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Kinetic roughening in fiber deposition
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(Received 7 November 1997

We consider the kinetic roughening of growing interfaces in a simple model of fiber depdditiah
Niskanen and M. J. Alava, Phys. Rev. Lét8, 3475(1994)]. Fibers of length_; are deposited randomly on
a lattice and upon deposition allowed to bend down locally by a distance determined by the flexibility param-
eterT;. For T;< overhangs are allowed and pores develop in the bulk of the deposit, which leads to kinetic
roughening of the growing surface. We have numerically determined the asymptotic scaling exponents for a
one-dimensional version of the model and find that they are compatible with the Kardar-Parisi-Zhang equation.
We study in detail the dependence of the tilt-dependent growth velocify @md develop analytic arguments
to explain the simulation results in the limit of small and large t{i&1063-651X98)04906-X]

PACS numbgs): 02.70—c, 68.55.Jk, 64.60.Ht, 05.40j

I. INTRODUCTION where the scaling functiof(y) behaves as
Nonequilibrium properties of driven interfaces have at- fv)— y? for y<1 4
tracted considerable interest recently due to theoretical rea- ) const fory>1. )

sons and the importance of growth processes on surfaces
under molecular beam epitaxy conditiofis2]. From the The dynamical exponert, the roughness exponegt and
theoretical point of view, a particularly important property of the growth exponeng are linked byy=zg and the scaling
driven interfaces is the ability to classify the growth dynam-relation y+z=2. For a one-dimensiondlD) interface, the
ics according to the forms of the underlying stochastic dif-stationary probability distribution associated with Ef) is
ferential equations that describe different physical systemsknown and the exponents are given By 1/3, x=1/2, and
The simplest nonlinear growth equation of this type is thez=3/2.
celebrated Kardar-Parisi-Zhait§PZ) equation[3] Perhaps the easiest way to study the properties of the KPZ
R universality class is through simple lattice deposition models
ah(r,t) . A N - of interface growth, many of which are described asymptoti-
o = Vh(ny+ S|[Vh(nb[*+ 5(r,) +ve, (1) cally by Eq.(1). In some cases, the connection between such
models and the KPZ equation can be made explicit and the
parameter\ calculated analytically[2]. Experimentally,
however, the KPZ universality class has proved to be elu-
sive, with the strongest evidence to date coming from slow
combustion experiments of paper sheéik

whereh(F,t) is a single-valued height variable/,(F,t) is a
Gaussianwhite) noise term, and is a constant. The cru-
cial ingredient in the KPZ equation is the nonlinear term
proportional tox, which manifests itself in the nontrivial tilt In this paper we address the surface rouahening of planar
dependence of the velocity of the growing interface. One o; pap 9 gorp

the physically most interesting quantities associated with in_r|berhnerf?/r\:ork\.7\,/ wh:ﬁh“s an r;r;ltzreis]flr;gr cggd:gaée for i![(imrftlﬁ‘
terface roughening is the average width, i.e., the standar ughening. We employ a mode! Tor random deposition o

. - . : ) exible fibers on a latticg6,7], which was originally intro-
deviation ofh(r,t), which becomes a function of time and §yced to describe the bulk properties of 3D random fiber

the system sizé.: networks, the prime example being ordinary paper. The bulk
S structures obtained from the model seem to describe well,
w2(L,t)=([h(r,t)—h(t)]?), (2 e.g., the pore geometry of random fiber assemblies measured

. by creeping flow permeabilit}8] or light scattering proper-
where h(t) denotes the spatial average lofr,t) and the ties of papeif9].
angular brackets denote an average over the noise. The width For surface roughening, the essential parameters in the
scales according to the Family-Vicsek scaling relafidhas  model are the fiber lengthy in lattice units and the flexibil-
ity T; of the deposited fibers, which induces overhangs in the
w(L,t)=LXf(t/L?), ©)] bulk that constitute the eventual pore structure. It is known
through studies of surface growth models that such bulk de-
fects play an important role in the kinetic roughening of
* Author to whom correspondence should be addressed. Electrongrowing surface$2,10]. Thus it is of interest to study how
address: alanissi@csc.fi this occurs in the case of fiber deposition as well.

