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A simple and effective method for quantifying spatial
anisotropy of time series of precipitation fields

Tero J. Niemi', Teemu Kokkonen?, and Alan W. Seed?

"Department of Civil and Environmental Engineering, School of Engineering, Aalto University, Espoo, Finland, *Centre for
Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia

Abstract The spatial shape of a precipitation event has an important role in determining the catchment'’s
hydrological response to a storm. To be able to generate stochastic design storms with a realistic spatial
structure, the anisotropy of the storm has to be quantified. In this paper, a method is proposed to estimate
the anisotropy of precipitation fields, using the concept of linear Generalized Scale Invariance (GSI). The pro-
posed method is based on identifying the values of GSI parameters that best describe isolines of constant
power on the two-dimensional power spectrum of the fields. The method is evaluated using two sets of
simulated fields with known anisotropy and a measured precipitation event with an unknown anisotropy
from Brisbane, Australia. It is capable of accurately estimating the anisotropy parameters of simulated non-
zero fields, whereas introducing the rain-no rain intermittency alters the power spectra of the fields and
slightly reduces the accuracy of the parameter estimates. The parameters estimated for the measured event
correspond well with the visual observations on the spatial structure of the fields. The method requires min-
imum amount of decision making and user interaction, making it suitable for analyzing anisotropy of storm
events consisting of long time series of fields with a changing spatial structure.

1. Introduction

Rainfall is needed as input for rainfall-runoff models that are used in hydrological design studies, for exam-
ple, to size hydraulic structures such as spillways and culverts or to test the performance of a storm sewer
network under extreme conditions. The design storm can be based on an observed rainfall event, or it can
be based on the spatial and temporal statistical structure of a rainfall event with a given duration and an
average recurrence interval. The hydrological response of a catchment to rainfall has been found to depend
on the spatial and temporal structure of the rainfall, particularly at the urban scale [Segond et al., 2007]. Multi-
fractal models, such as those based on multiplicative cascades [e.g., Gupta and Waymire, 1993; Seed et al.,
1999; Kang and Ramirez, 2010; Gires et al.,, 2012] or nonlinear filtering of correlated Gaussian noise [e.g.,
Pegram and Clothier, 2001; Rebora et al., 2006; Paschalis et al., 2013], have proven to be useful in creating sto-
chastic rainfall fields with correct spatial statistics, and have been used to generate ensembles of high-
resolution rainfall fields in space and time for hydraulic design [Seed et al., 2002]. These models assume, how-
ever, that the rainfall structures are isotropic. In reality, the fields are rarely isotropic, but often consist of
bands of rainfall that are associated, e.g., with synoptic cold fronts or mesoscale squall lines [Houze and
Hobbs, 1982; Rauber and Ramamurthy, 2003].

Being able to simulate fields with a correct anisotropic structure is important, since the catchment’s response
to a storm may be very different depending on the shape and movement of the storm. For example, con-
sider a long and narrow band of high-intensity rainfall moving over an urban catchment. A storm moving in
the direction of its elongation will produce large rainfall accumulations over a small area, and is more likely
to cause flooding than a storm that moves perpendicular to its elongation resulting in the rainfall being dis-
tributed over a larger area [Doswell et al., 1996]. An example of an anisotropic rainfall event is presented in
Figure 1, where a significant storm moved over Brisbane, Australia, on 10 January 2011 along the orientation
of its rainband producing over 50 mm of accumulated rain in just 1 h. Brauer et al. [2011] present another
example from the Netherlands, where a mesoscale squall line storm resulted in 24 h rainfall accumulations
of 160 mm exceeding the return period of 1000 years. The capacity to stochastically generate such events
requires a methodology to identify and describe the anisotropy present in precipitation patterns.
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Figure 1. An example of a strongly anisotropic significant rainfall event in Bris- lation C(T) of a function R(X) is an
bane, Australia, on 10 January 2011. The storm was moving along the orientation inverse Fourier transform of the

of the rainband resulting in an hourly rainfall accumulation exceeding 50 mm

power spectrum P(k) of the same
between 21:00 and 22:00 UTC.

function:
C(r)=F""(P(k)) M

where k= (kx, ky) is the wave number in the Fourier domain corresponding to location x=(x,y) in the spa-
tial domain, t=ty, 7,) describes the lag, and F denotes the Fourier transform operation. Using the power
spectrum provides practical advantages when dealing with fields measured on a regular grid, such as radar
precipitation fields in this paper, since it can be easily computed using standard two-dimensional fast Fou-
rier transform (FFT) algorithms [e.g., Press et al., 2007] as the square modulus of the Fourier transform F (k)
of the original field R(x):

P(k)=|F (k) o)

The two-dimensional power spectrum is usually radially averaged using circles centered at k, =k, =0, yield-
ing what is referred to here as an isotropic energy spectrum E(k), where k=|k|=, /k¢+k}. The term iso-
tropic implies here that averaging around k, =k, =0 integrates out the potential anisotropy in the spectrum
making it easier to study the spatial structure of the field.

The isotropic energy spectrum is commonly used to evaluate the scaling structure of the field since the nec-
essary condition for scale invariance is that the spectrum of the field must follow:

E(k) ~ kP 3)

where the spectral exponent f§ is an indicator of scaling, or smoothness, of the field [Menabde et al.,
1997]. Isotropic scaling of precipitation fields according to equation (3) has been reported in a num-
ber of earlier studies [e.g., Nykanen and Harris, 2003; Mandapaka et al., 2009; Rysman et al., 2013;
Seed et al., 2013].

Quantifying anisotropic scaling of geophysical fields by using different spectral exponents for different
directions has been suggested by several authors [e.g., Fox and Hayes, 1985; VanZandt et al., 1990; Pilkington
and Todoeschuck, 1993; De Michele and Bernardara, 2005; Ebtehaj and Foufoula-Georgiou, 2011]. These meth-
ods suffer, however, from not being able to parameterize the scaling in different directions unambiguously,
which is required for a straightforward implementation into a simulation model. Also, rather than being
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independent of a specific scale, which is the very requirement for a system being scaling, these methods
are dependent on the size of the structures [Lewis et al., 1999].

