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We present results from an experimental study on the kinetic roughening of slow combustion
fronts in paper sheets. The sheets were positioned inside a combustion chamber and ignited from
the top to minimize convection effects. The emerging fronts were videotaped and digitized to
obtain their time-dependent heights. The data were analyzed by calculating two-point correlation
functions in the saturated regime. Both the growth and roughening exponents were determined and
found consistent with the Kardar-Parisi-Zhang equation, in agreement with recent theoretical work.
[S0031-9007(97)03836-2]

PACS numbers: 64.60.Ht, 05.40.+j , 05.70.Ln

Kinetic roughening of driven interfaces is a ubiquitous
phenomenon in nature, ranging from surface growth to
the propagation of fronts in random media [1]. Extensive
theoretical work of the last decade has led to a classifi-
cation of these phenomena according to the asymptotic
behavior of the scaling properties of such quantities as
surface roughness. In many cases it has been shown that
such systems can be described by local growth equations
of the form

≠hs$r , td
≠t

­ n=2hs$r , td 1
l

2
f=hs$r , tdg2 1 F 1 h , (1)

where hs$r , td is a height variable ind 1 1 dimensions,
n and l are constants,F is the driving force, andh
is a noise term. In the special case whereh is white
noise, Eq. (1) becomes the well-known (thermal) Kardar-
Parisi-Zhang (KPZ) equation [2]. Its scaling exponents
are exactly known in two dimensions. The so-called
growth exponentb characterizing the early-time behavior
of roughening equals1y3, and the roughness exponentx

that characterizes the spatial extent of roughening equals
1y2, with x 1 xyb ­ 2. If l ­ 0, Edwards-Wilkinson
(EW) behavior occurs, withb ­ 1y4 and x ­ 1y2 [3].
In the case that noise depends on the height variables,
Eq. (1) displays a depinning transition at some criticalFc,
above which the average velocity vanishes asy ~ sF 2

Fcdu. At and close to depinning, the behavior predicted
by Eq. (1) depends on whether or not the nonlinear term
with the prefactorl is present. Ifl . 0 at Fc, the
scaling exponents atFc can be mapped to the directed
percolation depinning (DPD) model, yieldingb ­ x ø
0.633 at 2D (“quenched KPZ”), while forl ­ 0, we have
b ø 0.88 andx ø 1 (“quenched EW”) [4,5]. AboveFc

the quenched noise becomes asymptotically irrelevant and
thermal noise limit is recovered [4].

The nature of kinetic roughening has also been under
intense experimental scrutiny. Experiments on surface
growth, erosion, step roughening, and related processes
that should in principle be described by the KPZ equation
in the appropriate regimes have failed to give conclusive
evidence in favor of the thermal KPZ universality class
[1]. For interfaces moving in random media, the present
situation is also somewhat unclear [1]. In imbibition
experiments where a liquid front is absorbed into a paper
sheet, behavior consistent with DPD has been reported
[6]; however, nonuniversal behavior has also been seen
[7]. Perhaps the clearest evidence to date has come from
fracture experiments in random media [8,9]. These have
produced results (x ø 0.63 0.72) consistent with those
for a directed polymer in a random medium, a problem
that can be mapped to the universality class of the 2D
KPZ equation.

A promising candidate for studying kinetic roughening
phenomena is a slow, flameless burning process in a
random medium, which is most easily realized by slow
combustion of paper sheets. Zhanget al. [10] have, in
fact, performed such an experiment, and by analyzing
the scaling of the surface widthw2sL, td ; k sh 2 h̄d2 l ,
L2x they obtainedx ­ 0.71s5d, a value rather close to the
DPD model and much larger than that predicted by the
KPZ equation. However, recent theoretical work on
the problem using a continuum phase-field model of slow
combustion [11,12] and simple cellular automata models
of “forest fires” [5,13] demonstrate both numerically
[5,11] and analytically [12] that, for the slow combustion
of a uniformly random distribution of reactants, the
kinetic roughening of flame fronts should be described by
the KPZ equation.

