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We study the submonolayer diffusion of hard disks and rodlike molecules on smooth surfaces through
numerical simulations and theoretical arguments. We concentrate on the behavior of the various diffusion
coefficients as a function of the two-dimensional~2D! number densityr in the case where there are no explicit
surface-particle interactions. For the hard disk case, we find that while the tracer diffusion coefficientDT(r)
decreases monotonically up to the freezing transition, the collective diffusion coefficientDC(r) is wholly
determined by the inverse compressibility which increases rapidly on approaching freezing. We also study
memory effects associated with tracer diffusion, and present theoretical estimates ofDT(r) from the mode-
mode coupling approximation. In the case of rigid rods with short-range repulsion and no orientational order-
ing, we find behavior very similar to the case of disks with the same repulsive interaction. BothDT(r) and the
angular diffusion coefficientDR(r) decrease withr. Also in this caseDC(r) is determined by inverse com-
pressibility and increases rapidly close to freezing. This is in contrast to the case of flexible chainlike molecules
in the lattice-gas limit, whereDC(r) first increases and then decreases as a function of the density due to the
interplay between compressibility and mobility.

DOI: 10.1103/PhysRevE.64.021204 PACS number~s!: 61.20.Ja, 68.35.Fx, 05.40.2a, 82.20.Wt

I. INTRODUCTION

The diffusion and spreading of polymers and other large
molecules on solid surfaces is an interesting theoretical prob-
lem with important applications related to thin surface films.
Many experimental studies have been carried out on the dif-
fusive dynamics of polymers and smaller molecules in such
systems@1–9#. However, most theoretical investigations to
date mostly deal with the~tracer! diffusion of single atoms or
molecules@10–15#, and there have been only relatively few
theoretical studies concerning thecollectivediffusion prop-
erties of larger molecules or polymers on surfaces@16–20#.
In the case of a finite surface coverage or number densityr,
difference must be made between the tracer and collective
diffusion coefficientsDT(r) and DC(r), respectively, even
if the only interaction is site blocking. The existing studies
have shown that while the monotonic decay ofDT(r) as a
function of r can be qualitatively understood by blocking in
the case of athermal polymers, the behavior of the density
fluctuations and thusDC(r) is nontrivial. There are strong
entropic interactions present that influenceDC(r) and the
spreading dynamics of flexible chainlike molecules on
smooth surfaces in the lattice-gas limit@16,17,19,20#. In par-
ticular, for such moleculesDC(r) typically displays a maxi-
mum value at some intermediate densities, such that the rela-
tive magnitude of the maximum decreases for stiffer chains,
or in the presence of attractive interchain interactions. The
maximum is due to the competition between the compress-
ibility and mobility of the overlayer, both of which are
strongly dependent on the density.

A particularly interesting case occurs if the molecules on
the surface can be approximated by orientationally symmet-
ric, circular particles. Such systems are also relevant for the

dynamics of geometrically confined colloidal systems which
have been studied recently@21–25# as an extension of the
classical problem of dynamics of three-dimensional~3D!
colloidal systems@26–34#. In the 2D case, the equilibrium
properties of hard and interacting disks have been studied
since the 1960’s@35–44# and are rather well understood al-
though some open questions remain concerning, e.g., the na-
ture of the freezing transition. The dynamical properties of
2D ~colloidal! liquids have also been considered in some
works @39,45,30,41,46–48#, but detailed studies have not
been carried out throughout the density range.

In this paper we present results of numerical and analytic
studies of diffusion in a very simple model system of 2D
Brownian hard spheres~disks! and rigid rodlike molecules in
two dimensions. We consider the case where there are no
explicit particle-surface interactions. The present study thus
complements the work done previously on flexible chainlike
molecules using the fluctuating bond~FB! lattice model with
Monte Carlo dynamics, which corresponds to the lattice-gas
limit with a strongly attractive surface potential that confines
the chains on the lattice sites@16,19#. Here we focus on the
behavior of the various relevant diffusion coefficients as a
function of the number density of surface particlesr in the
submonolayer regime. For the hard disk case, we find that
while DT(r) decreases monotonically up to the freezing
transition,DC(r) is wholly determined by the inverse com-
pressibility which increases rapidly on approaching freezing.
We also study memory effects associated with tracer diffu-
sion, and present theoretical estimates ofDT(r) from the
mode-mode coupling approximation. In the case of rigid rods
with a short-range repulsion we find that bothDT(r) and
DC(r) behave in a manner very similar to the case of indi-
vidual disks when there is no orientational ordering.
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II. THE MODEL

A. Hard disks

The model system we consider here consists of an en-
semble of 2D hard disks which can be thought of being
confined to a smooth and structureless surface, with no ex-
plicit particle-surface interaction potential. Since for hard
disks temperature does not play any role, the only relevant
parameter is the scaled particle densityrs5rs2, wherer
5N/L2 is the number density ofN disks in a system of linear
sizeL, ands is the disk diameter.

