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We study the settling dynamics of non-Brownian prolate spheroids under steady-state sedimentation.
We consider the case of moderate particle Reynolds numbers properly taking into account the
hydrodynamic effects. For small volume fractions, we find an orientational transition of the spheroids,
characterized by enhanced density fluctuations. Around the transition, the average settling velocity has
a maximum which may even exceed the terminal velocity of a single spheroid, in accordance with

experiments.
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The sedimentation of noncolloidal particles is a com-
mon phenomenon in nature on which many important
technological processes are based, e.g., in the paper and
pulp industry. It is also an interesting example of non-
equilibrium dynamics, which is still poorly understood in
the case of a finite volume fraction ® of the particles.
Under appropriate boundary conditions, such as in fluid-
ized beds, a sedimenting system driven by gravity can
reach a steady-state distribution, with a fixed average
settling velocity V(®) [1]. The behavior of V(d) for
spherical particles has been extensively studied in the
limit where Brownian motion can be neglected. Because
of backflow, V(®) in a suspension of monodisperse
spheres is smaller than the single sphere settling veloc-
ity Vy. As ® increases, V(®) decreases monotonically
following the phenomenological Richardson-Zaki (RZ)
law V(®)/V, = (1 — ®)". The exponent n is around 4.5
in the low particle Reynolds number (Re) regime, de-
creasing with increasing Re to about 2.5 in a turbulent
system [3]. The particle Re is defined by the ratio of
inertia forces to viscous forces in the length scale of the
particle dimensions [4]. Experiments, however, show a
significantly faster decrease of V(®) in the dilute limit,
and thus somewhat more complicated relations have been
proposed for this case [5].

In striking contrast to the case of spheres, experiments
with rodlike non-Brownian particles with Re << 1 show
that the mean settling velocity does not obey the RZ law
even qualitatively. Kumar and Ramarao [6] studied the
suspension of glass fibers (of length =250 and 50 pm,
and diameter =10 um) and found that the fibers had a
tendency to flocculate, which significantly slowed down
the average velocity. Even when a dispersion agent was
added to the fluid to prevent cluster formation, V(P)
decreased drastically when @ increased beyond about
0.02. These results were corroborated by Turney et al
[7] who found by using magnetic resonance imaging that
the functional form of V(®P) in the suspension of rayon
fibers (320 wm X 20 wm) was significantly different
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from the RZ picture in the nondilute limit. In particular,
they found that V(®) decreased much more rapidly than
the RZ law with n = 4.5, up to about ® = 0.13. The
orientation of the fibers was, however, not measured in
either of these experiments.

In the most recent set of experiments, Herzhaft et al
[8,9] studied the suspension of more macroscopic glass
rods of dimensions 0.5-3 mm X 100 um. They tracked
the motion of single marked rods and measured the rod
orientation in addition to the settling velocity. They found
that in larger volume fractions V(®) was indeed hindered
more drastically than for spheres. However, perhaps the
most interesting result was that for small volume fractions
V(D) exceeded that of an isolated rod. This result indi-
cates that V(®) for fiberlike particles has nonmonotonic
behavior for small ®. They suggested that this phenome-
non could be due to large inhomogeneities in the suspen-
sion, in the sense that there would be “fiber packets”
which would settle faster than individual fibers [9].
They also observed that during sedimentation the major-
ity of fibers were aligned parallel to gravity with no
apparent dependence on either the fiber length or the
volume fraction.

On the theoretical side, there exists some analytical
results for single spheroidal sedimenting object in the
limit Re = 0. In the case of an infinite system, the verti-
cal component of the terminal settling velocity is [10]

3V,
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where e = /1 — a2 is the eccentricity, a, is defined as
half of the length of the axis of symmetry divided by the
largest radius perpendicular to the axis, and 0 = 0 <
/2 is the angle between the direction of gravity and
the axis of symmetry of the spheroid. Here V|, denotes the
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terminal settling velocity of a sphere with unit radius.
The maximum velocity is obtained when the particle is
oriented parallel to the gravity, denoted here by V,/ =
Vg (0 = 0), and the minimum when the spheroid is fall-
ing perpendicular to it. There is no torque on the spheroid,
and thus any orientation is stable [10].

There exist some numerical simulations of sedimenta-
tion of many-particle fiber suspensions in the limit
Re = 0. Mackaplow and Shaqfeh [11] studied particles
with a large aspect ratio. They used the slender-body
theory (see Ref. [12]) to calculate the average settling
velocity for randomly formed static configurations of
macroscopic elongated bodies with aspect ratio of 100.
In these studies, they found monotonic decrease of V(P)
in the dilute regime. However, in their case the spatial
distribution and alignment of the fibers was random and
not induced by the true sedimentation dynamics. Ref-
erence [11] and most recently Ref. [13] contain dynamical
simulations for Re = 0 based on integrating the particle
velocities obtained from the slender-body theory with
some modifications. These approaches give a maximum
for V(®)/V, > 1 in accordance with the experiments [9],
and support the cluster formation mechanism and paral-
lel alignment of fibers in enhancing settling.

