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Kinetic roughening in fiber deposition
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We consider the kinetic roughening of growing interfaces in a simple model of fiber deposition@K. J.
Niskanen and M. J. Alava, Phys. Rev. Lett.73, 3475~1994!#. Fibers of lengthL f are deposited randomly on
a lattice and upon deposition allowed to bend down locally by a distance determined by the flexibility param-
eterTf . For Tf,` overhangs are allowed and pores develop in the bulk of the deposit, which leads to kinetic
roughening of the growing surface. We have numerically determined the asymptotic scaling exponents for a
one-dimensional version of the model and find that they are compatible with the Kardar-Parisi-Zhang equation.
We study in detail the dependence of the tilt-dependent growth velocity onTf and develop analytic arguments
to explain the simulation results in the limit of small and large tilts.@S1063-651X~98!04906-X#

PACS number~s!: 02.70.2c, 68.55.Jk, 64.60.Ht, 05.40.1j

I. INTRODUCTION

Nonequilibrium properties of driven interfaces have at-
tracted considerable interest recently due to theoretical rea-
sons and the importance of growth processes on surfaces
under molecular beam epitaxy conditions@1,2#. From the
theoretical point of view, a particularly important property of
driven interfaces is the ability to classify the growth dynam-
ics according to the forms of the underlying stochastic dif-
ferential equations that describe different physical systems.
The simplest nonlinear growth equation of this type is the
celebrated Kardar-Parisi-Zhang~KPZ! equation@3#

]h~rW,t !

]t
5¹2h~rW,t !1

l

2
u¹h~rW,t !u21h~rW,t !1v0 , ~1!

whereh(rW,t) is a single-valued height variable,h(rW,t) is a
Gaussian~white! noise term, andv0 is a constant. The cru-
cial ingredient in the KPZ equation is the nonlinear term
proportional tol, which manifests itself in the nontrivial tilt
dependence of the velocity of the growing interface. One of
the physically most interesting quantities associated with in-
terface roughening is the average width, i.e., the standard
deviation ofh(rW,t), which becomes a function of time and
the system sizeL:

w2~L,t !5^[h~rW,t !2h̄~ t !] 2&, ~2!

where h̄(t) denotes the spatial average ofh(rW,t) and the
angular brackets denote an average over the noise. The width
scales according to the Family-Vicsek scaling relation@4# as

w~L,t !5Lx f ~ t/Lz!, ~3!

where the scaling functionf (y) behaves as

f ~y!;H yb for y!1

const for y@1.
~4!

The dynamical exponentz, the roughness exponentx, and
the growth exponentb are linked byx5zb and the scaling
relationx1z52. For a one-dimensional~1D! interface, the
stationary probability distribution associated with Eq.~1! is
known and the exponents are given byb51/3, x51/2, and
z53/2.

Perhaps the easiest way to study the properties of the KPZ
universality class is through simple lattice deposition models
of interface growth, many of which are described asymptoti-
cally by Eq.~1!. In some cases, the connection between such
models and the KPZ equation can be made explicit and the
parameterl calculated analytically@2#. Experimentally,
however, the KPZ universality class has proved to be elu-
sive, with the strongest evidence to date coming from slow
combustion experiments of paper sheets@5#.

In this paper we address the surface roughening of planar
fiber networks, which is an interesting candidate for kinetic
roughening. We employ a model for random deposition of
flexible fibers on a lattice@6,7#, which was originally intro-
duced to describe the bulk properties of 3D random fiber
networks, the prime example being ordinary paper. The bulk
structures obtained from the model seem to describe well,
e.g., the pore geometry of random fiber assemblies measured
by creeping flow permeability@8# or light scattering proper-
ties of paper@9#.

