based on those criteria. Therefore, the key differences between the de-
velopment methods are UI consistency with the target platform, interaction
and responsiveness, supported platforms, energy consumption, shared code,
access to native functionality, competence availability, ease of design, cost,
long-term feasibility, publishing and distribution, and security.

For the second question the required technical features determine if the
application is possible to develop as a web application and to a lesser extent
a hybrid application. There are limitations on the availability of certain
advanced device functionalities for web and hybrid applications. Needing a
feature such as Bluetooth limits the choice to either a native or a hybrid
application.

The answer to the third question is yes, a cross-platform solution can
be viable option depending on the features and context of the application.
The tool selection matrix presented in this thesis can determine if a given
application should be developed separately for each target platform as a
native application, or if a cross-platform solution would be suitable, either as
a web or hybrid application. Examples of both cases are found in the study
case applications. For application A and application B a native application is
the best choice. Application C would benefit from a cross-platform solution
and it was determined that it would be best to develop it as a single web
application that can be used on any platform.

CHAPTER 8. DISCUSSION 54

8.2 The Industrial Internet

Mobile applications working with industrial machines such as drives ties
closely to the idea of Internet of Things, and its extension the Industrial
Internet. Internet of Things is a vision of complex systems that combine
hardware, sensors, data storage, microprocessors and software. At the core
of this development is a ”smart object” which is a combination of a physical
component, such as a drive or a motor, and a computer that can process sen-
sor data and support a wireless connection link to the internet. The object
has a unique identifier, and it can be accessed and controlled from a distance.
The ideal of Internet of Things is a large number of smart objects that can
communicate with each other and other systems over the internet.[13]

Key component for the Internet of Things is the unique identifier associ-
ated with the object. In most cases this is accomplished with a small Radio
Frequency Identification (RFID) tag. The reduction in terms of size, weight,
energy consumption and cost of the radio component makes it possible to
attach a RFID tag to virtually any object. This is combined with a sensor
network that can constantly monitor the status of the objects, such as their
location, temperature, movement and so on. This enables mapping the real
world into the virtual world and monitoring it remotely.[11]

Figure 8.1: The capabilities of smart objects. Each layer builds upon the
previous one.

The new capabilities offered by smart objects and the Internet of Things

CHAPTER 8. DISCUSSION 55

can be grouped into four layers, each building on the previous one. The four
levels of capabilities are monitoring, control, optimization and autonomy, il-
lustrated in 8.1. The basic functionality of a smart object is the possibility
to monitor the object’s condition, operation and environment data through
sensors. The gathered data can be used in a multitude of ways, such as
reacting to changes in the object’s environment or performance, or suggest-
ing preventative maintenance. The second level allows remote control of the
object, either through remote commands or automated algorithms. This en-
ables a high level of customization for the object to best fit the use case.
The third level uses the data gained from monitoring and the possibility to
control the object remotely to optimize the performance of the object. The
final layer is the dream of Internet of Things, where objects reach autonomy
and carry out their tasks without the need for personnel. Examples of auton-
omy can be found even today in small scale, such as an automatic vacuum
cleaner that can adapt to different floor layouts with the help of sensors and
software.[37]

The applications examined in this thesis already demonstrate some of
the capabilities listed above, although they still require a mobile device in
conjunction with the drive to function. From the applications that were
described in chapter 7, application B is used for monitoring the drive and
application A offers a way to control the drive remotely. Most likely in the
future more of the logic is included in the drive itself and an application is
more of a way of tapping into that information.

The Internet of Things has a lot of potential, especially in the industrial
setting. But it is still in very early stage, with only a few actual working
implementations. Whether the Internet of Things turns out to be everything
that has been promised remains to be seen.