1063-651X/98/581)/11257)/$15.00 PRE 58 1125 © 1998 The American Physical Society



1126 J. VINNURVA, M. ALAVA, T. ALA-NISSILA, AND J. KRUG PRE 58

(b)

FIG. 2. Typical fiber networks with@ T;=0.1 and(b) T
=1.0. The system siz& =500 and the fiber length;=5. The
white areas are pores and the gray areas indicate the fibers. The
' ' number of fibers is 5000 and each layer marked by either of the two
shades of gray contains 500 fibers.

FIG. 1. Deposition of a fiber with length=5 and flexibility

T:=3/4. to the substrate. The pdur partg of a fiber that first touches
the underlying network stops moving and the rest of the fiber

One should note that the model does not reproduce thkends further down until either all parts touch the network
surface roughness properties of real paper shééisThisis  beneath them or the maximum bending allowed by the de-
due to several simplifying assumptions. In the case of realflection constrainT; is reached. Note that this rule conserves
paper, hydrodynamics is expected to play an important rolgust the projection of the fiber on the lattice, but due to the
There are indeed nontrivial mass correlatiphg] and clus- allowed vertical displacements the fiber may stretch. Time is
tering of fibers[13] present that have their origin in hydro- defined in terms of coverage, which is the amount of mass
dynamics during formation, similarly to the sedimentationdeposited per unit substrate length. Since the mass of a fiber
problem[14,15. Another factor missing from simple depo- is L;, the deposition oN fibers on a lattice of sizé takes
sition models is due to the details of the paper manufacturing=N(L;/L) time steps.
process. For instance, ordinary paper sheets are usually com- The resulting network has different top and bottom sur-
pressed mechanically. Such effects are hard to take into aaces because the fibers at the bottom are generally less de-
count as they depend on the actual initial spatial structure diormed than the fibers at the top due to the closeness of the
the deposit itself16]. substrate. Here we examine only the behavior of the free top

In this paper our aim is to present a detailed study of thesurface. It is defined by the set of local height variables
surface growth properties of the fiber deposition model deh(x,t) at each lattice site. Thus the curve defined by x,t)
scribed above and study the dependence of growth on the a single-valued function so that overhangs in the surface
relevant parameters. Here we concentrate on the growth atructure are ignored. If the number of particles deposited in
1D interfaces for simplicity. We start by briefly describing a unit time is kept constant, the spatial average of the surface
the deposition model in Sec. Il. In Sec. Ill we present resulteighth(t)=3"_,h(x; ,t)/L grows linearly in time.

in the model. As expected, for any finite value of the flex-top surface develops in time in a way that clearly depends on

asymptotically described by the KPZ equation. We discuss ifhigh values ofT; give a more dense network and low values
detail growth on tilted surfaces in the limits of small and 3 more porous one, as can be seen from Fig. 2.
large tilts and present analytic arguments for the scaling be-
havior of the parametex in the KPZ equation. Finally, Sec. Il RESULTS
IV contains our conclusions and a discussion. '

A. Scaling exponents

Il. MODEL To determine the scaling exponents associated with sur-
) , face growth, we computed the surface wistfL,t) for four
In the model, fibers of length are deposited on a flat jjterent system sized (=1000, 1500, 2500, and 50D@ith
su_b_strate of S'Z_d" with _penod_lc boundfary cond|t|ons_. The the fiber flexibilitiesT;=0.1 and 1.0 and with various fiber
original model is two dimensional, while here we will dis- lengths. The results shown here are Tgr=1.0 andL=5.
cuss the 1D version onIy.. The flbers n th? model are At very early times, there is a regime where the fibers are
discretized to squares of size one in lattice units and form Ancorrelated corresponding to the random depositRD)

