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PHYSICAL REVIEW E, VOLUME 65, 052104
Interface dynamics and kinetic roughening in fractals
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We consider the dynamics and kinetic roughening of single-valued interfaces in two-dimensional fractal
media. Assuming that the local height difference distribution function of the fronts obeysstatistics with
a well-defined power-law decay exponent, we derive analytic expressions for the local scaling exponents. We
also show that the kinetic roughening of the interfaces displays anomalous scaling and multiscaling in the
relevant correlation functions. For invasion percolation models, the exponents can be obtained from the fractal
geometry of percolation clusters. Our predictions are in excellent agreement with numerical simulations.
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Kinetic roughening of driven interfaces is an ubiquitousclass of percolation theory. The IP is a dynamic percolation
phenomenom in nature, with applications varying from theprocess that describes the displacement of one fluid by an-
crystal growth[1] to fluid invasion in porous medig2]. In  other in a porous medium in the limit where capillary forces
many cases of interest, there is a description of such prodominate the viscous forcd$]. IP can be divided in two
cesses in terms of a stochastic equation of motion for th€ases: one with trappingTIP) and the other without it

(single-valuedl height functionh(x.t). Such equations of (NTIP). TIP describes a situation in which the defender fluid

: . .IS incompressibl nd thus invasion pr terminates in
motion can be local, such as the well-known Kardar-Parisi'> 'NcOMPress ble, and thus asion process te ates

. : ; regions fully surrounded by the invading fluid. The NTIP
Zhang (KPZ) equathn[S] and its variants, or nonlocal due model, on the other hand, is consistent with the case where
to, e.g., an underlying conservation law in the sys{eh

> . . the defending fluid is compressible. An important property of
Both classes of equations typically lead to power-law scalinghe NTIP model is that it is believed to to be equivalent to

of the relevant height correlation functions, with associate rdinary percolatio12]. The temporal development of IP
scaling exponents whose values are known exactly in SOmgusters has been studied in Ref§l3,14, and self-

special cases. organization and kinetic roughening with local slope con-

There exist interesting connections between kineticstraints in Ref[15].
roughening and more general theories of scale-invariant \We first present results of numerical simulations of the
structureq1,5]. An important special case is the connection|attice model of NTIP, where we calculate the various corre-
to percolation theory6] for fronts that become pinned due to lation functions of the single-valued heights associated with
quenched disordd2]. There are two important universality the invading front, and estimate the corresponding scaling
classes arising from the quenched KPZ description near pirexponents. We find that there is anomalous scaling and mul-
ning, namely, the isotropic percolati¢hP) and directed per- tiscaling in the temporal and spatial correlation functions. We
colation depinningDPD) caseg7]. These two differ by their ~argue that this can be generally explained by the underlying
scaling exponents, as well as by the behavior of the nonlineds€Vy statistics of the jumps of neighboring interface heights.
term in the underlying KPZ equation. Another case related tdhe properties of the lwy distribution can be expressed
percolation is that of the propagation of a single-valued in-Solely in terms of the geometry of the fractal. From this we
terface in a background, which itself undergoes a percolatiof€ve exact expressions for tHecal scaling exponents,
transition and is thus a fractf8,9]. This situation arises in Which turn out to depend on both the form of theviedis-
models of slow combustion fronf8], or “forest fire” lattice  tribution and theglobal roughening exponents. Our numeri--
models[9]. In this isotropic percolation depinniréPD) case cal S|mu_lat'|ons are in excellent agreement with the theoreti-
[9], some of the scaling exponents can be directly related t§@l predictions. , ,
the geometric properties of the underlying percolation cluster "€ numerical simulations of the NITP lattice model were
similar to the DPD casf7]. However, in the IPD limit there done on a two-dimensiondRD) square lattice of sizé.,
exists no KPZ type of description for the interface dynamics.X Ly, With L,=32-4096 and.,=L,—4L,. Our simulation
Nontrivial fractal structures emerge from various growthMethod is basically the same as in R¢fi6—18. The main
models as well, including diffusion limited aggregaticio] glgonthmlc aspect is that the I|§t of active growth sites is
and various oblique-incidence ballistic growth modg1g. ~ implemented via a balanced binary search tree. By this
The current understanding of the roughening properties omethod, the insertion and deletion operations on the list can
fronts in such fractals is still rather incomplete. be performed in time<In(n), wheren is the list size.

