' Aalto University Aaltodoc

Author(s):  Ollila, Santtu T. T. & Smith, Christopher J. & Ala-Nissila, Tapio &
Denniston, Colin

Title: The Hydrodynamic Radius of Particles in the Hybrid Lattice
Boltzmann-Molecular Dynamics Method

Year: 2013

Version: Final published version

Please cite the original version:

Ollila, Santtu T. T. & Smith, Christopher J. & Ala-Nissild, Tapio & Denniston, Colin. 2013.
The Hydrodynamic Radius of Particles in the Hybrid Lattice Boltzmann-Molecular
Dynamics Method. Multiscale Modeling & Simulation. Volume 11, Issue 1. P. 213-243.
ISSN 1540-3459 (printed). DOI: 10.1137/110858756.

Rights: © 2013 Society for Industrial and Applied Mathematics (SIAM). http://epubs.siam.org/

All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that material may
be duplicated by you for your research use or educational purposes in electronic or print form. You must
obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or
otherwise to anyone who is not an authorised user.


http://www.aalto.fi/en/
http://aaltodoc.aalto.fi
http://www.tcpdf.org

Downloaded 04/28/15 to 130.233.216.27. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

MULTISCALE MODEL. SIMUL. (© 2013 Society for Industrial and Applied Mathematics
Vol. 11, No. 1, pp. 213-243

THE HYDRODYNAMIC RADIUS OF PARTICLES IN THE HYBRID
LATTICE BOLTZMANN-MOLECULAR DYNAMICS METHOD*

SANTTU T. T. OLLILAT} CHRISTOPHER J. SMITH!, TAPIO ALA-NISSILA*$ AND
COLIN DENNISTONT

Abstract. We address the problem of the consistency of different measures of the hydrodynamic
radius of solid point and composite solute particles incorporated into the hybrid lattice Boltzmann—
molecular dynamics (LBMD) multiscale method. The coupling between the fluid and the particle
phase is naturally implemented through a Stokesian type of frictional force proportional to the local
velocity difference between the two. Using deterministic flow tests such as measuring the Stokes
drag, hydrodynamic torques, and forces we first demonstrate that in this case the hydrodynamic
size of the particles is ill-defined in the existing LBMD schemes. We then show how it is possible to
effectively achieve the no-slip limit in a discrete simulation with a finite coefficient of the frictional
force by demanding consistency of all these measures, but this requires a somewhat modified LB
algorithm for numerical stability. Having fulfilled the criteria, we further show that in our consistent
coupling scheme particles also obey the macroscopically observed fluctuation-dissipation theorem
for the diffusion coefficient of a single particle without any adjustable parameters. In addition, we
explicitly show that diffusion alone is not a good criterion for calibration of the frictional coupling.
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1. Introduction. Hydrodynamic interactions between solute particles, from the
microscopic to the macroscopic scale, are important from both the scientific and in-
dustrial standpoints [1]. Traditionally, colloidal suspensions appear in a wide range of
products, from the food and drug industry to paint manufacturing and aerosols. Most
recently, nanofluids, i.e., fluids with nanometer size solute particles, have been under
intense study due to their extraordinary properties [2]. Many industrial processes rely
on the firm understanding of the rheological properties of suspensions. Measuring in-
teractions of individual particles within suspensions of large numbers of particles is
currently unfeasible in an experimental framework except for a few specialized situ-
ations. This makes the use of theory and simulations a key tool for understanding
processes occurring in experiments. However, dealing with the required solution to
the moving fluid-solid boundary problem in theory and simulation is still an ongoing
problem for which there is no well-established “standard” algorithmic solution. For
flexible particles, or polymers in solution, there are also disparate time scales for the
evolution of the intraparticle dynamics and the hydrodynamics that affect long-time
behavior. This suggests the need for a multiscale technique that deals with these
degrees of freedom with different, but coupled methods.
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Most theoretical work on colloidal hydrodynamics comprises analytical steady
state solutions in the “Stokes flow” regime (linearized hydrodynamics). The best
known example is the hydrodynamic drag force on a single solid sphere moving at
velocity v relative to a quiescent background fluid derived by Stokes in 1851 [3], Fs =
6mnav, where 7 is the fluid viscosity and a is the radius. The hydrodynamic forces
acting between two spheres at low Reynolds number have also been calculated by a
number of authors [4, 5, 6, 7]. Oseen worked out the interaction between irrotational
particles in a fluid at a distance r from one another [8], a result that was improved upon
by Rotne and Prager for close particle interactions [9]. These Oseen-style tensors are
valid at intermediate distances: when the particles are far apart, their validity breaks
down as they assume instantaneous propagation of hydrodynamic interactions. There
are cases where the finite propagation speed of hydrodynamic interactions has an
effect, and it would clearly be useful to solve the full hydrodynamics rather than the
linearized Stokesian approximation to deal with these cases.

The lattice Boltzmann (LB) method has been used successfully in solving the
general nonlinear problem involving a compressible fluid [10, 11, 12, 13, 14]. Lin-
ear interpolation has been used to incorporate a moving boundary into an LB sim-
ulation [15, 16] together with a drag force to make the fluid velocity at the solid
“boundary” and the particle velocity track each other. This yields a multiscale sim-
ulation where the dynamics of the flexible surface are updated using a molecular
dynamics (MD) simulation and the hydrodynamics evolve using LB, potentially with
a much longer time step. Peskin and coworkers have also done extensive work on
incorporating boundaries in incompressible fluids by effective interpolation onto the
discretized mesh of the fluid and, in particular, on how to eliminate the resulting mesh
effects [17, 18, 19, 20]. The key to their immersed boundary method is an efficient and
well-chosen discrete representation of the Dirac delta function with compact support
on the fluid mesh. Cates and collaborators have incorporated this scheme into an LB
simulation for point particles [21].

For these hybrid lattice Boltzmann-molecular dynamics (LBMD) methods to
work properly, they should give consistent results for hydrodynamic measurements
for solvable cases of particles in flow. To test the physical consistency and accuracy
of any of the methods for simulating impermeable solute particles one needs to con-
sider the fundamental concept of a hydrodynamic radius ap. It can be determined
through measuring quantities such as the drag force, hydrodynamic interactions be-
tween two or more particles, and the hydrodynamic torque on a particle. In fact, any
measurement sensitive to the particle size could be used as a means of determining
its hydrodynamic radius. However, within measurement error, all these definitions
should yield the same result in the sense that the difference |aj, — a),| < Az between
any two values of the radius aj, and aj, (as obtained using different methods) should be
less than the fluid mesh discretization Az. An implicit assumption in most works is
that one measure of hydrodynamic radius is equivalent to any other. However, there is
currently no theoretical basis for this assumption; in fact in this paper we demonstrate
that the consistency between deterministic measures of aj, is far from guaranteed in
methods based on a frictional velocity coupling. To remedy this problem we pro-
vide criteria for calibration of the frictional coupling, which guarantees consistency
between different definitions of aj;. We also construct a finite-difference scheme that
enables the use of large coupling parameters in a wider range of circumstances.

The definition of a, is further complicated in the case when thermal fluctuations
are coupled to the LB method [22, 23]. This is because the Brownian tracer diffusion
coefficient of a single colloidal particle D is inversely proportional to ap, and thus

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/28/15 to 130.233.216.27. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

THE HYDRODYNAMIC RADIUS OF PARTICLES IN LBMD 215

D constitutes one possible measure of aj. Ahlrichs and Diinweg [24, 25] found that
thermally induced particle motion did not obey the fluctuation-dissipation theorem
consistent with the temperature of the fluid and the drag force experienced by a
single particle. They corrected this by adding a Langevin thermostat directly to the
particle phase, which goes against Einstein’s original physical idea of the origin of
Brownian motion being in the solvent surrounding the suspended particles [26]. To
maintain momentum conservation, they then added noise locally to the fluid but with
a sign opposite to that of the noise on the particle [24, 25]. Concerning the case with
thermal fluctuations, we argue here that in the no-slip limit the imposition of diverging
external Langevin noise causes unphysical thermal fluctuations and correlations in the
fluid that has an impact when particles are closely packed.

We show that by fixing the parameters of the model using the aforementioned de-
terministic tests, quantitative agreement with the macroscopic fluctuation-dissipation
relation, including finite-size corrections, for the diffusion of a single particle follows
if the thermal fluctuations are implemented as presented in [23]. This means that no
Langevin noise needs to be added in the solutes, which is an important conceptual
development for the LB methodology. Moreover, this result extends the applicability
of particles in the LB method to dense, strongly correlated systems [23].

Section 2 of this paper explains the fluid model that we use, followed by section 3,
which describes how solid inclusions are coupled to the fluid mesh. The theory per-
taining to different measures of hydrodynamic radius is presented in section 4, which
provides the necessary background for the results of section 5. We conclude the paper
in section 6 and discuss the implications of our work.

