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We study the distribution of work induced by the two-point measurement protocol for a driven open quantum
system. We first derive a general form for the generating function of work for the total system, bearing in mind
that the Hamiltonian does not necessarily commute with its time derivative. Using this result, we then study the
first few moments of work by using the master equation of the reduced system, invoking approximations similar
to the ones made in the microscopic derivation of the reduced density matrix. Our results show that already in
the third moment of work, correction terms appear that involve commutators between the Hamiltonian and its
time derivative. To demonstrate the importance of these terms, we consider a sinusoidally, weakly driven and
weakly coupled open two-level quantum system, and indeed find that already in the third moment of work, the
correction terms are significant. We also compare our results to those obtained with the quantum jump method
and find a good agreement.

DOI: 10.1103/PhysRevB.90.094304 PACS number(s): 42.50.Lc, 05.30.−d, 05.40.−a

I. INTRODUCTION

For microscopic systems driven out of equilibrium, the
fluctuation theorems, e.g., Refs. [1–4], provide a powerful
tool to analyze the thermodynamic nature of nonequilibrium
processes beyond the linear response regime. When the micro-
scopic system can be described in terms of classical mechanics,
the fluctuation theorems have been examined for several
systems [5–11]. However, when described in terms of quantum
mechanics, the situation is more problematic. In quantum
systems, it is far from obvious how to treat certain thermody-
namical quantities such as work W that relate to the physical
path of the system rather than to the state (wave function).

Work appears in the classical Jarzynski equation (JE)
〈e−W/kBT 〉 = e−�F/kBT , where �F is the free-energy differ-
ence between the initial equilibrium and the final states, and
the brackets 〈·〉 denote averaging over an infinite number of
repetitions. Trying to generalize the JE to the quantum regime
has caused much debate about how to define W in a physically
meaningful way. Earlier quantum treatments of the JE were
based on defining a genuine work operator [12–15]. Yet since
work is not a traditional quantum observable [16], the use of
a quantum work operator leads to corrections to the JE. It can
be recovered by another approach, known as the two-point
measurement protocol [17–20], in which the energy of the
closed system is measured at the beginning and at the end
of the process and there is no dissipated heat. The work of a
single trajectory is then defined as the energy difference of
the final and initial measurement outcomes. In the case of
open systems, assuming that the interaction Hamiltonian is
negligible, the energy measurement of the total closed system
can be approximated by measuring the energy of the reduced
system and the environment separately.

*samu.suomela@aalto.fi

In a recent paper [21], the quantum jump method, also
known as the Monte Carlo wave function method (MCWF),
was proposed as an efficient way to discuss the problem
of determining the statistics of work in driven quantum
systems with dissipation. By interpreting a jump between the
eigenstates of the Hamiltonian as an emission and absorption
of a photon to the heat bath, the total energy exchanged
between the system and the heat bath due to the jumps is
then interpreted as heat. The work can then be defined as
the energy difference between the initial and final states of
the system plus the heat released to the heat bath. It should be
noted that with this definition, a possible energetic contribution
from the interaction between the system and the heat bath was
not taken into account in work [22,23].

In this paper, we analyze in detail the first few moments
of work by using the master-equation approach for an open
quantum system. To characterize the stochastic nature of W

and its distribution, it is natural to consider the moments
of work instead of directly trying to calculate exponential
averages such as that in the JE, which is a formidable task for
open quantum systems in general. The first moment gives the
mean work done, the second moment gives the variance, and
the third moment gives the skewness of the work distribution
for non-Gaussian distributions. As the first step, we derive the
two-point measurement protocol generating function without
making the implicit assumption in Ref. [24] that the total
system Hamiltonian commutes with its time derivative. This
result allows us to derive general expressions for the first three
moments of work, which we compare with results obtained
using the generating function of Ref. [24] (Eqs. (17), (18),
(22), and (23) in Ref. [24]). Our results show that only the
first two moments of work are identical in the two approaches
above, and nontrivial correction terms appear to the third and
higher moments when the Hamiltonian does not commute with
its time derivative. To study this issue in a specific case, we
consider the weakly coupled and weakly driven open two-level
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quantum system of Ref. [21], where we invoke approximations
similar to those used in the microscopic derivation of the
Lindblad equation of the reduced system. The test system
describes, for instance, a Cooper box coupled capacitively or a
dc superconducting quantum interference device (dc-SQUID)
coupled inductively to a calorimeter [25]. When calculating
the dynamics of the test system, we neglect the interaction
Hamiltonian in the energy measurements. We indeed find that
our results for the first three moments are in agreement with
the quantum jump results. When comparing the two different
generating functions, we find a significant difference in the
values of the third moment.

The general results derived here are not restricted to a
Cooper box and a dc-SQUID, but can be used for various
kinds of superconducting qubits [26] and quantum dot circuits
[27–29].