8.3 The Future of Web Applications

Web application technologies have improved tremendously in the recent years.
The fifth revision of the HTML standard, HTML5 was first introduced as
a public draft in 2008 and officially released in October 2014.[51] It added
support for several native functionalities that were not previously accessi-
ble for web applications and introduced plenty of other improvements to the
technology.[49]

World Wide Web Consortium (W3C) is constantly working to further
improve web technologies. A good example is their project Mobile Web
Applications EU (MobiWebApp). The project’s key goals are to increase the
features available to Web applications to match native applications, develop

CHAPTER 8. DISCUSSION 56

a mobile-friendly testing framework, offer training in developing web-based
mobile applications and increase the awareness of the potential that web
technologies can provide. The project has already given developers access
to device’s camera, address book and agenda through the browser using
JavaScript, and made it possible to modify the user experience based on the
battery level or capabilities of the network.[22]

In addition to those mentioned above, dozens of device APIs are currently
under development by various groups in W3C. A full list of features under
development by W3C can be found at www.w3.org/Mobile/mobile-web-app-
state/. The work of Web Bluetooth Community Group is of particular in-
terest for this thesis. The group is working on a Bluetooth API to allow
websites to communicate with devices in a secure way. The work is still in
a very early phase, the group was formed in July 2014 and the first demo
published in December 2014, but it gives promise that in the future mobile
web applications can utilize Bluetooth connection.[50] Other interesting up-
coming features include for example continuous camera stream, encrypted
storage, Near Field Communication (NFC) support and web notifications.

The future of web applications is certainly looking promising. New device
APIs are being added, and current issues such as low security local storage are
being improved. While it is difficult to say whether web applications can ever
surpass native applications, they are making a good effort to compete with
them. Much depends also on the changes in the mobile platform market. If
a few platforms continue to dominate the market there is less need for cross-
platform applications. But if the market becomes more volatile, platform-
independent web applications and other cross-platform solutions will become
more attractive.

Chapter 9

Conclusions

The aim of this thesis was to study different methods for developing mobile
applications for multiple platforms and find the best development method
for different use cases. Three main development methods were identified.
Native applications are developed for a single platform at a time with the
platform’s standard development tools and conventions. Supporting multiple
platforms with native applications requires the application to be developed
separately for each target platform. Web applications are developed with
web technologies and hosted as a web site. A web application only needs to
be developed once and any mobile device can access them with their standard
web browser via an URL. The third method utilizes web technologies but the
resulting application is installed on the device like a native application. This
is called a hybrid application. They are developed with cross-platform tools
such as PhoneGap and the main part of application needs to be developed
only once and can be deployed to any platform supported by the tool. Some
platform-specific development is usually necessary, particularly for the user
interface.

The development methods were evaluated and compared to each other.
The evaluation was done based on a list of criteria, which included 12 items:
UI consistency with the target platform, interaction and responsiveness, sup-
ported platforms, energy consumption, shared code, access to native func-
tionality, competence availability, ease of design, cost, long-term feasibility,
publishing and distribution, and security. Each method was rated by each
criterion on a scale of 1(very poor) to 5(very good). The average ratings for
the methods were 3,8 for native, 3,7 for web and 3,5 for hybrid. The ratings
were too close to each other to declare any method universally the best one.

The evaluations were collected in a matrix, and the matrix was expanded
into a tool selection matrix by adding application-specific weight values to the
criteria. These weight values represent how important each criterion is for a

57

CHAPTER 9. CONCLUSIONS 58

given application and range from 1(not very important) to 3(very important).
The tool selection matrix calculates weighted averages of the ratings and the
results represent how well a method fulfills a given application’s requirements.

Three applications were introduced as study cases, known as application
A, application B and application C. Of these, application A is an existing
native application, application B is an existing hybrid application, developed
with PhoneGap, and application C is a planned application with no set de-
velopment method yet. Appropriate weight values were set for each study
case application. The results suggested that for application A the best so-
lution would be native application, for application B native application as
well, and for application C web application.