2. Fluid model. The mass and momentum conservation in a fluid are expressed
at the Navier-Stokes level as [5, 27]

(2.1) Op + Oulpua) =0
and
(2.2) D1 (pua) + D3(puiatis) = —0aPag + Fi

2
+0s <77 (60‘u3 + Jpta — gavuv‘sa,@) + Cavuv5a6> )

where p and u, are the fluid density and components of velocity, n and ( are the
shear and bulk viscosities, and P,g is the fluid pressure. In this work we will use a
diagonal pressure tensor with linear dependence on density, i.e., Pag = pv2d,s, where
v is the speed of sound. This can be viewed as an ideal gas equation of state or the
first term in a Taylor expansion of the pressure about fixed density in which case v?2
is the isentropic compressibility [28]. External force densities, such as gravity, appear
through F,. Our LB fluid algorithm reproduces (2.1) and (2.2) in the form typical
to most LB algorithms [29]. The shear viscosity in the model is n = prv?/3, where
ve = Az /At is a lattice velocity, and ¢ = 1(5/3 —3v2/v?2) [11]. In this paper, 7 will be
chosen in all cases so that n = 0.01 gem~!s™!, the viscosity of water, and p = 1 gcm =3
(i.e., we set 7/At = 3nAt/(pAx?)). The speed of sound v; is chosen sufficiently large
so that the fluid is approximately incompressible (largest variation in p < 0.1% for

vs = 1lms™!), and in most cases we choose v = v2/3 (vs < v, is required for stability

2=
in LB algorithms). Within the simulations themselves, computation is done in units
of the lattice discretization Az and At. In addition to body forces, F, = F,(x,t)
includes local forces arising from the particle phase. Its implementation will be given

in detail in the next section.
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The LB method is an efficient way to solve the Navier—Stokes equations numer-
ically [30, 31]. The method is based on solving an approximation of the Boltzmann
transport equation (BE) on a structured lattice with sites x = (4, j, k) Az connected to
their neighboring sites by a set of vectors {e; ?;01 along which material is transported
according to a discretized version of the BE. We summarize a finite-difference LB
scheme which results in (2.1) and (2.2) to fourth order in At and Az, the time step,
and spatial mesh resolution. The reader interested only in the results can safely skip
over the remainder of this section. We define a distribution function f;(x,t), where i
labels the lattice directions from site x. For three-dimensional systems, a 15-velocity
model [30] on a cubic lattice with lattice vectors e; = (0,0,0), (£1,0,0), (0,+1,0),
(0,0,+£1), (£1,+£1,+1)v,. is chosen, where v. = Ax/At. Physical variables are defined
as moments of the distribution functions by

(2'3) p(X, t) = Zfi(xﬂt)v (pua)(x,t) = Zfi(xﬂt)eia'

The distribution functions evolve in time according to [32]

(2.4) Difi = (0r + €ia0a) fi = —% (fi = f)+ Wi,

where we have also defined the material derivative D; and a driving term W,;. The
exact solution of this PDE at time ¢ + At can be formally written as (see, e.g., [33,

p- 3])
fi(x +e;At,t + At) = e AT fi(x, 1)

t+AL
1
(2.5) +e*At/7/ e/ g% (x + e;s,t + 5) ds,
t 7-

where ¢g;4 = f79 + 7W,. Expanding ¢°%(x + e;s,t + s) as a Taylor series about s = 0
and integrating each term gives the following finite-difference scheme:

fi(x+ €At t + At) = g;(x,t)
+ eiAt/T(fi(Xa t) - gicq(xa t))

T (1 Ay ea
(2.6) AL (1 - (1 e ))Dlgz (x,1)
2
2( T (1 _-atr) - T LY 2 ea
+ At (At2 (1 e ) =+ 2) D2g%%(x, )
+O(Ath).

We use this algorithm rather than the more standard Euler LB algorithm [34, 35, 30],
as the solute forces (the forces the particles exert on the fluid) will effectively intro-
duce stiff terms into the equation. Our algorithm eliminates the most troublesome
FEuler instabilities found in the standard LB scheme that result from adding solute
forces, without adding significant complications. The coefficients are constants and
are precomputed at the beginning of the code. The derivative D;g°? is evaluated as
a backward finite difference,

eq (e a _
(27) DY O LR A
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and D?g°9 as

Digfq(x =+ eiAt, t) — Digicq(X, t)
At

The O(At) discretization error in D;g%% is (At/2)D?g5%, and this is taken into account
by adding an appropriate term to the coefficient of the D?¢°? term. At the boundaries,
computation is eased by noting that the D? term is zero at the boundary (assuming
bounce-back is used). Also, at the boundary, (2.7) is evaluated as

(2.8) Dig(x,t) ~

(2.9) D;gi%(x,t) = (¢°%(x — e;At, t) — g7 (x — e; At t — At))/At,

—1

where x is the boundary node and x — e; At is in the bulk. The subscript —i refers to
the lattice direction opposite to 1.

By choosing appropriate moments for the equilibrium distribution f;* and the
driving term W; as

foq = foqeia = pla;

(2.10) D fi%eiaess = Pap + puaug;

ZWl = 0; ZWieia = Lq;
Z Wieiaejp = ua g + Foug,

(2.1) and (2.2) can be obtained from (2.4) via a Chapman-Enskog expansion similar to
derivations in [29]. We have included a simple derivation of the moments of the forcing
terms in the appendix. Last, we want to emphasize that the results of present work
are by no means specific to this finite-difference algorithm, but it allows a stronger
coupling between the fluid and the MD particle. There can also be stability issues in
the MD algorithm to move the particles, but for systems with only a few particles,
such as those described in this paper, it is easy to implement a standard A-stable
ODE solver [36]. A more general MD algorithm could also be constructed for a
many-particle system along lines very similar to that of the LB algorithm described
above which reverts to velocity-Verlet for conservative forces.

3. Node distribution algorithm. Any surface included will have to be mapped
onto the computational fluid mesh. A surface is first discretized to consist of a set of
nodes, which is illustrated in Figure 3.1 in two dimensions for ease of visualization.
We will refer to the points of the surface discretization as “surface nodes” and to
the points of the fluid mesh as “mesh sites” or “lattice sites.” The surface nodes
are distributed to the corners of the fluid mesh plaquette in which they reside. This
algorithm is similar to that used by Ahlrichs and Diinweg [24, 25] and that which we
used successfully for objects in a liquid crystal [37]. To distribute the surface nodes,
the ratio {i(f) of the opposing area to the total area of the cell is calculated and given
to the corresponding mesh site (for instance, for surface node i and mesh site j = P1
in Figure 3.1, fi(f) is A1/Ax?). This method is easily generalized to three dimensions,
where the proportion of volumes will be used rather than areas. We refer to this
method as the trilinear (7") node distribution algorithm or the trilinear stencil. By
calculating the values of the weights in this manner, it is easily seen that the values
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1 1
P4 d 1pl
D)

?H\} / J A2 A3 |
/

N

dx

P2

F1a. 3.1. An ezample of a single node placed within a two-dimensional fluid mesh trilinearly.
The solid circle is the location of the node, and the hollow circles are the fluid mesh sites. Fach
mesh site is affected by the surface node by the proportion of the opposite enclosed area relative
to the cQw‘ea of the entire cell. (For example, P1 is affected from the surface node i by an amount
Al/Az*?.)

of the node weights shift smoothly from zero, when the node is cross corner from
the current fluid mesh site, to one, when the node passes through the mesh site in
question. This is repeated for all surface nodes. As the surface of the solid travels
through the lattice, its nodes affect the fluid mesh in a continuous manner. There are
no discontinuities or jumps which need to be accounted for. Also, it is easy to simulate
any arbitrary shape—there is nothing special about spheres. No further information
is required about the surface as it moves through the system except for its linear and
angular velocities. Knowing the surface normal where the surface intersects lattice
links is not required.

Another widely used method for spreading nodes over mesh sites is the immersed
boundary method [17, 18], which has been suggested for point solutes in [21]. Rather
than using a distribution proportional to the node weights across the adjacent fluid
mesh sites on the lattice, the immersed boundary method employs a smoothing kernel
to spread the influence of the nodes represented by a force density onto a compact
support and may be defined off-lattice. We use r for node locations as opposed to x
to denote positions of lattice sites. Such a force density s(R(\)) yields the total force
F(r) on the object in the form

(3.1) F(r) = / SR(V)S(r — R(A)) dA,

where the force is localized to some manifold described parametrically as R = R(\)
and dA is the measure on the manifold. The kernel function § is a representation of
the Dirac delta function regularized on the grid described as

62 50 = 550 (a7) o (25) o (27):

The exact form of the kernel § is described by

$1(Q), ¢ <1,
(3.3) P(Q) =19 ¢2(0), 1<¢<2,
0 otherwise,
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Fia. 3.2. Ezxample of two fullerenes. The left fullerene comprises 20 nodes, and the fullerene
on the right has 240 nodes. Links between nodes are merely drawn in for visual aid. The node
locations determine the surface with respect to the fluid mesh.

where
(3.4) 61(¢) = 53— 2lcl + VIT A~ 4ICP),
(35) 62(¢) = 5(5— 21¢] + =T+ I — ACP),

and ¢ is the distance (in units of Axz) from the surface node i to the lattice site j
in a given direction. From the description, each surface node affects the four nearest
neighbors in the respective lattice mesh directions, amounting to a total of n = 4¢
affected mesh sites in d dimensions. This then implies

(P) Lij Yij Zij

(3.6) i _¢(Ax)¢(Ax) ¢(Am)’

the (5, yij, 2i;) being the displacement vector from the fluid mesh site j to the surface
node i. A derivation and a closed-form approximation to (3.3) can be found in [19].
Using both methods (trilinear (T) and Peskin (P)), we will compare and contrast
to determine which is better under varying circumstances. We will also show what
suffices for removal of lattice corrugation effects. Since the influence of each node is
spread across a greater number of fluid mesh sites, one may assume the immersed
boundary method is more accurate. An obvious disadvantage is that each node is
spread across a greater number of fluid lattice sites, and thus at each time step more
computational resources are spent describing the surface.

