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Interface pinning in spontaneous imbibition
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Evaporation and gravity induced pinning in spontaneous imbibition are examined within a phase field
formalism. Evaporation is introduced via a nonconserving term and gravity through a convective term that
constrains the influx of liquid. Their effects are described by dimensionless coupling constantse and g,
respectively. From liquid conservation, the early time behavior of the average interface position follows
H(t);t1/2 until a crossover timet* (g,e). After that the pinning heightHp(g,e) is approached exponentially
in time, in accordance with mean field theory. The statistical roughness of the interface is described by an
exponentx.1.25 at all stages of the rise, but the dynamic length scale controlling roughness crosses over from
j3;H1/2 to a time independent pinning length scalejp(e,g).

DOI: 10.1103/PhysRevE.64.051605 PACS number~s!: 68.35.Ct, 68.35.Fx, 47.55.Mh, 05.70.Ln

I. INTRODUCTION

The propagation and possible pinning of interfaces mov-
ing in quenched random media provide several theoretical
and experimental challenges with many questions still unan-
swered. Based on the presence or absence of a conservation
law, the relevant experiments and theories can be roughly
divided into two classes. Nonconserved systems can often be
described by local equations of motion, such as the Edwards-
Wilkinson @1# or Kardar-Parisi-Zhang@2# equations. These
models have a noise term with quenched or annealed corre-
lations depending on the length scale of observation and the
interface velocity@3#. On the other hand, processes involving
the dynamics of phase boundaries coupled with conserved
density fields are much less well understood. A good ex-
ample of a problem in this class is imbibition, i.e., the propa-
gation of liquid into a porous medium under the influence of
capillary forces. Recent studies addressed@4–8# the propa-
gation of an interface forspontaneousimbibition under the
influence of capillary forces alone. In this case, the interface
associated with the liquid-gas phase boundary typically
moves according to Washburn law@9#, where the average
interface heightH(t)}t1/2. This idealized setup is hard to
realize in experiments due to evaporation and gravity@6,10–
13#. These complications qualitatively change the phenom-
enon, since both provide a maximal value~‘‘pinning
height’’! for the distance between the average interface and
the liquid reservoir. Evaporation moreover leads to a break-
down of the liquid conservation law.

It is thus important to develop an understanding of these
external effects on the roughening process of the fluid front.
The effect of a pinning mechanism on imbibition fronts was
already addressed some time ago through the directed perco-
lation depinning~DPD! model @10#, including simultaneous
work on experiments in which the pinning of an ink-water
solution front in paper sheets was due to gravity. Later the
model was extended to deal with the effect of evaporation
@12# and, for a pinned interface, the experimental dependence

of the width on the pinning height,w;Hp
g with g50.49 was

reproduced. In spite of such successes, the dynamical pro-
cesses of DPD do not include a conservation law, and as
such cannot describe the early time behavior of spontaneous
imbibition according to Washburn law. Other experiments
@6,14# presented a more complex picture of pinning, making
the inclusion of physical pinning mechanisms in models of
spontaneous imbibition@4–8# an interesting issue, this in or-
der to explore both the pinned regime and it’s approach.

Pinning of interfaces in nonconserved systems is well un-
derstood@15–17#. Close to pinning, these systems are char-
acterized by a diverging length scalej;(F2Fc)

2n, where
F is the driving force of the interface,Fc is the critical pin-
ning force, andn the correlation length exponent associated
with j. Likewise, the velocity of the average interface fol-
lows v;(F2Fc)

u, whereu is the velocity exponent. The
associated scaling exponent for surface roughness becomes
x51.25 or 0.633 in the isotropic and anisotropic cases, re-
spectively. Some systems with a conservation law have also
been studied. The forcedslow propagation of a fluid in an
Hele-Shaw cell gave results falling roughly within the
quenched Edwards-Wilkinson universality class with a
crossover to annealed noise at large flow rates@18#. Laplac-
ian flow @19# and the depinning of a contact line@20,21# are
also examples of systems in which the conservation law
plays a role.

