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Stress distribution in GaN nanopillars using confocal Raman
mapping technique

S. Nagarajan,a) O. Svensk, L. Lehtola, H. Lipsanen, and M. Sopanen
Department of Micro and Nanosciences, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland

(Received 14 February 2014; accepted 7 April 2014; published online 17 April 2014)

In this Letter, high-resolution confocal Raman mapping of stress distribution in etched and re-grown

GaN nanopillar structures is investigated. Results of the E2(high) phonon line mapping of the top

surfaces of individual nanopillars reveal differences in stress between both the center and edge of the

nanopillar top surfaces and between the etched and re-grown GaN nanopillar structures. In-plane

biaxial compressive stress with the values of 0.36–0.42 GPa and 0.49–0.54 GPa is observed at the

center of etched and re-grown GaN nanopillars, respectively. The in-plane biaxial compressive stress

decreases from center to edge in re-grown GaN nanopillar due to the tilted facets. Also, the A1(LO)

phonon frequency increases from center to edges, or tilted facets, due to the tilt of the c-axis of

re-grown GaN nanopillar. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4872056]

Gallium nitride and its compounds are widely used

materials in optoelectronics and power electronics applica-

tions due to their wide and tunable band gap, large break-

down field, high carrier mobility, and thermal stability.1,2

These properties make the material family ideal for devices

such as light emitting diodes (LEDs), laser diodes, and high

power transistors. Traditional GaN devices rely on lateral

layer structures grown by metal organic vapor phase epitaxy

(MOVPE) or molecular beam epitaxy (MBE).3,4 Recently,

there has been a lot of interest towards non-lateral GaN

nanostructures which might have a huge potential in opto-

electronic applications by both improving the efficiency of

III-nitride LEDs and modifying the emission spectra of these

devices.5,6 For instance, growth of InGaN/GaN quantum

wells on patterned GaN nanopillar structures can be used to

achieve polychromatic white light emission due to differen-

ces of indium incorporation efficiency and growth rate of dif-

ferent crystal planes.7 The heteroepitaxial growth of lateral

III-nitride layers is subjected to a large residual stress from

both thermal and lattice mismatch between the epilayer and

the substrate.8 However, it has been shown that GaN nano-

pillars and other patterned structures can effectively reduce

the strain in the epitaxial layer.9,10 It has also been proved

that the strain relaxation at the surface and sidewalls of the

GaN pillars increases the indium incorporation efficiency

which opens up possibilities to fabricate more efficient green

and yellow LEDs from III-nitride materials.11 Therefore, it is

important to understand the mechanism of strain relaxation

in patterned GaN nanopillars. Also, a different dangling

bond density and surface energy of different atomic planes

can affect indium incorporation efficiency. Previously, strain

relaxation in networks of GaN nanopillars has been studied

by in-plane x-ray diffraction (XRD) and photoluminescence

(PL) measurements.12,13 However, these studies focused on

structures with different nanopillar height and assumed the

top diameter to be constant. A finite element method and lin-

ear elasticity theory based models have been proposed

to understand the strain distribution in individual GaN

nanopillars with different aspect ratios and lateral diameters.

It is important to remember that the in-plane stress of the

nanopillar is not only affected by the height of the pillar but

also the lateral diameter and the shape of the pillar cross-

section. The in-plane stress also changes immediately when

growth is continued on top of the nanopillar templates. In

this work, we study the strain distribution in individual GaN

nanopillars with different lateral diameters using the confo-

cal Raman mapping technique. In-plane stress of the nanopil-

lars is determined both before and after the regrowth process

to see how growth affects the properties of the structure.