However, for Re > 0, the situation is very different.
Both experiments [14] and theoretical arguments [15]
show in the case of a single off-diagonally falling spher-
oid, there is a torque acting on it which changes its
orientation perpendicular to gravity. For spheroids the
magnitude of the torque is proportional to Re, but van-
ishes for spheres (a, — 1) and needles (a, — o0). This
means that it has a maximum around a, = 1.7 [15].
However, the effect of Re > 0 for many-particle fiber
suspension remains unexplored.

In this work our aim is to study sedimentation of
fiberlike particles with realistic dynamics in the case of
a finite Re = O(1). We will focus on the dependence of
the average settling velocity V(®) on the volume fraction
® and the particle orientation. Our results show that
V(®)/V, displays the experimentally observed maxi-
mum at small volume fractions. When properly scaled,
this maximum does not depend on the value of a, con-
sidered here. Furthermore, we find that the maximum is
accompanied by an orientational transition not reported
in the experiments, with enhanced collective density
fluctuations.

We use an immersed boundary type of simulation
method described in Ref. [16]. The fluid is treated as a
continuum by using a finite-difference method on a regu-
lar grid to solve the Navier-Stokes equation. To properly
include the hydrodynamic interactions, the boundary
conditions between the fluid phase and the solid particles
are taken into account by adding a fictitious force density
to the equation of motion of the fluid so that in the interior
of the particles the fluid moves like a rigid object. This
force is derived by tracking explicitly the motion of the
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solid particles, and whenever the motion of the fluid and
the particle templates differ in certain predefined points,
restoring force is added. The method is suitable for mod-
eling non-Brownian suspensions and is valid for up to
Re = 10.

The fiberlike particles in our system are spheroids
characterized by their aspect ratio a, which is defined
as half of the length of the axis of symmetry divided by
the largest radius perpendicular to the axis. We have
studied the cases a, = 1 (reference spheres), 3, 5, and 7,
keeping the smaller radius fixed. The density of the
particles is 2.5 times the fluid density. In our system,
the spheroids are noninteracting except for a soft collision
potential [17]. This is to mimic the lubrication forces at
distances closer than the grid size in the model. The
technical details of the implementation of the method
for spheroidal particles can be found in Ref. [18]. The
system sizes used in this work are 32 X 32 X 64 in units
of the smaller radius of the particles, where the larger
dimension is in the direction of gravity. Periodic bound-
ary conditions in all directions were used to obtain the
steady state which was checked from V(®) and its fluc-
tuations. In our simulations, we have fixed the fluid vis-
cosity so that the particle Reynolds number Re = 0.5a,.

We have tested Eq. (1) by letting individual fibers settle
with a fixed orientation 8. We find that the functional form
of Eq. (1) is accurately satisfied but our velocities are
about 20%-30% smaller, depending on a,. This differ-
ence is due to finite system size and finite Re effects [19].
Thus, for normalization we have used our numerically
obtained values of V{'(6).

In Fig. 1 we show the mean settling velocities for a, =
1,3, 5, and 7, where we have normalized by Var. At higher
volume fractions, all data follow the RZ law rather
closely, while at smaller @ the velocity for spheres de-
creases faster than predicted by the RZ law. However, the
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FIG. 1. The normalized average settling velocity as a func-
tion of @ for aspect ratios a, = 1 (O), 3 (A), 5 (W), and 7 (*¥).
The dotted curve shows the RZ law (1 — ®)*>. The errors are
about the size of the symbols. The first points in the spheroid
data correspond to the case of single spheroids. In the inset the
same data are scaled by (v{"/V (6,)).
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spheroidal particles show nonmonotonic dependence on
@, with a clear maximum for each case where a, > 1.
Moreover, for the case a, = 3, the maximum at ®,, =
0.01 is larger than V;}. The maximum seems to decrease
with increasing a,, and its position moves to slightly
higher values of ®. These results are in good agreement
with the experiments of Refs. [8,9] on fibers with aspect
ratios 5-30. There it was observed that the velocity max-
ima exceeded V', decreased somewhat with increasing
fiber length, and there was also a slight shift to larger
values of .