In this paper the pinning effects due to evaporation and
gravity are studied by a generalization of the phase field
model of spontaneous imbibition introduced in Refs.@5,7#.
The mean field pinning limit and behavior of the average
interface are described and an equation for the interface fluc-
tuations is introduced. It is found that the inclusion of these
external effects introduces additional length scales that con-
trol the spatial extent of roughening at pinning. The approach
of the average interface to the pinning position is well de-
scribed by a mean field theory and does not display any
critical scaling of the typev;(F2Fc)

u, in contrast to theo-
ries of pinning for local models~see, e.g., Ref.@17#!. The
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cases of external gravity and evaporation are then treated
separately. When pinning is due to gravity alone there is a
unique interface correlation length. For evaporation, a differ-
ent correlation length controls the range of the fluctuations at
pinning. In both cases, the correlation length can be obtained
from the interfacial equation, as confirmed by numerical
simulations. Furthermore, the interface is always found to be
‘‘superrough,’’ with a global roughness exponentx51.25.
This is analogous to what is observed in the freely rising
case, in contrast to the previously suggested DPD type of
behavior@10,12#.

II. PHASE FIELD APPROACH TO IMBIBITION

A coarse-grained description of liquid flow in imbibition
can be done in terms of a phase fieldf(x,t) taking charac-
teristic values in the liquid and gas phase. Evaporation and
gravity can be incorporated into a phase field model of im-
bibition developed previously by including nonconserving
and convective terms, respectively@7#. The equation for the
‘‘order parameter’’f(x,t) is then given by

]f̃~r ,t!

]t
2G̃

]f̃~r ,t !

]y
5“M ~f̃ !“

dF

df̃
2

ẽ

2
@fe1f̃~r ,t!#,

~1!

with the free energy functional

F5
1

2E dr F r f̃21
u

2
f̃41k~“f̃ !22ã~r !f̃ G , ~2!

where the equilibrium valuefe5(r /u)1/2 represents the liq-
uid (1fe) and gas (2fe) phases, andã sets the value of
the local equilibrium chemical potential. Assuming a con-
stant mobilityM, these equations can be put in a dimension-
less form by defining

x5r /z, a5F u

r 3G 1/2

ã,

t5FMr 2

k Gt, g5F k

r 3G 1/2
G̃

M
, ~3!

f5
f̃

fe
, e5

k

Mr 2
ẽ.

The ratioz5(k/r )1/2 determines the width of the interfaces
between the different phases. The corresponding phase field
equation now has the form

] tf~x,t !2g]yf~x,t !5“

2m2
1

2
e„11f~x,t !…, ~4!

where the chemical potentialm52f1f32“

2f2a(x).
The model must still be supplemented with proper boundary
conditions, chosen in the following way. At the bottom edge
(y50), the presence of an infinite reservoir of ‘‘liquid’’ is
reflected by the nonequilibrium value ofm(x,y50)5const

50. This value is arbitrary, since only differences in the
chemical potential are relevant. Mass flow into the system
from the top boundary is prevented through]ym(x,y5Ly)
50 and periodic boundary conditions in thex direction are
imposed.

The one-dimensional interface between the liquid and gas
phases at equilibrium is represented by the kink solution
f0(x,t)5tanh(x/A2). The quenched random fielda(x) of
mean ā and spatial correlations ^a(x)a(x8)&2ā2

5(Da)2d(x2x8) represents capillary forces on a coarse-
grained scale. The evaporation term describes a loss of liquid
(f511) proportional to the area invaded, while the con-
vective term~describing gravity! sets a limiting value for the
gradient of the chemical potential.