II. GENERATING FUNCTION AND MOMENTS
FOR WORK

In the two-measurement protocol for a closed quantum
system, the probability to measure energy E0 at time t = 0
and Eτ at t = τ is of the form [30]

P [Eτ ,E0] = Tr
{
P̂Eτ

Û (τ,0)P̂E0 ρ̂0P̂E0Û
†(τ,0)P̂Eτ

}
, (1)

where Û (τ,0) = T← exp [− i
�

∫ τ

0 dtĤ (t)] is the unitary time
evolution operator, T← describes the chronological time order-
ing, and the projection operators are given by P̂Et

= |Et 〉〈Et |,
where |Et 〉 is the state corresponding to the measurement result
Et at time t . The corresponding generating function is the
Fourier transform of P [Eτ ,E0] [24] (the calculation is also
given in Appendix A):

G(u) =
∑
E0,Eτ

eiu(Eτ −E0)P [Eτ ,E0]

= Tr{Ûu/2(τ,0) ¯̂ρ0Û
†
−u/2(τ,0)}, (2)

where

Ûu(τ,0) = eiuĤ (τ )Û (τ,0)e−iuĤ (0), (3)

¯̂ρ0 =
∑
E0

P̂E0 ρ̂0P̂E0 , (4)

and ρ̂0 is the initial density matrix. If the initial density matrix
is diagonal in the first measurement basis, then ¯̂ρ0 = ρ̂0.

The differentiation of the evolution operator Ûu(τ,0)
[Eq. (3)] with respect to τ yields the following equation of
motion:

dÛu(τ,0)

dτ
=

[
− i

�
Ĥ (τ ) +

∞∑
n=1

(iu)n

n!
Ĉn(τ )

]
Ûu(τ,0), (5)

where Ĉ1(τ ) = ∂τ Ĥ (τ ), Ĉ2(τ ) = [Ĥ (τ ),∂τ Ĥ (τ )], Ĉ3(τ ) =
[Ĥ (τ ),[Ĥ (τ ),∂τ Ĥ (τ )]], etc. The generating function can be

then written as (see Appendix A)

G(u) = Tr

{
T→ exp

[∫ τ

0
dt

∞∑
n=1

(−1)n+1 (iu)n

n!2n
ĈH

n (t)

]

× T← exp

[∫ τ

0
dt

∞∑
n=1

(iu)n

n!2n
ĈH

n (t)

]
¯̂ρ0

}
, (6)

where the superscript H indicates the Heisenberg picture, i.e.,
ĈH

n (t) = Û †(t,0)Ĉn(t)Û (t,0). The moments of work are then
obtained by differentiating G(u) with respect to u at u = 0:

〈Wn〉 = (−i)n
∂nG(u)

∂un

∣∣∣∣
u=0

. (7)

With the implicit assumption that [Ĥ (t),∂t Ĥ (t)] = 0
(Ref. [24]), Ĉn = 0 for n > 1, and the generating function
becomes

G0(u) = Tr

{
T→ exp

[
i
u

2

∫ τ

0
dtP̂ H (t)

]

× T← exp

[
i
u

2

∫ τ

0
dtP̂ H (t)

]
¯̂ρ0

}
, (8)

where the power operator P̂ (Ref. [22]) is the time derivative
of the total Hamiltonian, i.e., P̂ H (t) = Û †(t,0)∂t Ĥ (t)Û (t,0).

The generating functions of Eqs. (6) and (8) are equivalent
to the first order of u. Thus, both generating functions trivially
give the same expression for the first moment of work as

〈W 〉 =
∫ τ

0
dt1〈P̂ H (t1)〉. (9)

Although the generating functions of Eqs. (6) and (8) differ
already to second order in u, the expressions for the second
moment turn out to be equal as the corrections given by Eq. (6)
cancel out,

〈W 2〉 = 2
∫ τ

0
dt1

∫ t1

0
dt2Re{〈P̂ H (t1)P̂ H (t2)〉}, (10)

where we have used the Hermiticity of P̂ to further simplify
the expression. The same expressions for the first and second
moment are also obtained by using the work operator with
and without the commutator of the Hamiltonian at different
times [15]. However, for the third moment, the two generating
functions give different results as

〈W 3〉0 = 3
∫ τ

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3Re{〈P̂ H (t1)P̂ H (t2)P̂ H (t3)〉

+ 〈P̂ H (t3)P̂ H (t1)P̂ H (t2)〉}, (11)

〈W 3〉 = 〈W 3〉0 + 1

4

∫ τ

0
dt

〈
ĈH

3 (t)
〉

+ 3

2

∫ τ

0
dt1

∫ t1

0
dt2Re

{〈
ĈH

1 (t1)ĈH
2 (t2)

〉}
, (12)

where 〈W 3〉0 denotes the third moment given by Eq. (8) and
〈W 3〉 denotes the one given by our general expression of
Eq. (6). The moments given by Eq. (8) consist of third-order
correlation functions of the power operator. In our result here,
there are additional correction terms that involve commutators
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between the Hamiltonian and its time derivative, as expected.
Such correction terms appear also in the higher moments of
work.