For surface roughening, the essential parameters in the
model are the fiber lengthL f in lattice units and the flexibil-
ity Tf of the deposited fibers, which induces overhangs in the
bulk that constitute the eventual pore structure. It is known
through studies of surface growth models that such bulk de-
fects play an important role in the kinetic roughening of
growing surfaces@2,10#. Thus it is of interest to study how
this occurs in the case of fiber deposition as well.
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One should note that the model does not reproduce the
surface roughness properties of real paper sheets@11#. This is
due to several simplifying assumptions. In the case of real
paper, hydrodynamics is expected to play an important role.
There are indeed nontrivial mass correlations@12# and clus-
tering of fibers@13# present that have their origin in hydro-
dynamics during formation, similarly to the sedimentation
problem@14,15#. Another factor missing from simple depo-
sition models is due to the details of the paper manufacturing
process. For instance, ordinary paper sheets are usually com-
pressed mechanically. Such effects are hard to take into ac-
count as they depend on the actual initial spatial structure of
the deposit itself@16#.

In this paper our aim is to present a detailed study of the
surface growth properties of the fiber deposition model de-
scribed above and study the dependence of growth on the
relevant parameters. Here we concentrate on the growth of
1D interfaces for simplicity. We start by briefly describing
the deposition model in Sec. II. In Sec. III we present results
of extensive numerical simulations of the kinetic roughening
in the model. As expected, for any finite value of the flex-
ibility parameterTf , the kinetic roughening in the model is
asymptotically described by the KPZ equation. We discuss in
detail growth on tilted surfaces in the limits of small and
large tilts and present analytic arguments for the scaling be-
havior of the parameterl in the KPZ equation. Finally, Sec.
IV contains our conclusions and a discussion.

II. MODEL

In the model, fibers of lengthL f are deposited on a flat
substrate of sizeL with periodic boundary conditions. The
original model is two dimensional, while here we will dis-
cuss the 1D version only. The ‘‘fibers’’ in the model are
discretized to squares of size one in lattice units and form a
chain of lengthL f ~see Fig. 1!. The flexibility of the fibersTf
is defined to be the maximum vertical displacement allowed
between two neighboring squares in a fiber in units of fiber
thickness. Thus the largerTf is, the more flexible the fibers
are. The limitTf50 refers to completely stiff fibers.

The fibers are deposited one by one randomly onto the
lattice. During deposition they are kept straight and parallel

to the substrate. The part~or parts! of a fiber that first touches
the underlying network stops moving and the rest of the fiber
bends further down until either all parts touch the network
beneath them or the maximum bending allowed by the de-
flection constraintTf is reached. Note that this rule conserves
just the projection of the fiber on the lattice, but due to the
allowed vertical displacements the fiber may stretch. Time is
defined in terms of coverage, which is the amount of mass
deposited per unit substrate length. Since the mass of a fiber
is L f , the deposition ofN fibers on a lattice of sizeL takes
t5N(L f /L) time steps.

The resulting network has different top and bottom sur-
faces because the fibers at the bottom are generally less de-
formed than the fibers at the top due to the closeness of the
substrate. Here we examine only the behavior of the free top
surface. It is defined by the set of local height variables
h(x,t) at each lattice sitex. Thus the curve defined byh(x,t)
is a single-valued function so that overhangs in the surface
structure are ignored. If the number of particles deposited in
a unit time is kept constant, the spatial average of the surface
height h̄(t)[( i 51

L h(xi ,t)/L grows linearly in time.
Starting from a flat surface, the roughness of the emerging

top surface develops in time in a way that clearly depends on
Tf . The parameterTf controls the porosity of the network:
high values ofTf give a more dense network and low values
a more porous one, as can be seen from Fig. 2.