Mean field analysis

Using projection techniques@22# a nonlocal interface
equation can be obtained. Assuming a single-valued inter-
face h(x,t), the average positionH[^h(x,t)& is first ob-
tained as

dH~ t !

dt
5

ā

2H~ t !
2g2

1

4
e H~ t !, ~5!

which yields a pinning heightHp(g,e) given by the zero of
the right-hand side of Eq.~5! with limiting casesHp(g,e

50)5ā/(2g) andHp(g50,e)5A2ā/e.
At early timest!t* [min(āg22,e21), the rise of the in-

terface follows a Washburn behavior,H(t)5(āt)1/2. For t
.t* , the pinning height is approached exponentially slowly.
In cases where gravity is absent, the average interface, of
initial height H(t50)50, is described at all times by

S H~ t !

Hp
D 2

512e2et/2, ~6!

while for e50, the rise is described by the transcendental
equation

H~ t !

Hp
1 lnS 12

H~ t !

Hp
D52

2

ā
g2t. ~7!

Although both gravity and evaporation pin the interface at
a given height, it must be kept in mind that the physics
behind these two effects is quite different@7#. Spontaneous
imbibition, without external influence, is characterized by a
Laplace equation for the chemical potential¹2m50 in the
bulk ~i.e., far away from the interface!. When solved with
boundary conditionsm(y50)50 andm(y5H)52ā, this
yields a gradient]m}21/H in the liquid phase. The gravity
term of Eq.~4! thus has the effect of stopping the interface
when]m.2g.

On the other hand, the nonconserving term introduced by
evaporation is such that the chemical potential in the bulk
must be a solution of the Poisson equation¹2m5e and at
pinning height, the gradient in the chemical potential]m
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50. This simply represents the fact that the flux of liquid
from the reservoir exactly balances the losses due to evapo-
ration.

The time and length scales coming from gravity and
evaporation can, however, be very different. Studies of cap-
illary rise with light organic liquids~for which evaporation is
presumably an extremely weak effect compared to ordinary
water! imbibed in filter papers@23# have found a pinning
height of the order of 1 m, with time scales on the order of
days. In contrast, evaporation effects can cause the pinning
height to be of the order of 15–50 cm, with correspondingly
much faster time scales.

III. EFFECTS OF DISORDER

In the presence of quenched disorder, it can be expected
that the actual pinning heights are slightly below the mean
field predictions. Based on the picture developed for noncon-
served fields, we can expect correctionsO(Da1/2). For all
simulations considered here, it is found that the approach of
the mean interface towards pinning is well described by the
mean-field result@Eqs. ~6! and ~7!#, provided that the real
pinning height is used, no signs of power law approach to
pinning @21# are found. We also note that the present model
predicts a pinning height due to evaporationHp;e21/2, in
opposition to the phenomenology of the DPD model@12#.

A linearized interfacial equation can be obtained in terms
of the Fourier componentshk of the interface position
h(x,t). For nonzero Fourier modes, we obtain

~ ḣk1 1
2 ehk!~12e22ukuH!1uku~Ḣ1g!hk~11e22ukuH!

5 1
4 uku~$h%k2sk2hk!. ~8!

The quenched noise$h(t)%k[*xe
2 ikxh„x,h(x,t)… where

h(x,h)[*dy f08„y2h(x,t)…a(x,y);2a(x,h) in the sharp
interface limit. Immediately apparent is the presence of terms
in odd power of wavevectoruku arising from the conservation
law.

Since the early time rise of the interface is consistent with
Washburn behavior, we expect that the picture developed for
spontaneous imbibition without external influence will apply
at timest!t* @5#. In this case, we recall that the correlation
length

j3~ t !5
1

2 S s

2Ḣ
D 1/2

5
1

2 S sH~ t !

ā
D 1/2

~9!

controls the spatial extent of correlated interfacial fluctua-
tions. In particular, the interfacial width W2(t)
5^(h(x,t)2H(t))2&, where the brackets denote an average
over different realizations ofa and the overbar a spatial
average over the system, has an early time behaviorW(t)
;j3

x ;tx/4 with the roughness exponentx51.25. The struc-
ture factorS(k,t)5^hk(t)h2k(t)& can then be shown to have
the scaling form

S~k,t !5~j3~ t !!112xs„kj3~ t !…, ~10!

with the scaling functions(x@1);x2122x, and becomes
constant for x!1. The correlation function G2(r ,t)
5^uh(x1r ,t)2h(x,t)u2&1/2 consequently has a scaling form
G2(r ,t)5j3

x g(r /j3), whereg(x!1);u ~anomalous scal-
ing @24#!, with g(x@1) tending to a constant.