III. OPEN QUANTUM SYSTEM

To illustrate the importance of the results we have derived
here, let us consider the special case of a weakly driven system,
which is also weakly coupled to a heat bath [21]. The total
Hamiltonian is taken to be of the form

Ĥ (t) = ĤS(t) + ĤB + ĤC, (13)

where subscripts S,B, and C denote the system, bath, and
bath-system interaction (coupling) Hamiltonians, respectively.
Both the bath and the system-bath interaction (coupling)
Hamiltonians are assumed to be time independent. The
system Hamiltonian ĤS(t) = Ĥ0 + V̂ (t) consists of a time-
independent part Ĥ0 and a time-dependent perturbative part
V̂ (t). Therefore, the time derivative of the total Hamiltonian is
simply given by P̂ (t) = ∂t Ĥ (t) = ∂t V̂ (t). In principle, we can
calculate the moments of work from Eq. (6). However, already
all the correlation functions of the third moment cannot be
calculated just using the reduced density matrix ρ̂(t), as the
correlation functions contain the total Hamiltonian that does
not depend only on the system degrees of freedom but also
on the bath degrees of freedom. To proceed, we consider a
specific model, where a two-level system as in Ref. [21] is
bilinearly coupled to a heat bath of bosonic modes. The system
Hamiltonian has the form

ĤS(t) = Ĥ0 + V̂ (t), (14)

Ĥ0 = �ω0â
†â, (15)

V̂ (t) = λ(t)(â† + â), (16)

where a† = |e〉〈g| and a = |g〉〈e| are the creation and an-
nihilation operators, respectively, in the ground-state (|g〉)
and excited-state (|e〉) basis of the undriven system, �ω0

is the energy separation of the two levels, and λ(t) is
the time-dependent drive. Further, the interaction and bath
Hamiltonians are assumed to be of the form

ĤC =
∑

k

(â† + â) ⊗ (gkb̂
†
k + g∗

k b̂k), (17)

ĤB =
∑

k

�ωkb̂
†
kb̂k, (18)

where gk is the coupling strength, and b̂k and b̂
†
k are the bath

annihilation and creation operators associated with energy
�ωk , respectively. For the total Hamiltonian Ĥ (t), this implies
[Ĥ (t),∂t Ĥ (t)] 	= 0. In the calculations, we approximate the
initial density matrix ¯̂ρ0 with the tensor product of the system
and bath density matrices, where both the system and the
heat bath start in thermal equilibrium. That is, we neglect the
interaction Hamiltonian in the energy measurements. Due to
the weak driving and coupling to the heat bath, the evolution of
the two-level system can be approximated with the following
Lindblad equation by invoking the Born-Markov and secular

approximations (see Appendix B):

dρ̂

dt
= − i

�
[ĤS(t),ρ̂(t)] + �↓

(
ρee(t)|g〉〈g| − 1

2
{ρ̂(t),|e〉〈e|}

)

+�↑

(
ρgg(t)|e〉〈e| − 1

2
{ρ̂(t),|g〉〈g|}

)
, (19)

where �↓ and �↑ = �↓e−β�ω0 are the photon emission and
absorption transition rates, respectively, ρ̂(t) is the density
matrix of the reduced system in the Schrödinger picture, and
ρkl(t) = 〈k|ρ̂(t)|l〉.

As the secular approximation neglects the fast oscillating
coupling terms, the same master equation could have been
achieved by starting with the following form of the interaction
Hamiltonian:

Ĥ RWA
C =

∑
k

gkâ ⊗ b̂
†
k + g∗

k â
† ⊗ b̂k, (20)

where the rotating wave approximation (RWA) has been
invoked. With this form of the interaction Hamiltonian
[Eq. (20)], the jumps can be easily interpreted as photon
emission and absorption to the bath. The usual quantum
jump method [31–34] can then be used to calculate the work
distribution by interpreting the jumps as photon exchange
while neglecting the energetic contribution due to ĤC .

The first two moments for the system can be calculated in
the usual manner by using the master equation of the reduced
density matrix, as the operators in the correlation functions
depend only on the system degrees of freedom [35,36]. For
the third moment 〈W 3〉, we can simplify the expression by
using the fact that the power operator P̂ (t) and the interaction
Hamiltonian ĤC [Eq. (17)] commute,

〈W 3〉 = 〈W 3〉0 + 1

4

∫ τ

0
dt〈[ĤS(t),[ĤS(t),P̂ (t)]]〉

+ 3

2

∫ τ

0
dt1

∫ t1

0
dt2Re{〈P̂ (t1)[ĤS(t2),P̂ (t2)]〉}

+ 1

4

∫ τ

0
dt〈[ĤC(t),[ĤS(t),P̂ (t)]]〉

≡ 〈W 3〉S + 〈W 3〉S+B, (21)

where 〈W 3〉S is given in the first two lines of the above
equation and consists of the correlation functions that include
only system operators. The interesting part is the second term
〈W 3〉S+B that contains also operators that depend on the bath
degrees of freedom,

〈W 3〉S+B = 1

4

∫ τ

0
dt〈[ĤC(t),[ĤS(t),P̂ (t)]]〉. (22)

We can estimate the term 〈W 3〉S+B by invoking ap-
proximations similar to those used in the derivation of the
corresponding master equation (see Appendix C), yielding

〈W 3〉S+B ≈ �
2ω0

2

(
�↑ + �↓

) ∫ τ

0
dtλ̇(t)Im{ρeg(t)}. (23)

Equation (23) does not contain any bath degrees of freedom
and can be calculated by solving the dynamics of the reduced
system. With this form of 〈W 3〉S+B , the first three moments
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of work can be calculated numerically by using the master
equation for a weak λ(t).