The study showed that a cross-platform solution can be a viable option
instead of developing the application separately for each target platform. A
web application was the best solution for one of the applications studied,
and in general would be a good choice for lightweight business applications
that do not need advanced device functionalities. Hybrid applications seem
inferior to native applications in their current state, but can be an acceptable
alternative if the budget is tight or the application is intended for several
platforms and needs device functionalities that a web application does not
have access to.

The tool selection matrix can be developed further. Additional cross-
platform tools can be added to the matrix by following the process outlined
in this thesis. Also, the evaluations should be revised as the development
methods advance.

Bibliography

[1] ABB. ABB-yhtymä. URL http://new.abb.com/fi/abb-lyhyesti/

yhtyma.

[2] Open Handset Alliance. Overview, . URL http://www.

openhandsetalliance.com/oha_overview.html.

[3] Open Handset Alliance. Android Overview, . URL http://www.

openhandsetalliance.com/android_overview.html.

[4] Open Handset Alliance. Industry Leaders Announce Open Platform
for Mobile Devices, 2007. URL http://www.openhandsetalliance.com/

press_110507.html.

[5] Android. Android Developer. URL http://developer.android.com/

index.html.

[6] AndroidDeveloper. Distribute. URL http://developer.android.com/

distribute/index.html.

[7] Appcelerator. Titanium. URL http://www.appcelerator.com/

titanium/.

[8] AppleDeveloper. iOS Dev Center, . URL https://developer.apple.

com/devcenter/ios/index.action.

[9] AppleDeveloper. iOS Technology Overview, . URL https://developer.

apple.com/library/prerelease/iOS/documentation/Miscellaneous/

Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html.

[10] ArsTechnica. Xamarin 3 review: Making cross-
platform mobile development painless. URL http:

//arstechnica.com/information-technology/2014/05/

xamarin-3-review-making-cross-platform-mobile-development-painless/.

59

http://new.abb.com/fi/abb-lyhyesti/yhtyma
http://new.abb.com/fi/abb-lyhyesti/yhtyma
http://www.openhandsetalliance.com/oha_overview.html
http://www.openhandsetalliance.com/oha_overview.html
http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/press_110507.html
http://www.openhandsetalliance.com/press_110507.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/distribute/index.html
http://developer.android.com/distribute/index.html
http://www.appcelerator.com/titanium/
http://www.appcelerator.com/titanium/
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/devcenter/ios/index.action
https://developer.apple.com/library/prerelease/iOS/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/prerelease/iOS/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/prerelease/iOS/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
http://arstechnica.com/information-technology/2014/05/xamarin-3-review-making-cross-platform-mobile-development-painless/
http://arstechnica.com/information-technology/2014/05/xamarin-3-review-making-cross-platform-mobile-development-painless/
http://arstechnica.com/information-technology/2014/05/xamarin-3-review-making-cross-platform-mobile-development-painless/

BIBLIOGRAPHY 60

[11] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of
Things: A survey. Computer Networks, 54(15):2787–2805, October 2010.
ISSN 13891286. doi: 10.1016/j.comnet.2010.05.010.

[12] Valerie Belton and Jacques Pictet. A Framework for Group Decision
Using a MCDA Model: Sharing, Aggregating or Comparing Individual
Information? Journal of Decision Systems, 6(3):283–303, 1997. ISSN
1246-0125. doi: 10.1080/12460125.1997.10511726.

[13] Mordechai Ben-Ari. Real-Time Systems. 2009. ISBN 9781848823136.
doi: 10.1007/978-1-84882-314-3\ 21.

[14] BL Berg and H Lune. Qualitative research methods for the social sci-
ences. 2004. ISBN 0205318479.

[15] Bimal K. Bose. Power Electronics and Alternating Current Drives. 1986.
ISBN 978-0136868828.

[16] S Brahler. Analysis of the android architecture. PhD thesis, Karlsruher
Institut für Technologie, 2010. URL http://www.it.iitb.ac.in/frg/

wiki/images/2/20/2010_braehler-stefan_android_architecture.pdf.