Generalized Scale Invariance (GSI) was introduced by Lovejoy and Schertzer [1985] as a general formalism to
describe anisotropic scaling of multifractal fields of atmospheric turbulence. GSI provides an attractive
option to quantify the scaling of anisotropic systems, since its linear approximation depends only on a few
parameters that define the transformation from an isotropic to an anisotropic system. The first attempt to
determine the GSI parameters of geophysical fields was the “Monte Carlo differential rotation” technique
[Pflug et al., 1993]. Lewis et al. [1999] criticized this method for giving biased estimates of the anisotropy
parameters and suggested an improved “Scale invariant generator” (SIG) technique. Beaulieu et al. [2007]
reported that while SIG yielded reasonable estimates for theoretical simulations with a diversity of aniso-
tropic and statistical characteristics, it was not able to quantify the true anisotropy of many empirical fields.
Consequently, they proposed a new “Differential anisotropy scaling” technique.

The previously proposed methods to quantify anisotropy of geophysical fields through the use of GSI were
developed for individual fields and they require some user intervention as well as subjective decision mak-
ing. This complicates the application of these methods to a time series of rain fields where the anisotropy is
expected to change during the event. In this paper, a method is proposed to estimate the GSI parameters
for a continuously evolving anisotropy in a time series of precipitation fields. The proposed method aims to
be fast and it requires a minimum amount of user intervention, in order to efficiently quantify the changing
anisotropy throughout the duration of a storm event.

We are focusing on quantifying anisotropy in a multifractal framework using the GSI formalism due to its
explicit description of the scaling behavior in precipitation fields. Nevertheless, other methods to assess ani-
sotropy have also been proposed, and especially the methods based on geostatistics have been extensively
used both for quantifying [e.g., Miniscloux et al., 2001; Ali et al., 2005; Berne et al., 2009; Kirstetter et al., 2010]
and simulating [e.g., Schleiss et al., 2009, 2012, 2014; Vischel et al., 2009; Leblois and Creutin, 2013] the anisot-
ropy encountered in precipitation fields. Alternatively, Kumar and Foufoula-Georgiou [1993a] and Kumar
[1995] have also proposed wavelets for identifying the scale-space anisotropy in precipitation fields.

This paper is organized as follows. Section 2 provides a brief summary of the GSI formalism, outlines the
new method to quantify anisotropic scaling, and presents a simple method to generate stochastic aniso-
tropic fields. In section 3, the proposed method is applied to both simulated and measured precipitation
fields and the results are presented. Discussion of the performance, assumptions, and practical limitations
of the proposed method can be found in section 4, and finally some conclusions are drawn and further
research suggested in section 5.

2. Methods

2.1. Generalized Scale Invariance

Isotropic scaling, as depicted by equation (3), implies that the (statistical) properties of a field at different
scales are simply magnified (or reduced) versions of each other by some power of the scale ratio Z relating
the scales. However, for anisotropic scaling systems, simple magnification (or reduction) is not sufficient but
it must be accompanied by compression and/or rotation, both of which are functions of only the scale ratio
/. GSl was developed to address scaling in anisotropic systems and it states the most general conditions
under which a system can be considered as scale invariant.

Following Schertzer and Lovejoy [1985] and Lovejoy and Schertzer [1985], three elements are required to
completely define GSI. The scale changing operator T,, which transforms the scale of vectors by the scale
ratio 4, may be written as:

T,=,"6 4

where G is the generator defining the scale transformations (the anisotropy). Next, the unit scale (A=1) and
the corresponding unit “ball” By are defined. In general, By defines all the unit scale vectors k;, and it can be
used to generate all other nonunit scales and scale vectors k; by applying T, to By, i.e., B;=T,B;. The choice
of the unit ball B, can be arbitrary, but it is often convenient to select the scale where the system can be
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considered isotropic for defining the unit ball (i.e., a circle in 2-D or a sphere in 3-D). Then the unit ball can
be expressed using only one parameter, I, referred to as the “sphero scale.” The last element required to
define GSI is some measure of scale. For GSI in two dimensions, it is convenient to select this measure as
the square root of the area of the ball B; [Lewis et al., 1999].

Assuming statistical homogeneity of the fields, T, will be independent of the location in the field allowing
the linear Generalized Scale Invariance [Schertzer and Lovejoy, 1985; Lovejoy and Schertzer, 1985] to be used.
Although the assumption of homogeneity of the fields can be overly restrictive, it is usually possible to con-
sider at least subregions of the field where the linear GSI assumption holds. In the linear GSI in two dimen-
sions G is a 2XX2 matrix, and can be written as a linear combination of quaternions represented as two-
dimensional matrices:

G=d1+cK+fl+el (5)
where:
1T 0 1 0 0 1 0 -1
0 1 0 -1 1 0 1 0
Thus:
d+c f—e
G= 7)
f+e d—c

and using the series expansion of the exponential function, writing a>=c?+f?—e?, and defining U=In 4, we
get from equation (4) [Pflug et al., 1993]:

(8)

Timd e=a {1 cosh (aU) ~ (G—d1) M}

a

The components of G can be interpreted so that ¢ and f are associated with stratification, e with rotation,
and d with overall contraction of the system. The relative dominance of these operations can be distin-
guished by the sign of a?. When a? > 0, the stratification of the system is dominant, whereas when a? < 0,
the rotation dominates. Note that when a? < 0, the above equation holds, but a must be replaced with ||
and hyperbolic trigonometric functions with their ordinary counterparts [Pecknold et al., 1993]. Using the
square root of the area of the ball as a measure of scale corresponds to d=1 [Lewis et al., 1999].