chain of lengthL; (see Fig. 1 The flexibility of the fibersT ase[1] (see the discussion at the end of this segticiol-
is defined to be the maximum vertical displacement allowe owing this, the data can be fitted to the form

between two neighboring squares in a fiber in units of fiber
thickness. Thus the largdr; is, the more flexible the fibers w(L,t)=a(L)t?, (5)
are. The limitT;=0 refers to completely stiff fibers.
The fibers are deposited one by one randomly onto thaherea(L) is a function ofL. The error estimate was ob-
lattice. During deposition they are kept straight and paralletained by calculating the difference between the maximum
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FIG. 3. B as a function of 1/ for T=1.0 andL;=5. The solid

line is a least-squares fit to the four data points. Extrapolation a
L—oo gives 8=0.33+0.01. The inset shows the scaling function

f(t/L% and the dashed line has a slope of 1/3.

value of 8 with which the curve5) still remains within the
error bars of the data poinfa/hich were calculated from the
standard deviation of the datand the growth exponent
given by a standard least-squares fit.

Figure 3 shows3 as a function of 1/ as obtained from
the data forw(L,t). An extrapolation from the four data
points toL—o0 gives 8=0.33+0.01. In the inset, we also
show the scaling functiorf(t/L?) for a variety of system
sizes.

We also checked the consistency of the results by elimi

nating any additive constants from(L,t) through[17]
w(L,t)=w(L,2) —w(L,t). (6)

Although this method gave slightly lower values fBrthan
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FIG. 4. G,(t) for a system withL=5000,T;=1.0, andL;=5

3n a log-log scale. A direct application of the least-squares fitting

method gives3=0.338+0.003. The error bars are calculated from
the standard deviation & (t).
Gp(t)~t28. (10
We calculated the equal-time height-height correlation func-
tion of Eq. (8) for a system withL=5000, T;=1.0, and
L¢=5. Figure 4 shows the correspondifg(t) on a log-log
scale. The error bars indicate the standard deviation of
éh(t). A direct least-squares fitting to it give8=0.338
+0.003, in excellent agreement with results from the width.
The roughness exponextis obtained by applying E49)
to G (r,t) in ther <t*? regime. For a quick check, we sim-
ply usedG(r,t) att=1000. We define

Gp(r,1)=Gp(2r,t)—Gy(r,t) (11

the direct application of the least-squares method, a similar

extrapolation procedure as above gave agiin0.33+0.01

asL—o for T;=1.0 andL;=5. Thus we take this to be our

best estimate fop.

Another way to determine the scaling exponents for a
given system is to study various height-height correlation
functions[1,17]. The general two-point correlation function

is defined as

Cy(r t,t)=([Sh(x+r,t+t") = sh(x,1)]?), (7)

where 6h(x,t)Eh(x,t)—F(t). The equal-time height-height

correlation function can now be defined as

Gp(r,t)=Cy(r,t,t'=0), (8)
which asymptotically behaves as
r2x  for r<t
Gh(t D™ 28 for iz ©

Averaging Gp(r,t) over r for r>t? only the short-

to eliminate any additive constants. Figure 5 shadygr,t

100 | /fH
S
g .
2 V%V 00
IED/: g 10 ‘/-_
;2 10 r=I6 r=30
11 16 160 1060
r
10 e
5 6 7 8 9 10 20

r

FIG. 5. Gy(r,t) as defined in Eq(11) applied to the curve
corresponding to= 1000(shown in the insgt The data points used
are in the intervat €[ 6,30] (the scaling regime actually extends up

wavelength components are lost and the corresponding fungs 1 ~100). The slope ofS,(r,t=1000) in this interval givesy

tion G (t) behaves as

=0.49+£0.02.
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=1000) on a log-log scale whose slope givgs-0.49 8.0
+0.02.