The patterning of nanopillar templates was performed

on planar 3 lm-thick undoped GaN layers grown by

MOVPE on c-plane sapphire substrates using a standard

two-step growth process. Trimethyl-gallium (TMGa) and

ammonia (NH3) were used as gallium and nitrogen sources,

respectively. For the nanopillar fabrication, a 200 nm-thick

silicon dioxide (SiO2) mask layer was first deposited onto a

GaN layer by plasma enhanced vapor phase deposition

(PECVD) followed by deposition of a 20 nm-thick nickel

(Ni) layer by e-beam evaporation. The Ni/SiO2/GaN struc-

ture was subjected to rapid thermal annealing (RTA) at

850 �C for 2 min in N2 ambient to form self-assembled Ni

islands. The used Ni layer thickness and annealing parame-

ters resulted in elliptically shaped islands with average diam-

eters ranging between 250 and 600 nm. The purpose of the

SiO2 mask was to enhance the island formation and improve

the uniformity of the island size and shape. SiO2 layer also

improved the adhesion of the Ni droplets to the sample sur-

face during the etching process steps. The Ni islands together

with the SiO2 layer served as an etch mask to form GaN

nanopillars by reactive ion etching (RIE) and inductive cou-

ple plasma (ICP) etching. RIE was used to etch through the

SiO2 layer followed by Cl2/Ar based ICP etching of the GaN

layer. The GaN layers were etched down to the thickness of

1 lm resulting in a nanopillar height of 2 lm. The residual

Ni mask and SiO2 were removed by wet etching in aqua

regia (3:1 mixture of hydrochloric acid and nitric acid) and

diluted hydrofluoric acid (HF) solutions. Before the GaN

re-growth on the nanopillar template, the wafers werea)E-mail: nagarajan.subramaniyam@aalto.fi
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cleaned by piranha etchant and hydrochloric acid (HCl) solu-

tion. The GaN re-growth was performed by MOVPE at

1080 �C for 80 s in H2 ambient with a V/III ratio of 1250.

The resultant film thicknesses varied between 40 and 120 nm

depending on the crystal plane. During re-growth, the pillar

cross-sections are transformed from elliptical to hexagonal

due to the diverse growth rates of different crystal planes.14

Also, as desorption at high temperature H2 ambient is crystal

plane dependent hexagonal pillar formation is further pro-

moted. The re-grown GaN nanopillar has a flat top facet

(0001) plane and six smooth tilted facets of hexagonal struc-

ture with {1–101} planes (see Fig. 1(c)). Raman mapping

analyses were performed on the top of individual etched

GaN nanopillars and re-grown GaN nanopillars. The

zð�;�Þ�zbackscattering geometry with z parallel to the c-axis

was used. In this backscattering geometry, the selection rule

for wurtzite structure allows E2(high) and A1(LO) phonon

scattering. The spectra were acquired at room temperature

with a confocal Raman backscattering technique using a 532

nm line from a frequency-doubled Nd:YAG laser for excita-

tion. The laser light was coupled into the microscope using a

single-mode fiber and brought on to the sample using a

dichroic mirror and a 100� microscope objective (NA 0.9).

The spatial resolution is about 300 nm with a spectral resolu-

tion of 0.02 cm�1. The measurement tool was focused to get

the maximum intensity from the top surface of the pillars

which strongly reduces the intensity of the Raman signal

from the background of the underlying GaN layer. Also, the

measurement depth is about 1 lm as has been determined by

laser excitation wavelength, material refractive index, pin-

hole size, and objective numerical aperture.15 In the detec-

tion beam path, Rayleigh-scattered light was filtered out

using an edge filter and a 50 lm core-diameter fiber was

used as a confocal pinhole. The backscattered light was then

directed to an ultrahigh-throughput spectrometer equipped

with an 1800 g/mm grating and thermoelectrically cooled

electron-multiplication charge coupled device detector. The

XY-positioning of the sample was achieved using a piezo-

electric scanning stage, and a stepper motor was used for

focus control. The scanning area was 5 lm� 5 lm. The scan-

ning area is divided into 220 lines with 180 measurement

points/line.

Figures 1(a) and 1(b) show the top and tilted view scan-

ning electron microscopy (SEM) images of GaN nanopillars

after ICP etching and mask removal. The top view of etched

GaN nanopillar template shows the pillars have asymmetrical

cross-sections which is due to the shape of the Ni nanodrop-

lets used as etch masks. The side walls of the 2 lm-high pil-

lars are nearly vertical with an average side wall angle of 88�.
Side walls and the areas between the pillars have some etch