To mimic a sphere, we used the molecular shapes of fullerenes. The symmetry
and regularity in their atomic structure make them ideal to be used as rigid shells for
our purposes in trying to represent a sphere. The position of these nodes could easily
be dictated by an MD style algorithm to allow the object’s shape to deform, but we
will not do that here. This differs from the algorithm of [15, 16], where they used
a two-dimensional tethered bead-spring network with individual nodes connected to
their nearest neighbors on the surface via finitely extensible nonlinear elastic springs
and simply wrapped around a sphere. The rigidity of our spheres does not affect the
forces involved with the hydrodynamics of the colloids at these sizes. Having access
to a number of fullerenes of different sizes is convenient depending on the size of the
sphere one wishes to place within the lattice [38]. A fullerene of N,, = 20 and one of
240 atoms are shown in Figure 3.2. In this paper, N, denotes the number of nodes
used to describe the inclusion. If the sphere is to traverse a large number of lattice
cells, using a more resolved fullerene (bigger N, ) enables a denser placement of surface
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nodes. Having large gaps between surface nodes is to be avoided since the movement
of fluid depends on the interaction between the lattice sites and surface nodes. That
is, the discretization of the colloid surface should be finer than that of the fluid mesh.

As the surface moves through the fluid or the fluid itself is moving, an interaction
must occur between the two media. The following is a synopsis of how interactions
between the fluid mesh and the surface nodes are implemented. For the trilinear
stencil, the approach is similar to that used in [39, 40]. The location of the surface
nodes, r;, are calculated in relation to the center of mass of the solid. The velocity
of each node is then calculated as v; = v + w X r;, where v is the velocity of the
center of mass of the solid, and w is the angular velocity of the solid. Using the
method described in Figure 3.1, the ith surface node’s weight &;; is determined for
the jth fluid mesh site which it affects. The set {;;} is referred to as a stencil. A key
property of any stencil for each surface node 7 is

(3.7) > G =1,
j=1

where n = 2¢ in d dimensions for the trilinear method depicted in Figure 3.1, and n =
49 for the Peskin stencil (immersed boundary method). This ensures that if we were
to use these weights to find the area of our sphere, we could do so exactly, independent
of the fluid mesh resolution. This property reduces the lattice corrugations seen in
most other methods [17].

The fluid velocities are known at each fluid mesh site. There are a couple of
methods for computing the frictional force due to the fluid mesh sites on a surface
node. The local forces at each fluid mesh site j affect the surface node i by

(3.8) Fij = (vi — )&

There is an apparent ambiguity in what velocity to use for @;. The simplest choice
is to use 1; = u(x;), the fluid velocity at the jth fluid mesh site (j is the index over
the stencil). We call this the “noninterpolated” velocity. The other option is to use
an “interpolated” fluid velocity at the position of the ith surface node,

(3.9) ol =3 gjulx;),
j=1

where we abide to consistent use of either trilinear or Peskin interpolation of both the
fluid velocity @; at the surface node location and the stencil {;;}. The interpolated
velocity involves slightly more work, as two scans over the stencil are required, one
to determine ﬁl(»l) and one to compute (3.8). Using either of these velocities gives the
same force on the ith surface node as

(3.10) F, =Y Fy=(vi—a)y,

making use of (3.7) for the “interpolated” case. However, this force is distributed
differently onto the fluid mesh in the two cases and as a result leads to a slightly
different fluid flow. As will be shown in section 5, the resulting steady state force
ends up being slightly different as a result. The choice of @1 affects the torque in
particular, as will also be seen in section 5.
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Note that F; in (3.10) is not the Stokes drag force, as @ is not the far-field
velocity. A direct consequence of this fact is that if the particle has radius a, even
though one might guess choosing v = 67wna would give the Stokes drag, this is not the
case because of the discrepancy between the local velocity and the far-field velocity
that go into the Stokes formula. Ahlrichs and Diinweg choose v based on matching to
Stokes drag (as inferred from a measurement of the diffusion coefficient) for a particle
with a hydrodynamic radius decided a priori [24, 25]. We base our choice of v on
comparing several types of measurements of the hydrodynamic radius of a particle
and demanding consistency between them. This leads to an effective no-slip boundary
condition on the surface of our particle. The results of our investigations are described
in section 5.

Performing a sum over the surface nodes,

N'u
(3.11) F; :ZFU"
i=1

gives a three-dimensional mesh F; = F(x;) of local forces on the fluid which goes
into (2.2) via (2.10). N, is the number of surface nodes used to describe the solid.
From here we can calculate the local forces F; and torques T; on each surface node
by summing over the affected fluid mesh sites (i.e., over the stencil),

(312) Fz = ZFU’ Tl =Tr; X Fi,

j=1

or the net force and torque that the fluid exerts on the entire solid using

Ny Ny
(3.13) F=)F, T=> T,
=1 1=1

where the N, surface nodes belong to the same rigid body. Newton’s third law is
obeyed exactly.

To summarize, there are several algorithmic options that we plan to explore in
the subsequent sections: first, there is the choice of stencil, trilinear or Peskin; second,
there is the choice of G; in the force coupling, interpolated or noninterpolated; and
finally, the value of v must be determined. In section 5, we will compare the methods
described in this section and evaluate their performance based on the theoretical
predictions that we review next.

4. Theory. In order to compare the different methods outlined in the previous
section, and in particular in order to determine a physically consistent value for the
key algorithmic parameter v in the force coupling equation (3.8), we must compare
to analytically known results that we summarize in this section. One key measure is
to determine the “hydrodynamic” radius of both a single node (point particle) and
a composite particle (like those in Figure 3.2). As we will see in the next section,
different methods of measuring a hydrodynamic radius do not necessarily lead to
mutually consistent values. We will consider three different means of determining the
hydrodynamic radius of our particles: the drag force, viscous torques, and diffusion.
In addition, we measure directly the hydrodynamic interactions between particles to
ensure they are also quantitatively consistent with our other measures.
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Fi1c. 4.1. Schematic of geometries used to measure drag force and/or torque for a single particle
in a box. There are walls on the top and bottom, and periodic boundaries in all other directions.
In (a) the top and bottom walls are moving at speed v while the particle is held fized. In (b) the
walls are held stationary and the particle is moved at speed v through the center of the box. In (c)
the bottom wall is stationary and the top wall is moved at speed v to generate a shear flow while the
particle is held fized.

4.1. Analytic results for hydrodynamic interactions. Analytical expres-
sions are available only for low Reynolds number flows, and finite-size effects must be
considered by either constructing geometries that reduce them to a negligible level or
by performing finite-size scaling. We outline the Stokes results and finite-size effects
in this section. A single-particle Reynolds number can be defined by Re = 2apU/n
in flows involving a spherical object of radius a and a characteristic fluid velocity U.
Unless otherwise specified we will be using a single-particle Reynolds number (Re)
less than 0.01. This is typically where inertial forces are very small, but viscous forces
are relatively large. This allows us to compare our results to those derived from Stokes
flow solutions of the forces on moving bodies. This constraint is imposed in order to
compare to theory; it is not an intrinsic limitation of the LB scheme we are using.
Once particles are free to move around and interact, a description in terms of a single
Re is not possible. To ensure that we will always be in a regime appropriate for the
anticipated applications of this method (colloidal and nanofluid dynamics), we will
be using the viscosity and density of water for all simulations (i.e., water at S.T.P.).

For arbitrary objects, the drag force experienced by a moving body traveling
through a fluid cannot be calculated analytically. Since we wish to quantify our
results with theory, we will focus on spherical objects in three dimensions where the
Stokes drag is

(4.1) F = 6mnav.

This is not a limitation of the algorithm; arbitrary shapes are just as easily imple-
mented. There are still some subtleties in measuring this drag force accurately in a
simulation. The first is that the velocity v in (4.1) is relative to the far-field fluid
velocity. If we have a simulation with periodic boundary conditions and introduce a
particle moving at a constant velocity, eventually the fluid in the simulation box will
“catch up” to the particle (i.e., everything in the box ends up moving with constant
velocity). This is a consequence of the Galilean invariance of Navier—Stokes equations.

One way to impose a zero far-field velocity is to break Galilean invariance in
our system by introducing walls, as shown in Figure 4.1. As shown, we can either
hold the particle still and move the walls (Figure 4.1(a)), or hold the walls still and
move the particle (Figure 4.1(b)). It is useful to examine both to ensure the reso-
lution of the underlying fluid mesh does not affect the result. The arrangement of
Figure 4.1 reduces finite-size effects (1/L? instead of 1/L) [41] and is widely used by
experimentalists to measure fluid viscosity with the so-called falling-ball viscometer.
Alternatively, we may place a stationary sphere in a shear flow (Figure 4.1(c)), in
which case the velocity v in (4.1) is relative to the velocity the fluid would have at
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the location of the particle if it were not present (i.e., half of the top wall velocity
if the particle is placed halfway between the moving top wall and stationary bottom
wall). In this case, the sphere also experiences a drag torque [42] of

(4.2) T = 4mna® (v, /h)n,

where v,, is the speed of the top wall, & is the separation of the walls, and n is a unit
vector orthogonal to the shear plane. An additional complication comes from finite-
size effects (which are already significantly reduced in the configurations of Figure 4.1).
We will address these in more detail below, as they also arise from hydrodynamically
induced particle-particle interactions, which are present even in a simulation with
only one actual particle as the particle sees its periodic or reflected images through
the boundaries.