Both independent estimates obtained abovedgas well
as the estimate foy indicate unequivocally that the 1D fiber 6.0 -
deposition model belongs to the KPZ universality class. The
key factor determining this is the flexibility parametgr. In
the limit whereT;— o0, the mass units comprising the fibers
become unconnected at deposition and the model is equiva-
lent to the RD. FoiT;<c0, however, the finite rigidity of the
fibers leads to nontrivial correlations that manifest them-
selves as bulk defectpores in analogy to some other sur- 20 ¢
face deposition model,10].

Finally, we would like to note that the crossover time

from RD to the KPZ regime can be estimated as follows. 0.0 L . ‘
Since each deposition event simultaneously filjssites, the 0.0 0.5 1.0 1.5 2.0
width in the RD regime is m

WRD(t)~(t/Lf)l/2. (12) FIG. 6. Typical data for(m) (solid line) as a function of the tilt

m of the substrate ak=2500, T;=1.0, andL;=11. The dashed
In the RD regime, the surface has no spatial correlation§ne is a fit of the form of Eq.(16) and the dot-dashed line is
and hencewgp is a measure also of the nearest-neighborcalculated from Eq(19). Their intersection defines, .
height differences. The RD regime ends when these become ] ] o
of the orderT;, such that the finite flexibility of the fibers is We Plot m¢ as a function of the fiber flexibilityl; for four

“felt.” Setting Wrp(t.)~T;, we conclude that different fiber lengthd ¢. The plot shows that
te~T2L;. (13 me=T;. (17)
Note in particular that for any nonzero flexibility an ex-  In the following we study the two limits ob(m) sepa-

tended RD regime appears for sufficiently long fibérs _rately and develop analytic arguments to explain its behav-
>1/T?. Next we shall present detailed results for the influ-10r-
ence ofT; on growth rate and network density. )
1. Large tilts
B. Growth on tilted surfaces The linear regime for the growth velocity as a function of
tilt evident in Fig. 6 is easy to obtain with the following
arguments. Upon deposition, the fibers tend to conform
<E> along the surface according to the amount given by the stiff-
UE

The average growth velocity in the vertical direction

(14) ness parameter; . However, for increasingn with T;<m,

each deposited fiber on the average touches the network only
with one of its ends and the rest of the fiber hangs in midair.
This situation is analogous to the casecofumnar growth

ot

depends according to the KPZ equatidn on the local sur-
face slopegVh|. Taking an average it can be written as

2.0
AN —
v=vot 5((Vh)?), (15)

o L=11

where the slopes are assumed to be small. By introducing an 157
overall tilt m=Vh to the network the velocity can be written
as

A
v(m)=v(0)+ §m2. (16)

Thus, by measuring as a function ofm we can get an 0.5 1

estimate forx. Through the relatiom (m)= 1/p(m) this also
provides information on the deposit densityf 10].

Figure 6 shows the typical behavior ofm) for both 0.0
small and large values oh. It demonstrates that(m) has
two regions. For small values af, it follows Eq. (16), as
shown by the dashed line, while for large valuesnofthe FIG. 7. Quantitym, as a function off; for four different values
dependence becomes linear. We can define the crossover 6ltL,. The number of layers deposited in each simulation was 500
m. between these two regions by the point of intersection oknd the number of runs was 10. The solid line is a numerical fit of
Eq. (16) and the linear fit, as shown in the figure. In Fig. 7 the formm,=0.97T;—0.03.