[17] Margaret Butler. Android: Changing the Mobile Landscape. IEEE
Pervasive Computing, 10(1):4–7, January 2011. ISSN 1536-1268. doi:
10.1109/MPRV.2011.1.

[18] A Charland and Brian Leroux. Mobile application development: web
vs. native. Communications of the ACM, 54(5):0–4, 2011. doi: 10.1145/
1941487.

[19] Luis Corral, Andrea Janes, and Tadas Remencius. Potential Advan-
tages and Disadvantages of Multiplatform Development Frameworks -
A Vision on Mobile Environments. Procedia Computer Science, 10:1202–
1207, January 2012. ISSN 18770509. doi: 10.1016/j.procs.2012.06.173.

[20] Isabelle Dalmasso, Soumya Kanti Datta, Christian Bonnet, and Navid
Nikaein. Survey, comparison and evaluation of cross platform mobile
application development tools. 2013 9th International Wireless Commu-
nications and Mobile Computing Conference (IWCMC), pages 323–328,
2013. doi: 10.1109/IWCMC.2013.6583580.

[21] Ben Elgin. Google Buys Android for Its Mobile Arsenal,
2005. URL http://www.businessweek.com/stories/2005-08-16/

google-buys-android-for-its-mobile-arsenal.

http://www.it.iitb.ac.in/frg/wiki/images/2/20/2010_braehler-stefan_android_architecture.pdf
http://www.it.iitb.ac.in/frg/wiki/images/2/20/2010_braehler-stefan_android_architecture.pdf
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal

BIBLIOGRAPHY 61

[22] Mc Forgue and D Hazaël-Massieux. Mobile web applications: bringing
mobile apps and web together. In WWW ’12 Companion Proceedings of
the 21st international conference companion on World Wide Web, pages
255–257, 2012. ISBN 9781450312301. doi: 10.1145/2187980.2188022.

[23] Nisarg Gandhewar and Rahila Sheikh. Google Android: An emerging
software platform for mobile devices. International Journal on Computer
Science and Engineering (IJCSE), (12):12–17, 2010. ISSN 0975-2297.
URL http://www.enggjournals.com/ijcse/doc/003-IJCSESP24.pdf.

[24] Gartner. Press Release: Gartner Says Worldwide Tablet Sales Grew 68
Percent in 2013, With Android Capturing 62 Percent of the Market, .
URL http://www.gartner.com/newsroom/id/2674215.

[25] Gartner. Gartner Says Worldwide Traditional PC, Tablet, Ultramobile
and Mobile Phone Shipments Are On Pace to Grow 6.9 Percent in 2014,
. URL http://www.gartner.com/newsroom/id/2692318.

[26] Gustavo Hartmann, G Stead, and A DeGani. Cross-platform mobile
development. Tribal, Lincoln House, The Paddocks, Tech. Rep, (March):
1–18, 2011. URL https://wss.apan.org/jko/mole/SharedDocuments/

Cross-PlatformMobileDevelopment.pdf.

[27] Henning Heitkötter, Sebastian Hanschke, and Tim A Majchrzak. Com-
paring Cross-Platform Development Approaches for Mobile Applica-
tions. In Web Information Systems and Technologies, pages 299–311.
2012. doi: 10.1007/978-3-642-36608-6\ 8.

[28] HTML5test. How well does your browser support HTML5? URL https:

//html5test.com/results/mobile.html.

[29] IDC. Smartphone OS Market Share, Q2 2014. URL http://www.idc.

com/prodserv/smartphone-os-market-share.jsp.

[30] Markku Laine, Denis Shestakov, Evgenia Litvinova, and Petri Vuori-
maa. Toward Unified Web Application Development. IT Professional,
13(October):30–36, 2011. doi: 10.1109/MITP.2011.55.

[31] Reto Meier. Professional Android 4 application development. Joh Wiley
& Sons, 2012. ISBN 978-1118102275.