2.2. Parameterization Method

In the method proposed here, I; and the components of G=G(c, e, f) (as by convention d=1) are estimated
using the two-dimensional power spectrum of the precipitation fields. However, since the fields can be con-
sidered as realizations of a stochastic process, the scaling is not expected to hold exactly for any individual
field but only for an ensemble average of fields produced using the same generator and the same sphero
scale. Moreover, precipitation fields change constantly over time (nonstationarity), which causes G and /; to
vary from field to field. However, as the anisotropy of the field is typically caused by mesoscale structures,
which evolve slowly in time relative to the smaller-scale features [Germann and Zawadzki, 2002; Radhak-
rishna et al., 2012], the sampling rate of the radar (here 6 min) is assumed to be much faster than the rate of
change in the spatial structure of the field (several hours). Therefore, it is assumed that the change in G and
I is sufficiently slow so that a centered moving average of N fields (here over a time period of an hour) can
be used to produce an ensemble average power spectrum Pq,4(k). This will then be used as the measure of
scaling for each field at time t instead of the spectrum P(k) of a single field. Furthermore, it is assumed that
there exists a sphero scale, I/, and this is used as the unit scale ;. Other functions could be used to describe
the unit scale (see, e.g., Lewis [1993] for an example of a fourth-order equation describing the unit scale),
but they would make the parameterization more complicated and increase the dimensionality of the prob-
lem. Sphero scale is assumed here for simplicity and due to the empirical observation that rain structures
tend to become more isotropic at the small scale.
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1. Compute Py,4(k) by averaging N
fields computed with eq.(2)

2. Create B), for each scale by solving .

ky from Eq.(10) for every pixel 3. Construct Py(B,) using Eq.(11) to
calculate E)\(B)) and setting value of
E\(B)) for each ky € By

4. Compute E? using Eq.(12), i.e.
adding up errors for individual pixels

5. Change [; and parameters of
G(c,e, f) to minimize E?

Figure 2. The process for quantifying the anisotropy of an individual field. See details in text.

The method proposed here is based on finding isolines of constant power on P,,4(k), representing structures
of the same scale. It relies on the assumption that the isoline at scale 4 is represented by the ball B;=B,(G, I;)
=B;(c,e,f,ls) when the parameters describing G=G(c, e, f) and /; have correct values. As B, refers to all scale
vectors of scale / (i.e, k;) in the anisotropic system, this is analogous to wavelengths k describing contours of
constant power E(k) in the isotropic case. Hence, the value confined by each B; can be seen as the “anisotropic
wavelength” and is here referred to as k;. Graphical illustration of the method is presented in Figure 2.

Given a generator G and sphero scale I, k; can be solved from the equation:

k; =Tk 9)

where f;u:)»’é =/S" is the Fourier space scaling operator corresponding to T; [Pflug et al., 1993], and k; is

on the unit circle corresponding to the unit scale 4. In practice, equations (8) and (9) yield the following
transcendental equation [Pecknold et al., 1993] that has to be solved for each coordinate pair (kx, ky) to get
k; for that location:

In (Qcosh?(a(U—Uy))+Rsinh?(a(U~Uy))—Ssinh(2a(U-U;))) =2U
Q=k§+k§

. k2 <c2+(f—e)2> +k; <c2+(f+e)2) +4kyk,ce

aZ
. (kg—kf)cﬂkxkyf
a
U=In k;~
where U;=Ink; and the value of k; at (kX, ky) is simply exp (U). Finally, the value of each k; is rounded to

the nearest integral value in order to have an integer field where each unique value represents a single B;.

Assuming that each B; should consist of k; describing an isoline on Pa4(k), the “anisotropic energy spec-
trum” E;(B;)=E;,(c, e, f,l) is calculated in a similar manner as the isotropic energy spectrum E(k):

-I n
E;(B;)= - E {Pavg(i)li € B, } (11)
i=1

where index i refers to the location (k. k).
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Finally, a candidate spectrum P,=P,(B;)=P;(c,e,f,ls) is constructed by assigning the respective average
values of E;(B;) to every location k;. In other words, a field is created where each location (kX, ky) has a
value from E,(B;) determined by the value of k; at that location.

By comparing P; to Pqy, pixel by pixel, G and /s are estimated by minimizing the following error function E?
=E%(c,e,f,l) (not to be confused with energy spectrum E(k)):

(e, f,l)=3" % (10109 10Pag (k) — 1010g 10P; (k)] (12)
The sum is over all the pixels in the spectra. Inverse distance weighting (IDW) is used to compensate for the
undersampling at the large wave numbers and possible biases at the small wave numbers. IDW is chosen
over anisotropic weighting according to k;, as using weighting that is based on B; would lead to different
weights depending on the values of G and /; that are to be estimated. This would complicate comparison of
error function values for different G and /;. Decibel units are used to reduce the large variability in the power
spectrum values between high and low wave numbers. Finally, squaring the error function penalizes the
large errors.

Identifying the minimum of E? can be implemented using any standard optimization algorithm that
does not require derivatives of the error function. Here the classical downhill simplex method of
Nelder and Mead [1965] is used to find the minimum of E2. Since the parameterization problem is
four dimensional, the simplex will consist of five vertices. Throughout the optimization, the initial
simplex for each field is constructed by setting one vertex to the minimum of the previous field,
and choosing the values of the remaining four vertices from uniform distributions. This is based on
the assumption that parameters for consecutive fields are likely to be relatively close to each other.
For the first field of the time series, all vertices are selected from uniform distributions, since there is
no previous optimum to be used as one of the vertices. In an attempt to prevent the downbhill sim-
plex from finding only a local minimum, the optimization routine is restarted until the absolute dif-
ference in the values of E? between the current and previous iteration rounds is less than a
predefined threshold or the maximum number of restarts is achieved.

The assumption of the linear GSI with the existence of a sphero scale places the following constraint on
parameters c and f [Schertzer and Lovejoy, 1985]:

d? > 2+f? (13)

Since d was set to d=1, parameters ¢ and f must now lie between —1 and 1. For parameter e, there
is no such a simple constraint, but for practical reasons the parameter space for e has to be limited.
Lewis [1993] suggests using limits of [—1.5, 1.5] for e based on experience with analyzed geophysical
fields. Although he analyzed satellite cloud radiance and sea ice SAR fields, these limits were adopted
here for precipitation fields as well. The sphero scale, I, (in real-space units) is restricted by the Fourier
transform to lie between twice the pixel size and the side length of the studied fields, i.e., in this
study between 2 and 256 km.

2.3. Generating Stochastic Anisotropic Fields

The method adopted here to generate random fields with a given spatial scaling is a modified version of
power law filtering Gaussian noise presented by Bell [1987] and Schertzer and Lovejoy [1987]. The former
used this technique to simulate rain fields in three dimensions as seen by a satellite, and the latter applied
it to simulate radar data. In this paper, realistic realizations of radar reflectivity (dBZ) fields are generated.
Fields of reflectivity (dBZ) rather than rainfall rate (mm/h) are generated since measured reflectivity fields
approximately follow truncated Gaussian distribution. Also, reflectivity fields can be transformed to rainfall
rates using any standard R-Z relationship if needed.