In the case of a simple sinusoidal resonance drive λ(t) =
λ0 sin(ω0t), 〈W 3〉S+B can be further approximated by changing
to the interaction picture and neglecting the fast oscillating
terms,

〈W 3〉S+B ≈ λ0�
2ω2

0

4
(�↑ + �↓)

∫ τ

0
dtIm

{
ρI

eg(t)
}
, (24)

where ρ̂I (t) is the density matrix of the reduced system in
the interaction picture with respect to Ĥ0 + ĤB and ρI

eg(t) =
〈e|ρ̂I (t)|g〉.

For the sinusoidal resonance drive, we can simplify the
analytical calculations of the correlation functions of the work
moments with an additional rotating wave approximation.
By neglecting the fast oscillating terms, the power operator
simplifies to the form P̂ I (t) ≈ λ0ω0(â + â†)/2 in the interac-
tion picture. Using the regression theorem [37], we can then
calculate analytical approximations for the moments of work.

The regression theorem results with the additional RWA
were found to give an excellent agreement with the numerical
master-equation results when the driving period τ consists of
full or half cycles. When the driving period is not ω0τ = nπ ,
where n is an integer, then there can be a small difference
between the regression theorem results and the numerical
master-equation results. This difference is due to the oscillation
caused by the fast oscillation terms of the drive for the latter
and is illustrated in Fig. 1 for the second moment 〈W 2〉
with λ0 = 0.05�ω0. As the oscillation is caused by the fast
oscillating terms of the drive, the deviation becomes larger
when the value of λ0 is increased.
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(h̄
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2

FIG. 1. (Color online) The numerical master-equation results for
the second moment 〈W 2〉 as a function of time for two different
coupling strengths. Inset: The numerical results are compared to the
analytical approximation 〈W 2〉RWA achieved with the additional RWA.
The driving is assumed to be in resonance with ω0, i.e., ω = ω0,
β�ω0 = 2.0, and λ0 = 0.05�ω0. The oscillation in the numerical
results is caused by the fast oscillating terms of the drive. These are
neglected in the analytical results by invoking the additional RWA.
Inset: The oscillation for both coupling strengths is almost identical
up to ω0τ = 10π .

0 0.005 0.01 0.015 0.02
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Γ↓/ω0

W
n

/
(h̄

ω
0)

n

W
W 2
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W 3
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FIG. 2. (Color online) Comparison of the quantum jump method
and master-equation results for the first three moments for different
coupling amplitudes. The solid and dashed lines correspond to the
analytical results with the additional RWA, the dots correspond to
the numerical quantum jump results, and the crosses correspond to
the numerical master-equation data. The driving is assumed to be in
resonance with ω0, i.e., ω = ω0, β�ω0 = 2.0, λ0 = 0.05�ω0 and the
drive lasts for 10 cycles, i.e., ωτ = 20π . The numerical results are
calculated with 104 time steps. The quantum jump results consist of
106 realizations. The numerical master-equation and quantum jump
results give a good agreement within the numerical accuracy: The
largest difference in 〈Wn〉/(�ω0)n is less than 0.0032.

We also compared the values of the first three moments
of G(u) [Eq. (6)] to the quantum jump results. Our results
and the quantum jump method results are in good agreement
within the numerical accuracy for all of the first three moments
independently of the parametric values, as illustrated in Fig. 2.
We also calculated and found our results to be in agreement
with the generalized master-equation results [24,38]. The
results are also in accordance with the ones of Ref. [39].

The third moments of both generating functions [Eqs. (6)
and (8)] are presented in Fig. 2 as well. Clearly, the third
moment without the correction, 〈W 3〉0, differs greatly from
〈W 3〉 and the quantum jump results even in the case of no
coupling to the heat bath. From the correction terms, the
term 〈W 3〉S+B [Eq. (23)] was found to be several orders of
magnitude smaller than 〈W 3〉0 for the weakly driven system
here. In the regression theorem results with the additional
RWA, 〈W 3〉S+B [Eq. (24)] is always zero, as the density matrix
remains real in the interaction picture.