III. RESULTS

A. Scaling exponents

To determine the scaling exponents associated with sur-
face growth, we computed the surface widthw(L,t) for four
different system sizes (L51000, 1500, 2500, and 5000! with
the fiber flexibilitiesTf50.1 and 1.0 and with various fiber
lengths. The results shown here are forTf51.0 andL f55.
At very early times, there is a regime where the fibers are
uncorrelated corresponding to the random deposition~RD!
case@1# ~see the discussion at the end of this section!. Fol-
lowing this, the data can be fitted to the form

w~L,t !5a~L !tb, ~5!

wherea(L) is a function ofL. The error estimate was ob-
tained by calculating the difference between the maximum

FIG. 1. Deposition of a fiber with lengthL f55 and flexibility
Tf53/4.

FIG. 2. Typical fiber networks with~a! Tf50.1 and ~b! Tf

51.0. The system sizeL5500 and the fiber lengthL f55. The
white areas are pores and the gray areas indicate the fibers. The
number of fibers is 5000 and each layer marked by either of the two
shades of gray contains 500 fibers.
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value ofb with which the curve~5! still remains within the
error bars of the data points~which were calculated from the
standard deviation of the data! and the growth exponent
given by a standard least-squares fit.

Figure 3 showsb as a function of 1/L as obtained from
the data forw(L,t). An extrapolation from the four data
points toL→` gives b50.3360.01. In the inset, we also
show the scaling functionf (t/Lz) for a variety of system
sizes.

We also checked the consistency of the results by elimi-
nating any additive constants fromw(L,t) through@17#

w̃~L,t ![w~L,2t !2w~L,t !. ~6!

Although this method gave slightly lower values forb than
the direct application of the least-squares method, a similar
extrapolation procedure as above gave againb50.3360.01
asL→` for Tf51.0 andL f55. Thus we take this to be our
best estimate forb.

Another way to determine the scaling exponents for a
given system is to study various height-height correlation
functions@1,17#. The general two-point correlation function
is defined as

Cg~r ,t,t8![^@dh~x1r ,t1t8!2dh~x,t !#2&, ~7!

wheredh(x,t)[h(x,t)2h̄(t). The equal-time height-height
correlation function can now be defined as

Gh~r ,t ![Cg~r ,t,t850!, ~8!

which asymptotically behaves as

Gh~r ,t !;H r 2x for r !t1/z

t2b for r @t1/z.
~9!

Averaging Gh(r ,t) over r for r @t1/z, only the short-
wavelength components are lost and the corresponding func-
tion Ĝh(t) behaves as

Ĝh~ t !;t2b. ~10!

We calculated the equal-time height-height correlation func-
tion of Eq. ~8! for a system withL55000, Tf51.0, and
L f55. Figure 4 shows the correspondingĜh(t) on a log-log
scale. The error bars indicate the standard deviation of
Ĝh(t). A direct least-squares fitting to it givesb50.338
60.003, in excellent agreement with results from the width.

The roughness exponentx is obtained by applying Eq.~9!
to Gh(r ,t) in the r !t1/z regime. For a quick check, we sim-
ply usedGh(r ,t) at t51000. We define

G̃h~r ,t ![Gh~2r ,t !2Gh~r ,t ! ~11!

to eliminate any additive constants. Figure 5 showsG̃h(r ,t

FIG. 3. b as a function of 1/L for Tf51.0 andL f55. The solid
line is a least-squares fit to the four data points. Extrapolation as
L→` gives b50.3360.01. The inset shows the scaling function
f (t/Lz) and the dashed line has a slope of 1/3.

FIG. 4. Ĝh(t) for a system withL55000,Tf51.0, andL f55
on a log-log scale. A direct application of the least-squares fitting
method givesb50.33860.003. The error bars are calculated from

the standard deviation ofĜh(t).

FIG. 5. G̃h(r ,t) as defined in Eq.~11! applied to the curve
corresponding tot51000~shown in the inset!. The data points used
are in the intervalr P@6,30# ~the scaling regime actually extends up

to r'100). The slope ofG̃h(r ,t51000) in this interval givesx
50.4960.02.
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51000) on a log-log scale whose slope givesx50.49
60.02.