In contrast to ordinary models of kinetic roughening, this
new length scale is not a genuine~time dependent! correla-
tion length that woulddiverge in power law fashion with
increasing time. The function ofj3 is to restrict the spatial
extent of fluctuations@12#, and therefore the interface cannot
be considered self-affine on all length scales.

In presence of pinning effects, this behavior becomes
modified at later times. The behavior of the interface fluctua-
tions as well as the range of the scaling close to pinning is
quite different, depending on whether gravity or evaporation
is the dominant external influence. Below, these two cases
are treated separately.

A. Gravity dominated case

Setting firste50 allows us to consider the dynamical rise
in presence of gravity alone. As seen from Fig. 1, the behav-
ior of the average interface height is well described by the
transcendental equation@Eq. ~7!#, with the only proviso that
an effective pinning height is used instead of the mean field
value.

In the absence of evaporation, the linearized equation of
the fluctuations@Eq. ~8!#, immediately shows the existence
of a length scalejg(t), restricting the range of the spatial
fluctuations and evolving in time as

FIG. 1. Behavior of the average interface heightH(t) in the

gravity dominated case withā50.2. The main figure compares the
heights obtained from numerical simulations forg50.00167
~dashed line;Hp'60) to the the mean-field results of Eq.~7! ~solid
line, using an effective pinning heightHp556). In the inset, we
show H(t) for values of g corresponding to theoretical pinning
heightsHp520, 40, 60, 80, and 100. For the last value, the inter-
face has not yet reached the pinning limit. All quantities are in the
dimensionless units of Eq.~4!.
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jg~ t !5
1

2 S s

2~Ḣ1g!
D 1/2

5
1

2 S sH~ t !

ā
D 1/2

, ~11!

whereH(t) is given by the solution of Eq.~7! @minor cor-
rections of orderO(jg /H) are also expected#. The length
scalejg(t) is thus analogous to the length scalej3(t) in
spontaneous imbibition without external influences, although
it is not a simply power law in time any more. At pinning,
this length scale becomes

jg~Hp!5
1

2 S s

2gD 1/2

5j3~Hp!. ~12!

As in spontaneous imbibition without gravity, dynamical
scaling relations can be established by assuming a single
correlation lengthjg(t). Equation~11! can first be rewritten
as jg(t)50.25g21/2(sH/Hp)1/2. Since, from Eq.~7!, the
quantityH/Hp is a function ofg2t only, the temporal behav-
ior of the width of the interfaceW(t) can be scaled as

W~ t !5g2x/2w~g2t !, ~13!

wherew(x);xx/4 for x!1 and tends to a constant for large
arguments, as represented in Fig. 2. The global roughness
exponentx51.25 has the same value as for spontaneous
imbibition without external influences.

The value of the roughness exponent as well as the role of
the correlation lengthjg at pinning is confirmed from data
for the structure factor. Figure 3 shows the structure factor
for systems with different pinning heights~arising from dif-
ferent values of the constantg). The structure factor decays
as k23.5 at large values of the wave vector, consistent with
the valuex51.25, and the curves can be collapsed on the
common scaling form by settingjg(Hp);g21/2;Hp

1/2:

S~k,Hp!5„jg~Hp!…112xs„kjg~Hp!…. ~14!

The scaling functions(kj) is the same as in Eq.~10!, and the
notationjg(Hp) indicates that the structure factor is consid-
ered at ‘‘pinning.’’ Similar scaling relations also apply to the
two-point correlation functionG2(r ,t), which now also
shows anomalous scaling@24#.