In the Oseen theory [8] the force from hydrodynamic interactions on identical
spherical particles is related to the particle velocities via a mobility tensor H,

(4.3) Y =HF,

where V = (vq,...,v,) is a column vector of particle velocities, and F is a correspond-
ing column vector of the hydrodynamic forces on the particles. The hydrodynamic
mobility tensor, also known as the Oseen tensor, has components

1 1 PR

(4.4) Hi = 6mna’ Hij = 8mnR;; (I + R”R”) ’

where a is the radius of the sphere, 7 is the viscosity of the fluid, I denotes the 3 x 3 unit
matrix, and Rij is the unit vector parallel to R;; = r; —r;. We reserve Greek indices
for spatial components and Latin indices for particle labels. The Oseen description
is based on linearized hydrodynamics and assumes instantaneous propagation of the
interactions. As a result, the Oseen drag forces and interactions are valid only in an
intermediate range of distances [27]. In the time it takes for a particle moving at speed
v to move its radius a, the information about its change in location is transmitted a
distance

n
4.5 Lo =—
( ) O v B
and so the interactions should be expected to be modified beyond Lo. However, the
correction to the drag on a single particle [27],

(4.6) F = 6mav <1 + g%) ,

is small as long as all length scales are smaller than Lo (this includes length scales
such as a, R;; and the linear size of our system L). At short range, improvements
have been made to (4.4), the simplest being the Rotne-Prager (RP) tensor [9]:

1

4.7 i =
(47) 6mna

1 PO 2a? A A

)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/28/15 to 130.233.216.27. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

224 OLLILA, SMITH, ALA-NISSILA, AND DENNISTON

g

(@)

Fic. 4.2. Setup for the four-particle system. (a) The simulation box with four particles placed
with their centers at (£, ty) relative to the center of the box. Particles 1 and 3 are moved in the
—y direction at a constant velocity Uy, and particles 2 and 4 are moved with exzactly the opposite
velocity. (b) The nearest periodic images used in (4.4) and (4.7) with the center box being the
simulation box.

where the additional term of order R~ makes a significant difference to the Oseen
tensor only when the two particles are at short distances from each other. The RP
tensor gives reasonable results (assuming small Re) down to separations comparable to
the particle diameter [43]. Work on Stokesian dynamics has continued to develop [44].
For example, the effect of walls has been studied, which has revealed noteworthy
limitations of the Oseen and RP tensors in confinement [45]. Such extensions of
Stokesian dynamics are nevertheless technically challenging to implement.

4.2. Quantitative validity of hydrodynamic mobility tensors. As with
the Stokes measurement described above, all the velocities in the Oseen or RP de-
scription are relative to a far-field velocity that the theory assumes to be zero. To
compare our results for the hydrodynamics with the RP and Oseen results, we must
ascertain first when the tensor description gives quantitatively correct results. For
this, we will make use of the configuration shown in Figure 4.2. This configuration
gives us the opportunity to test both hydrodynamic forces parallel to the direction
of particle motion (drag) and forces perpendicular to the direction of motion (this
requires noncollinearly moving particles). The two sets of two particles in our box are
moved in equal and opposite directions to ensure that no net velocity is imparted to
the fluid (i.e., to ensure the far-field velocity is zero). Taking torques about the center
of mass of the system, it is also clear that this configuration of particles transmits no
net vorticity to the fluid, again assuring that the far-field rotational velocity remains
zero. All of our simulations are carried out in a finite box, using either periodic or
hard-wall boundary conditions. As a result, there is actually an infinite number of
periodic or reflected-image particles which must be addressed. To get a feeling for the
finite-size effects we include one “shell” of periodic images of our system, as shown
in Figure 4.2(b). Analogously to Coulomb interactions, an Ewald-like sum can be
performed over the entire set of periodic lattice images [46]. Although this method
converges quickly, it is somewhat complicated to implement fully. Further, as images
are likely to be at distances considerably greater than Lo, the result does not converge
to the solution of the full nonlinear Navier—Stokes equations that are solved by the
LB method, but to the solution of the approximate linearized equations. Also, the
inclusion of boundaries would require specialized transformations, making the con-
version to reciprocal space considerably more difficult. Simply increasing the system
size of the simulation box while keeping the particles close to the center of the box
is the simplest method for reducing the finite-size effects, although we will keep one
shell of periodic images. The farther the periodic images are from the system the less
they influence the results obtained.
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Fi1a. 4.3. RP (lines without markers) mobility tensor predictions of forces in the (a) x and (b)
y directions normalized by y-velocity (particles have velocity v = (0,+U,,0)) on one of four particles
in a four-particle system (see text and Figure 4.2) designed to test particle-particle interactions. The
particle has radius a = 8 um, and the relative z-displacement from the center of the box is x = 24 um.
Different lines refer to different system sizes (distance to periodic images) of L = 160 um (dotted),
320 um (dot-dashed), 480 pm (dashed), and 960 um (solid). Graphs (c) and (d) are blow-ups of the
central region in (a) and (b), respectively, and they also show the Oseen prediction for the largest
system (dashed line with hollow square markers). There is good agreement between the RP results
in the central region for L > 320 um. The L = 160 um is too small a system in the sense that the
image charges are too close to each other, affecting the results even in the central region. The origin
is at the center of the box.

To quantify the finite-size effects, we examine the Oseen and RP predictions for
a system of four spheres, as described in Figure 4.2, where a = 8 um, x = 24 um,
and particles 1 and 3 move in the —y direction at a speed of U, = 0.0025 um/us and
particles 2 and 4 move in the +y direction with the same speed. The predictions
for system sizes L from 160 pm to 960 pm are shown in Figure 4.3. We emphasize
that these are the RP predictions, not results from our algorithm. It is clear from
Figure 4.3(a) that as the particle approaches the edge of the box, the force F, on
it differs significantly as L increases. However, the change in the central region, i.e.,
—40pm < y < 40 pum, of the box is much smaller and, as shown in Figure 4.3(c)
and (d), there the difference is less than 0.25% for L > 320 um. Thus, to compare
these findings directly with our LB simulations, we will use a system size of 320 um
and restrict our particles to the central region of —40 um < y < 40 um, where the
RP tensor gives quantitative results with only small finite-size effects. It is easy to
see from Figure 4.3(c) and (d) the unphysical increase in the transverse force in the
Oseen results but not in the RP results as the gap between the particles decreases.
As such we will use the RP mobility in all calculations below.

5. Results. We first examine the hydrodynamic drag and torque experienced
by a single particle as a function of the bare coupling to the fluid . Particle-particle
interactions are then studied. Finally, the diffusive properties of a single particle are
examined. Each of these tests can be used to define a “hydrodynamic” radius. As
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Fia. 5.1. (a) Drag force divided by velocity (Fy/U) as a function of the fluid-particle coupling
v for point particles in systems of sizes L = 35, 50, and 80 Ax. The top pair of curves uses the
Peskin (P) stencil for the force, with the the lower of the two using Peskin-interpolated (P) fluid
velocity and the upper curve using site velocities (cf. (5.2)). The results in the Peskin case overlap
for different system sizes, and only the L = 50 Az data are shown for the full range of 7y, i.e., beyond
~v =120 pg/us, for clarity. The lower pair of curves plotted up to v ~ 85 pg/us uses the trilinear (T)
stencil for the force (blue is noninterpolated and purple is T-interpolated velocity; color is available
only in the online version) in an L = 50 Az system. The T-stencil is numerically unstable for larger
gamma. The vertical smearing, most prominent for the trilinear stencil, is a result of mesh effects
(see text). (b) Inverse of the data plotted in (a). The lines in (b) are from averaging the data at a
given v over the different positions in a cell of the fluid mesh.

such, they constitute a consistency check, and as we will see they do not necessarily
give consistent results. We then show how particles can be constructed in a way so
as to yield reasonably consistent results for all these tests.

5.1. Point particle. The smallest particle one can use consists of a single node,
a point particle, so it is worth examining this case first. Such particles have been
used in works with thermal noise [24, 25, 47]. The first setup measures Stokes drag
and is shown in Figure 4.1(a) and (b). There are two possible configurations, one
where the walls are moving at constant velocity and one where the particle moves
at constant velocity with the walls fixed. The two situations are made equal by
Galilean invariance, so they should give the same steady state force on the particle.
However, we used the second case (particle moving with an average speed of U and
the magnitude Fj of the force measured using (3.13)), as it highlights the effect of
the underlying fluid mesh. Also, we added a small (£0.5 Az) sinusoidal variation in
the particle’s trajectory, with a period equal to the linear box size, in the direction
perpendicular to the average direction of motion so that the particle samples many
positions relative to the fluid mesh. For these runs, Az = 4 um, At = 4 pus, and
7 = 0.75At. We repeated the experiment for many different values of v in order to
measure the drag force as a function of v. We performed the measurement in systems
of linear sizes L = 35Ax, 50Ax, and 80Ax (i.e., the simulation box was L x L x L),
and the results are shown in Figure 5.1. The first observation is that the results from
all system sizes are indistinguishable on this plot. Finite-size effects can be measured
and do scale like 1/L?, as is expected in this geometry (the presence of the walls
changes the finite-size effects from 1/L to 1/L?; see [41]), but in this case they are
too small to be a concern. This is a huge advantage over previously suggested means
of calibrating the value of ~.