A field of Gaussian white noise has no spatial structure, i.e., it has a flat power spectrum with =0 in equa-

tion (3). A white noise field can, however, be transformed to have a spatial correlation structure by filtering

it in Fourier space using a power law filter with the desired f. Isotropic, as well as anisotropic, power law fil-
ters are defined as distance functions that decay as a power law (with an exponent of —f3/2) from the
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smallest frequency to the Nyquist frequency, and are then reflected around that point. The isotropic filter is
described by:

H(k)=k P2 (14)

For the anisotropic filter, wave numbers k have to be replaced by corresponding values of k; calculated
with equation (10).

Following Pegram and Clothier [2001], four parameters were used to create realistic reflectivity fields: u and o, the
mean and standard deviation of the reflectivity fields; WAR, the wetted area ratio (proportion of rainy cells to the
total number of cells, in this case the fraction of the field with dBZ > 10); and f5, the spatial scaling parameter.

It should be noted that WAR here is not strictly a measure of rain-to-no-rain ratio, but rather a ratio between
detectable and nondetectable signals of radar reflectivities. Rainfall echoes that are below 10-15 dBZ are
difficult to separate from clear-air returns from, e.g., birds and insects. Setting a threshold for a detectable
signal to 10 dBZ corresponds to the rain rate of 0.15 mm/h using the standard Marshall-Palmer distribution
[Marshall and Palmer, 1948], so in any case only very small rainfall intensities are neglected.

The procedure to create random fields with given spatial statistics is described as follows:
1. generate a field of Gaussian white noise;

2. transform the field into Fourier space;

3. filter the field with a power law filter with the desired f3;

4. inverse transform the field back to real space;

5. threshold the spatially correlated field to obtain the correct value of WAR (by setting values less than
some threshold to zero); and finally

6. scale and shift the field by the given values of x and o.

Since thresholding is followed by scaling and shifting, the resulting field will have residual nonzero values
where there should be no rain. These values have to be removed by forcing them to zero, i.e., by threshold-
ing the field again by, e.g., setting values <10 dBZ to zero. This operation will slightly alter i and ¢ of the
field, but reversing the order of the operations would result in much inferior statistics.

3. Results

The performance of the proposed method was evaluated using both simulations with a known anisotropy and
a measured precipitation event with an unknown anisotropy. Two sets of simulations were performed using
the procedure described in section 2.3. Each simulation consisted of a series of random fields with 256 X 256
pixels. The statistics describing the fields were held constant throughout the simulations at ©=9.3 dBZ, 6=
11.7 dB, and i= 2.67. For the second set of simulations, WAR was given a value of 0.38. These are the average
statistics of the measured event studied in this paper. Anisotropy was introduced by changing /s and the
parameters of G. The simulations begin from an isotropic case and then anisotropy is introduced gradually by
first changing one parameter at a time. After each parameter has been altered from the initial value, all param-
eters are changed simultaneously. Finally, parameters e and /; are changed individually one more time. All the
parameter changes are executed during 10 consecutive fields, and after each change, the parameter values
are held constant for the next 10 consecutive fields. The selected time series was chosen to observe how alter-
ing parameters one by one and at the same time affects the performance of the parameterization method in a
wide variety of anisotropic situations rather than trying to replicate some distinct physical situations. There is
no temporal correlation between the generated fields, but the fields are a series of independent realizations of
a stochastic process. For convenience, however, the sequence of simulated fields is also referred to as a time
series to unify the language when describing the results of simulated and measured reflectivity fields.

3.1. Nonzero Random Fields
In the first set of simulations, nonzero random fields were generated by removing Step (5) from the proce-
dure presented in section 2.3. The resulting fields have nonzero values in all pixels representing ideal
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Figure 3. (a) An example of a nonzero random field, generated with G=G(—0.2, —0.2,0.2) and ;=12 km. (b) P44 corresponding to the
real-space field on the left with selected B; (black ellipses) produced with estimated generator parameters G=G(—0.203, —0.200, 0.204)
and /;=12.07 km (red circle). If G and /; are correct, B, should describe isolines on Pgg.

conditions for the proposed parameterization method as no information on the spatial structure of the
fields is lost through neglecting values less than a given threshold.

Pqvq for each field was constructed by using a centered moving average of seven contiguous fields. Due to
possibly large errors in power spectrum values computed for the smallest wave numbers, the 3 by 3 pixel
area in the middle of the spectrum image was disregarded from the computation of the error function. An
example of an anisotropic nonzero random field and the corresponding Pq,, with estimated B, are pre-
sented in Figure 3. Note that due to the properties of the Fourier transform the orientation of the features
in real space is orthogonal to the orientation in power spectrum. To evaluate the reliability of the proposed
method, the parameterization procedure was repeated 15 times, and the average values and 95% confi-
dence intervals for each parameter and for each time step were calculated (Figure 4). To better visualize var-
iance and bias in the parameter estimates, Figure 5 shows scatterplots of estimated parameter values
against the expected (i.e., input) values from the 15 replicates per time step.

3.2. Simulated Radar Reflectivity Fields
To evaluate the performance of the proposed parameterization method with realistic fields, yet knowing
the true anisotropy, a set of simulated reflectivity fields was generated using the same random generator
04 30 seed and the same anisotropy as in
: : : : : : : section 3.1 (nonzero fields). However,
to create intermittency similar to real
reflectivity fields, the procedure out-
lined in section 2.3, including Step
(5) of thresholding the fields, was fol-
= lowed. In addition, the noise fields
=, were padded with zeros before the
. . . . . ; . Fourier transform at Step (2) and
AP = s e e e e e o 10 returned back to the original size
: : : ' : \ : before Step (5) to prevent the
15 unnatural wrap-around effect. Data
windowing with a rotationally sym-
08 L L L . . . . g metric boxcar window, i.e., by setting
0 ® 40 60 He%)no. 10 120 140 18 values outside a radius of 128 pixels

from the center of the field to zero,
Figure 4. Average values (solid lines) and 95% confidence limits (dotted lines) of were used to alleviate the effects of
estimated anisotropy parameters for 15 parameterization rounds using nonzero ran- . .
dom fields with gradually changing anisotropy. Dashed lines indicate input parame- spectrum corruption due to the dis-
ters. c—red, e—green, f—blue, and ,—black. continuities at the edges of the
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Figure 5. Relationship between input (horizontal axis) and estimated (vertical axis) anisotropy parameters for 15 parameterization rounds using nonzero random fields. (a) ¢, (b) e, (c) f,
and (d) /. Note that scale for e, is truncated due to the large variance at ej, =0.

image introduced by the zero padding. Windowing with a Hann window was also tested, but eventually the
boxcar window was selected as it retains the maximum spectral resolution, and it also gave lower error
function values for the majority of the simulated fields. Analogous to parameter estimation with nonzero
fields Pq 4y was constructed using a centered moving average of seven contiguous fields, and the 3 by 3
pixel area in the middle of the spectrum image was left out from the error function analysis.