Both independent estimates obtained above forb as well
as the estimate forx indicate unequivocally that the 1D fiber
deposition model belongs to the KPZ universality class. The
key factor determining this is the flexibility parameterTf . In
the limit whereTf→`, the mass units comprising the fibers
become unconnected at deposition and the model is equiva-
lent to the RD. ForTf,`, however, the finite rigidity of the
fibers leads to nontrivial correlations that manifest them-
selves as bulk defects~pores! in analogy to some other sur-
face deposition models@2,10#.

Finally, we would like to note that the crossover timetc
from RD to the KPZ regime can be estimated as follows.
Since each deposition event simultaneously fillsL f sites, the
width in the RD regime is

wRD~ t !'~ t/L f !
1/2. ~12!

In the RD regime, the surface has no spatial correlations
and hencewRD is a measure also of the nearest-neighbor
height differences. The RD regime ends when these become
of the orderTf , such that the finite flexibility of the fibers is
‘‘felt.’’ Setting wRD(tc)'Tf , we conclude that

tc'Tf
2L f . ~13!

Note in particular that for any nonzero flexibility an ex-
tended RD regime appears for sufficiently long fibersL f

@1/Tf
2 . Next we shall present detailed results for the influ-

ence ofTf on growth rate and network density.

B. Growth on tilted surfaces

The average growth velocity in the vertical direction

v[K dh

dt L ~14!

depends according to the KPZ equation~1! on the local sur-
face slopesu¹hu. Taking an average it can be written as

v5v01
l

2
^~¹h!2&, ~15!

where the slopes are assumed to be small. By introducing an
overall tilt m[¹h to the network the velocity can be written
as

v~m!5v~0!1
l

2
m2. ~16!

Thus, by measuringv as a function ofm we can get an
estimate forl. Through the relationv(m)51/r(m) this also
provides information on the deposit densityr @10#.

Figure 6 shows the typical behavior ofv(m) for both
small and large values ofm. It demonstrates thatv(m) has
two regions. For small values ofm, it follows Eq. ~16!, as
shown by the dashed line, while for large values ofm the
dependence becomes linear. We can define the crossover tilt
mc between these two regions by the point of intersection of
Eq. ~16! and the linear fit, as shown in the figure. In Fig. 7

we plot mc as a function of the fiber flexibilityTf for four
different fiber lengthsL f . The plot shows that

mc'Tf . ~17!

In the following we study the two limits ofv(m) sepa-
rately and develop analytic arguments to explain its behav-
ior.

1. Large tilts

The linear regime for the growth velocity as a function of
tilt evident in Fig. 6 is easy to obtain with the following
arguments. Upon deposition, the fibers tend to conform
along the surface according to the amount given by the stiff-
ness parameterTf . However, for increasingm with Tf,m,
each deposited fiber on the average touches the network only
with one of its ends and the rest of the fiber hangs in midair.
This situation is analogous to the case ofcolumnar growth

FIG. 6. Typical data forv(m) ~solid line! as a function of the tilt
m of the substrate asL52500, Tf51.0, andL f511. The dashed
line is a fit of the form of Eq.~16! and the dot-dashed line is
calculated from Eq.~19!. Their intersection definesmc .

FIG. 7. Quantitymc as a function ofTf for four different values
of L f . The number of layers deposited in each simulation was 500
and the number of runs was 10. The solid line is a numerical fit of
the formmc50.97Tf20.03.
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observed in some deposition models at oblique incidence
@18#. The area between the fiber and the network~with the
area of the fiber included! is

A5L f1 (
i 51

L f21

i ~m2Tf !

5L f1
1

2
L f~L f21!~m2Tf !. ~18!

The average increase in the surface height per unit time is
(A/L)(L/L f). The growth velocity of the system can then be
written as

v~m!5
A

L

L

L f
1v`

5
1

2
~L f21!~m2Tf !12, m.Tf , ~19!

where v`[v(Tf5`)51 in our units. The validity of Eq.
~19! was verified quantitatively for a system withL52500,
Tf51.0, andL f511 for which it givesv(m)55.0m23.0 as
m.1.0. This equation is indicated in Fig. 6 as a dot-dashed
line and it shows perfect agreement with the data.

