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We consider the dynamics and kinetic roughening of single-valued interfaces in two-dimensional fractal
media. Assuming that the local height difference distribution function of the fronts obeys Levy´ statistics with
a well-defined power-law decay exponent, we derive analytic expressions for the local scaling exponents. We
also show that the kinetic roughening of the interfaces displays anomalous scaling and multiscaling in the
relevant correlation functions. For invasion percolation models, the exponents can be obtained from the fractal
geometry of percolation clusters. Our predictions are in excellent agreement with numerical simulations.
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Kinetic roughening of driven interfaces is an ubiquitous
phenomenom in nature, with applications varying from the
crystal growth@1# to fluid invasion in porous media@2#. In
many cases of interest, there is a description of such pro-
cesses in terms of a stochastic equation of motion for the
~single-valued! height functionh(xW ,t). Such equations of
motion can be local, such as the well-known Kardar-Parisi-
Zhang~KPZ! equation@3# and its variants, or nonlocal due
to, e.g., an underlying conservation law in the system@4#.
Both classes of equations typically lead to power-law scaling
of the relevant height correlation functions, with associated
scaling exponents whose values are known exactly in some
special cases.

There exist interesting connections between kinetic
roughening and more general theories of scale-invariant
structures@1,5#. An important special case is the connection
to percolation theory@6# for fronts that become pinned due to
quenched disorder@2#. There are two important universality
classes arising from the quenched KPZ description near pin-
ning, namely, the isotropic percolation~IP! and directed per-
colation depinning~DPD! cases@7#. These two differ by their
scaling exponents, as well as by the behavior of the nonlinear
term in the underlying KPZ equation. Another case related to
percolation is that of the propagation of a single-valued in-
terface in a background, which itself undergoes a percolation
transition and is thus a fractal@8,9#. This situation arises in
models of slow combustion fronts@8#, or ‘‘forest fire’’ lattice
models@9#. In this isotropic percolation depinning~IPD! case
@9#, some of the scaling exponents can be directly related to
the geometric properties of the underlying percolation cluster
similar to the DPD case@7#. However, in the IPD limit there
exists no KPZ type of description for the interface dynamics.
Nontrivial fractal structures emerge from various growth
models as well, including diffusion limited aggregation@10#
and various oblique-incidence ballistic growth models@1#.
The current understanding of the roughening properties of
fronts in such fractals is still rather incomplete.

In this work, our aim is to examine the problem of kinetic
roughening ofsingle-valuedfronts in fractal media. To this
end, we study front propagation and kinetic roughening in IP
models@11#. They constitute an important and widely studied

class of percolation theory. The IP is a dynamic percolation
process that describes the displacement of one fluid by an-
other in a porous medium in the limit where capillary forces
dominate the viscous forces@6#. IP can be divided in two
cases: one with trapping~TIP! and the other without it
~NTIP!. TIP describes a situation in which the defender fluid
is incompressible, and thus invasion process terminates in
regions fully surrounded by the invading fluid. The NTIP
model, on the other hand, is consistent with the case where
the defending fluid is compressible. An important property of
the NTIP model is that it is believed to to be equivalent to
ordinary percolation@12#. The temporal development of IP
clusters has been studied in Refs.@13,14#, and self-
organization and kinetic roughening with local slope con-
straints in Ref.@15#.

We first present results of numerical simulations of the
lattice model of NTIP, where we calculate the various corre-
lation functions of the single-valued heights associated with
the invading front, and estimate the corresponding scaling
exponents. We find that there is anomalous scaling and mul-
tiscaling in the temporal and spatial correlation functions. We
argue that this can be generally explained by the underlying
Lévy statistics of the jumps of neighboring interface heights.
The properties of the Le´vy distribution can be expressed
solely in terms of the geometry of the fractal. From this we
derive exact expressions for thelocal scaling exponents,
which turn out to depend on both the form of the Le´vy dis-
tribution and theglobal roughening exponents. Our numeri-
cal simulations are in excellent agreement with the theoreti-
cal predictions.

The numerical simulations of the NITP lattice model were
done on a two-dimensional~2D! square lattice of sizeLx
3Ly , with Lx532–4096 andLy5Lx24Lx . Our simulation
method is basically the same as in Refs.@16–18#. The main
algorithmic aspect is that the list of active growth sites is
implemented via a balanced binary search tree. By this
method, the insertion and deletion operations on the list can
be performed in time} ln(n), wheren is the list size.