Figure 6 presents an example of a simulated and windowed reflectivity field and the corresponding Payg
with estimated B;. The average values and 95% confidence intervals from 15 parameterization runs using
simulated reflectivity fields are presented in Figure 7, and Figure 8 presents the scatterplots of estimated
parameters against their expected values.

3.2.1. Sensitivity of GSI Parameter Estimates to WAR

The sensitivity of the GSI parameter estimates to varying degrees of intermittency was investigated by
repeating the parameterization for the nonzero random fields using the boxcar window, and by parameter-
izing random fields with a gradually decreasing value of WAR from 1.0 to 0.1 in steps of 0.1. Fields with a
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Figure 6. (a) An example of a simulated reflectivity field windowed with a boxcar window, generated with G=G(—0.2, —0.2,0.2) and ;=
12 km. (b) P4y corresponding to the real-space field on the left with selected B; (black ellipses) produced with estimated generator param-
eters G=G(—0.171, —0.203,0.166) and /;=12.07 km (red circle). If G and /; are correct, B; should describe isolines on Pyy,.

desired WAR value and without the wrap-around effect were created following the same procedure as in
section 3.2 but excluding the final Step (6) of scaling and shifting the fields. Boxcar window was used in the
parameterization of the fields, and for each case the average value of 15 parameterization runs was used as
the estimator 0; of parameter 0; for field i. To quantify the accuracy and the reliability of the parameter esti-
mates throughout the entire time series, the mean absolute error (MAE) and the mean bias were calculated
(Table 1):

n A.— .
MAE= Z_‘G’n(’" (15)
i=1

n y—_— .
bias= Z¥ (16)

i=1

where n is the number of time steps in the time series. MAE and bias were calculated only for fields with ¢

> 0.1 and/or f > 0.1 as parameters e and /; are irrelevant in mildly anisotropic situations having therefore
large variability in their estimates (see
Discussion). Average values of ¢, e, f,

04 - - - - - - - 30 and I, for WAR values of 1.0, 0.5, and

' ' ' ' ' ' ' 0.1 are presented in Figure 9 together

with the input values for each time

step.

3.3. Measured Radar Reflectivity
Fields

The studied rain event was captured
by Mt. Stapylton radar near Brisbane,
Australia, on 11 December 2010 from
00:00 UTC to 20:00 UTC. Instantaneous
radar reflectivity values recorded at

-8} 20 40 60 80 1(2)0 1220 1‘210 o the interval of 6 min were processed
Field no. into reflectivity (dBZ) fields having a
resolution of 1 km and covering a
Figure 7. Average values (solid lines) and 95% confidence limits (dotted lines) of 256 km by 256 km square centered at

estimated anisotropy parameters for 15 parameterization rounds using simulated h dar. Thi
reflectivity fields (WAR = 0.38) with gradually changing anisotropy. Dashed lines the radar. This event represents a very
indicate input parameters. c—red, e—green, f—blue, and /;—black. anisotropic storm that moves over the
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Figure 8. Relationship between input (horizontal axis) and estimated (vertical axis) anisotropy parameters for 15 parameterization rounds using simulated reflectivity fields. (a) ¢, (b) e,
(c) f, and (d) Is. Note that scale for e,y and [°“* is truncated due to the large variance near e;;=0 and /" =2 km.

radar from the north-west (NW) to the south-east (SE). Figure 10 presents the evolution of the storm
throughout the event, and Figure 11 shows the time series of areal estimates of g, o, and WAR over the 256
by 256 km? square.

A centered moving average of 11 contiguous fields was used to produce P4, corresponding to an averag-
ing time period of 60 min. Similar to the analysis of simulated reflectivity fields, a boxcar window was used
prior to power spectrum estimation and the 3 by 3 pixel area in the middle of the spectrum image was
neglected from computation of the error function.

As with simulated fields, the parameterization procedure was repeated 15 times to evaluate the reliability of
the proposed method. The average parameter values and 95% confidence limits for each parameter and
each time step are presented in Figure 12. One of the 15 parameterization rounds resulted in erroneous val-
ues of G and /; for the time period between 00:00 and 04:00 UTC as revealed by much larger value of E2 in
comparison to the other 14 rounds. This affected the average value and increased the width of the
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Table 1. Sensitivities of GSI Parameter Estimates to Varying Degrees of Intermittency®

f I

Bias MAE Bias MAE Bias MAE Bias MAE
ideal —0.003 0.004 —0.005 0.010 0.001 0.004 0.017 0.123
idealpoxcar 0.006 0.009 —0.012 0.022 —0.008 0.009 —0.097 0.291
WAR; o 0.012 0.012 —0.009 0.033 —0.010 0.013 —0.119 0.419
WARq 9 0.010 0.013 —0.008 0.038 —0.012 0.015 —0.293 0.482
WARo g 0.011 0.013 —0.008 0.038 —0.013 0.015 —0.185 0.433
WAR 7 0.010 0.013 —0.008 0.039 —0.014 0.016 —0.245 0.457
WARo 6 0.010 0.013 —0.006 0.040 —0.014 0.016 —0.353 0.493
WAR 5 0.008 0.011 —0.007 0.041 —0.015 0.017 —0.494 0.560
WAR 4 0.008 0.012 —0.012 0.048 —0.017 0.019 —0.628 0.676
WAR 3 0.006 0.013 —0.013 0.049 —0.015 0.016 —0.795 0.820
WAR, > 0.005 0.012 —0.014 0.062 —0.012 0.018 —0.830 0.848
WAR 1 —0.006 0.013 —0.019 0.068 —0.014 0.019 —1.032 1.059

2MAE, mean absolute error; ideal, nonzero random fields; idealpoxcar, NONZzero random fields with boxcar window; WAR;, simulated

fields with wetted area ratio i.