induced damage. Figures 1(c) and 1(d) show the top and tilted

view SEM images of GaN nanopillars after re-growth using

the etched GaN nanopillars as the growth template. The hex-

agonal geometry is clearly visible after the re-growth. The av-

erage diameter (including tilted crystal planes) of an

individual pillar is varying from 370 to 860 nm. The angle

between tilted sidewall facets and the (0001) plane is meas-

ured to be about 61�6 0.8� which has been associated with

{1–101} planes.7 Insets (a) and (b) of Fig. 2 show the Raman

intensity mapping of the etched GaN nanopillar template and

the re-grown GaN nanopillar structure, respectively, meas-

ured in the range of 500 cm�1–800 cm�1 from the same area

as shown in the SEM images in Figs. 1(a) and 1(c). The mea-

surement areas are chosen from the edges of the wafers to

FIG. 1. SEM images of etched GaN

nanopillar (a) top view and (b) tilted

view. SEM images of re-grown GaN

nanopillars (c) top view and (d) tilted

view. The scale bar corresponds to

1 lm in (a) and (c), 2 lm in (b) and

300 nm in (d).
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simplify the detection of the same location in different char-

acterization tools. This explains the rather low density of pil-

lars for some parts of the analysis area. The Raman mapping

clearly shows the distribution of the GaN nanopillars on the

background GaN surface. The corresponding Raman spectra

measured from the top of individual etched and re-grown

GaN nanopillars together with the underlying GaN layer are

shown in Figure 2. The Raman spectrum of the etched GaN

nanopillar reveals a sharp E2(high) phonon mode at 568.6

cm�1 and A1 (LO) phonon mode at 736.5 cm�1. In addition,

there is also a peak located at 703.8 cm�1. Previously, this

has been reported as the surface optical (SO) phonon mode in

GaN nanostructures.16 From the re-grown GaN nanopillar,

the E2(high) phonon and A1 (LO) phonon modes can be

observed at 569.3 cm�1 and 737.0 cm�1, respectively. The

E2(high) phonon and A1 (LO) phonon modes of the underly-

ing GaN surface are located at 570.4 cm�1 and 738.8 cm�1,

respectively. In addition, a weak feature related to the forbid-

den E1 (TO) phonon is observed at about 559.0 cm�1 from

the etched and re-grown GaN nanopillars. The E2(high) pho-

non mode is at a higher wavenumber in the re-grown GaN

nanopillar and the underlying GaN layer compared to the

etched GaN nanopillar. This indicates that the top of the

re-grown GaN nanopillar is compressively stressed compared

to the top of the etched GaN nanopillar. The intensities of

E2(high) and A1 (LO) phonons are lower in the underlying

GaN layer compared to the etched and re-grown GaN nano-

pillars due to a slightly out of focus measurement geometry.

To gain more understanding about the stress distribution

in individual etched and re-grown GaN nanopillars, a

detailed Raman mapping was performed from 563 to 580

cm�1 to cover E2(high) phonon frequencies. In order to

obtain the precise E2(high) phonon frequency position, the

measured spectra were fitted with Lorentzian line shapes.

Insets of Figs. 3(a) and 3(b) show the Raman image of

E2(high) phonon frequency position fitted with Lorentzian

line shape of etched and re-grown GaN nanopillars.

Figure 3(a) shows E2(high) phonon frequency as a function

of position (black line) in the area of two etched GaN nano-

pillars having a different cross-sectional diameter and

includes the underlying GaN layer between the pillars. The

measurement line is shown in the Raman image in the inset.

The frequency profile shows that the maximum of E2(high)

phonon is observed at 569.6 cm�1 on the underlying GaN

layer. The E2(high) phonon frequency decreases when mov-

ing from the center towards the edges of the GaN nanopil-

lars. The E2(high) phonon frequency value is strongly

dependent on the GaN nanopillar lateral geometry. The

E2(high) phonon frequency value at the center of the pillar

top is smaller for smaller cross-sectional diameter GaN

nanopillar compared to the larger one. Figure 3(b) shows the

FIG. 2. Raman spectra from a re-grown GaN nanopillar, an etched GaN

nanopillar and the underlying GaN layer. The inset shows the Raman inten-

sity mapping of etched and re-grown GaN nanopillar samples measured in

the region of 500–800 cm�1. The scale bars in insets correspond to 1 lm.