As is obvious from Figure 5.1(b), our data follows the relationship also seen
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F1G. 5.2. Drag force normalized by its mean as a function of particle position for a system of
linear size L = 35 Az (Ax = 4um). The solid line is the trilinear stencil without interpolation, the
dashed line is the trilinear stencil with interpolation, and the dot-dashed line uses the Peskin stencil.

in [24, 25] that the inverse drag coefficient is a linear function of 1/~:
(5-1) U/Fy =1/v1+1/7,

where 1/v7 a constant realized in the limit v — co. However, as shown in the inset
of Figure 5.1(b) for the noninterpolated velocity 0; = u(x;), namely

(5.2) Fij = (vi —u(x;))&;7,

the measured force-1/+ relation deviates from the linear relationship slightly for large
values of v. While this deviation seems very small on the inverse plots (it is not
even visible in the main plot of Figure 5.1(b)), it actually leads to very significant
deviations (~ 15%) in the drag force, as manifested by the difference between the
Peskin-interpolated velocity and noninterpolated velocity results in Figure 5.1(a) at
~v = 300pg us~'. Another prominent feature of Figure 5.1 is the vertical smearing of
the forces due to lattice effects, particularly noticeable for the trilinear stencil. The
lattice effect is illustrated in Figure 5.2, which shows the drag force versus position
for a particle moving over the lattice. The lattice effects for the Peskin stencil are
negligible, but those for the trilinear stencil lead to fluctuations of roughly 30% about
the mean. Note also that the use of interpolated velocity in (3.8) makes little differ-
ence to the lattice effects. The small difference between the noninterpolated and the
interpolated velocities stems from (5.2). The summation of the expression over the
affected mesh sites leads to

(5.3) Z Fij = <Vz‘ -3 ﬁ(xj)fij> gl

J

due to (3.7). The sum on the right-hand side is, by definition, the interpolated
velocity. The scale of these lattice effects suggests that using the trilinear stencil
for point particles is questionable. However, Ahlrichs and Diinweg [24, 25] did use
a similar scheme for polymers consisting of point particles and did not report any
adverse affects. This may be due to some averaging out of the mesh effects for
spatially extended objects, as long as the spacing between nodes is not commensurate
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with the lattice mesh. However, the polymer dynamics could be affected by these
mesh effects, and it would be hard to know a priori if this were the case [48].

The intercept of Figure 5.1(b) in the limit 7 — oo can be used to define an
“intrinsic” size ay,

1

(54) ar = 67‘(77'
For the Peskin stencil with velocity interpolation, the intercept 1/4; in this case
is 0.013 uspg~!, which corresponds to a value of a; = 4.08 um = 1.02 Az. This
corresponds to the largest possible “hydrodynamic radius” in the limit of infinite
~ that a Peskin point particle could have. Its proximity to Ax is interesting in
that the Peskin compact support is £2Ax, so this is smaller than what one might
have naively thought to be the potential maximum. For the trilinear stencil the
intercept is 0.036 us pg~! without interpolation in the velocity which corresponds to
a;y = 1.47 um = 0.37 Az. Thus, the trilinear stencil will always give rise to a smaller
effective size. In [24, 25], having fixed v based on a desired diffusion coefficient, it
was suggested to assign a hydrodynamic radius to the point particle by equating it
to an = Fy(y)/(6mnU), the Stokes drag on a sphere of radius aj. Doing this allowed
them to use any value of v, and, in particular, rather small values that did not lead
to numerical instabilities. However, as we will show below, there are several ways
to define a hydrodynamic radius, and defining it as F,(vy)/(6mnU) for an arbitrary
value v does not lead to consistent results. Perhaps a more serious problem with
the trilinear stencil is the existence of mesh effects. We will first examine composite
particles with the goal of reducing them. One might question why we do not simply
abandon the trilinear stencil altogether and use the Peskin stencil, as mesh effects are
almost absent. The reason is that the Peskin stencil has the very serious disadvantage
of extending more than one lattice site from its center, which can lead to problems near
boundaries, and requires a scan over 64 lattice sites rather than 8 in three dimensions,
so it is more costly to compute.

5.2. Composite particle. Mesh effects can be greatly reduced by using com-
posite particles (with each node projected onto the fluid mesh using a trilinear stencil)
like those in Figure 3.2. The first decision in using such a particle is on the number
N, of surface nodes (i.e., the resolution relative to the fluid mesh). It seems clear
that if one wants the sphere to be impermeable, the nodes on the sphere ought to
be closer than Az apart. However, it is not clear beforehand how much closer is
necessary. Figure 5.3 shows the drag force on a subgrid composite particle of radius
a = 0.6 Ax for fullerenes with different NV,,, where a is the radius at which the nodes in
the fullerene sit, as a function of the drag coefficient v scaled by the total number N,
of nodes on the sphere. It is evident that the composite particles, even with a subgrid
radius, have greatly reduced mesh oscillations (about 10% for 30 nodes and less than
3% for a few hundred nodes, rather than the 30% found for the point particles; cf.
Figure 5.1). This makes a trilinear stencil (for a particle comprised of 60 or more
nodes) a potential alternative to the Peskin point particles for subgrid resolution.
There is no saving in computing time here, however, as we will have 8 N,, points in
the effective stencil for the entire particle. There may still be an advantage to using
such particles since they have a smaller compact support on the fluid mesh (i.e., the
stencil extends only one lattice site away from the particle, unlike the Peskin stencil,
which extends two lattice sites), which is favorable particularly at boundaries. For
larger composite particles the mesh effects are even smaller and hardly visible (i.e.,
similar to Peskin) for composites of radius 2Az or larger.
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Fic. 5.3. Drag force on a composite particle sphere of radius a = 0.6Ax normalized by the
expected Stokes drag on such a sphere. The lines are upper/lower bounds for mesh oscillations of
the drag force as the particle moves over the underlying fluid mesh. Diamonds denote bounds for
mesh oscillations for a sphere with 30 nodes, squares are bounds for a sphere with 240 nodes, and
open circles are bounds for a sphere with 2970 nodes (each node is projected onto the fluid mesh
using a trilinear stencil).

By measuring simultaneously the drag force and torque on a particle in shear
flow, we have two means of defining a hydrodynamic radius. The first makes use of
(4.1),

(5.5) an,p = F,/(6mnU),

where U is the velocity at the particle location (i.e., half of the upper wall velocity in
Figure 4.1(c)). As mentioned above, this was used to assign a hydrodynamic radius to
point particles (eq. (19) and below in [24, 25]) and to composite particles (eq. (30) and
below in [39, 40]), the implicit assumption being that any reasonable way of defining
a hydrodynamic radius should give a similar result. Alternatively, one can make use
of (4.2) for the torque,

(5.6) an = [T./(Amnue /h)]Y3 .

These different measures for the hydrodynamic radius, including a separate run to
measure drag force using the protocol of Figure 4.1(b), are shown in Figure 5.4. We
see that the two different protocols for measuring the hydrodynamic radius from the
drag force give consistent results. However, the hydrodynamic radius calculated from
the torque gives results very different from that based on the drag force, except when ~y
is very large. Obviously, an infinite 7 is not a feasible option, so the relevant question
is how large v needs to be for the torque and drag force to give consistent results in
imposing the effective no-slip boundary condition on the surface of the sphere. For
the system in Figure 5.4, we found that if  is large enough so that aj r as defined
by the drag force is within 1% of the radius expected from the nodes comprising
the sphere (a = 2 Ax here), then the aj r defined by the torque is also within 1%
of this radius (although it disagrees with the drag force radius by 2%). Agreement
improves as one increases vy as aj approaches an intrinsic size (intercept in Figure 5.4),
which is consistent with the point particle intrinsic size (i.e., ap, — a + aj, where a;y
is the intrinsic size of a point particle discussed above). The Peskin stencil yields
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F1c. 5.4. Inverse of hydrodynamic radius measured from drag forces and torques on a composite
particle sphere of radius a = 2.0 Azx. Solid diamonds are hydrodynamic radius as computed by drag
force on a moving sphere (Figure 4.1(b)), open squares are hydrodynamic radius as computed by
drag force on a fized particle in a shear flow (Figure 4.1(c)), and open circles are hydrodynamic
radius as computed by drag torque on a fized particle in a shear flow (Figure 4.1(c)). All results use
trilinear stencil and interpolated velocities at the nodes. This demonstrates that 1/ap, measured from
drag forces is a linear function of 1/v, whereas the same quantity from drag torque is not. Inset:
Inverse of hydrodynamic radius cubed versus 1/(yNy) showing that 1/a3 from the torque shows a
linear relationship.

very similar results, although ay is larger for the Peskin stencil, so a large enough
v is needed so that a; will be slightly larger than a in order to get the same level
of agreement in a; from torque and force measurements. The main caveat is that
consistency was achieved only when the interpolated velocity was used for u in (3.8).
When the noninterpolated velocity was used, the v — oo limit did not give consistent
results for the torque and force measurements (ap r from torque was always larger
than ap r). This is due to the property of (5.3), as the use of noninterpolated velocity
distributes the force farther from the particle center, thereby adding to the torque.
As a result, we will use only interpolated velocities in the remainder of this work.

In some situations, it may be reasonable to ignore torques, so one might ask
whether it is then permissible to use just (5.5) to define a hydrodynamic radius, as was
done in [24, 25] for point particles. This is not the case for composite particles, such
as those of Figure 3.2, as it should be fairly obvious that v needs to be large enough
so that the drag force on the composite sphere results in a hydrodynamic radius, as
defined by (5.5), that is, at least as large as the radius at which the individual nodes are
centered. If this were not the case, one might have the perverse expectation that the
hydrodynamic interaction between two particles would not show the 1/r divergence
expected from Oseen or RP theories until the nodes making up the composite particles
were actually overlapping. However, if v is large enough to produce the drag force
expected for a particle with nodes sitting at a distance a, then consistency with the
torque will be quite reasonable, as discussed above.