confidence intervals particularly for parameters e and /. In order to assess the effect of these erroneous
parameter estimates, Figure 12 also presents the average values and 95% confidence intervals for parame-

ters e and /; for this time period without the erroneous values.

vt
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Figure 9. Average values of estimated anisotropy parameters for 15 parameterization rounds using random fields with WAR values of 1.0, 0.5, and 0.1. (a) ¢, (b) e, (c) f, and (d) ;.
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Figure 10. Measured radar reflectivities (dBZ) over a study area of 256 km by 256 km at Brisbane, Australia on 11 December 2010, at selected times. The spatial resolution is 1 km. The
movement of the storm is from NW to SE direction.
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1 To give a better understanding of
Jog the effect of different parameter
values, Figure 13 presents con-
tours of P,y near the largest
07 scales with a few different B, com-
puted using the estimated G and
Is at 07:00 UTC and at 14:30 UTC,
representing two situations where
-104 the estimated parameters are rela-
o3 tively different. The reflectivity
fields at these times are presented
to relate the parameter values to
0.1 the rainfall patterns. The reflectiv-
ity images are presented with a

-108
06 __
- 0.5§

-40.2
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Time (UTC) boxcar window to facilitate the
interpretation of the images by
Figure 11. Spatial statistics for windowed measured reflectivity fields over the Showing on|y the region that was
256 km by 256 km study area. p (dBZ; solid line), ¢ (dB; dashed line), and WAR (dot-

ted line). used in creating Payg.

Finally, a measured reflectivity field
at 07:00 UTC (Figure 13a) is compared to an isotropic and an anisotropic field generated using the method
described in section 2.3 (Figure 14). Both fields were generated using the same random number generator
seed and the same spatial statistics (1=11.02 dBZ, 6=15.02 dB, WAR=0.38, and }=2.85) corresponding to
the estimated statistics at 07:00 UTC. The anisotropic field was generated using the anisotropy parameters
estimated from P,,4 corresponding to the measured field; G=G(—0.132, —0.364,0.038) and
[s=2.48 km.

4, Discussion

Under ideal conditions, i.e., using generated nonzero fields, the proposed method performed well finding
all the parameters throughout the event with negligible bias and variance in the estimated parameters val-
ues (Figures 4 and 5). The only exception was parameter e in the beginning of the event when the fields
being initially isotropic started gradually attain more anisotropic characteristics. When the field is fully iso-
tropic (c=f=0), the parameters e and /;, controlling the rotation of the system and the location of the
sphero scale, respectively, com-
pletely lose their relevance. Conse-

06 o . . . . . s quently, any values of e and /; should
: result in the same error function
04 1% value. Here the fields are close to
being isotropic (c and f are close to
02 20 zero), which reduces the sensitivity
— _ of the error function to the values of
g 0 15%> e and /s and is seen as wide confi-
© - dence intervals for parameter e in
02t} - J10 Figure 4 for fields 0-20, and as a
' large spread in values of e,,; when
04 L s —0.1 < e, < 0iin Figure 5b. The val-
L,sz_“\ : : : ) ey ues of e and /; were forced to 0 and
ot i : ; ; ; TS % 2 km, respectively, when the fields
00 0300 0600 OQI%)B (U%OO 1500 1800  2t: were close to isotropic, i.e., |c| < 0.01
and |f| < 0.01, as it is feasible to
Figure 12. Average values (solid lines) and 95% confidence limits (dotted lines) of assume that the transformation from
estimated anisotropy parameters for 15 parameterization rounds using measured isotropic conditions to anisotropic

radar reflectivity fields. c—red, e—green, f—blue, ls—Dblack, e without the erroneous diti illb dual. i d
values from one parameter estimation round is shown with dark green, and /; with- conditions will be gradual, i.e., e an
out the erroneous values from the same round is shown with gray. Is will have small values in mildly
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Figure 13. Measured reflectivity field windowed with a boxcar window (a) at 07:00 UTC and (c) at 14:30 UTC. (b) Contours of P4 near the
largest scales with selected B; (ellipses) corresponding to estimated G=G(—0.132, —0.364, 0.038) and /;=2.48 km at 07:00 UTC, and (d) G
=G(—0.004,0.228,0.101) and /;=2.04 km at 14:30 UTC.

anisotropic conditions. The change from an isotropic to an anisotropic system is however challenging, as it
can be seen from Figure 4 that e behaves well as long as the values of both |c| and |f| remain below 0.01,
but as soon as |c| starts to increase the variance in the estimated value of e is greatly enhanced until the sys-
tem is anisotropic enough to restore the estimate of e back to the correct track.

The method was also capable of retrieving the original parameter values for simulated reflectivity fields
where intermittency of rainfall is accounted for (Figure 7). However, there is a slight bias toward isotropy in
parameters ¢, f, and /; at the end of the event when the generated fields are most anisotropic. There is also
a small increase in the variance of parameter values when compared to nonzero fields, as illustrated by the
increased width in the scatterplot pattern of estimated parameters (see Figures 5 and 8). The main differ-
ence in estimated parameter values between nonzero fields and simulated reflectivity fields is the increased
fluctuations around the original parameter values especially with parameter e (see Figures 4 and 7). These
fluctuations together with the uneven distribution of input values are also causing the sudden increase in
the spread of output values in Figures 5 and 8 when input parameters are held constant (e.g., for f;, values
of 0, 0.1 and 0.2), as all the output values are being plotted against the same input value, but there are, e.g.,
15X 60 points with f;=0.2 and only 15X 1 points with f;;=0.15.

It seems that while the proposed method is able to find accurate estimates for the parameter values for
nonzero fields, any change away from these ideal conditions will create perturbations to the power spec-
trum. These perturbations, in turn, are reflected in the estimated parameter values as small deviations from
the values used in generating the fields. This is, however, not a defect of the parameterization method but
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Figure 14. (a) An example of an isotropic field generated with estimated spatial statistics of the measured field in Figure 13a: 1=11.02
dBZ, 6=15.02 dB, WAR=0.38, and ;=2.85. (b) Anisotropic field generated with the same spatial statistics and the same random generator
seed as the isotropic field using estimated anisotropy parameters of Figure 13a: G=G(—0.132, —0.364,0.038) and /;=2.48 km.

rather a consequence of the thresholding and windowing operations that alter the power spectra, as can
be seen from the increased values of MAE for all the GSI parameters when the boxcar window is introduced
to nonzero fields (Table 1). Perhaps surprisingly, the values of MAE are further increased when windowed
nonzero fields (that wrap around the edges) are compared to windowed random fields with WAR = 1.0
(that do not wrap around the edges), indicating that the wrap-around effect is important also for windowed
fields. This is a practical limitation of the method, as measured precipitation fields do not wrap around the
image edges.