We report in this Letter first results on a new experi-
mental study of the process of slow, flameless combustion
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of paper. Our aim has been to create a well-controlled
environment for paper burning and to study and eliminate
external factors that may have influenced the results in
Ref. [10]. We demonstrate that it is indeed possible to
find a regime where results consistent with the KPZ uni-
versality class can be obtained in a reproducible manner.

The experimental setup shown in Fig. 1 consists of
a combustion chamber, a video camera connected to
a recording system, and a computer. One side of the
combustion chamber is made of glass. The rest of the
chamber is lined with a 50 mm layer of porous material
for making the incoming air flow laminar. In the middle
of the chamber there is a sample holder, designed for a
maximum paper size of600 3 400 mm. It can be rotated
with respect to the adjustable air flow so that convective
transfer of heat ahead of the front can be minimized. The
sample holder is an open metallic frame whose sides are
both lined with needles that keep the paper sheet planar
during combustion. To compensate for the extra heat loss
at the boundaries, the sides of the sample can be heated
with filaments that follow the combustion front.

As the direction of air flow in the chamber was from
bottom to top, combustion fronts were ignited from the
top end of the paper by a heating wire. The emerging
flame fronts were recorded with a charge coupled device
(CCD) camera whose effective resolution was752 3 582
pixels. For the typical 300-mm-wide and 500-mm-long
paper samples, the pixel size was 0.28 mm which was
well below the average length of fibers, i.e.,ø1.3 mm.
The video signal from the CCD camera was recorded
on a Super VHS recorder. The color-coded signal was
converted to digital form on a video card, and analyzed on
a PC using a gray scale of 256 shades. The position of the
interface was determined from the maximum brightness of
the front at each point.

An important issue not to be overlooked in using paper
sheets in front propagation experiments is the structure of
paper. First, it was recently shown [14] that, especially
for low basis weight paper, there can be nontrivial power-

FIG. 1. A schematic diagram of the experimental setup.

law correlations in the areal mass density that extend up
to about 15 times the fiber length, i.e., into the cm range.
Second, slow combustion fronts do not easily propagate
in a material made of pure cellulose fibers only. We
therefore decided to use two different, easily obtainable
grades of paper: ordinary copier paper with the rather
high basis weight of80 g m22, and cigarette paper with
a basis weight of28 g m22. The latter burns well by slow
combustion, but potassium nitrate (KNO3) was added
to the copier paper to ensure uniform propagation. The
concentration of KNO3 was kept at the very low value of
0.8s2d g m22.

In order to confirm the uncorrelated nature of the
density variations in the paper samples, distributions
of the calcium and potassium concentrations were both
measured on the surface layer of the samples by the
laser-ablation method [15]. Even though there may be
concentration profiles across the thickness of the samples,
there is no reason to expect qualitative changes in
the density correlations in different layers [16]. The
autocorrelation function of the concentration variations
around the mean value was calculated from the laser
ablation results and was found to collapse to the noise
level within a distance of a couple of pixels.

In Fig. 2(a) we show a time series of typical digitized
fronts obtained for the copier paper, while the time
evolution of the surface widthwstd is shown in Fig. 2(b).
There is an initial transient of about 100 s or less,
after which the width saturates and fluctuates around its
average value of about 2 mm. After this the average
velocity y of the front is constant in time to a very good
approximation. The total duration of each burn was about
900 s, and in the steady-state regimey ­ 0.51s5d mmys.

Conceptually, the easiest quantity for analyzing the
scaling behavior of the fronts is the width which scales
as tb for early times, and asLx in the saturated regime,
where L is the system size. In the present case, the
rather rapid saturation ofwstd prevented us from using
this quantity to estimateb. For wsLd one large system
is usually used, andws,d is calculated for subsystems
of sizes, # L. To test how this procedure works in a
system with aperiodic boundary conditions, we performed
computer simulations for the restricted solid-on-solid
(RSOS) growth model [17] that easily gives the KPZ
exponents ind ­ 1 1 1. Even for systems as large as
O s104d, however, rather poor scaling ofws,d was found.