FIG. 3. The inset shows the Raman

image of E2(high) phonon peak posi-

tion fitted with Lorentzian line shape

of GaN nanopillar in the region of 560

cm�1–580 cm�1. Raman frequencies

shown in the image are measured

along the white lines shown in the

insets. Data includes two pillars with

different lateral diameters. The corre-

sponding frequency position is shown

in black line. The calculated stress is

shown in blue line. The scale bars in

insets correspond to 1 lm.
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E2(high) phonon frequency profile from two re-grown GaN

nanopillars with different lateral sizes and the underlying

GaN layer (measured along the line shown in the inset). The

maximum of the E2(high) phonon frequency is located at

569.15 cm�1 on the underlying GaN layer. The frequency

minimum (568.8 cm�1) is located at the edges of the hexago-

nal nanopillars, and it does not have a clear correlation with

the pillar diameter. The frequency at the center of the pillar

is heavily dependent on the average pillar diameter and

increases from 568.85 cm�1 to 568.98 cm�1 when pillar di-

ameter increases from 380 nm to 620 nm. The relation

between E2(high) phonon frequency shift and the residual

stress is given by17 Dx cm�1ð Þ ¼ x� x0 ¼ KDr; where x
and x0 are the E2(high) phonon frequencies of measured

structure and a strain free thick GaN layer (567.6 cm�1),

respectively. K (cm�1/GPa) is a proportionality constant and

equals to 2.56 cm�1/GPa.18 Dr ¼ rxx þ ryy is the in-plane

biaxial compressive stress. The calculated residual stress val-

ues of the nanopillar top surfaces together with the underly-

ing GaN layers are plotted in blue color in Figures 3(a) and

3(b). Results show that the biaxial compressive stress distri-

bution is heavily dependent on the lateral dimension of the

GaN nanopillar. However, the maximum stress is observed

at the underlying GaN layer with a value of about 0.70 6 0.1

GPa. The stress in the underlying GaN surface depends on

the amount and size of nanopillars next to the measurement

location. If the exposed area between the pillars is relatively

large, the stress is higher (about 0.8 GPa) and if the two pil-

lars are very close to each other the stress between the pillars

is about 0.6 GPa. Analysis did not reveal any clear difference

in the stress of the underlying GaN between the etched and

re-grown surface. When full width at half maximum

(FWHM) values of E2(high) phonon frequencies of the

etched and re-grown underlying GaN layers were compared

(not shown here), the ICP etch damage was seen as a larger

FWHM value of 6.9 cm�1 in the etched surface compared to

a 5.1 cm�1 in the re-grown surface. It is also evident that the

stress is higher in the center than at the edge of both etched

and re-grown GaN nanopillars. The maximum biaxial com-

pressive stress is about 0.36–0.42 GPa in the center of the

etched GaN nanopillars and 0.49–0.54 GPa in the center of

the re-grown GaN nanopillars (depending on a top diameter).

Figure 4 shows the residual stress at the center of the etched

and re-grown GaN nanopillars as a function of pillar diame-

ter from 200 to 650 nm. It is evident that the stress in the

middle (0001) plane of the nanopillar increases as soon as

re-growth process is started. The average difference of the

biaxial compressive stress is about 0.1 GPa for etched and

re-grown GaN nanopillars with the same lateral diameter.

The increase of stress in the re-grown GaN nanopillar com-

pared to the etched GaN nanopillar may be related to etch

induced damage releasing the stress inside the pillar. The

FWHM of the E2(high) phonon line at the middle of an

etched and a re-grown GaN nanopillar was also compared.

The FWHM value of about 4.7 cm�1 in the re-grown GaN

nanopillar shows higher crystalline quality compared to the

value of 5.1 cm�1 measured in the etched GaN nanopillar.

During re-growth, the overall crystal quality of the pillar is

improved, resulting in higher compressive stress in the pillar.

In previous studies, a finite element method and continuous

media approach have shown that the in-plane stress is sensi-

tive to the geometry and aspect ratio of the nanopillars.12,13

It has been shown that the part more accessible to the free

surface is more flexible to release strain. Recently, Le

Boulbar et al. have studied the strain relaxation of etched

and re-grown GaN nanorods using Raman spectroscopy.19

They show that the GaN nanorods are fully relaxed in etched

and re-grown structures. Re-growth of GaN onto the etched

nanorods does not re-introduce strain in their studies.

However, in our case, with the confocal Raman mapping

technique, we are able to experimentally determine the stress

distribution at the surface of the individual nanopillars with

different diameters and surface geometries. Based on our

results, the stress in the re-grown GaN nanopillar depends

strongly on the geometry.