The strikingly different behavior of V(®) between
spheroids and fibers suggests that their orientation plays
a role at low volume fractions. In the experiments of
Refs. [8,9], it was observed that the majority of the fibers
were oriented parallel to gravity for ® = 0.001 — 0.155.
For the smallest volume fractions, however, there was
some tendency towards perpendicular alignment. We
have calculated the orientational distribution function
P(cosf), which quantifies the proportion of spheroids
that make an angle 0 =< 0 = 7/2 with respect to the
direction of gravity. In Fig. 2 we show this function for
various volume fractions for the case a, = 5. In the dilute
limit, it can be seen that spheroids prefer the perpendicu-
lar alignment around cosf = 0, in agreement with the
theoretical and experimental results for a single prolate
spheroid with Re > 0. However, when the volume fraction
increases, the spheroids begin to orient themselves paral-
lel to gravity [20].

It can be seen from the data that the maximum in
V4 (®) roughly corresponds to the value of ® where the
distribution function P(cos®) flattens out. This indicates a
change in the average orientation of the spheroids at ®,,,.
To examine the influence of the change in the orientation
of single spheroids on V(®), we have normalized the
instantaneous velocity of each spheroid v{” by the termi-
nal velocity that the same spheroid with the same orien-

P(cos#)

cosf
0000008
A vv:‘:*t."‘*:. v FAVAVA A 0“‘.

FIG. 2. The distribution function P(cos) for spheroids with
a, = 5. In the main figure we show data for volume fractions
0.0029 (00), 0.005 (*), 0.0099 (<), 0.019 (A), and 0.034 (O),
and in the inset for 0.10 (H) and 0.20 (O).
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tation 6; would have, denoted by V{'(6;). This should
cancel out pure single-particle orientational effects.
With this normalization the nonmonotonic behavior of
the settling velocity still remains and the maximum is
about 40% higher than for spheres. Also, the data for
different a, scale so that the locations and heights of the
maxima at ®,, are almost identical (see the inset of Fig. 1).

The change in the orientational distribution can
be quantified through the ‘“order parameter” ¢ =
(2 cosf — 1), which would have values —1, 0, and +1 if
all the spheroids in the system were perpendicular to
gravity, randomly oriented, or parallel to gravity, respec-
tively. In Fig. 3 we show how ¢ depends on ®. In the
dilute regime ¢ increases strongly, while for approxi-
mately ® > 0.01-0.02, s changes more slowly. The val-
ues of ® where ¢y = 0 correspond roughly to where the
settling velocity has a maximum. In the inset we also plot
the “‘susceptibility” y = [(¥?) — (¢)*] which shows a
broad maximum, which only weakly depends on the
system sizes studied up to 64 X 64 X 128. This indicates
the existence of a nonequilibrium orientational transition
not reported in the experiments [8,9]. The data of Ref. [9]
indicate that there is a change in the average orientation
as predicted here: there are fewer fibers along the gravity
for small ® and small a,. It is worth noting that the torque
forcing a single spheroid to the perpendicular align-
ment is proportional to the Reynolds number [15]. We
have done a few simulations with Re reduced by a factor
of 5 and seen the transition move to smaller volume
fractions. This may explain why the transition was not
clearly seen in the experiments where Re < 1 [9].

An interesting question at the transition concerns the
role of density fluctuations and cluster formation. We have
examined this by computing the pair correlation function
glx) = ﬁ(zﬁj 8(x — |X; + X;])), where %, is the position
of the ith particle and the summation is carried out over
all the particle pairs within the system volume (). When
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FIG. 3. The order parameter s = (2cosf — 1) as a function
of the volume fraction ® with aspect ratios 3 (A), 5 (W), and 7
(*). Lower inset shows the susceptibility y from the same data.
Upper inset shows the excess particle number N, (see text for
details).
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the average particle number density »n is subtracted and
an integration is performed over the area where g(x) — n
is positive, we get a measure on the average number of
excess additional particles, N, around the reference
particle. This integral also measures subsystem density
fluctuations through the sum rule [21]. For spheres we find
that N, is almost zero for @ < 0.1 and slowly increases
with @ as included by the dotted line in the inset of Fig. 3.
In contrast, for spheroids the density fluctuations have a
clear maximum which coincides with the maximum of
V(®) (see Fig. 3). This supports the observation [9] that
around ®,, there are enhanced density inhomogeneities
that appear as “clusters” of fibers exchanging particles
with the surrounding fluid.

In conclusion, we have shown that the steady-state
settling velocity of spheroidal objects has a maximum
at small volume fractions. This maximum, which may
even exceed the maximal velocity of a single particle, has
been experimentally seen and attributed to cluster for-
mation. However, our results reveal that it is accompanied
by a change in the average orientation, from perpendicu-
lar to approximately parallel to gravity with increasing
®. During the change, the average orientational order
parameter shows a rapid change, and its fluctuations are
strongly enhanced. Moreover, there are also enhanced
density fluctuations for spheroids. It would be of great
interest to experimentally study this nonequilibrium
transition for moderate Reynolds numbers.
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