0.0 05 1.0 15 2.0
Tf
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FIG. 8. RatioA/\g as a function ofL;T;. This curve was ob-
tained by collapsing foux(T;) curves corresponding to;=3, 11,
19, and 27(shown in the insetinto a single curve. In the simula-

tions the number of layers deposited was 500 and the number of

runs was 10. The solid line obeyg\ s~ (L;T¢) 3.
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FIG. 9. Parametex as a function oL;. The solid line shows
the curveng=c(L;— 1)? with ¢=0.40.
Ns=c(Li—1)%, (20)

wherec=0.40+0.03.

observed in some deposition models at oblique incidence according to Fig. 8, in the case of small tilts has two

[18]. The area between the fiber and the netwavkh the
area of the fiber includeds

L1
A=L+ > i(m—Ty)
i=1

1
=L¢t ELf(Lf_l)(m_Tf)- (18

The average increase in the surface height per unit time is
(A/L)(L/L;). The growth velocity of the system can then be

written as
_A L N
v(m)—EL—f U

%(Lf—l)(m—Tf)-l—Z, m>T;, (19

wherev,.=v(T;=»)=1 in our units. The validity of Eq.
(19 was verified quantitatively for a system with= 2500,
T¢=1.0, andL;=11 for which it givesv(m)=5.0m—3.0 as

regimes roughly separated by T;~1. AsL;T;<1, A=~Aq
and it does not depend oFf;. On the other hand, in the
L;T{>1 regime there is clearly an inverse power law behav-
ior as a function ofT; . When the running exponent method
was applied ta\/\¢ corresponding to the case bf=27, it
gave for the value of the exponent of this power lav@2.8
+0.4, implying thatn /A~ (LT;) ~ 2% Thus we can summa-
rize the scaling behavior of as

(Li—1)% for LT¢<1
Ly 1T 2804 for LTe>1.

(21)

We note that this form correctly satisfies the RD limits of the
model wherex —0 for eitherL;=1 or T—o.

To explain Eqg.(21) we develop a simple scaling theory.
In addition to the fiber length ¢, the two characteristic
slopesT; andm define the horizontal scalesm anda/T;,
wherea=1 is the vertical lattice constaiithe thickness of
the fibers. For L{>1, which corresponds to the physically
interesting situation, the lattice length scale may be ignored
and we can assume that the macroscopic features of the
model depend only on the dimensionless numhefs and

m>1.0. This equation is indicated in Fig. 6 as a dot-dasheq .m. Thus we can write

line and it shows perfect agreement with the data.

2. Small tilts

For small tilts and withm<T;, the growth ratey(m) is
of the form of Eq.(16). The nonlinearity parametear can be

then determined by least-squares fitting. Figure 8 shows how

\ depends on the fiber flexibility; for four fiber lengthd_;
when the system size Is=2500. The original datéshown
in the inset collapse into a single scaling curve by multiply-
ing T by L; and dividing\ by A;=A(T;=0) corresponding
to a stiff fiber.

In the stiff fiber limit, A\ was calculated separately as a
function of L; and the result is shown in Fig. 9. The least-

U(m):q)(Lfm,Lfo). (22)

If Eq. (22) is a smooth function ofn, we obtain by the
Taylor series expansion in the neighborhoodof 0,

v(m)=~vo(L¢T[1+3C(L¢To)LImM?], (23
where

2

C=0(08) ' —D(a,p) 24
Jda

squares fitting method suggests for it the quadratic functiorat e=L;m=0 andB=LT¢. Thus, from Eq(23),
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A=LFC(LTy). (25) (a) —

For T; —0 one obtains the case of stiff fibers, which have a
nonzerok. Hence the scaling functio@ in Eq. (24) becomes
a constant and

A~L?  for LT¢<1. (26)

For L{>1 this is in agreement with Eq21). L
To explain the other scaling limit af, we consider the (b)
surface width which for the KPZ equation obdy$)]

Wigpz(t) ~ (K2At) 13 (27)

in the asymptotic time-dependent growth regime. The con-
stantK is defined through the stationary height difference
correlation functioricf. Eq. (8)]

limGp(r,t)~K]r]|. (28

t—oo

Since the stationary interface is essentially a random walk
along h, K can be interpreted as the square of the typical

height difference between subsequent sites. Thus, for IarqgilFlG' 10. Geometric argument for E(B2). See the text for de-

S.