For subgrid size composite or point particles it would still be desirable to use (5.5)
to define a hydrodynamic radius. We examine the hydrodynamic interactions for this
case. We compare a point particle (with Peskin stencil) and a composite particle
(with nodes mapped using the trilinear stencil) with « chosen to give a hydrodynamic
radius of aj, = 0.475 Az (as defined by (5.5) using the configuration of Figure 4.1(a)).
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F1a. 5.5. Forces normalized by y-velocity (particles have velocity v = (0, £Uy,0)) on one of four
particles in a four-particle system (see text) designed to test particle-particle interactions. The solid
line is the result from the RP tensor for particles of size a = 0.475 Axz. Other lines and the solid
squares are from simulations using Peskin point particles with ~ set to give a hydrodynamic radius
ap, of (5.5) equal to ap, = 0.475 Ax. The dotted line corresponds to particle speed U, = 0.05 Az /At,
the dashed to Uy = 0.01 Az/At, and the solid squares to Uy = 0.0005 Ax/At. The open circles are
from simulations using composite particles with trilinear stencil with node radius a = 0.475 Az and
v tuned to give ap = a. Note the effect of the finite propagation speed causes an asymmetric lag
compared to the RP result when the particles are moving quickly, most noticeable in the lift (Fy) near
its mazima. This lag is no longer visible for more slowly moving particles with Uy = 0.0005 Az /At.

We then put four particles in the configuration of Figure 4.2(a) and measure the
forces on one of the four particles. The result is shown in Figure 5.5. Note that
there are no fitting parameters here and the results are quantitatively matching for
small enough velocities consistent with the investigations of section 4.2. In these runs,
we made the particles pass through each other in order to explore the full possible
range of the hydrodynamic forces. In normal use, one would add some sort of hard
sphere interaction between the particles to prevent overlaps. The first thing to note
is the comparison between the faster moving Peskin stencils (U, = 0.001 Az/At and
0.05 Az /At) versus the slower one (U, = 0.0005 Az/At). For the faster particles
(the dotted and dashed lines), we also show the start-up period (system was started
with the fluid in a quiescent state), and we see that the particle moves a distance
comparable to its diameter before the forces coincide with the expectation from the RP
tensor, which assumes instantaneous equilibration. Looking at the force perpendicular
to the particle velocity, F,, as the particles approach each other we can also see a
significant asymmetric lag compared to the RP result for the faster moving particles.
This is a consequence of the finite propagation speed of fluid-mediated interactions and
the fact that as the particles approach each other, the force is changing very rapidly.
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This asymmetric lag is no longer visible for particles moving with U, = 0.0005 Az /At
(o, M). It is interesting that the lag is so significant for particles very close to each
other, as our original expectation was that finite propagation times would have an
impact only at large separations. This could have an impact in shear flows of dense
colloidal suspensions. Not surprisingly, the force does not diverge as the particles
approach (and overlap), contrary to what is expected from the Oseen prediction.
The forces do, however, get very large, so these Oseen-like interactions should work
well for dilute systems where particles are not packed tightly against each other but
may collide momentarily. The one caveat is that the peak in the measured F), is
slightly wider than what would be expected for a particle of this size. This is not that
surprising considering the observations above that the intrinsic size a; of a Peskin
stencil point particle is about Az and the intrinsic size of the trilinear stencil (~ Ax/3)
makes it larger than the radius a at which the nodes in the composite particle sit.

Finally, it is worth considering that once one has calibrated a system with a sphere
of a given size, how does one use this information for a sphere of different size or for
a soft sphere where the bond lengths in the fullerene are not fixed? What we have
found is that the key quantity that must be constant is the ratio of v to the area per
node A,

Ny
(5.7) constant = Ain = Zﬂ'aQ'

That is, if one calibrates for a sphere of radius a and then wants to change to a sphere
of radius 2a, then one should scale v by 4. However, the larger sphere will need more
nodes (nodes need to be closer than Az apart), so, in this example, one could keep 7
constant and multiply N, by four to get the larger sphere calibrated. Unfortunately,
there is a small dependence of the intrinsic size a; on the time step At so that if one
changes At, one may need to recalibrate v to give the correct drag. Similar effects are
found using the standard bounce-back scheme for flat walls, for which the location
where the velocity can be extrapolated to zero can change slightly as a function of 7.

From an efficiency standpoint one may try to use as few nodes as possible, as
long as mesh effects such as the oscillations in Figure 5.3 are below a tolerable level.
Generally, nodes need to be closer than Az apart for both trilinear and Peskin stencils,
but there is almost no advantage seen for nodes spaced closer than about Ax/4 apart
for a trilinear stencil and Az/2 apart for a Peskin stencil (typically less than 1%
difference for closer spacings; cf. Figure 5.3). The Peskin stencil has somewhat better
numerical stability than the trilinear stencil (cf. Figure 5.1) and requires fewer nodes;
however, it has eight times as many points per node. The trilinear stencil is a viable
option in systems with walls, as its support extends only one lattice site from each
node. The trilinear stencil also makes it feasible to simulate subgrid size particles
down to 0.6 Az, which would have a larger radius if the Peskin stencil were used due
to its larger intrinsic radius.

5.3. Diffusion of point and composite particles. Having achieved criteria
for consistency of the hydrodynamic radius through deterministic tests of solute parti-
cles we now turn to the subtle issue of thermal noise in the LB methodology. Common
hybrid algorithms [24, 25, 15, 16, 39, 40] that mix LB and MD operate in a regime
where thermal noise is important and use a Langevin equation for the nodes, which
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is of the form

(58) mdvi/dt = —’Y(Vi — ﬁz) =+ FR,i;
(Fri(t) =0;
(Fa.(OFp () = 29ksTo(t — t')5asdij,

where «, 8 € {z,y, 2}, i and j run through the node indices, v; is the velocity of a node,
and u; is the interpolated fluctuating fluid velocity at the node’s location. Thermal
fluctuations are present in (5.8) in both the fluid velocity u according to fluctuating
hydrodynamics [27] and in Fg. If the particle is an extended rigid object, a similar
equation for rotational degrees of freedom is also used. In (5.8), the amplitude of the
random force diverges as the coupling constant v — co, which is clearly undesirable
if one wishes to approach the no-slip limit. Moreover, as v — oo and —F is applied
locally to the fluid to conserve momentum, the hydrodynamic correlations between
particles are ultimately overpowered by —Fp, which is uncorrelated in both space
and time. This is very different from the common use of Langevin dynamics, say, as
a thermostat in MD, where +y is deliberately chosen to be small enough to minimize
impact on physically relevant processes, such as dissipation from viscous shear in a
fluid.

Although not widely acknowledged, it has been proven explicitly that Langevin
noise Fr as in (5.8) is not needed for the coupled particle-fluid system to obey a
fluctuation-dissipation theorem in the no-slip limit [49]. In the preceding sections,
we have shown our LB algorithm to recover the no-slip limit for Stokes drag, for
drag torque, and for particle-particle interactions at zero temperature without any
fitting parameters as we approach the limit v — oo numerically. In this section, we
investigate the level of dissipation in simulation when the choice of the key algorithmic
parameter v is made to guarantee impermeability and the no-slip boundary condition
according to the criteria we have outlined above.

In view of the available theory [49] and our calibration procedure, the role of
Fr in (5.8) clearly merits comment. We address this question in the context of an
equation of motion without external Langevin noise, i.e.,

(5.9) mdv;/dt = —y(v; — 1),

in which the fluctuating fluid velocity 14; is the only source of fluctuations for the
node. We emphasize that in contrast to common folklore, there is no fundamental
theoretic flaw in leaving out Fr in the no-slip limit [49]. We begin our argument by
considering the rate of change of kinetic energy of a node, S;, which can be written
as

(5.10) S; % <%mvz2> =mv; - % = —yv; - (v; — ),

where the last equality follows from (5.9). We plot the measured average total dis-
sipation, (S) = (}~,Si), as a function of the algorithmic parameter 7 in Figure 5.6
for a freely diffusing (translationally and rotationally) spherical shell consisting of
N, = 240 nodes. Thermal fluctuations are present in the LB fluid, as detailed in [23],
without any Langevin noise on the particle. Figure 5.6 tells us that the dissipation
is a bounded function that first increases and then drops as 7 is increased. The no-
slip limit and consistency between different deterministic measures is attained around
48 ag/ns for all practical purposes. In general, to achieve the no-slip limit we find
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F1G. 5.6. Rate of dissipation of kinetic energy (S) of a 240-node shell is a bounded function of
the coupling constant . (S) at saturation (v > 48 ag/ns) is less than 0.01% of the rate of dissipation
present in the fluid at the scale of the particle in the absence of the particle. The lines between data
points are there to guide the eye. The particle radius is R = 2.0 Ax = 20 nm.

that v must be set to a value that forces a mass of pAx3 /N, to relax in a time scale
of the order of a time step At. The level of dissipation of kinetic energy should be
compared to that present in the fluctuating fluid at the scale of the particle in its ab-
sence, which may be evaluated as a volume fraction Vsphere/V of the total dissipation
D(u,u) [49, 27],

. 8’U,Q 8’11/(1 aua auﬂ
(5.11) Dlu,w) = /Vn <8x;3 dry o 3%) v

We find a level of dissipation of 1.2 x 10° ag nm? ns—> to be present at the scale of the
particle, which is much greater (by orders of magnitude) than the particle dissipation
seen in Figure 5.6. This means that the presence of the particle causes no significant
perturbation on the temperature of the fluid, and corresponding values of the coupling
constant ~y are fully acceptable.