In order to understand the biaxial compressive stress

relaxation from the center to the edges, or tilted facets, of re-

grown GaN nanopillars, we have performed A1(LO) phonon

mapping. The inset of Figure 4(b) shows the Raman image

of the A1 (LO) phonon frequency position fitted with

FIG. 4. (a). Residual stress of etched and re-grown GaN nanopillars with varying lateral diameter. Figure 4(b) The inset shows the Raman image of A1(LO)

phonon peak position fitted with Gaussian line shape of GaN nanopillar in the region of 720 cm�1–750 cm�1. Raman frequencies shown in the image are meas-

ured along the white line shown in the inset. Data includes two pillars with different lateral diameters. The corresponding peak position is shown in red line.

E2(high) phonon frequency position in the same area is shown for comparison in dotted line. The scale bar in the inset of Raman image corresponds to 1 lm.
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Gaussian line shape from 720 cm�1 to 750 cm�1.The corre-

sponding peak position is shown with the red line. Also, the

E2(high) frequency position is shown in dotted line for com-

parison. The A1(LO) phonon position and E2(high) phonon

line positions show a clear relation. A1(LO) phonon fre-

quency is observed at about 736 6 1.02 cm�1 at the center of

the top of the GaN nanopillars having different diameters of

380 nm and 620 nm. This indicates that the center of the top

of the re-grown GaN nanopillar is along the (0001) axis.

Moreover, the A1(LO) phonon frequency shifts to higher

wavenumbers when moving from the center to the tilted fac-

ets of the GaN nanopillars. On the other hand, A1(LO) pho-

non frequency is observed at about 740 cm�1 from the

underlying GaN layer. Previously, the shifting of A1(LO)

phonon position towards the E1(LO) phonon position has

been reported as quasilongitudinal (QLO) modes due to the

tilting of crystal axes relative to the phonon propagation

direction.20 The intermediate energies of the QLO mode

between the A1(LO) and E1(LO) phonon mode can be calcu-

lated using21 x2
QLOðLOÞ ¼ x2

A1ðLOÞcos2ðhÞ þ x2
E1ðLOÞsin2ðhÞ;

where h is the angle between the phonon propagation direc-

tion and the c-axis of the sample. The LO phonon has a fre-

quency between that of the A1(LO) mode (phonon

propagation along the c-axis, h is equal to 0�) and that of

E1(LO) phonon mode (h is equal to 90�). The phonon propa-

gation at the center of top of GaN nanopillar is about

736 6 1.02 cm�1 meaning that this has (0001) axis. On the

other hand, the shifting of A1(LO) phonon to higher wave-

numbers when moving from center to the tilted facets of the

GaN nanopillars is due to light refraction away from normal

incidence.20 Furthermore, as ICP processing etches uni-

formly the GaN layer, the underlying GaN layer (not covered

by Ni) area becomes very rough due to ion bombardment.

The bombardment of energetic ions during dry etching accel-

erates the atom removal at the layer surface and introduces

ion induced damages, deteriorating the crystalline quality.

This roughened underlying GaN layer thus scatters the light

from the normal incidence which in turn shifts the

polar-sensitive A1(LO) to a higher wavenumber.22 The mate-

rial under the tilted facets of the pillars is grown in both the

lateral and vertical (0001) growth directions during the

re-growth process. The crystal quality in this area is very

high due to homoepitaxial growth. Therefore, the mechanism

of stress relaxation when moving from center to edge in the

re-grown GaN nanopillars is due to the growth direction. On

the other hand, etching induced damage and dislocations

may cause increased stress relaxation when moving from

center to edges in the etched GaN nanopillars. Moreover, the

part more accessible to the free surface area causes stress

relaxation in both etched and re-grown GaN nanopillar.

In summary, the stress distribution of individual etched

and re-grown GaN nanopillars have been studied by confocal

Raman mapping. The biaxial compressive stress in etched

and re-grown GaN nanopillars is shown to strongly depend

on the nanostructure geometry. The stress relaxation is

observed when moving from center to edge in both the

etched and re-grown GaN nanopillars. In the re-grown GaN

nanopillar, the stress relaxation from center to edge is attrib-

uted to the tilted facets. The A1(LO) phonon shifts to a

higher wavenumber, due to light refraction in the tilted facets

of re-grown GaN nanopillar, which supports the stress relax-

ation mechanism.
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