In the present work for numerical studies we use a com-
bination of molecular dynamics~MD! and Monte Carlo
~MC! simulation techniques. All dynamical quantities here
have been computed with MD, while MC sampling has been
used to obtain static thermodynamic averages. With MD, it is
convenient to use a soft interaction potential between the
particles rather than the infinite hard-sphere potential. The
hard-sphere results can, however, be recovered by doing a
simple rescaling of the density if we use a soft potential of
the form @41#

V~r !5eS s

r D n

, ~1!

wherer is the separation between the particles, and forn we
chose here the value of 12. The rescaling in density required
in order to obtain the corresponding hard sphere results is
then

r̃5S e

kBTD 2/n

rs , ~2!

whereT is the temperature of the soft-sphere system. Here,
we have usede54.0 andkBT50.1402. In the simulations a
cutoff in the potential at 2.5s was used.

The equation of motion of each particle in the system is
given by the Langevin equation@49#:

d

dt
pW ~ t !52hpW ~ t !1 fW~ t !1FW ~ t !, ~3!

wherepW (t)5mvW (t) is the 2D momentum of the particle,h is
the friction coefficient,t is time, andfW(t) is the total inter-
action force with the other particles. The remaining random
termFW (t) is the driving force for the motion of the Brownian
particles, and it obeys the standard fluctuation-dissipation re-
lation @49#. In our MD simulations the equation of motion is
integrated using the Velocity Verlet algorithm@49#. The sys-
tem size used in most cases wasL5100s with periodic
boundary conditions.

The MC simulations have been carried out in such a way
that a randomly chosen particle is displaced at a randomly
chosen position. In this case, it is easy to carry out the simu-
lations for hard particles by using the standard Metropolis
acceptance criterion@50# according to which a move is al-
ways accepted if it does not result in an overlap between the
particles. In our MC simulations the typical system size was
L5240s with periodic boundary conditions. We checked for

finite size effects by evaluating the results in several sub-
systems of the total system and then extrapolating to infinite
size @40#.

In 2D, it has been suggested that there is a first-order
freezing transition from a fluid to a solid phase at a critical
density of rs,c50.887 @40,41#, however, the most recent
simulations suggest@44# that for the 2D hard disk case the
freezing transition is of the Kosterlitz-Thouless-Halperin-
Nelson-Young~KTHNY ! type @51#. For n512 in the poten-
tial we have used in the MD simulations the freezing occurs
at a higher density ofr̃c50.986@41#. The exact nature of the
freezing transition for then512 case in unclear@41#, al-
though simulations again suggest the KTHNY picture@42#.
However, in the present work we concentrate on diffusion
within the liquid phase.

B. Rigid rodlike molecules

The second system we consider here is a simple model of
rigid, rodlike molecules in 2D. They are modeled by a chain
of Nc particles in continuum which are constrained to stay in
fixed positions with respect to each other along a straight line
~see Fig. 1!. This constraint was implemented in the MD
simulations by first computing the forces acting on all theNc
separate particles comprising the molecule, and then calcu-
lating from these the torque and the translational force acting
with respect to the center of mass. Following this, the mol-
ecule was rotated accordingly and its position updated. The
interchain interaction was chosen to be of the form of Eq.
~1!, with the same parameters as for the single particles. This
means that each particle in the chain interacts with all the
particles in the other chains through a strongly repulsive
1/r 12 potential. This effectively prevents chain overlap with
the parameters used here. In the MC simulations we simply
randomly displaced and rotated each rod and used the Me-
tropolis criterion to accept or reject the new configuration.