Whether the dissipation has an effect on the temperature of the particle can be
resolved by investigating the velocity autocorrelation function VACF () = (1/3)(v(¢)-
v(0)) of the particle. The zero-time limit is known from equipartition to be VACF(0)
= kgT /M, where M is the sum of the mass used to construct the particle and the mass
of the fluid within its hydrodynamic radius a; that necessarily always tracks it. At
short times, t < t5 = ap/vs (vs is the speed of sound), compressibility effects are ob-
servable in that sound waves transport momentum from the particle and VACF decays
from kpT /M to VACF(ts) = kgT/M*, where M* = M + 27a3 p/3 in an incompress-
ible fluid [50]. At long times, compressibility becomes unimportant as sound waves
are damped and the incompressible Navier—Stokes equations may be used to predict
the asymptotic long-time power-law tail [50, 51, 49] C(t) = kT (12pV/7w33)~1¢=3/2,
where v = 1/p is again the kinematic viscosity. We note that C(¢) is the same for both
the slip and the no-slip boundary conditions [49], so the tail alone tells nothing about
the correctness of hydrodynamic interactions. Similar to Iwashita, Nakayama, and
Yamamoto [51], we also consider a particle in a thermally quiescent fluid (at 7" = 0)
dragged with a constant force Fy at times ¢ < 0 to a steady state and let go by setting
Fy =0 for t > 0, after which the fluid and the particle relax to a completely quiescent
state. Walls far from the particle are needed parallel to the direction of motion to
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Fic. 5.7. VACF of a particle diffusing in a fluctuating fluid (circles) and the rate of decay of the
velocity of a particle that was in steady state motion due to a constant force Fy for t < 0 and then
relazes to a quiescent state when the force is removed fort > 0 in a LB fluid with no thermal fluctua-
tions (squares). The dotted line is the asymptotic long-time power-law tail, kgT(12pV/7303)~1¢=3/2,
divided by kT [51].

prevent the whole fluid phase from attaining the particle velocity. The deterministic
particle has VACF(0) = kgT'/M*, as no sound waves are associated with the steady
state, nor are they emitted due to deceleration from the steady state. For t > t,, the
normalized deterministic deceleration (—1/Fp)dv/dt and the normalized correlation
function VACF(t)/kgT for the translationally and rotationally freely diffusing par-
ticle should be equal [51] in the linear response regime. If this is proven to be the
case, and the aforementioned connections between M, M*, t;, and Ry are observed
as well, then we may confidently state our model to obey the fluctuation-dissipation
theorem. We note that the coupling of (5.9) in the no-slip limit effectively removes
degrees of freedom, for which reason the mass M* of the particle is that of the com-
posite particle-dragged fluid object as measured from the zero-time intercept of the
normalized deceleration of the deterministic particle (i.e., measured in the absence of
noise).

We conclusively establish our particle to obey the fluctuation-dissipation theorem
in Figure 5.7. The calculated sound time t, equals 2.7Axz/(Axz/v/3At) ~ 4.7At for
our particle that has a hydrodynamic radius of a; = 2.7Ax, which is congruous with
the the data points being on top of each other at t = 5At in Figure 5.7. We compute
the difference AM = M™* — M to be 40 ag from the measured zero-time intercepts
1/M* and 1/M of the deterministic and stochastic response functions. By equating
the difference with (2/3)mpa; [50], we find ap ~ 2.7Az (Az = 10nm), which matches
with the deterministically measured hydrodynamic radius. Moreover, the mass of
the nodes used to construct the particle (66.9 ag) and the fluid contained within its
hydrodynamic radius (4/3)7rpa,3I = 82.3 ag together predict M = 149 ag, which is very
close to the 150 ag measured from the intercept 1/M. Ergo, we conclude that both
equipartition and the fluctuation-dissipation theorem for the particle are obeyed when
v is chosen consistently, as described in the previous sections.

Measuring the diffusion coefficient has been used in the past as a test of polymer
dynamics in an LB solvent [24, 25, 52, 23]. This requires thermal noise to be present
in some way. These earlier schemes gave reasonable scaling behavior [24, 25] with
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thermal noise incorporated in the LB scheme as described in [53, 54], but the local
temperature fluctuations were often not necessarily correct, as earlier thermal schemes
did not give convergence at short wavelengths [53, 54, 22]. That is, full hydrodynamic
equations and noise converged to expected values only in the long-wavelength limit,
a scale often larger than the characteristic size of colloidal particles of interest [22].
More recent thermal schemes give better thermal noise at short wavelengths [22] as
long as v2 = (1/3)(Az?/At?). Our implementation of thermal noise is described
in [23]. We approach the topic of the LB fluid functioning as a heat bath and consider
the equation of motion of the center of mass velocity v of our particle with the force
being equal and opposite to the fluid force, given by (3.8) and summed over the fluid
sites:

(5.12) mdv/dt = —y(v — @).

The mass m in (5.12) is that of the nodes used to construct the shell. Note that there
will be an added mass contribution to this leading to M and M*, as explained above.
Therefore, the mass of the particle is a derived quantity in these systems. Again, we
emphasize that the fluctuating fluid velocity u is the source of thermal noise as far as
the particle is concerned.

For diffusion measurements, we restrict ourselves to the case where (1) = 0.
Far from the particle, the fluctuating fluid velocity obeys the equipartition relation
(tatg) = kpT/(pCy) dap, where C, is the effective volume over which @ is averaged
(which in the simulation depends on the particular choice of stencil and the number of
nodes making up the particle). The desired goal is to obey the fluctuation-dissipation
theorem, which tells us that the diffusion coefficient should be related to the ratio of
temperature to drag coefficient,

kpT
5.13 D=
(5.13) Genan’

where aj, is the hydrodynamic radius as determined from one of the measurements
described above.

To measure diffusion from our simulations we place a single particle in a cubic
simulation box with periodic boundary conditions in all directions. Thermal noise is
present, as detailed in [23], which gives rise to velocity fluctuations in the fluid, and
particles follow this motion via (5.12). We use a value of v = v, that gives consis-
tency between the measures of hydrodynamic radius aj determined in the previous
subsection, i.e., consistent drag force and torque. We will use interpolation (see (3.9))
in all cases. To measure the tracer diffusion coefficient of the solute particle in three
dimensions we track the mean squared displacement as a function of time and use the
relation [55]

(@@ =)

(5.14) b= [t—t/|—o0 6(t—t')

Rather than using an infinite time displacement, what we actually do is look at the
slope of {(r(t) — r(t'))?) versus 6(t — t'), which eventually becomes constant (equal
to D). In keeping with our desire to simulate water, we decrease Az to 2nm and
At to 0.001 ns in order to get significant thermal motion for the particle (this results
in viscosity of water with 7/A¢ = 0.75 and sufficient numerical stability to allow
large values of ). The coupling parameter + is recalibrated whenever we change to a
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Fic. 5.8. Diffusion coefficient D as a function mesh radius a, system size L, and a fitted
“diffusion” radius a + 6. (a) and (b) are for the Peskin stencil, and (c) is for the trilinear stencil.
Different symbols are from runs with composite particles of different radii. (b) yields the value 3.04
and (c) 2.82 for the numerical constant A in (5.15).

fullerene of different radius a. Other parameters in this section are p = 998.2kgm ™3,

n=10gm 's™! and T = 330 K.
The one remaining subtlety is that there are significant finite-size effects in the
measurement of the diffusion coefficient [56, 57]. That is, we expect

kgT kT A

5.15 DL)y= —- — ——
( ) (Z) 6mnan,p 6wy L’

where A is a dimensionless numerical constant with the theoretical prediction of 2.837
in the zero Reynolds number limit calculated in [56] from the Oseen tensor, and ay, p
is a hydrodynamic radius that we expect to be equal to a; determined from drag
force and torque measurements. Thus, a plot of D ay p versus ap, p/L should give a
straight line onto which data from different radii should fall. If we assume ap p is
equal to the radius from the center to the location of the interpolating points of our
composite particles (mesh radius), then such a plot is shown in Figure 5.8(a). Points
from different radii clearly do not fall on the same line, suggesting that the diffusion
radius is not the same as the mesh radius. If we fit to (5.15) with a; p = a+ 0, where
a is the distance at which the surface nodes sit from the center of the composite
particle, we get a good collapse of the data with § = 0.38 Az for the Peskin stencil
and 6 = 0.12 Az for the trilinear stencil. This ap p is within 1% of the values of
ap,r and ap, 7 determined by drag force and torque measurements. In addition, the
theoretical approximation of 2.837 is in excellent agreement with the fit parameter
A =2.9+0.1 of (5.15). Thus, choosing « to give a consistent hydrodynamic radius
results in nearly perfect agreement with the fluctuation-dissipation theorem (FDT)
with no need for additional Langevin noise in (5.9) or (5.12).

We emphasize that the FDT will not generally be obeyed if v is not chosen to
give a consistent hydrodynamic radius. It is clear from (5.12) that if v = 0, then
the particle is not going to move, as the effective temperature felt by the particle is
Ty, = 0 for v = 0. This was noted by Ahlrichs and Diinweg [24, 25]. With noise (as
per [53, 54]) present in the LB fluid only, they measured the temperature T, from the
equipartition relation (3/2)kgTy, = (1/2)m(v?) (m is the mass of their point particle)
by calculating the mean-squared velocity of a point particle. They observed that it
depends strongly on v [24, 25]. As they wished to work at arbitrary values of =,
they rectified this problem by adding Langevin noise to (5.12) and then subtracting
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an equal and opposite amount from the fluid to conserve momentum. The imposed
fluctuation-dissipation relation had an amplitude that related the drag force to the
bare (algorithmic) coupling 7 rather than to the measured drag. By imposing the
fluctuation-dissipation theorem in this way, they were naturally able to measure the
temperature to be the input temperature 1" for any value of . The adjustment of
the effective drag was made systematic in [24, 25], where the algorithmic parameter
~v was increased until agreement with diffusion measurements from MD was attained.
The developments of schemes with external added and subtracted Langevin noise are
summarized in [58].