In this work, our aim is to examine the problem of kinetic  In the model, we (Ljefme a set of single-valued local inter-
roughening ofsingle-valuedfronts in fractal media. To this face heightgh(x;,t)},*; atx; by the highest invaded lattice
end, we study front propagation and kinetic roughening in IFsite[9] (see Fig. 1 Theglobalinterface widthw,(t,L,) can
models[11]. They constitute an important and widely studied be defined by
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B G(x,1)=([N(x,1) —h(xo + X,0)[H ™A, )
200 with G satisfying the anomalous scaling relatih21]
Gy(X,t) = g%axXaf ((X/£). 3
300
Here, the scaling functiofi,(u—0)= const andf ,(u—x)
«u”Xa [9]. The exponentsy, define the so-called anomaly
200 : :
exponents, anck,'s define local roughness exponents. We
have also calculated the average nearest neighbor height dif-
100 ference functioroy(t), defined by[22]
o aq()=(h(Xis1,t) —h(x;,H)| D, @
0
which at early times follows the scaling relation
b)
o~ E%a~ta/2~tha, (5)
600
where 3, are the local growth exponents. One can also de-
fine the time-dependergth order height-height fluctuation
400 correlation function
%
= Cq(t)=([3N(x,to) = Sh(x,to+ )], 6)
200 " wheresh=h—h is the deviation from the average height. In
WW the saturated regime, one expeClgto scale a§:q~t3q at
MMM early times, and to saturate to a system size dependent value
0 ! : S at large times.
0 236 5;1(2 768 1024 In Figs. 2a) and 2b) we show our numerical results for

FIG. 1. (3) A tvpical confiqurati ¢ an NTIP cluster. A | some relevant correlation functions. The measured values for
- 1. (@) A typical configuration of an cluster. Alarg€ he corresponding scaling exponents are also listed in Table
overhang of siz&wh is outlined with an ellipse. The gray area under | * o mai0us scaling and multiscaling of the correlation

the solid line shows how overhangs are cut off. Both axes are "unctions are evident in the data. We have numerically cal-

units of latice constana, as in(b). (b) A set of five consecutive o .
height profiles separated by timeorresponding to 10 monolayers culated the distribution functio?(Ah) for local slopes,
where Ah=|h(x;,1)—h(x;)|. It shows a clear power-law

is shown. Each curve has been shifted by 50 lattice units for clarity: . | ) ~ )
dependence on the jump si®&(Ah=/)~/"%, and we find

_— that «=2.00+0.05.
wq(t,L)=([h(x,t) = h(t)]H, (1) To theoretically explain these results, we consider the ge-
ometry of the underlying percolation cluster. The single-
where the overbar denotes spatial averaging over the systevalued interface consists of pieces of the hull of the percola-
of sizeL, and angular brackets denote configuration averagtion cluster, separated by vertical jumps as shown in Fig.
ing. The global width satisfies the Family-Viscek scaling an-1(g). At a pointx on the invasion front, a jump of siz&h

~tB i =
satz [19] w(t,L)~t"f(t/L") for all g, where the scaling >1 means that there is an overhang belowhe probability

1 e — _B - . . . .
:_uncn?hn f(lu b 0) Co?st andf(u?%)]oqé : H_ere,,B de ; of finding such an overhang can be directly found using re-
ines the(globa) growth exponent. The dynamic exponen sults from percolation theory. At the threshold, the probabil-

?efirz'bes dthe S((:jallng of satur?tga?htlmga/;/]lt:q sysitebmlsme,h ity per site of finding a cluster of size scales asg;~s™ 7,
N » andg andzare connected through the global rough- 1 he jinear size of the cluster of sizes scales as”

ness exponeng as = x/z [2]. ~s' whereD is the fractal dimension of the clustgs].

__Forthe IPD case, it has been shown thatl due to the gy, ¢ fo, a jump of the sizah=/, P(/) is proportional to
isotropy of the underlying percolation clus{&. This argu- the probability of finding a cluster of sizé (see Fig. 1L The

ment should hold here, too, and we indeed_ find nurneriC""”%Iuster of this size has~ /P sites. The probability of find-
thaty=0.99+0.02. We also measurg@land find thatw,(1) ing a cluster ofs sites scales as,s~s~7"1. Finally, taking

grows linearly in time, i.e.8=1.00=0.03. This indicates . : i
that the dynamic exponeurt=0.99+ 0.05. This differs from !Sné% avc\:lgorlljg\t/;flﬁastcallng of the mass of the cluster with its

the DPD and IPD cases, where=-d,,,, andd,;;,~1.13 is
the minimum distance exponent of the underlying 2D perco- P(/)~/(-m+1D= =2 (7)
lation cluster[9,20].

To study thelocal properties of the growing interfaces, by using the exact values &f=91/48 andr=187/91 from
theqgth order height difference correlation function is definedpercolation theory6]. This is in excellent agreement with
as our simulations. This means that the local interface slopes
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[Ah|y,

[oq(1)]0~ fo “dAhP(Ah)(A)9. (8)

For the maximum height difference@ h|,.,~W.,(t) ~tA=,

= 2 where B8.,= 8=1 for the present model. Thus, for different
\;% g's we have
=2 1.5
E Int for g=1,
! 70~ 110 or q>1, ©

0.5

log,(t)

log (G, ()]

(aq
FIG. 2. (& The local height difference correlation functions =ty
a4(1). The inset shows the logarithmic behavior épr 1; time is in

log, ,(x)

5 2

which means that the local growth exponents are given by
B1=0[0(log)] andB,=1—1/q for g>1. These predictions
are in excellent agreement with our numerical data in Table I.
The local roughness exponent can be obtained by combining
the scaling ofay(t) and G4(x,t) [Egs. (3) and (5) with x
~¢~L]. Using x4+ aq=x=1 andz=1 yields

Xq=1/a, (10)

which is again in excellent agreement with our data.