In the model, we define a set of single-valued local inter-
face heights$h(xi ,t)% i 51

Lx at xi by the highest invaded lattice
site @9# ~see Fig. 1!. Theglobal interface widthwq(t,Lx) can
be defined by
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wq~ t,Lx![^@h~x,t !2h̄~ t !#q&1/q, ~1!

where the overbar denotes spatial averaging over the system
of sizeLx and angular brackets denote configuration averag-
ing. The global width satisfies the Family-Viscek scaling an-
satz @19# w(t,L);tb f (t/Lz) for all q, where the scaling
function f (u→0)5const andf (u→`)}u2b. Here, b de-
fines the~global! growth exponent. The dynamic exponentz
describes the scaling of saturation timets with system size,
ts;Lz, andb andz are connected through the global rough-
ness exponentx asb5x/z @2#.

For the IPD case, it has been shown thatx51 due to the
isotropy of the underlying percolation cluster@9#. This argu-
ment should hold here, too, and we indeed find numerically
thatx50.9960.02. We also measuredb and find thatw2(t)
grows linearly in time, i.e.,b51.0060.03. This indicates
that the dynamic exponentz50.9960.05. This differs from
the DPD and IPD cases, wherez5dmin , and dmin'1.13 is
the minimum distance exponent of the underlying 2D perco-
lation cluster@9,20#.

To study thelocal properties of the growing interfaces,
theqth order height difference correlation function is defined
as

Gq~x,t !5^uh~x0 ,t !2h~x01x,t !uq&1/q, ~2!

with Gq satisfying the anomalous scaling relation@9,21#

Gq~x,t !5jaqxxqf q~x/j!. ~3!

Here, the scaling functionf q(u→0)5const andf q(u→`)
}u2xq @9#. The exponentsaq define the so-called anomaly
exponents, andxq’s define local roughness exponents. We
have also calculated the average nearest neighbor height dif-
ference functionsq(t), defined by@22#

sq~ t !5^uh~xi 11 ,t !2h~xi ,t !uq&1/q, ~4!

which at early times follows the scaling relation

sq;jaq;taq /z;tbq , ~5!

wherebq are the local growth exponents. One can also de-
fine the time-dependentqth order height-height fluctuation
correlation function

Cq~ t !5^@dh~x,t0!2dh~x,t01t !#q&1/q, ~6!

wheredh[h2h̄ is the deviation from the average height. In
the saturated regime, one expectsCq to scale asCq;t b̃q at
early times, and to saturate to a system size dependent value
at large times.

In Figs. 2~a! and 2~b! we show our numerical results for
some relevant correlation functions. The measured values for
the corresponding scaling exponents are also listed in Table
I. Anomalous scaling and multiscaling of the correlation
functions are evident in the data. We have numerically cal-
culated the distribution functionP(Dh) for local slopes,
where Dh[uh(xi 11)2h(xi)u. It shows a clear power-law
dependence on the jump size,P(Dh5l );l 2a, and we find
that a52.0060.05.

To theoretically explain these results, we consider the ge-
ometry of the underlying percolation cluster. The single-
valued interface consists of pieces of the hull of the percola-
tion cluster, separated by vertical jumps as shown in Fig.
1~a!. At a point xW on the invasion front, a jump of sizeDh

@1 means that there is an overhang belowxW . The probability
of finding such an overhang can be directly found using re-
sults from percolation theory. At the threshold, the probabil-
ity per site of finding a cluster of sizes scales asns;s2t,
and the linear sizel of the cluster of sizes scales asl
;s1/D, whereD is the fractal dimension of the cluster@6#.
Thus for a jump of the sizeDh5l , P(l ) is proportional to
the probability of finding a cluster of sizel ~see Fig. 1!. The
cluster of this size hass;l D sites. The probability of find-
ing a cluster ofs sites scales asnss;s2t11. Finally, taking
into account the scaling of the mass of the cluster with its
size, we have that

P~ l !;l (2t11)D5l 22 ~7!

by using the exact values ofD591/48 andt5187/91 from
percolation theory@6#. This is in excellent agreement with
our simulations. This means that the local interface slopes

FIG. 1. ~a! A typical configuration of an NTIP cluster. A large
overhang of sizeDh is outlined with an ellipse. The gray area under
the solid line shows how overhangs are cut off. Both axes are in
units of latice constanta, as in ~b!. ~b! A set of five consecutive
height profiles separated by timet corresponding to 10 monolayers
is shown. Each curve has been shifted by 50 lattice units for clarity.
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follow an anomalous Le´vy distribution in contrast to, e.g.,
the KPZ case, where the distribution is of Gaussian~random-
walk! type @23#.

Equation~7! can now be used to derive the scaling expo-
nents in the following way. LetuDhumax denote the largest of
the local slopes. We can now assume that

@sq~ t !#q'E
0

uDhumax
dDhP~Dh!~Dh!q. ~8!