In Fig. 3, we further illustrate the expected deviation
from the standard fluctuation dissipation theorem [40] (FDT)
〈W 2〉RWA/〈W 〉RWA = �ω0 coth(β�ω0/2) for large drive am-
plitudes and coupling strengths. From Fig. 3, we see that
the FDT is valid not only in the linear response regime
(λ0 → 0) but also in the limit of no coupling (�↓ → 0)
with arbitrary drive amplitude within this model. In the case
of no coupling, the probability to end up in the excited
state when starting from the ground state, denoted as pge =
|〈e|Û (τ,0)|g〉|2, is exactly the same as the probability to end
up in the ground state when starting from the excited state,
peg . Hence, 〈Wn〉 = (�ω0)nρgg(0)pge + (−�ω0)nρee(0)peg =
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FIG. 3. (Color online) Test of the standard fluctuation dissipa-
tion theorem (〈W 2〉RWA/〈W 〉RWA = �ω0 coth(β�ω0/2) for different
coupling and driving amplitudes. Here, the driving is assumed to be
in resonance with ω0, i.e., ω = ω0, β�ω0 = 2.0, and the drive lasts for
10 cycles, i.e., ωτ = 20π . As expected, significant deviations start
appearing with increased coupling and drive.

(�ω0)npge[ρgg(0) + (−1)nρee(0)], which immediately gives
the FDT when we start from thermal equilibrium.

For small values of λ0 and �↓, the deviation from the FDT
increases almost parabolically when the drive amplitude λ0

increases and the transition rate �↓ remains constant for small
values of λ0 and �↓. This can be seen by Taylor expanding
〈W 2〉RWA/〈W 〉RWA around (λ0,�↓) = (0,0),

〈W 2〉RWA/〈W 〉RWA = �ω0 coth(β�ω0/2)

+ �ω0�↓
λ2

0τ
3

60�2
(1 − e−β�ω0 )

×
[

1 − �↓
τ

6
(1 + e−β�ω)

]

+O((�↓τ )3) + O((λ0τ/�)4). (25)

This expansion is valid up to �↓,λ0/� � 0.01ω0 in Fig. 3
as the higher-order terms become important already when
�↓,λ0/� = 0.01ω0, due to the high number of drive cycles.

IV. SUMMARY AND CONCLUSIONS

In summary, we have examined in detail the distribution of
work done when a two-measurement protocol is applied to a
driven open quantum system. To this end, we have first derived
a general form for the generating function of work and studied
the first three moments of work by using the master equation
of the reduced system and invoking approximations similar to
the ones made in the microscopic derivation of the reduced
density matrix. We have compared our results to the earlier
derivations [24] that were carried out implicitly assuming that
the total Hamiltonian and its time derivative commute and
have shown that there is a significant difference already in
the case of the third moment. This emphasizes the importance
of properly evaluating the higher moments of work, which
are needed to check fluctuation relations such as the JE. To

make our results concrete, we have considered a weakly driven
and weakly coupled two-level system by using a number of
different techniques, including the quantum jump method. Our
results demonstrate the influence of the correct choice of the
generating function already in the results for the third moment
of work distribution.
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APPENDIX A: GENERATING FUNCTION OF THE
TWO-POINT MEASUREMENT PROTOCOL

In the two-measurement protocol for a closed quantum
system, the probability to measure E0 at time t = 0 and Eτ at
t = τ is of the form

P [Eτ ,E0] = Tr
{
P̂Eτ

Û (τ,0)P̂E0 ρ̂0P̂E0Û
†(τ,0)P̂Eτ

}
, (A1)

where Û (τ,0) = T← exp [− i
�

∫ τ

0 dtĤ (t)] is the unitary time
evolution operator, T← describes the chronological time order-
ing, and the projection operators are given by P̂Et

= |Et 〉〈Et |,
where |Et 〉 is the state corresponding to the measurement result
Et at time t . The corresponding generating function is given
by [24]

G(u) =
∑
E0,Eτ

eiu(Eτ −E0)P [Eτ ,E0] =
∑
Eτ

Tr

{
Û (τ,0)

∑
E0

× (
e−i(u/2)E0 P̂E0 ρ̂0P̂E0e

−i(u/2)E0
)
Û †(τ,0)P̂Eτ

eiuEτ

}

= Tr{Û (τ,0)e−i(u/2)Ĥ (0) ¯̂ρ0e
−i(u/2)Ĥ (0)Û †(τ,0)eiuĤ (τ )}

= Tr{Ûu/2(τ,0) ¯̂ρ0Û
†
−u/2(τ,0)}, (A2)

where

Ûu(τ,0) = eiuĤ (τ )Û (τ,0)e−iuĤ (0), (A3)

¯̂ρ0 =
∑
E0

P̂E0 ρ̂0P̂E0 , (A4)

and ρ̂0 is the initial density matrix. If the initial density matrix
is diagonal in the first measurement’s basis, then ¯̂ρ0 = ρ̂0. In
the case of energy measurement, this means that if the total
system Hamiltonian Ĥ (0) commutes with ρ̂0, e.g., the density
matrix is diagonal in the eigenbasis of Ĥ (0), then ¯̂ρ0 = ρ̂0.