The phase diagram of rodlike molecules is in general
more complicated than that of the single particles due to the
additional orientational degrees of freedom. In addition to

FIG. 1. A schematic figure of the six-particle rigid rods used in
the simulations. The rods consist of 2D disks which interact through
a potential of the form of Eq.~1!. They are constrained to their
relative positions in each rod.
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the liquid and solid phases there is also the possibility of a
nematic phase. Recent careful simulation studies of 2D hard
rods have shown that for aspect ratios of six or less the
nematic phase is not realized@52#. Although our model is not
in the hard potential limit, nor does the rescaling of Eq.~2!
work, we did not observe any evidence of a nematic phase in
our simulations below the freezing transition.

III. RESULTS FOR HARD DISKS

A. Numerical results for tracer diffusion

The tracer diffusion coefficient of individual particlesDT
is defined as

DT5
1

2d
lim
t→`

1

t K 1

N (
i 51

N

urW i~ t !2rW i~0!u2L
5

1

d E0

`K 1

N (
i 51

N

vW i~ t !•vW i~0!L dt, ~4!

whered52 is the dimension of the system andrW i(t) is the
position vector of particlei at time t, andvW i(t) its velocity.
The quantityf(t)[^vW i(t)•vW i(0)& is the velocity autocorre-
lation function associated with the tracer particle. In evalu-
ating the diffusion coefficients during the simulations we em-
ploy the memory expansion method@53# which has been
shown to be more efficient than using the expressions above.

In the case of 2D hard disks, the only relevant parameter
that DT depends on is the scaled densityr̃. Previously, the
tracer diffusion coefficient has been studied as a function of
density for a few special values ofr̃ @54,41#. DT( r̃) has
been found to be a monotonically decreasing function
of density from its initial Brownian value ofDT(0)
5kBT/mh ~5.1431023 in our units!, as could be expected
from simple blocking or backscattering arguments@55#. In
particular, atr̃c Löwen has proposed a dynamical freezing
criterion which states that the ratioDT( r̃c)/DT(0) attains a
universal value of 0.08660.01 at freezing.

Our MD simulation results forDT( r̃) are listed in Table I
and shown in Fig. 2. We find very good agreement with the
previous numerical results, as can be seen from Fig. 2. The
tracer diffusion coefficientDT( r̃) is a decreasing function of
density within the liquid phase, and shows a more rapid de-
crease close to the freezing transition. We have tested Lo¨-
wen’s freezing criterion at r̃c50.986 and find that
DT( r̃)/DT(0)50.075960.0004 which is in very good
agreement with the overall Lo¨wen criterion, but somewhat

smaller than the value of 0.09960.003 reported by Lo¨wen
for the 1/r 12 potential @41#. We note that from our data it
seems thatDT( r̃) approaches zero continuously atr̃c , which
would indicate a continuous freezing transition for the case
of the 1/r 12 potential@41#. However, we have not attempted a
systematic finite-size study in the vicinity ofr̃c to determine
the nature of the freezing transition.

B. Velocity autocorrelation functions

As can be seen from the definition ofDT in Eq. ~4!, the
velocity autocorrelation functionf(t) is the fundamental
quantity in diffusion. The time dependence off(t) has been
studied in dense 3D Brownian liquids@55–57#. It was found
that the deviations from exponential behavior were small, but
increased with increasing density and in particular near the
freezing transition@55#. More recent studies@56,29# have
demonstrated that the temporal decay off(t) does not seem
to follow simple exponential behavior, but rather a stretched
exponential form. Recently, the temporal behavior off(t)
~and its associated memory function to be defined below!
have been studied in detail in a variety of strongly interacting
2D dissipative systems@53,20,58,59#, including a dense, vis-
cous hard disk fluid@46#. It has been demonstrated that in
many cases,f(t) displays anintermediate time power law
decay}t2x, where the value of the effective exponentx can
be related to interaction and ordering effects in the system
@58#. In particular, if there are no ordered phases present, the
value ofx is typically about or larger than two for strongly
repulsive and less than two for attractive systems.

In the present case we have studied this issue through the
temporal behavior off(t) and the corresponding memory
function M (t) defined through@20#

df~ t !

dt
5 iV0f~ t !2E

0

t

M ~ t2s!f~s!ds, ~5!

where iV0 is the so-called frequency variable which van-
ishes in continuum. We find that for smaller densities,f(t)

TABLE I. Numerical values of the normalized tracer diffusion
coefficients for 2D hard disks from MD simulations

p̃ DT( p̃)/DT(0) p̃ DT( p̃)/DT(0)

0.000 1.000 0.865 0.1794~5!