For the maximum height differences,uDhumax;w`(t);tb`,
whereb`5b51 for the present model. Thus, for different
q’s we have

sq~ t !;H ln t for q51,

t121/q for q.1,
~9!

which means that the local growth exponents are given by
b150 @O(log)# andbq5121/q for q.1. These predictions
are in excellent agreement with our numerical data in Table I.
The local roughness exponent can be obtained by combining
the scaling ofsq(t) and Gq(x,t) @Eqs. ~3! and ~5! with x
'j'L#. Usingxq1aq5x51 andz51 yields

xq51/q, ~10!

which is again in excellent agreement with our data.
To explain the scaling behavior ofCq we define a gener-

alized correlation function C̃q(x,t0 ,t)
[^udh(x0 ,t0)2dh(x01x,t01t)uq&1/q. It has the following
limits: C̃q(x,t0,0)5Gq(x,t0), C̃q(1,t0,0)5sq(t0), and
C̃q(0,t0 ,t)5Cq(t0 ,t). We propose that C̃q(x,t0 ,t)
5j(t0)aqxxq f̃ q(u1 ,u2), where we have definedu1[x/j(t0)
and u2[t/t0. First, for u250, we must obtain the scaling
form of Gq(x,t0). Therefore, f̃ q(u1 ,u250)5 f q(u1)}u1

2xq

for u1@1. For small times t0 this gives Gq(x,t0)
}t0

(aq1xq)/z
}t0, which we have confirmed numerically for

the first few values ofq. Next, we consider nonzerou2.
Taking the limit x→0 of C̃q we should recoverCq . Since
the x dependence must vanish we require thatf̃ q(u1 ,u2)
}u1

2xqgq(u2) for u1→0. Hence, C̃q(x→0,t0 ,t)

}j(t0)aqxxqu1
2xqgq(u2)}t0gq(t/t0)}Cq(t0 ,t). This is an

explict scalingprediction for z51. We have numerically

confirmed thatgq(u2)}u2
b̃q for u2!1. This givesb̃q5xq

51/q.
We have also studied the TIP model numerically. We find

that (2t11)D521.960.1 and thus both the probability
distribution P(Dh) and the scaling exponents are the same
for NTIP and TIP. This is not obvious since neither the frac-
tal dimension nor the exponentt is known exactly for TIP.
Numerical estimates giveD'1.82 @11#, a value that is
slightly lower than for the NTIP case. We are not aware of
any previous numerical estimates oft, but from our results
we can estimate thatt52.060.1.

It is interesting to compare the present results with the
IPD case as obtained for a ‘‘forest fire’’ lattice model close to
percolation@9#. In both cases,x51 due to isotropy. How-
ever, in the IPD case it was shown thatz5dmin'1.13 corre-
sponding to a 2D minimum path exponent, while herez51.
Thus, the globaldynamicalexponentsb andz of the IP case
are different from the IPD case. However, the important
point is that thelocal scaling exponents must be still given
by our analytic arguments, withb51/dmin . For the IPD case,

FIG. 2. ~a! The local height difference correlation functions
sq(t). The inset shows the logarithmic behavior forq51; time is in
units of the number of monolayers~ML !; system size is 1024
32048.~b! The correlation functionsGq(x) in units of lattice spac-
ing a ~in the saturated regime!; system size is 4096316384. In both
cases, from bottom to topq52,3,4,5, and 6. The solid lines denote
the theoretical predictions of Table I.

TABLE I. The local scaling exponents from numerical simula-
tions of the NTIP model. Analytic prediction is shown in the lower
part of the table.

q bq b̃q
xq

1 O(log) 0.9560.04 0.8660.01
2 0.5160.05 0.5160.01 0.5160.02
3 0.6760.04 0.3360.02 0.3460.02
4 0.7360.02 0.2460.01 0.2660.01
5 0.7560.03 0.1960.02 0.2060.02
6 0.7760.02 0.1660.02 0.1760.02

121/q 1/q 1/q
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this gives the same local roughness exponentsxq51/q as in
the IP case, but now the local growth exponents are given by
bq5b(121/q), which is indeed consistent with the numeri-
cal data in Ref.@9#.

To summarize, we have studied the problem of kinetic
roughening of single-valued height fronts in fractals. By con-
sidering the invasion percolation model as an example, we
have been able to show how the Le´vy statistics of the local
interface slopes generates multiscaling and anomalous scal-
ing. We have also shown how the local scaling exponents can
be analytically derived. These predictions have been verified

by numerical simulations, and should be easy to measure for
various physical processes, where fractal growth structures
are generated. Such measurements give direct information
about the fractal properties of the structures as we have
shown here.
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