Thresholding (setting pixels with a value smaller than some threshold to zero) results in a significant loss of
information in the image when compared to nonzero fields, explaining the increased MAE with decreasing
WAR for parameters e, f, and [ (Table 1). The bias toward isotropy in simulated reflectivity fields (Figure 7)
for parameters ¢, f, and [; is consistent with the overall bias for the parameters in Table 1. Even though the
parameter estimates deteriorate with decreasing WAR, in practice the differences are small and even with
WAR=0.1 the parameter estimates are of a relatively good accuracy (Figure 9). Consequently, while there
clearly is a difference in the accuracy of retrieving known anisotropy parameters for generated nonzero
fields (WAR = 1) and more realistic fields with WAR < 1, this difference can be attributed to the informa-
tion content of the images.

As noted above for nonzero fields, parameters e and /; become irrelevant for isotropic fields, and in the case
of simulated reflectivity fields the estimated values for both these parameters have high variance in the
beginning of the simulation when the fields are close to being isotropic (Figure 7). This is only of minor sig-
nificance, though. The parameters c and f are estimated correctly also in near isotropic situations, and the
values for e and /; are estimated correctly once the fields become more anisotropic. Unlike with the nonzero
fields, forcing the value of e to 0 and the value of /s to 2 km when |c| < 0.01 and |f| < 0.01 was not success-
ful here due to the reduced accuracy in the estimates of ¢ and f. For operational use it would be beneficial
to have a two-step parameterization process, where it is first determined whether the system is anisotropic
enough to be parameterized and parameters are then estimated only for the anisotropic cases. This would
also save computational burden by eliminating the need to estimate unnecessary parameters.

To assess whether the estimated parameter values for the measured radar reflectivity fields are acceptable,
the visual appearance of the time series is analyzed first. The overall behavior of the time series for each of
the estimated parameters is stable, i.e., the means of the estimated parameter values in Figure 12 do not
fluctuate much. This indicates that the low-frequency variations are due to actual changes in the anisotropic
structure of the fields while the small fluctuations are due to the noise in the spectrum estimates, which
was the case with simulated reflectivity fields, too. Furthermore, at least parameters ¢ and f can be related
to visual observations. These are the parameters that control the stratification of the system in north-south
and east-west (c) and diagonal (f) directions. Parameter f remained approximately constant throughout the
event at around 0.1, which indicates contraction of structures larger than /s in NE-SW direction. The
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estimated /; was found to lie at the smallest scales throughout the event, which is in accordance with previ-
ous observations [Zawadzki, 1973; Kumar and Foufoula-Georgiou, 1993b]. The resulting elongated large
structures and isotropic small structures are in a good agreement with measured radar reflectivities shown
in Figure 10. Parameter c on the other hand is mostly negative during the event, indicating further contrac-
tion of largest structures in the east-west direction. Also, there appears to be a positive correlation between
parameters ¢ and e. This may well be characteristic to the storm event studied here, rather than a universal
phenomenon, but it would be worth to investigate this further by analyzing other storm events.

Although the studied event is very anisotropic, the anisotropy is changing only slightly during the event,
which can be attributed to its short duration. Some differences can be distinguished, however, e.g.,
between 07:00 and 14:30 UTC (Figure 13). The orientation of the largest structures being different is
depicted by B, at the very smallest frequencies having their major axis oriented slightly more in the NEE-
SWW direction at 14:30 than at 07:00 when the corresponding B, are oriented more in the NE-SW direction.
This corresponds to the largest structures being oriented more in NNW-SSE direction at 14:30 whereas at
07:00 the orientation is approximately in NW-SE direction. The effect of parameter e can be seen as the dif-
ference in the degree and the direction of rotation of B; between different scales in Figure 13. Although the
change in the pair of spectra is small it is still detectable, and the method proposed here is capable of iden-
tifying the (small) changes in anisotropy. The capacity to automatically identify the changing anisotropy is
valuable, particularly as over a longer period of time the anisotropy can change substantially.

The confidence intervals for the estimated parameters for both the simulated cases and the measured case
are very narrow throughout the studied events and the optimal parameter values (not shown here) are con-
stantly close to the estimated average values, apart from the isotropic and near isotropic situations in the
simulated events (Figures 4 and 7) and the time period of 00:00-04:00 UTC of the measured event (Figure
12). Consequently, instead of running ensemble parameter estimations results from any single parameter
estimation round could be used as estimated parameter values. Furthermore, these results imply that the
downhill simplex algorithm is a suitable tool for finding the error function minimum. The wide confidence
intervals between 00:00 and 04:00 UTC in the measured event (Figure 12) are due to the variability in
parameter estimates during this period, indicating that downhill simplex had difficulties in finding the
global optimum for these fields. This can be seen by removing the clearly erroneous estimates for e and [,
which of course results in a considerable improvement in estimated values, but still leaves wider confidence
intervals for the beginning of the event than for the later times.

Comparing the simulated isotropic and anisotropic fields (Figure 14) to the measured field (Figure 13a) con-
firms that there is a substantial difference between the simulated fields and that the isotropic simulation is
not representative of the studied event with a distinct rainband. The anisotropic simulation on the other
hand reproduces the orientation and overall elongation of the measured event well, demonstrating that
anisotropy should be taken into account if more realistic looking fields are to be generated.