T; [20]
K~T2. (29) growth velocityv. Results from numerical simulations are in
good agreement with these arguments.
We now estimate the crossover timefrom the RD to the The results of this paper point out the possibility of study-
KPZ regime by equating Eq$12) and (27), which yields, ing kinetic roughening in the deposition of fiberlike or plate-
using Egs.(25) and (29), like objects, similarly to Ref[16]. Although we have not
discussed the 2D version of the deposition model here, many
te~L3(K2\)2~L/T3C?(LTy). (300 of the conclusions presented for the 1D case can be extended

] ) ) ) to higher dimensions as well. In particular, due to the filt
Comparing this to the previously derived expressid®)  dependence of growth inherent in the model, the kinetic
gives roughening should be described by the KPZ equation.

C(LiTH)~ (LT3, (31
ACKNOWLEDGMENTS

which, when substituted into E25), leads to This work was in part supported by the Academy of Fin-

1 land through the MATRA program. J.K. acknowledges the
A~——73, LiT>1 (32 kind hospitality of HIP during a visit when this work was
LeTy initiated and support by the DFG under Grant No. SFB 237

. , i ) (Unordnung und Grosse Fluktuationen
This agrees reasonably well with the numerical result in Eq.

(21). The solid line in Fig. 8 shows/ s~ (L¢T¢) 3. To lend
support to the validity of Eq(32), in the Appendix we
present another argument that gives the same result based on

APPENDIX: GEOMETRIC ARGUMENT FOR A
AT SMALL TILTS

purely geometric considerations. We have developed another argument to support the va-
lidity of the inverse power law of Eq32) by using geomet-
IV. SUMMARY AND CONCLUSIONS ric reasoning similar to what was applied successfully in the

large tilt regime. Consider a fiber lying on a horizontal sub-

In this work we h_ave StUd'e.d 'ghe klne_tlc rou_ghemng 0fstrate in such a way that its left end is supported by a column
surfaces of random fiber deposits in one dimension through a

. . of heighta [see Fig. 1(a)]. The fiber is sufficiently long so
S|mplg model. In the model, fibers of lendth are randomly that the right end touches the substrate. The empty space
deposited on a lattice and allowed to bend down upon touc

ing the deposit by an amount determined by the flexibility etween the substrate and the fiber has an area of

T;. For any finite value ofT;, following an initial random alT 2_aT
deposition regime, a nontrivial pore structure develops in the A= (a_in):a als (A1)
bulk and the consequent kinetic roughening of the growing i=1 2Ty

surface is characterized by the KPZ universality class. We

have also studied in detail the dependence of the nonlinear Next the substrate is tilted by so that both ends of the
coefficient\ on the parameters of the model and developediber still have something to touch beneath thdtig. 10b)].
analytic arguments to explain the tilt dependence of thelhe condition for this is
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<L;—1. (A2)

Ti—m
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a? a? )
AA ~ m+—m-.

-— (A5)
212 2T?

The area of the empty space between the fiber and the sub-

strate is now

al/(T¢g—m)

>

a’+am—aT;

A,= [a+i(m=T;]= 2(T,—m) (A3)

Thus the tilting introduces a change of

a’+am—aT; a’—aT;

A=A~ M= 2T

in the area. By using the Taylor expansion for1l we
obtain

a2 2
AA| ~ _2 m
2T%

a

+—m?. (A4)
2T}

By symmetry, the number of fibers of the two types is the
same for an untilted substrate. The contributions to E$)
and (A5) that are linear inm therefore cancel and the net
change in area is

1
AA~AA+AA, ~ sz. (AB)
f
The corresponding change in growth rate is then
(m) AA L 1, (A7)
v(my=——~ m
L Ly T3

A reversal of the fiber is clearly equivalent to reversing the
sign of the tilt. The change in area for a fiber supported at its

right end is therefore

which by Eq.(16) leads to Eq(32).
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