2. Small tilts

For small tilts and withm!Tf , the growth ratev(m) is
of the form of Eq.~16!. The nonlinearity parameterl can be
then determined by least-squares fitting. Figure 8 shows how
l depends on the fiber flexibilityTf for four fiber lengthsL f
when the system size isL52500. The original data~shown
in the inset! collapse into a single scaling curve by multiply-
ing Tf by L f and dividingl by ls[l(Tf50) corresponding
to a stiff fiber.

In the stiff fiber limit, ls was calculated separately as a
function of L f and the result is shown in Fig. 9. The least-
squares fitting method suggests for it the quadratic function

ls5c~L f21!2, ~20!

wherec50.4060.03.
According to Fig. 8, in the case of small tiltsl has two

regimes roughly separated byL fTf'1. As L fTf!1, l'ls
and it does not depend onTf . On the other hand, in the
L fTf@1 regime there is clearly an inverse power law behav-
ior as a function ofTf . When the running exponent method
was applied tol/ls corresponding to the case ofL f527, it
gave for the value of the exponent of this power law22.8
60.4, implying thatl/ls;(L fTf)

22.8. Thus we can summa-
rize the scaling behavior ofl as

l;H ~L f21!2 for L fTf!1

L f
21Tf

22.860.4 for L fTf@1.
~21!

We note that this form correctly satisfies the RD limits of the
model wherel→0 for eitherL f51 or Tf→`.

To explain Eq.~21! we develop a simple scaling theory.
In addition to the fiber lengthL f , the two characteristic
slopesTf andm define the horizontal scalesa/m anda/Tf ,
wherea51 is the vertical lattice constant~the thickness of
the fibers!. For L f@1, which corresponds to the physically
interesting situation, the lattice length scale may be ignored
and we can assume that the macroscopic features of the
model depend only on the dimensionless numbersL fTf and
L fm. Thus we can write

v~m!5F~L fm,L fTf !. ~22!

If Eq. ~22! is a smooth function ofm, we obtain by the
Taylor series expansion in the neighborhood ofm50,

v~m!'v0~L fTf !@11 1
2 C~L fTf !L f

2m2#, ~23!

where

C5F~0,b!21
]2

]a2
F~a,b! ~24!

at a5L fm50 andb5L fTf . Thus, from Eq.~23!,

FIG. 8. Ratiol/ls as a function ofL fTf . This curve was ob-
tained by collapsing fourl(Tf) curves corresponding toL f53, 11,
19, and 27~shown in the inset! into a single curve. In the simula-
tions the number of layers deposited was 500 and the number of
runs was 10. The solid line obeysl/ls;(L fTf)

23.

FIG. 9. Parameterls as a function ofL f . The solid line shows
the curvels5c(L f21)2 with c50.40.
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l5L f
2C~L fTf !. ~25!

For Tf→0 one obtains the case of stiff fibers, which have a
nonzerol. Hence the scaling functionC in Eq. ~24! becomes
a constant and

l;L f
2 for L fTf!1. ~26!

For L f@1 this is in agreement with Eq.~21!.
To explain the other scaling limit ofl, we consider the

surface width which for the KPZ equation obeys@19#

wKPZ~ t !'~K2lt !1/3 ~27!

in the asymptotic time-dependent growth regime. The con-
stant K is defined through the stationary height difference
correlation function@cf. Eq. ~8!#

lim
t→`

Gh~r ,t !'Kur u. ~28!

Since the stationary interface is essentially a random walk
along h, K can be interpreted as the square of the typical
height difference between subsequent sites. Thus, for large
Tf @20#

K'Tf
2 . ~29!