0.110 0.829~1! 0.946 0.121~3!

0.220 0.6900~8! 0.966 0.101~2!

0.329 0.5762~5! 0.986 0.0759~4!

0.549 0.3996~9! 1.006 0.0431~8!

FIG. 2. The normalized tracer diffusion coefficient for 2D hard
disks as obtained from MCA calculations and from the MD simu-
lations. The open circles have been obtained using Eq.~10! and the
triangles using Eq.~11!. The solid circles denote our simulation data
and the squares data by Lo¨wen et al. @41#. The lines are spline fit
guides to the eye.
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shows rather small deviations from exponential behavior in-
dicating weak memory effects. However, at larger densities
there is an intermediate power law type of behavior which
can be well fitted by@58,59#

f~ t !5
f~0!

11Atx
, ~6!

which leads to an algebraic decayf(t);t2x for Atx@1. In
Fig. 3 we show the normalized velocity autocorrelation func-
tion as a function of time, and the inset shows the corre-
sponding memory function. The topmost data set in the fig-
ure has been taken at the onset of the freezing transition at
r̃50.986. Fitting an effective power law tof(t) gives x
'1.2 which is close to the values reported in the literature
@46,58#. Due to the relatively short range of the effective
power law, it is difficult to pin down the value ofx accu-
rately, however.

IV. ANALYTIC APPROXIMATIONS FOR DIFFUSION
COEFFICIENTS

A. Tracer diffusion

There exists a variety of theoretical approaches in order to
quantitatively understand the density dependence ofDT for
colloidal systems, with and without hydrodynamic interac-
tions @26–28,30,32,34#. The case of a 2D Brownian liquid
considered here has also been tackled recently@45#. One of
the most commonly used approaches for calculation of trans-
port coefficients is based on the mode-mode coupling ap-
proximation~MCA! @60#. Recently, the MCA was applied to
the 3D hard Brownian sphere case by Indrani and Ra-
maswamy~IR! @30#. Here, we generalize their theory to the
2D case. Within the MCA,DT is given by

DT5
D0

11S0
, ~7!

where the self-energyS05S(k50,z50) is obtained from
the equation

S~k,z!5
1

8p2r̃ E E
0

`

e2ztv~q!Cs~ ukW2qW u,t !Cc~q,t !dt d2q.

~8!

The interaction vertex is given byv(q)5q2@12S21(q)#2,
whereS(k) is the static structure factor. The Laplace trans-
forms of the self-density and collective-density correlation
functions are given by

Cs~k,z!5
1

z1
k2

11S~k,z!

, ~9!

and

Cc~k,z!5
S~k!

z1
k2S21~k!

11S~k,z!

. ~10!

Equation ~8! is a 3D integral equation, which has to be
solved in a self-consistent manner to obtainS(k,z). The
integration inq space is a convolution and can be done using
Fourier transforms. Fourier transform is also employed in
making the inverse Laplace transform numerically to get
Cs(k,t) andCc(k,t) from Eqs.~9! and ~10!.

We have solvedS(k,z) iteratively by first setting
S(k,z)50 for all k andz and inserting this into Eqs.~9! and
~10!, and integrating Eq.~8!. The resulting newS(k,z) is
then fed into the correlation functions Eqs.~9! and~10!. The
iteration is continued untilS(k,z) converges.

The only input into this calculation is the static structure
factor S(k). For this we have used the approximate expres-
sion by Ripoll and Tejero@61# which is based on the Percus-
Yevick equation@62#. We have tested their approximation by
comparing it to a direct numerical calculation ofS(k), and
find that it reproducesS(k) well except very close to the
freezing transition. Our results for the self-consistent itera-
tion of the MCA are shown in Fig. 2 with open circles. At
lower densities, the MCA overestimatesDT but then rapidly
seems to approach zero at aboutr̃.0.8. Thus, it is not in
very good quantitative agreement withDT .

The original calculation of IR has been criticized by
Fuchs@31# who pointed out that Eq.~10! should actually be
replaced by

Cc~k,z!5
S~k!

z1
k2S21~k!

11k2Sc~k,z!