The method proposed here can be seen more as an image processing approach to quantify the anisotropy
of geophysical fields than the more scaling oriented approaches of Pflug et al. [1993] and the SIG method of
Lewis et al. [1999]. Here the scaling in the form of parameter f3 is not present in the anisotropy estimation
itself but the approach simply identifies a spatial transformation from isotropic wavelengths to anisotropic
wavelengths. This has the added benefit of reducing the number of parameters by one, since the scaling
parameter is not estimated simultaneously as in the method of Pflug et al. [1993]. In SIG, the scaling is not
estimated simultaneously with the GSI parameters, but it has to be estimated a priori using equation (3). In
this regard, another major difference of the proposed method to earlier work is that here the parameteriza-
tion can be run without user intervention by estimating the values of G and /; directly using the error func-
tion E2. In Pflug et al., [1993] and in SIG, a two-step procedure is required to estimate G and I; separately.
Because of this, the parameter space in SIG is only three dimensional, but the introduced extra effort from
first estimating the scaling parameter, then G and only then /; cancels out the extra benefit gained from a
smaller parameter space. Furthermore, the proposed method is aimed to be used for quantifying the anisot-
ropy of a time series of consecutive precipitation fields, instead of individual fields as in Pflug et al. [1993] or
SIG. Beaulieu et al. [2007] on the other hand estimate the GSI parameters by visually examining scatterplots
describing properties of isolines in P(k), presenting a method that is easy to approach but laborious when
estimating parameters of more than a few fields.
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The computational burden of the proposed method could be reduced by decreasing the parameter space
by setting values of e and /; constant. For the measured event presented here, the sphero scale is near the
smallest scales throughout the event and could be given a constant value of, say, 2 km prior to parameter
estimation. Similarly, the rotation between structures of different sizes is minor in this case, and parameter e
could be fixed to a value of zero for parameter estimation, forcing all the scales to have the same orienta-
tion of anisotropy. Having the possibility to identify all four parameters could, however, be essential in other
occasions. Ebtehaj and Foufoula-Georgiou [2010] present a case where a storm event captured by a radar
over the Appalachian Mountains in June 1995 had the small-scale features perpendicular to the mountain
ridge, the intermediate scales isotropic, and the large-scale features parallel to the ridge line. Events like this
highlight the parsimony of GSI-based methods to quantify the anisotropy across all scales using a single
parameter set of generator G and sphero scale /;. Alternatively, the anisotropy could be described using
geostatistical methods, i.e., the nested variogram model of geometric anisotropy with one variogram
describing small structures and another one describing large structures. Such a setup would, however,
result in a larger number of parameters to be identified. Admittedly, especially in cases where there is no
rotation between different scales the variogram method has the advantage of being more approachable
having parameters that are easier to interpret than the GSI parameters.

The proposed method requires sufficient spatial and temporal resolutions of the input data in order to give
adequate estimates of the prevailing anisotropy. Fine spatial resolution relative to size of the rain structures
is required for capturing the rain patterns without too much distortion, whereas fine temporal resolution is
necessary to include a sufficient number of fields for Pg,, without the structure of the rain event changing
considerably during the averaging period. Data for mesoscale events observed with the current generation
of C and S-band radar networks and processed into Cartesian grid with spatial resolution of 1-2 km and
temporal resolution of 5-10 min with domain sizes in the order of 100X 100 to 300300 km? are available
in large quantities. These offer a solid basis for identifying anisotropy of storm events using the proposed
method. If the domain size is considerably smaller than this both spatial and temporal resolutions of the
data need to be increased to account for the rapid movement of the storm over the domain and for the
small-scale changes in the storm structure. Large domain sizes on the other hand present the problem of
increased intermittency and heterogeneity, as it is likely that there is rain only over a part of the domain or
that the event changes its spatial structure within the domain. While the method was shown to perform rel-
atively well in situations with high intermittency, the heterogeneity is problematic as the linear GSI assumes
homogeneity over the study domain. The simplest solution to deal with heterogeneous situations is to
divide the domain into smaller subregions and, assuming that the homogeneity assumption then holds, to
estimate the anisotropy for each subregion separately. This requires, however, the data to have sufficient
spatial and temporal resolutions to give adequate estimates for the GSI parameters. A better option would
be to use the nonlinear GSI, but this would increase the complexity of the method as G would become a
function of location. From a practical point of view, large domain sizes with high resolution may present a
problem with increased computation time. However, using modern hardware with multiple CPU cores the
process can be speeded up by parallelizing the computation of most time consuming parts of the process.
While it is not required for the domain to be a square, it has the practical advantage of being easily win-
dowed into a circle with the minimum loss of data. Even with windowing, misinterpreting the spatial struc-
ture of a storm due to the limited view of radar can pose a problem when a storm is entering or exiting the
radar view. This can result in, e.g., an isotropic storm to appear as anisotropic when only the edge of the
storm is visible for radar. The method furthermore assumes the power spectrum of rain fields to be approxi-
mated as a set of ellipses, and is not suited for situations that require a more complicated description of the
scale geometry unless the number of parameters is increased.

5. Conclusions

Anisotropy of the precipitation fields plays a significant role in determining the catchment’s response to a
rainstorm, and should therefore be taken into account when generating stochastic rain events. In this paper,
a new method, based on the linear GSI, to quantify the anisotropy of a time series of precipitation fields has
been proposed. The proposed method was evaluated using nonzero random fields with a known anisot-
ropy (ideal conditions), simulated radar reflectivity fields with a known anisotropy, and measured radar
reflectivity fields with an unknown anisotropy.
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Using nonzero random fields, the anisotropy parameters were retrieved accurately with negligible bias and
variance. The accuracy of the parameter estimates is reduced slightly and fluctuations around the original
(input) values are introduced when taking into account the intermittency in simulated reflectivity fields. The
reduced accuracy in parameter estimates can be attributed to the lost information due to the introduced inter-
mittency. In isotropic systems, GSI parameters e and /; lose their relevance, which complicated their estimation
in near-isotropic conditions. However, the parameters controlling whether the system is isotropic or aniso-
tropic (c and f) are estimated accurately also in such conditions. Parameter estimates for measured reflectivity
fields corresponded well with visual observations of the storm event. Even though the anisotropy does not
change significantly during the event, the method was able to detect even the small changes in anisotropy.

The proposed method provides for quantification of anisotropy in geophysical fields an alternative that is
easier to use and requires less user interaction and decision making than existing methods relying on GSI.
Furthermore, the existing methods are intended to be used for individual fields, whereas the proposed
method operates with a time series of fields. These are valuable aspects when dealing with precipitation
events that typically comprise long time series of fields that are impractical to be handled individually or
manually. In future, it would be interesting to compare the performance and the ease-of-use of the pro-
posed method to the existing GSI-based and other methods. Furthermore, the proposed method should be
tested using other, possibly more challenging case studies, to better evaluate its applicability as a tool for
anisotropy quantification in precipitation fields.
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