We now estimate the crossover timetc from the RD to the
KPZ regime by equating Eqs.~12! and ~27!, which yields,
using Eqs.~25! and ~29!,

tc'L f
3~K2l!2;L f

7Tf
8C2~L fTf !. ~30!

Comparing this to the previously derived expression~13!
gives

C~L fTf !;~L fTf !
23, ~31!

which, when substituted into Eq.~25!, leads to

l;
1

L fTf
3

, L fTf@1. ~32!

This agrees reasonably well with the numerical result in Eq.
~21!. The solid line in Fig. 8 showsl/ls;(L fTf)

23. To lend
support to the validity of Eq.~32!, in the Appendix we
present another argument that gives the same result based on
purely geometric considerations.

IV. SUMMARY AND CONCLUSIONS

In this work we have studied the kinetic roughening of
surfaces of random fiber deposits in one dimension through a
simple model. In the model, fibers of lengthL f are randomly
deposited on a lattice and allowed to bend down upon touch-
ing the deposit by an amount determined by the flexibility
Tf . For any finite value ofTf , following an initial random
deposition regime, a nontrivial pore structure develops in the
bulk and the consequent kinetic roughening of the growing
surface is characterized by the KPZ universality class. We
have also studied in detail the dependence of the nonlinear
coefficientl on the parameters of the model and developed
analytic arguments to explain the tilt dependence of the

growth velocityv. Results from numerical simulations are in
good agreement with these arguments.

The results of this paper point out the possibility of study-
ing kinetic roughening in the deposition of fiberlike or plate-
like objects, similarly to Ref.@16#. Although we have not
discussed the 2D version of the deposition model here, many
of the conclusions presented for the 1D case can be extended
to higher dimensions as well. In particular, due to the tilt
dependence of growth inherent in the model, the kinetic
roughening should be described by the KPZ equation.
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APPENDIX: GEOMETRIC ARGUMENT FOR l

AT SMALL TILTS

We have developed another argument to support the va-
lidity of the inverse power law of Eq.~32! by using geomet-
ric reasoning similar to what was applied successfully in the
large tilt regime. Consider a fiber lying on a horizontal sub-
strate in such a way that its left end is supported by a column
of heighta @see Fig. 10~a!#. The fiber is sufficiently long so
that the right end touches the substrate. The empty space
between the substrate and the fiber has an area of

A15(
i 51

a/Tf

~a2 iT f !5
a22aTf

2Tf
. ~A1!

Next the substrate is tilted bym so that both ends of the
fiber still have something to touch beneath them@Fig. 10~b!#.
The condition for this is

FIG. 10. Geometric argument for Eq.~32!. See the text for de-
tails.
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a

Tf2m
,L f21. ~A2!

The area of the empty space between the fiber and the sub-
strate is now

A25 (
i 51

a/~Tf2m!

@a1 i ~m2Tf !#5
a21am2aTf

2~Tf2m!
. ~A3!

Thus the tilting introduces a change of

DAl[A22A15
a21am2aTf

2~Tf2m!
2

a22aTf

2Tf

in the area. By using the Taylor expansion form!1 we
obtain

DAl'
a2

2Tf
2

m1
a2

2Tf
3

m2. ~A4!

A reversal of the fiber is clearly equivalent to reversing the
sign of the tilt. The change in area for a fiber supported at its
right end is therefore

DAr'2
a2

2Tf
2

m1
a2

2Tf
3

m2. ~A5!

By symmetry, the number of fibers of the two types is the
same for an untilted substrate. The contributions to Eqs.~A4!
and ~A5! that are linear inm therefore cancel and the net
change in area is

DA;DAl1DAr;
1

Tf
3

m2. ~A6!

The corresponding change in growth rate is then

v~m!5
DA

L

L

L f
;

1

L fTf
3

m2 ~A7!

which by Eq.~16! leads to Eq.~32!.
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