, ~11!

whereSc(k,z) is finite for k→0. We have tried to improve
the MCA results by simply settingSc(k,z)'S(k,z). In Fig.
2 we show results for this case, but find thatDT from the
MCA decays even more rapidly. We also tried some other
approximations forSc(k,z), but always found that using Eq.
~11! did not improve the quantitative agreement with simu-
lation data over the whole range of densities. Thus, we must

FIG. 3. Behavior off̃g(t)5@fg(t)/fg(0)#2121 and the cor-

responding memory functionM̃ (t)5@M (t)/M (0)#2121 ~shown
in the inset! for the 2D hard disks. Three different densities are
shown, from top to bottomr̃50.986,r̃50.329, andr̃50.110, re-
spectively. The data have been shifted for clarity.
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conclude that despite the fact that memory effects in the
present case are not very strong, the MCA does not give
quantitatively good results forDT @63#.

B. Collective diffusion

In addition to tracer diffusion of single particles, an inter-
esting question concerns the behavior of collective density
fluctuations in colloidal systems@26#. The collective diffu-
sion coefficientDC(r) characterizing these fluctuations can
be defined by means of the diffusion equation

]r~rW,t !

]t
5¹W •@DC~r!¹W r~rW,t !#. ~12!

Another equivalent way is through the Green-Kubo equation

Dc5jDcm5j lim
t→`

1

2dNt
^uRW ~ t !u2&, ~13!

where j5^N&/@^N2&2^N&2# is the thermodynamic factor
~proportional to the inverse of the compressibilitykT!, and
RW (t)5( i 51

N @rW i(t)2rW i(0)# is the center-of-mass~c.m.! dis-
placement@10#.

In the case of Brownian hard spheres, it is an exact result
that the c.m. mobilityDcm is independent of the densityr
@26#. This is because the interparticle interactions preserve
the c.m. momentum, and thusDcm(r)5Dcm(0)5DT(0).
This means that the density dependence ofDC(r) is solely
determined by the static thermodynamic factorj, and there
are no memory effects inDC . The quantityj can be conve-
niently obtained from the static structure factorS(k) @10#.

The static structure factor can also be obtained from the
equation of state. For the present case of a 2D hard disk
system there exists several approximate equations of state in
the literature. A particularly simple analytic form for hard
convex particles has been derived by Boublik@64# as

j5
112r~g21!

~12r!2 1
2r@11r~g21!#

~12r!3 , ~14!

where the aspect ratiog5pRc
2/Ac , for convex particles of

areaAc and perimeter 2pRc . In Fig. 4 we show the results
for DC( r̃) from Eq. ~14! with g51 as compared to our
direct MC simulations ofj. Except for densities very close to
the freezing transition, the simple formula of Eq.~14! pre-
dicts the behavior ofDC very well. We have also examined a
number of viral expansions for the equation of state of 2D
hard disks, and find that the one given by van Rensburg@65#
gives the best agreement with our numerical data at the high-
est densities in the vicinity of the freezing transition.

V. RESULTS FOR RODLIKE MOLECULES

As explained in Sec. II, the second case that we have
examined is that of rigid rods consisting of six 2D disks
bound together. The definitions of the diffusion coefficients
DT and DC remain the same, with the coordinates and ve-
locities now referring to the c.m. of each rod. In addition,

since the rods posses a rotational degree of freedom, one can
also define theangular (tracer) diffusion coefficient DR by

DR5
1

4
lim
t→`

1

t K 1

N/Nc
(
i 51

N/Nc

uu i~ t !2u i~0!u2L , ~15!

whereu i is the angle of rotation of rodi with respect to a
fixed axis @66#. The memory expansion method applied to
calculateDT andDC can also be used for the angular diffu-
sion coefficient in a straightforward manner.

In Fig. 5 we show results forDT in the case of rodlike
molecules. For comparison we also show in the same figure
our numerical results for the single particle case. Since in the
case of rods the scaling of the density cannot be used, thex
axis here is in terms of the densityrs5s2N/L2 for the r 212

potential. Note that hereN is still the number of disks in the
system and there are six disks in each rod. Remarkably
enough, the results for rods and single particles are identical
within the error bars for the whole range of density up to
about the single particle freezing densityrs'0.55. We esti-

FIG. 4. The normalized collective diffusion coefficient for 2D
hard disks as a function of density. The solid line is from Eq.~14!,
the dashed line is the virial expansion of van Rensburg@65# with the
first eight virial coefficients included, and the dotted line with the
ninth and tenth virial coefficients included is obtained using the
Padéapproximation. Crosses denote our MC simulation data.