As for pure spontaneous imbibition the concept of a dy-
namical exponentz describing the propagation of fluctua-
tions along the interface does not apply to imbibition with
gravity. The fluctuations always catch up to the available
zone of correlated roughness. An effective temporal expo-
nent b such thatW(t);tb is apparent only for timest
!āg22, in which case it takes the valueb;0.31 @5,7#.

B. Evaporation dominated case

In the presence of evaporation~and absence of gravity!
the interface equation@Eq. ~8!# has a more complex struc-
ture. As in the case with gravity the average interface dy-
namics is well described by the mean-field equation as
shown in Fig. 4, and again leads to a pinning height that
depends weakly on the disorder strength. However, due to
the term in e(12e22ukuH), a single correlation lengthj
5j(t,H(t)) cannot be unambiguously identified for the ki-
netic roughening.

The situation becomes clear only in the pinned interface
limit, where a simple correlation length can be defined as

sje
2352e~12e22Hp /je!. ~15!

In the limit je!Hp , je;(s/e)1/3 while in the opposite
limit je@Hp , je;„s2/(āe)…1/4. The first case corresponds
to weak evaporation, defined bye!ā3/s2, while the second

FIG. 2. Behavior of the interface width as a function of time for
imbibition in the presence of gravity. The inset shows the rms width
for systems with values ofg corresponding to pinning heightsHp

520, 40, 60, 80, and 100~bottom to top!. The main figure shows
the result of the scaling assumption of Eq.~13!, with the valuex
51.25. All quantities are in the dimensionless units of Eq.~4!.

FIG. 3. A log-log plot of structure factors of the pinned interface
in the presence of gravity. The inset shows the value ofS(k,Hp) for
pinning heightsHp520, 40, 60, and 80. The main figure shows
the collapse of the data under the assumption of a correlation length
jg(Hp);Hp

1/2. The dashed line indicates a roughness exponent of
x51.25. All quantities are in the dimensionless units of Eq.~4!.
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case is that of strong evaporation,e@ā3/s2. This argument
indicates the range of correlated roughness but does not
specify the value of the roughness exponents. However, this
can be established from the decay of the structure factor,
again with the resultx51.25.

The prediction for the pinned correlation length can be
checked by considering the scaling behavior of the pinned
structure factorsS(k,Hp), as shown in Fig. 5. The data with
the highest evaporation rate can all be collapsed assuming a

correlation lengthje;(āe)21/4, while for lower evaporation

je;e21/3. The crossover occurs roughly for parametersā
50.2 ande51024. The complete set of data can be reduced
to a common scaling form by solving Eq.~15! numerically
~using a value ofs52A2/3). As a result the structure factor
at pinning has a scaling form similar to Eq.~10!, although
care must be taken in identifying the correlation length.

Even though a clear dynamical correlation length cannot
be unambiguously defined@25#, the early time limitt!e21

can, however, be studied in order to extract all the scaling
behavior already established in the case of imbibition with-
out any external effect. Figure 6 shows the two-point corre-
lation function of an interface with parametersā50.3 and
e5531025. The data for timest!e21520000@in dimen-
sionless units of Eq.~4!# can be collapsed on a single curve
assumingj3;t1/4. After this time, it is likely that the dy-
namical fluctuations of the interface are controlled by a
genuine dynamical correlation length of the formj t;t1/z,
until a time wherej t;je . A value ofz could not be obtained
from the data, since a precise determination of the dynamical
exponent would require pinning heights much higher than
can be achieved numerically.