With the assumption [Ĥ (t),∂t Ĥ (t)] = 0, the evolution
operator Ûu(τ,0) satisfies the following equation of motion:

d

dτ
Ûu(τ,0) = − i

�

[
Ĥ (τ ) − �u

∂Ĥ (τ )

∂τ

]
Ûu(τ,0). (A5)
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Since Ûu(0,0) = 1̂, Ûu(τ,0) can be expressed as

Ûu(τ,0) = T← exp

{
− i

�

∫ τ

0
dt

[
Ĥ (t) − �u

∂

∂t
Ĥ (t)

]}
.

(A6)

However, contrary to Ref. [24], this solution [41] is not the gen-
eral one due to the implicit assumption that [Ĥ (t),∂t Ĥ (t)] = 0.
With this form of Ûu/2(τ,0), the generating function simplifies
to

G0(u) = Tr

{
T← exp

{
− i

�

∫ τ

0
dt

[
Ĥ (t) − �

u

2

∂

∂t
Ĥ (t)

]}
¯̂ρ0

× T→ exp

{
i

�

∫ τ

0
dt

[
Ĥ (t) + �

u

2

∂

∂t
Ĥ (t)

]}}
. (A7)

Let us denote the time derivative of the total Hamiltonian
as the power operator P̂ (t) = ∂Ĥ (t)/∂t . In order to get an
expression where the operators are expressed in the Heisenberg
picture, we can use the unitarity of Û (τ,0) and calculate the
equation of motion for the operators Û †(τ,0)Ûu/2(τ,0) and
Û

†
−u/2(τ,0)Û (τ,0). Changing to this Heisenberg picture and

using the periodicity of the trace then gives the final form,

G0(u) = Tr

{
T→ exp

[
i
u

2

∫ τ

0
dtP̂ H (t)

]

× T← exp

[
i
u

2

∫ τ

0
dtP̂ H (t)

]
¯̂ρ0

}
, (A8)

where P̂ H (t) = Û †(t,0)(∂Ĥ (t)/∂t)Û (t,0).
Without the assumption [Ĥ (t),∂t Ĥ (t)] = 0, the differenti-

ation of the evolution operator Ûu(τ,0) [Eq. (A3)] with respect
to τ yields

dÛu(τ,0)

dτ
=

[
− i

�
Ĥ (τ ) +

∞∑
n=1

(iu)n

n!
Ĉn(τ )

]
Ûu(τ,0), (A9)

where Ĉ1(τ ) = ∂τ Ĥ (τ ), Ĉ2(τ ) = [Ĥ (τ ),∂τ Ĥ (τ )], Ĉ3(τ ) =
[Ĥ (τ ),[Ĥ (τ ),∂τ Ĥ (τ )]], etc. Similarly,

dÛ
†
u(τ,0)

dτ
= Û †

u(τ,0)

[
i

�
Ĥ †(τ ) +

∞∑
n=1

(−iu)n

n!
Ĉ†

n(τ )

]

= Û †
u(τ,0)

[
i

�
Ĥ (τ ) −

∞∑
n=1

(iu)n

n!
Ĉn(τ )

]
. (A10)

Again, since Ûu(0,0) = Û
†
u(0,0) = 1̂, the operators Ûu(τ,0)

and Û
†
u(τ,0) can be expressed as follows:

Ûu(τ,0) = T← exp

{∫ τ

0
dt

[
− i

�
Ĥ (t) +

∞∑
n=1

(iu)n

n!
Ĉn(t)

]}
,

(A11)

Û †
u(τ,0) = T→ exp

{∫ τ

0
dt

[
i

�
Ĥ (t) −

∞∑
n=1

(iu)n

n!
Ĉn(t)

]}
.

(A12)

After changing to the Heisenberg picture described earlier, the
exact generating function reads

G(u) = Tr

{
T→ exp

[∫ τ

0
dt

∞∑
n=1

(−1)n+1 (iu)n

n!2n
ĈH

n (t)

]

× T← exp

[∫ τ

0
dt

∞∑
n=1

(iu)n

n!2n
ĈH

n (t)

]
¯̂ρ0

}
, (A13)

where ĈH
n (t) = Û †(t,0)Ĉn(t)Û (t,0).

APPENDIX B: CALCULATION OF THE
MASTER EQUATION

Let us denote the density matrix of the total system with
ρ̂T (t). The density matrix of the reduced system ρ̂(t) is
obtained by tracing over the bath degrees of freedom,

ρ̂(t) = TrB {ρ̂T (t)} . (B1)

Similarly, the density matrix of the bath ρ̂B(t) is obtained
by tracing over the system degrees of freedom,

ρ̂B(t) = TrS {ρ̂T (t)} . (B2)

The Hamiltonian of the total closed system can be written as

Ĥ (t) = Ĥ0 + ĤB + V̂ (t) + ĤC. (B3)

Let us change to the interaction picture with respect to (Ĥ0 +
ĤB), denoted by the superscript I . We can write the equation
of motion for the total density matrix as

dρ̂I
T (t)

dt
= − i

�

[
V̂ I (t),ρ̂I

T (t)
] − i

�

[
Ĥ I

C(t),ρ̂I
T (0)

]
− 1

�2

∫ t

0
dt ′

[
Ĥ I

C(t),
[
V̂ I (t ′) + Ĥ I

C(t ′),ρ̂I
T (t ′)

]]
.