FIG. 5. The normalized tracer diffusion coefficient for six-
particle rods~open circles! and single 2D particles interacting with
the same 1/r 12 repulsive potential~filled squares!.
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mate the freezing transition of the rodlike molecules to occur
at about this same density, although we did not investigate
this systematically. This is also in agreement with the results
of Bates and Frenkel@52#.

In Fig. 6 we show the angular diffusion coefficient for the
rodlike molecules with ther 212 repulsion. As expected@52#,
we find no evidence of an orientational transition in the
present case andDR(r) is a smoothly decreasing function of
density.

Finally, regarding the collective diffusion of Brownian
rodlike molecules, the c.m. mobility is again independent of
density. Therefore the collective diffusion coefficient is
solely determined by the thermodynamic factor. In Fig. 7 we
show results of MC simulations forj including both the case
of hard rods~filled circles! and rods with a repulsiver 212

potential ~crosses!. DC(r) is again a strongly increasing
function of r. We can also use Eq.~14! to estimate the ther-
modynamic factor for the hard rod case by neglecting the
nonconvexity of the actual molecule~see Fig. 1!. This esti-
mate is shown in Fig. 7 by a solid line.

VI. SUMMARY AND DISCUSSION

In this paper we have investigated the density dependence
of the diffusion coefficients of hard disks and rodlike mol-
ecules that diffuse on a smooth surface, with no explicit
particle-surface interactions present. We have found that in
both systems the collective diffusion coefficientDC(r) is
completely determined by the thermodynamic factor and is
an increasing function of the coverage in the liquid phase.
We have also tested the accuracy of various analytical ex-
pressions for the thermodynamic factor. The tracer diffusion
coefficientDT(r) on the other hand, is a monotonically de-
creasing function of coverage and its density dependence
within the liquid phase is almost identical in both systems.
Also the behavior of the angular diffusion coefficientDR(r)
of the rods is similar to the tracer diffusion coefficient. The
mode-mode coupling approximation proved to be inadequate
in describing the tracer diffusion coefficientDT(r) of 2D
hard disks.

It is interesting to compare the present results to the pre-
vious studies of diffusion of flexible chainlike molecules on

smooth surfaces@16,19#. These studies were done using the
FB lattice model combined with Monte Carlo dynamics. This
corresponds to the lattice-gas limit where the chains move by
single segment fluctuations only, and the rigid rod limit can-
not even be defined. The center-of-mass momentum is not
conserved with MC dynamics which leads to a strong density
dependence of the mobility. The qualitative behavior of
DC(r) for smaller densities remains the same for both cases,
however, in thatDC(r) grows rapidly with density. On the
other hand, at higher densities the behavior is quite different
from the present case due to the lattice-gas nature of the FB
model. Because of the density dependent mobility, for flex-
ible moleculesDC(r) shows a maximum at some intermedi-
ate value of the density after which it will decrease rapidly
toward the full coverage limit.

As far as a comparison with experiments is concerned, for
flexible chains confined on a metal surface the experiments
@3# have observed a strong increase inDC(r), and the ob-
served density profiles are in complete agreement with simu-
lation results@19#. Regarding rigid molecules, the experi-
ments of Mak, Koenler, and George@67# on the surface
diffusion of cycloalkanes on Ru~001! have demonstrated that
DC(r) for coverages&0.7 is an increasing function ofr in
the case of cyclopentane. However, since these molecules are
rather small and the surface is strongly corrugated a quanti-
tative comparison to the smooth surface case may not be
possible. We also note that in order to compare with the
present study, the particles should be confined to 2D without
an external, attractive surface potential.

ACKNOWLEDGMENTS

We wish to thank S. C. Ying for useful discussions. This
work has been supported in part by the Academy of Finland
through its Center of Excellence program and a grant from
the Academy of Sciences of the Czech Republic No.
A1010718.

FIG. 7. The normalized collective diffusion coefficient for hard
six-particle rods from MC simulations~filled circles!, as compared
to the theoretical estimate from Eq.~14! ~solid line!. The crosses
show the results of MC simulations for six-particle rods with the
r 212 repulsion.

FIG. 6. The normalized angular diffusion coefficient for six-
particle rods.
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