Instead, we have no added external Langevin noise in (5.12), as it leads to the
result that ((v —1)2) ~ T, in contradiction to the no-slip/no-flow boundary condition
we want on the surface. Our interpretation of the solid particle in the model is that
the drag force imposes a constraint on the region of fluid overlapping the particle to
move collectively, thus removing those degrees of freedom. We note that not only
the measured temperature of the particle T}, depends strongly on =y, but so does the
drag force. In fact, we find that T}, and the measured drag force have an identical
dependence on v in the absence of external Langevin noise (not surprising considering
(5.12)). That is, the measured diffusion coefficient given by the Einstein relation
as D = kpT,,/Cyq, where Cy is the measured drag coefficient in absence of noise, is
independent of v. However, in this case, the particle will be at the same temperature as
the fluid only if the hydrodynamic radius implied by (5.13) is consistent with a direct
deterministic measurement of the drag force, such as those described in Figure 4.1.
As this is the point at which we have already decided we need to operate, additional
Langevin noise in the particle-fluid coupling equation, (5.9), is not necessary [49].

That the diffusion coefficient should be independent of v can also be argued di-
rectly from an analysis of (5.12). The two-time correlation function (tq (¢1)ug(t2)) is
not quite as obvious as the equal-time case (which is constrained to obey equiparti-
tion), especially in the vicinity of the particle, but fairly generally we may write it
as

kT

(5.16) (o (t1)ug(t2)) = pTvéagR(tg —t1),

where the fluid response function R(t) is a function of the fluid properties and the
shape of the particle only [49]. The Green-Kubo relation [59] tells us that the diffusion
coefficient D for the particle may be computed using the formal solution to (5.12) and
the correlation function for @, (5.16), as

(5.17) D= %/Oosiﬂv(t) v(0))

2 00 t 0
i - N t—t1—ta)/m
gt 00 i dtafaen) ezt

k‘BT 72 o] t 0 L
— [ dt [ dt dtoR(to — t y(t—t1 tz)/m.
pCvm2/0 /_001_002 (t2 1)e

To proceed further, an explicit form of the response function is needed. The response
function is dimensionless (from our definition in (5.16)). There can be long-time
tails present due to hydrodynamics, but any finite system size will result in a finite
correlation time. Under these assumptions, the explicit form is not that critical for
calculating the general trends. For example, using R(t) = exp(—T'|¢|), where I is an
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Fi1c. 5.9. Diffusion coefficient D normalized by the expected result Do = kgT/(6mnay) for an
infinite system versus the algorithmic coupling constant v normalized by the value s that yields a
drag force in agreement with Stokes’s formula for a particle of hydrodynamic radius ay,.

inverse time constant related to the fluid response, gives the following result:

kT
pC, I

(5.18) D=

The main result here is that D does not explicitly depend on the algorithmic parameter
v if R(t) has a finite correlation time. Hauge and Martin-Lof [49] have shown that
both the slip and no-slip boundary conditions produce exactly the same long-time
hydrodynamic tail in the velocity-autocorrelation function (VACF) of the particle, for
which reason the tail is no proof of correct hydrodynamic coupling for a given boundary
condition. In fact, we observe the tail to be independent of v in our model. However,
for the calibrated value of v corresponding to no-slip, the VACF for our model is
correct and the amount of fluid dragged with the particle agrees with theory [23].

Last, we tested in simulation how the diffusion coefficient depends on -, when
there is no external Langevin noise on the particle. We set up a small periodic box
of size (21 Az)? and placed a 60-node composite particle of radius a = 0.6 Ax at
its center. Again, we tracked the slope of the particle’s mean square displacement
versus time, from which we determined its diffusion coefficient for values of ~/~,
ranging from 0.1 to 1.0, where ~; is the value required to give a hydrodynamic radius
based on the drag force of (5.5) equivalent to the particle node radius a. The results
of these measurements are plotted in Figure 5.9. It is clear from the figure that
D is independent of «, thus confirming our theoretic assertion above (see (5.16)—
(5.18)). However, D is also lower than that expected from the macroscopic fluctuation-
dissipation relation of (5.13). Finite-size effects that we already quantified are the
main source of this discrepancy, but the stencil also plays a part through 6. Note that
in [24, 25] Ahlrichs and Diinweg showed the temperature measured from (3/2)kgT,, =
(1/2)m(v?) to be different from that present in the LB fluid. We observe the same
when v # v5. However, just as the drag force and torque approach the no-slip result
for v = =5, we observe the temperature measured via equipartition to give the correct
value at v = 7s.
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6. Conclusions. A simple Stokesian type of frictional coupling between solute
particles and the velocity field of the solvent is a natural way to proceed in coarse-
grained fluid modeling, and in the LB method in particular. Such frictional particle-
fluid coupling has undergone significant developments in the last 10 years. First,
in [24, 25], Ahlrichs and Diinweg measured the temperature experienced by a point
particle and noticed that it depends on ~. To fix this, they added external Langevin
noise directly to the particle’s equation of motion to match with the target temper-
ature T' and adjusted v to obtain a desired value for the diffusion coefficient. Then
they inferred the hydrodynamic radius based on Stokes drag. Second, Chatterji and
Horbach [39, 40] measured drag for a periodic array of particles in steady state with a
balance between drag and gravitational force. They inferred the hydrodynamic radius
from effective drag after finite-size scaling.

We have shown in the present paper that these two approaches do not necessarily
give consistent hydrodynamic radii based on the drag force and viscous torque. To
remedy this problem, we have shown that with a proper combination of stencils and
composite particles, the coupling parameter v can be chosen in a physically sensible
and consistent way to match torque and drag in the no-slip limit. We have also demon-
strated that our choice also gives the correct diffusion coefficient, i.e., the macroscopic
fluctuation-dissipation theorem is obeyed, without externally added Langevin noise
or an adjustable parameter of any kind. We also compared and contrasted in detail
the use of different stencils (trilinear and Peskin) and different resolutions for small
particles.

We conclude that our method provides a consistent hydrodynamic radius inde-
pendent of means of measurement. We have shown that our algorithm produces
congruous hydrodynamic radii whether moving walls induce the flow and the drag,
the particle itself is moving, the particle experiences a torque, or we use diffusion as
the basis of measurement. We have shown that in agreement with the general theo-
retic framework [49], no external Langevin noise is needed in the equations of motion
for our consistent choice of v in the no-slip limit. We also explained a misconcep-
tion about using diffusion as a test for proper coupling to hydrodynamics by showing
that the diffusion coefficient of a Brownian particle is independent of the algorithmic
coupling parameter when the particle is driven by fluid fluctuations alone.

Finally, regarding hydrodynamic interparticle interactions we introduced a four-
sphere arrangement to guarantee zero net velocity and torque in the system whereby
we showed our scheme to agree fully with Oseen and RP theories in the relevant
limit of small Reynolds number and intermediate distances. As particles approach
each other, Oseen theory breaks down expectedly while the RP tensor remains valid
for smaller particle separations. We explored the full range of hydrodynamic forces
and characterized the effect of finite propagation speed of hydrodynamic interactions,
which results in a lag that can drastically change the hydrodynamic force on a particle.
This observation makes some studies on colloidal dynamics based on the discretization
of the Oseen or RP tensors suspect unless the particle speed is sufficiently small. This
effect should be particularly significant in shear flows.

Appendix. Forcing terms. We take the BGK approximation of the continuum
Boltzmann equation [32],

(8+3x73+8p7i> 1

ot o on, T ot op,) =7V

T

(A1) & 0+ 0,0,)f =~ (f — )~ Fyy, 1,
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as our starting point. The forcing term on the right-hand side is approximated to
lowest order as F,0, f ~ F,0, f°l. Our lattice equilibria f;* are the well-known
second-order expansions in Hermite polynomials,

3 9H), pApy  pv?
A2 .Cq = i J— i " P v _ c 5 Yy ,
(A.2) fi w <p+v2pxe A+ 201 ( w B 3 0A

where Hy, = e;rei, —(v2/3)6x, and w; are the weights for the particular DdQn lattice.
We have written the equilibria in terms of the momentum densities py to evaluate the
derivative in the forcing term of the BGK equation as

3 3 9
eq __ . = = . Y . X
(A3> apw fz = W < pvgp'y + ’Ug €iy + pvgp)\ewez)\> .
The zeroth, first, and second moments of the forcing terms are then obtained by direct
calculation to be

E:F'Yap’yfioq
CE S+ S wien + 22 S e
- 'YUE b2 w; i W;iCiry pvf i W;€iyEix
3/ p 3pa v}
A4 =F— (-2 1404+ .26, ) =0.
(A4) Vv'é’( p T e

Similarly, the first and second moments are
>y (0, fiY)eia = Fas
i

(A.5) > Fy (0, i Yeiatis = uaFs + Faug,

where we have made use of relations ) . wieineipei, = 0 and >, wiejneigeivein =
(v2/9)(60s0yx + 0ardpx + 0ardsy). The moments agree with those from lengthy mul-
tiscale expansions and the discretized derivation in [60].
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