[32] Julian Ohrt and Volker Turau. Cross-Platform Development Tools for
Smartphone Applications. Computer, 45(9):72–79, 2012.

http://www.enggjournals.com/ijcse/doc/003-IJCSESP24.pdf
http://www.gartner.com/newsroom/id/2674215
http://www.gartner.com/newsroom/id/2692318
https://wss.apan.org/jko/mole/Shared Documents/Cross-Platform Mobile Development.pdf
https://wss.apan.org/jko/mole/Shared Documents/Cross-Platform Mobile Development.pdf
https://html5test.com/results/mobile.html
https://html5test.com/results/mobile.html
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

BIBLIOGRAPHY 62

[33] Manuel Palmieri, Inderjeet Singh, and Antonio Cicchetti. Comparison
of cross-platform mobile development tools. In 2012 16th International
Conference on Intelligence in Next Generation Networks, pages 179–186.
Ieee, October 2012. ISBN 978-1-4673-1526-5. doi: 10.1109/ICIN.2012.
6376023.

[34] PhoneGap. PhoneGap, . URL http://phonegap.com/.

[35] PhoneGap. PhoneGap Documentation, . URL http://docs.phonegap.

com/en/edge/index.html.

[36] PhoneGap. PhoneGap Plugins, . URL https://build.phonegap.com/

plugins.

[37] ME Porter and JE Heppelmann. How Smart, Con-
nected Products Are Transforming Competition. Harvard
Business Review, (November), 2014. URL http://www.

socialplm.info/FileLibrary/Topics/HarvardBusinessReview/HBR_

How-Smart-Connected-Products-Are-Transforming-Competition.pdf.

[38] Qt. Qt. URL http://www.qt.io/.

[39] Sara Radicati. Mobile Statistics Report , 2014-2018. Tech-
nical report, The Radicati Group, Inc., 2014. URL
http://www.radicati.com/wp/wp-content/uploads/2014/01/

Mobile-Statistics-Report-2014-2018-Executive-Summary.pdf.

[40] Research2guidance. Cross Platform Tool Benchmarking 2013 Hidden
champions of the app economy. Technical Report October, 2013.

[41] RhoMobile. RhoMobile, . URL http://rhomobile.com.

[42] RhoMobile. Rhodes, . URL https://github.com/rhomobile/rhodes.

[43] Amit Kumar Saha. What is Android. Linux for you, (January):48–50,
2008. URL http://tailieuandroid.googlecode.com/svn-history/r8/

trunk/Andoid--tech.pdf.

[44] Ahmed Seffah and Javahery Homa. Multiple user interfaces: cross-
platform applications and context-aware interfaces. 2005. ISBN 978-0-
470-85444-0. doi: 10.1002/0470091703.

[45] RhoMobile Suite. Documentation. URL http://docs.rhomobile.com/

en/5.0.0/home.

http://phonegap.com/
http://docs.phonegap.com/en/edge/index.html
http://docs.phonegap.com/en/edge/index.html
https://build.phonegap.com/plugins
https://build.phonegap.com/plugins
http://www.socialplm.info/File Library/Topics/Harvard Business Review/HBR_How-Smart-Connected-Products-Are-Transforming-Competition.pdf
http://www.socialplm.info/File Library/Topics/Harvard Business Review/HBR_How-Smart-Connected-Products-Are-Transforming-Competition.pdf
http://www.socialplm.info/File Library/Topics/Harvard Business Review/HBR_How-Smart-Connected-Products-Are-Transforming-Competition.pdf
http://www.qt.io/
http://www.radicati.com/wp/wp-content/uploads/2014/01/Mobile-Statistics-Report-2014-2018-Executive-Summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2014/01/Mobile-Statistics-Report-2014-2018-Executive-Summary.pdf
http://rhomobile.com
https://github.com/rhomobile/rhodes
http://tailieuandroid.googlecode.com/svn-history/r8/trunk/Andoid--tech.pdf
http://tailieuandroid.googlecode.com/svn-history/r8/trunk/Andoid--tech.pdf
http://docs.rhomobile.com/en/5.0.0/home
http://docs.rhomobile.com/en/5.0.0/home

BIBLIOGRAPHY 63

[46] Taskumuro. Windows Phone 8. URL http://taskumuro.com/

artikkelit/windows-phone-8.