To explain the scaling behavior &, we define a gener-
alized correlation function Eq(x,to,t)
=(|8h(Xg,to) — Sh(Xo+ X, to+1)[9Y4. It has the following
limits: Cy(X,10,0)=Gy4(x, to), Eq(l,to,0)=aq(~to), and
Cq(Oito,t) =~Cq(to,t). We propose that Cy(X,tq,t)
= &(tg) “ax*afy(uq,Uy), where we have definedh =x/£(to)
and u,=t/t,. First, for u,=0, we must obtain the scaling
form of G4(x,to). Therefore,"f'q(ul,u2=O)=fq(ul)ocul_"q
for u;>1. For small timest, this gives Ggy(X,to)
+Xq)/zoct0, which we have confirmed numerically for
the first few values ofg. Next, we consider nonzera,.

units of the number of monolayerdvL); system size is 1024 Taking the limitx—0 of C we should recove€,. Since

X 2048.(b) The correlation functlonéaq(x) in units of lattice spac-
ing a (in the saturated regimiesystem size is 409616384. In both the x dependence must vanlsh we reqUILe tmé([ul’UZ)
ng(uz) for u;—0. Hence, C4(x—0to,t)

cases, from bottom to top=2,3,4,5, and 6. The solid lines denote “U
the theoretical predictions of Table I. ocg(to) “axXau, *9gq(Up) *tolq(t/te) % Cqy(to,t). This is an

L explict scaling prediction for z=1. We have numerically
follow an anomalous [y distribution in contrast to, e.g., 7

the KPZ case, where the distribution is of Gaussiamdom-
walk) type[23]. =1/.

Equation(7) can now be used to derive the scaling expo- We have also studied the TIP model numerically. We find
nents in the following way. LdAh|,,., denote the largest of that (=7+1)D=-1.9=0.1 and thus both the probability

confirmed thatgq(uz)ocufq for u,<<1. This gives,f%q=)(q

the local slopes. We can now assume that

distribution P(Ah) and the scaling exponents are the same
for NTIP and TIP. This is not obvious since neither the frac-

TABLE I. The local scaling exponents from numerical simula- tal dimension nor the exponentis known exactly for TIP.

tions of the NTIP model. Analytic prediction is shown in the lower Numerical estimates givd~1.82 [11], a value that is
part of the table.

slightly lower than for the NTIP case. We are not aware of

any previous numerical estimates afbut from our results

q Paq Bq Xq we can estimate that=2.0+0.1.
1 0(log) 0.95+0.04 0.86-0.01 It is mterestlng to comp:are the. pf’esent results with the
IPD case as obtained for a “forest fire” lattice model close to
2 0.51+0.05 0.510.01 0.510.02 - .
percolation[9]. In both casesy=1 due to isotropy. How-
3 0.67£0.04 0.33:0.02 0.34:0.02 . .
ever, in the IPD case it was shown ttzat d,;;,~1.13 corre-
4 0.73£0.02 0.24-0.01 0.26:0.01 . . .
5 0.75+0.03 0.19-0.02 0.20-0.02 sponding to a 2D minimum path exponent, while hetel.
5 0'77+0'02 0'1&0'02 0.1E0.02 Thus, the globatlynamicalexponents3 andz of the IP case
T ' ) ) ) are different from the IPD case. However, the important
1-1/q 1/q 1/q point is that thelocal scaling exponents must be still given

by our analytic arguments, wit= 1/d,;,. For the IPD case,
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this gives the same local roughness exponggts1/q as in by numerical simulations, and should be easy to measure for
the IP case, but now the local growth exponents are given byarious physical processes, where fractal growth structures
Bq= B(1—1/q), which is indeed consistent with the numeri- are generated. Such measurements give direct information
cal data in Ref[9]. about the fractal properties of the structures as we have
To summarize, we have studied the problem of kineticshown here.
roughening of single-valued height fronts in fractals. By con-
sidering the invasion percolation model as an example, we The authors want to acknowledge Ismo Koponen for help-
have been able to show how théwyestatistics of the local ful discussions. This work has been supported in part by the
interface slopes generates multiscaling and anomalous scakcademy of Finland through its Center of Excellence pro-
ing. We have also shown how the local scaling exponents cagram. J.A. acknowledges the Vaisala Foundation for financial
be analytically derived. These predictions have been verifiegupport.
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