(B4)

We will approximate the initial density matrix after the
first measurement with ρ̂I

T (0) = ρ̂I (0) ⊗ ρ̂I
B(0), where both

the system and the heat bath start in thermal equilibrium.
This approximation corresponds to that of neglecting the
interaction Hamiltonian in the energy measurements. A
similar approximation is done also in the calculation of
the moments. Tracing over the bath degrees of freedom,
we get the following equation for the reduced density
matrix:

dρ̂I (t)

dt
= − i

�
[V̂ I (t),ρ̂I (t)] − i

�
TrB

{[
Ĥ I

C(t),ρ̂I (0) ⊗ ρ̂I
B(0)

]}
− 1

�2

∫ t

0
dt ′TrB

{[
Ĥ I

C(t),
[
V̂ I (t ′)

+ Ĥ I
C(t ′),ρ̂I

T (t ′)
]]}

. (B5)

Let us denote the last term on the right-hand side of
Eq. (B5) as χ (t). Invoking the Born approximation [ρ̂I

T (t) =
ρ̂I (t) ⊗ ρ̂I

B(0)] and the Markov approximation, it changes
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to

χ (t) = − 1

�2

∫ ∞

0
dt ′TrB

{[
Ĥ I

C(t),
[
V̂ I (t ′),ρ̂I (t) ⊗ ρ̂I

B(0)
]]

+ [
Ĥ I

C(t),
[
Ĥ I

C(t ′),ρ̂I (t) ⊗ ρ̂I
B(0)

]]}
. (B6)

The interaction Hamiltonian can be expressed as Ĥ I
C(t) =∑

j ÂI
j (t) ⊗ B̂I

j (t), where ÂI
j (t) acts on the system degrees of

freedom and B̂I
j (t) acts on the bath degrees of freedom. With

this expression of Ĥ I
C(t) and assuming that TrB{B̂I

j (t)ρ̂I
B(0)} =

0, χ changes to the form

χ (t) = − 1

�2

∫ ∞

0
dt ′

∑
j,k

[
ÂI

k(t)ÂI
j (t ′)ρ̂I (t)

− ÂI
j (t ′)ρ̂I (t)ÂI

k(t)
]
TrB

{
B̂I

k (t)B̂I
j (t ′)ρ̂I

B(0)
}

+ [
ρ̂I (t)ÂI

j (t ′)ÂI
k(t) − ÂI

k(t)ρ̂I (t)ÂI
j (t ′)

]
× TrB

{
B̂I

j (t ′)B̂I
k (t)ρ̂I

B(0)
}
. (B7)

For the system studied, the bath correlation functions are given
by

TrB
{
B̂I (t)B̂I (t ′)ρ̂I

B(0)
} =

∑
k

|gk|2[eiωk (t−t ′)nk

+ e−iωk (t−t ′)(nk + 1)], (B8)

where B̂I (t) = ∑
k e−iωktgkb̂ + eiωktg∗

k b̂
† and nk is the average

number of photons with frequency ωk . The expression of χ can
be simplified by taking into account that

∫ ∞
0 dteiωt = πδ(ω) +

iP( 1
ω

), where P denotes the Cauchy principal value and the
imaginary part only affects the Lamb shift. By neglecting
the Lamb shift and invoking the secular approximation, i.e.,
neglecting the fast oscillating terms, we get

χ (t) = �↓
(
ρI

ee(t)|g〉〈g| − 1
2 {ρ̂I (t),|e〉〈e|})

+�↑
(
ρI

gg(t)|e〉〈e| − 1
2 {ρ̂I (t),|g〉〈g|}), (B9)

where ρ̂I
kl(t) = 〈k|ρ̂I (t)|l〉 and the transition rates are given by

�↓ = 2π

�2

∑
k

(nk + 1)|gk|2δ(ω0 − ωk), (B10)

�↑ = 2π

�2

∑
k

nk|gk|2δ(ω0 − ωk), (B11)

and they satisfy the detailed balance �↑ = �↓e−β�ω0 .
With the approximation ρ̂I

T (0) = ρ̂I (0) ⊗ ρ̂I
B(0), the second

term on the right-hand side of Eq. (B5) goes to zero
due to TrB{B̂I (t)ρ̂I

B(0)} = 0. Thus, switching back to the
Schrödinger picture gives us the following master equation:

dρ̂

dt
= − i

�
[ĤS(t),ρ̂(t)]

+�↓

(
ρee(t)|g〉〈g| − 1

2
{ρ̂(t),|e〉〈e|}

)

+�↑

(
ρgg(t)|e〉〈e| − 1

2
{ρ̂(t),|g〉〈g|}

)
. (B12)

APPENDIX C: CALCULATION OF 〈W 3〉S+B

Using the same notation as in the derivation of the master
equation, we can write the total density matrix in the interaction
picture with respect to (Ĥ0 + ĤB) as