FIG. 5. A log-log plot of structure factors of the pinned interface
in the presence of evaporation. The main figure shows the value of

S(k,Hp) for pinning heights~from bottom to top!: Hp.20 (ā

50.2,e51023); Hp.28 (ā50.2,e5531024); Hp.45 (ā

50.1,e51024); Hp.63 (ā50.2,e51024); Hp.77 (ā50.3,e

51024); Hp.109 (ā50.3,e5531025). The structure factors
for e;1024 all collapse on the same curve, independent of the

value ofā. A complete collapse of the data can be accomplished by
solving Eq.~15! numerically, as shown in the inset. The dashed line
indicates a roughness exponent ofx51.25. All quantities are in the
dimensionless units of Eq.~4!.

FIG. 6. Temporal behavior ofG2(r ,t) for imbibition in the pres-

ence of evaporation. The main figure is forā50.3 and e55
31025 at times ~from bottom to top! t523103,104,23104,4
3104,105, and 33105, after whichG2(r ,t) no longer changes. In
the inset, we show the early time scaling of the correlation function
under the assumptionj3(t);t1/4. The collapse of the data is shown
for times t523103 to 104 at intervals of 23103. The value ofx
51.25. All quantities are in the dimensionless units of Eq.~4!.

FIG. 4. Behavior ofH(t) in the case where evaporation is the
dominant effect. The parameters chosen aree5531023,1024, and

531025, with ā50.2. The main figure shows the exponential ap-
proach to pinning as predicted by Eq.~6! for e51024. The curve
has a slope of 4.731025'e/2. The scale factort051000 in the
dimensionless units of Eq.~4!. All quantities are in the dimension-
less units of Eq.~4!.
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IV. SUMMARY AND CONCLUSIONS

The experimental study of imbibition is very delicate, due
to intrinsic difficulties such as the very slow time scale of the
interface motion and the finite region available to correlated
fluctuations. It is thus important to understand and control
external effects such as gravity and evaporation. The theory
presented above makes definite predictions about the pinning
height of the interface, and sets an upper time limit on the
region over which the theories of spontaneous imbibition
without external influence should be valid. Beyond this re-
gime the interface properties are determined by the physical
mechanism~evaporation or gravity! that leads to the eventual
pinning. We note that in spite of the different temporal be-
havior of the interface height as compared to the spontaneous
imbibition case@5,7#, the correlated fluctuations follow a
similar roughening picture here. That is, the global rough-
ness exponentx also retains its ‘‘superrough’’ value of about
1.25 in the case where either gravity or evaporation domi-
nates.

Although a precise quantification and control of the
evaporation rate can be extremely difficult, the dynamical
progression of average interface height can be used to extract
both the pinning heightHp and the effective evaporation rate
e. Since the time scales associated with evaporation are rela-

tively fast, it becomes interesting to test the predictions of
the model. For this one can use the value of the correlation
length at pinning, related to the saturated widthwsat;Hp

g ,
with g52x/350.83 for weak evaporation andg5x/2
50.75 for strong evaporation. Both these expressions differ
from Amaral et al.’s experiment with ink@12#. However, a
precise measurement requires a very good control ofe, and
that the interface roughness develops on appreciable length
scale@6#.

If evaporation is likely to be a major effect for imbibition
of low-surface tension liquids such as water, its effect can be
greatly reduced by using low-molecular weight organic liq-
uids. Gravity, whose effective value can be changed by per-
forming the imbibition experiment at various inclinations, is
then the dominant external effect. The prediction of Eq.~11!
that the interfacial fluctuations can be described by a single
correlation lengthjg(t), although with a nontrivial time de-
pendence, can then also be checked experimentally.
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@5# M. Dubé, M. Rost, K. R. Elder, M. Alava, S. Majaniemi, and

T. Ala-Nissila, Phys. Rev. Lett.83, 1628~1999!.
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@24# J. M. López, M. A. Rodrı´guez, and R. Cuerno, Phys. Rev. E

56, 3993~1997!.
@25# Even in the case of strong evaporation, the approximation

ukuH!1 ; uku, which results in a correlation length of the
form j3

2 ;s/„e12H(t)… @H(t) is the solution to the mean-
field equation~6!#, does not give an adequate description of the
dynamical scaling behavior at all times.
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