A much better way of estimating the scaling exponents
is to use the two-point correlation function

Csr, td ­ k fdhsr0, t0d 2 dhsr0 1 r , t0 1 tdg2 l , (2)

with dh ; h 2 h̄ and the brackets denote an average
over configurations and the bar an average over each
system (sheet). Through this quantity, one can define
the two functionsGsrd ­ Csr, 0d , r2x , and Csstd ­
Cs0, td , t2b, where in the saturated regimeGsrd can
be averaged over all times (configurations), andCsstd
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FIG. 2. (a) A series of successive digitized flame fronts taken
every 5 s following the ignition of copier paper. (b) Evolution
of the time-dependent surface widthwstd.

over all spatial points. For the RSOS model, using these
quantities instead ofws,d gives very good scaling and
estimates ofx andb. Most importantly, using these two
functions we can obtainindependentestimates of the two
scaling exponents.

A series of typical spatially dependent correlation func-
tionsGsrd for the copier paper are shown in Fig. 3. That
these results are not affected by boundary effects was
checked by systematically removing boundary pixels in the
calculations. For short distances up to about 20 pixels or
7.5 mm, the scaling is rather poor, with an effective expo-
nent of about 0.8. However, beyond these distancesGsrd
scales well up to about 20 cm in the best cases, with an
average exponentx ­ 0.48s1d from the curves in Fig. 3.
The behavior of the quantityws,d (not shown here) is con-
sistent withGsrd. Up to , ø 1.8 cm, the scaling is not
very good (x ø 0.7), but for larger values of,, there is
about 1 order of magnitude of scaling wherex is consis-
tent with1y2. The finite width of the sheets prevented us
from obtaining a more extended scaling regime.

In Fig. 4 we show the data forCsstd, with configura-
tions taken every five seconds in the saturated regime. At

FIG. 3. The spatial correlation functionGsrd for three differ-
ent burns of the copier paper (data have been shifted for clarity
and the units are in mm). Filled circles denote the case where
the average global tilt of the interface has been subtracted out.
The solid lines denote2x ­ 1. Inset shows corresponding data
for the cigarette paper.

early times up to about 50–100 s, the scaling is not very
good, and one obtains an effective exponent of 0.40–0.46.
However, from 100 s upwards scaling is well obeyed, and
averaging over the curves in Fig. 4 givesb ­ 0.32s1d.

The second set of experiments on the cigarette paper
gave results consistent with those for the copier paper de-
spite the fact that the cigarette paper is strongly anisotropic
and may contain nontrivial correlations. An example of
the data is shown in Fig. 3 in the inset. In this case, the
velocity was higher withy ­ 1.64s5d mmys and the width
saturated in few tens of seconds following ignition. Al-
though the overall scaling of bothGsrd and Csstd is not
as good as for copier paper, the scaling exponents tend
towards the KPZ values asymptotically. This is a good
check on the consistency of our experimental results.

The results obtained independently for the two expo-
nents and the two grades of paper strongly support the

FIG. 4. Time-dependent correlation functionsCsstd for the
data used in Fig. 3. The solid lines denote2b ­ 2y3.
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conclusion that for slow combustion in uniformly random
media, the kinetic roughening of the fronts is described
by the KPZ equation with thermal noise. In particular,
the scaling exponents obtained here definitely rule out the
much larger DPD values ofx ­ b ­ 0.633. Unfortu-
nately, the range in which we are able to observe scaling
is limited [18], and physical restrictions in the current ex-
perimental setup prevent us from significantly increasing
the width of the paper sheets and thus extending the scal-
ing regime.

As regards the earlier experiment by Zhanget al. [10],
we have so far no definite explanation for whyx ­
0.71s5d was obtained fromws,d for all values of, mea-
sured (b was not estimated). It is possible that physically
different regimes exist in combustion experiments [19].
This issue warrants further investigation.
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