ρ̂I
T (t) = ρ̂I

T (0) − i

�

∫ t

0
dt ′

[
Ĥ I

C(t ′) + V̂ I (t ′),ρ̂I
T (t ′)

]
. (C1)

With this form of ρ̂I
T (t), the term inside the integral in Eq. (22)

can be written as

(t) ≡ 〈[
Ĥ I

C(t),
[
Ĥ I

S (t),P̂ I (t)
]]〉

= TrS+B

{[
Ĥ I

C(t),
[
Ĥ I

S (t),P̂ I (t)
]]

ρ̂I
T (t)

}
= TrS+B

{[
Ĥ I

C(t),
[
Ĥ I

S (t),P̂ I (t)
]]

ρ̂I
T (0)

}
− i

�

∫ t

0
dt ′TrS+B

{[
Ĥ I

C(t),
[
Ĥ I

S (t),P̂ I (t)
]]

× [
Ĥ I

C(t ′) + V̂ I (t ′),ρ̂I
T (t ′)

]}
. (C2)

Again, we will approximate the initial density matrix with
ρ̂I

T (0) = ρ̂I (0) ⊗ ρ̂I
B(0), where both the system and the heat

bath start in thermal equilibrium. Using the Born approxima-
tion [ρ̂I

T (t) = ρ̂I (t) ⊗ ρ̂I
B(0)], we can approximate (t) with

(t) = TrS+B

{[
Ĥ I

C(t),
[
Ĥ I

S (t),P̂ I (t)
]]

ρ̂I (0) ⊗ ρ̂I
B(0)

}
− i

�

∫ t

0
dt ′TrS+B

{[
Ĥ I

C(t),
[
Ĥ I

S (t),P̂ I (t)
]]

×[
Ĥ I

C(t ′) + V̂ I (t ′),ρ̂I (t ′) ⊗ ρ̂I
B(0)

]}
. (C3)

The interaction Hamiltonian can be written as Ĥ I
C(t) =∑

j ÂI
j (t) ⊗ B̂I

j (t), where ÂI
j (t) acts on the system degrees

of freedom and B̂I
j (t) acts on the bath degrees of freedom.

Assuming TrB{B̂I
j (t)ρ̂I

B(0)} = 0, (t) reduces to

(t) = − i

�

∫ t

0
dt ′TrS+B

{[
Ĥ I

C(t),
[
Ĥ I

S (t),P̂ I (t)
]]

×[
Ĥ I

C(t ′),ρ̂I (t ′) ⊗ ρ̂I
B(0)

]}
. (C4)

Invoking the Markov approximation, the expression
changes to

(t) = − i

�

∫ ∞

0
dt ′TrS+B

{[
Ĥ I

C(t),
[
Ĥ I

S (t),P̂ I (t)
]]

× [
Ĥ I

C(t ′),ρ̂I (t) ⊗ ρ̂I
B(0)

]}
. (C5)

Expressing the interaction Hamiltonian as
Ĥ I

C(t) = ∑
j ÂI

j (t) ⊗ B̂I
j (t) and denoting Q̂I

j (t) =
[ÂI

j (t),[Ĥ I
S (t),P̂ I (t)]], Eq. (C5) changes to the form

(t) = − i

�

∑
j,k

∫ ∞

0
dt ′

[
TrS

{
Q̂I

k(t)ÂI
j (t ′)ρ̂I (t)

}
× TrB

{
B̂I

k (t)B̂I
j (t ′)ρ̂I

B(0)
}

− TrS
{
ÂI

j (t ′)Q̂I
k(t)ρ̂I (t)

}
× TrB

{
B̂I

j (t ′)B̂I
k (t)ρ̂I

B(0)
}]

. (C6)
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For the system studied, (t) reduces to

(t) = −i2ω0λ̇(t)

[
ρI

eg(t)
∫ ∞

0
dt ′e−iω0t

′
ξ (t,t ′)

− ρI
ge(t)

∫ ∞

0
dt ′eiω0t

′
ξ (t,t ′)

]
, (C7)

where ρI
eg(t) = 〈e|ρ̂I (t)|g〉 and the term ξ (t,t ′) =

TrB{B̂I (t)B̂I (t ′)ρ̂I
B(0)} + TrB{B̂I (t ′)B̂I (t)ρ̂I

B(0)}. Neglecting

the Lamb shift, we get

(t) = −i�2ω0λ̇(t)
[
ρI

eg(t)e−iω0t − ρI
ge(t)eiω0t

]
(�↑ + �↓)

= 2�
2ω0λ̇(t)Im

{
ρI

eg(t)e−iω0t
}
(�↑ + �↓)

= 2�
2ω0λ̇(t)Im{ρeg(t)}(�↑ + �↓). (C8)

With this form of (t), 〈W 3〉S+B reduces to

〈W 3〉S+B ≈ �
2ω0

2
(�↑ + �↓)

∫ τ

0
dtλ̇(t)Im{ρeg(t)}. (C9)
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