[47] K. W. Tracy. Mobile Application Development Experiences on Apple’s
iOS and Android OS. IEEE Potentials, 31(4):30–34, July 2012. ISSN
0278-6648. doi: 10.1109/MPOT.2011.2182571.

[48] W3C. HTML5 Differences from HTML4, . URL http://www.w3.org/

TR/html5-diff/.

[49] W3C. HTML5, . URL http://www.w3.org/TR/html5/.

[50] W3C. Web Bluetooth Community Group, . URL https://www.w3.org/

community/web-bluetooth/.

[51] W3Schools. HTML5 Introduction. URL http://www.w3schools.com/

html/html5_intro.asp.

[52] Anthony I. Wasserman. Software engineering issues for mobile applica-
tion development. Proceedings of the FSE/SDP workshop on Future of
software engineering research - FoSER ’10, 2010. doi: 10.1145/1882362.
1882443.

[53] Windows. Windows Phone Dev Center. URL http://dev.windows.com/

en-us.

[54] Xamarin. Xamarin. URL http://xamarin.com/.

http://taskumuro.com/artikkelit/windows-phone-8
http://taskumuro.com/artikkelit/windows-phone-8
http://www.w3.org/TR/html5-diff/
http://www.w3.org/TR/html5-diff/
http://www.w3.org/TR/html5/
https://www.w3.org/community/web-bluetooth/
https://www.w3.org/community/web-bluetooth/
http://www.w3schools.com/html/html5_intro.asp
http://www.w3schools.com/html/html5_intro.asp
http://dev.windows.com/en-us
http://dev.windows.com/en-us
http://xamarin.com/

Appendix A

First appendix

Figure A.1: Mobile development methods questionnaire, figure 1 of 4.

64

APPENDIX A. FIRST APPENDIX 65

Figure A.2: Mobile development methods questionnaire, figure 2 of 4.

APPENDIX A. FIRST APPENDIX 66

Figure A.3: Mobile development methods questionnaire, figure 3 of 4.

APPENDIX A. FIRST APPENDIX 67

Figure A.4: Mobile development methods questionnaire, figure 4 of 4.

APPENDIX A. FIRST APPENDIX 68

Figure A.5: Features supported by PhoneGap.[34]

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Background
	1.2 Problem Statement and Research Questions
	1.3 Structure of the Thesis

	2 Methodology
	2.1 Literature Review
	2.2 Searching and Choosing Cross-Platform Tools for Analysis
	2.3 The Evaluation and Comparison Methods

	3 Mobile Application Development
	3.1 Mobile Platforms
	3.1.1 Android
	3.1.2 iOS
	3.1.3 Windows Phone

	3.2 Mobile Applications
	3.2.1 Native Applications
	3.2.2 Web Applications
	3.2.3 Hybrid Applications
	3.2.4 Other methods

	4 Cross-Platform Development Tools
	4.1 PhoneGap
	4.2 Titanium
	4.3 Qt
	4.4 Xamarin
	4.5 RhoMobile Suite

	5 Evaluation Criteria
	5.1 End-user's Perspective
	5.2 Development Perspective
	5.3 Business Perspective

	6 Evaluation of Mobile Development Tools
	7 The Tool Selection Matrix
	7.1 Target Applications
	7.2 The Selection Matrix

	8 Discussion
	8.1 Answering the Research Questions
	8.2 The Industrial Internet
	8.3 The Future of Web Applications

	9 Conclusions
	A First appendix

