
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s): Asikainen, J. & Heinonen, J. & Ala-Nissilä, Tapio

Title: Exact and efficient discrete random walk method for time-dependent
two-dimensional environments

Year: 2002

Version: Final published version

Please cite the original version:
Asikainen, J. & Heinonen, J. & Ala-Nissilä, Tapio. 2002. Exact and efficient discrete
random walk method for time-dependent two-dimensional environments. Physical
Review E. Volume 66, Issue 6. P. 066706/1-10. ISSN 1539-3755 (printed). DOI:
10.1103/physreve.66.066706.

Rights: © 2002 American Physical Society (APS). http://www.aps.org

All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that material may
be duplicated by you for your research use or educational purposes in electronic or print form. You must
obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or
otherwise to anyone who is not an authorised user.

Powered by TCPDF (www.tcpdf.org)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80714678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.aalto.fi/en/
http://aaltodoc.aalto.fi
http://www.tcpdf.org

Exact and efficient discrete random walk method
for time-dependent two-dimensional environments

J. Asikainen,1 J. Heinonen,1 and T. Ala-Nissila1,2

1Helsinki Institute of Physics and Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT,
Espoo, Finland

2Department of Physics, Brown University, Providence, Rhode Island 02912-1843
~Received 2 August 2002; published 30 December 2002!

We present an exact method for speeding up random walk in two-dimensional complicated lattice environ-
ments. To this end, we derive the discrete two-dimensional probability distribution function for a diffusing
particle starting at the center of a square of linear sizes. This is used to propagate random walkers from the
center of the square to sites which are nearest neighbors to its perimeter sites, thus savingO(s2) steps in
numerical simulations. We discuss in detail how this method can be implemented efficiently. We examine its
performance in the diffusion limited aggregation model which produces fractal structures, and in a one-sided
step-growth model producing compact, fingerlike structures. We show that in both cases, the square propagator
method reduces the computational effort by a factor proportional to the linear system size as compared to
standard random walk.

DOI: 10.1103/PhysRevE.66.066706 PACS number~s!: 02.70.2c, 05.40.Fb, 05.10.2a, 46.65.1g

I. INTRODUCTION

Random walk~RW! based methods constitute one of the
most useful tools in the study of various physical systems
@1#. Such methods have been employed to study random ma-
terials, including glasses, polymers, and amorphous materi-
als, and on larger scales porous media, composites and sus-
pensions~a thorough review of the applications of RW is
given by Weiss@1#!. In particular, many transport processes
in disordered media can be analyzed with RW models@2,3#.
Examples include problems in polymer physics@4#, various
diffusion processes@5,6#, crystallography@7#, and reaction
kinetics @1#. RW techniques have also been applied to the
study of biological phenomena, such as modeling of bacterial
motion @8#.

A particularly useful application of RW methods in con-
tinuum is based on the analogy of the diffusion equation to
an electrostatic problem where one wants to know the charge
density on a boundary surrounding a point charge. Namely,
the Green’s function of the Laplace’s equation equals the
probability density of diffusing random walkers at the
boundary@9,10#. When the underlying geometry is simple,
standard numerical or analytical methods for electromagnetic
problems are applicable. However, for complicated geom-
etries or in particular when the boundary evolves in time,
using a RW algorithm may turn out to be much more effi-
cient.

An important example of a problem with complicated,
time-dependent boundary conditions is diffusion limited ag-
gregation~DLA ! which is a model of irreversible growth to
generate fractal structures@11#. It has been used to study a
great variety of processes, including dendritic growth, vis-
cous fingering in fluids, dielectric breakdown, and electro-
chemical deposition@12#. The DLA is a model defined con-
ventionally on a lattice, where fractal structures are grown by
particles that diffuse and stick to an initial seed particle~or a
line of seed particles!. In standard simulations of DLA lattice

models, one releases a particle far away from the seed, lets it
walk until it sticks to the structure, and continues then with a
new particle. The main technical problem in this approach is
that the random walkers will occasionally escape the finite
simulation box. In this case if the particle steps beyond a
large, predefined distance from the seed, it is usually re-
jected, and a new particle is released. To avoid this problem,
more sophisticated methods have been developed in the con-
tinuum limit @13#. The basic idea is that instead of the par-
ticle stepping only a short~constant! distance at a time, a
random step as large as possible is taken. Also, if the particle
exits a circle around the seed~in the case of circular DLA!, it
is projected back with the ‘‘first hit’’ probability distribution
~see the Appendix of Ref.@13#!.

Similar methods have also been used in lattice simula-
tions. Meakin and Tolman@14# used a method, where one
takes the largest empty hypersphere around the diffusing par-
ticle, and moves the particle to a randomly chosen position
on its surface. Ball and Bray@10# calculated the Laplacian
Green’s function for a hypercube, and projected the particle
to the boundary of it. However, both of these methods intro-
duce approximations. In the first case, there is a systematic
error in mapping of a hypersphere onto the lattice sites, and
in the latter case error is induced by mapping continuous
coordinates onto lattice sites@10#. Such errors are most pro-
nounced at small length scales. If an exact method is used
one does not need to concern oneself whether any of the
properties of the growing structures are influenced due to the
approximations.

In this work, our aim is twofold. We will derive and
present anexactmethod for speeding up random walkers in
complicated lattice environments. To this end, we calculate
the completediscretetwo-dimensional probability distribu-
tion function for a diffusing particle to enter a site around a
square of linear sizes. This is used to propagate random
walkers starting from the center of the square, to any of the
4s sites that are nearest neighbors~NN! to the 4s24 perim-
eter sites~see Fig. 1!, thus savingO(s2) steps in the simu-

PHYSICAL REVIEW E 66, 066706 ~2002!

1063-651X/2002/66~6!/066706~10!/$20.00 ©2002 The American Physical Society66 066706-1

lation. In the limit of larges, our solution agrees with the
known continuum case@15#. Second, we discuss in detail
how this discrete square propagator method can be imple-
mented efficiently and examine its performance in two
growth models. The first one is the DLA lattice model. In
spite of its apparent simplicity, an analytic solution is still
unavailable, and thus numerical work provides most of the
current understanding of the model. The model exhibits very
slow approach to the asymptotic limit@13,16#, and efficient
simulation algorithms are crucial in the study of DLA. The
second model is that introduced by Heinonenet al. @17#
~HBAK ! to study kinetic roughening in one-sided, aniso-
tropic step growth. The HBAK model produces compact fin-
gerlike structures, with growth rules exactly the same as in
DLA, except for a sliding-down condition at the boundary of
the growing aggregate. For both models, we demonstrate that
the square propagation method reduces the computational
effort by a factor proportional to the linear system sizeL as
compared to the standard RW approach. We note that the
implementation and conclusions presented here can also be
applied to the continuum case@15# for off-lattice problems.

II. PROPAGATORS

We consider here systems on a 2D rectangular geometry,
where initially the bottom of the system aty50 comprises
the growth ~sticking! sites, and diffusive particles are re-
leased fromy5`. The system size in the lateralx direction
is L, with periodic boundary conditions. Such systems were
also considered by Heinonenet al. @17# who devised an exact
half plane propagation~HPP! method to speed up diffusion
limited growth. It is based on releasing each walker at height
yHPP which is defined to be one lattice site higher than the
highest point of the growing substrate. If the particle crosses
the line again in the1y direction while performing RW, it is
immediately returned to the liney5yHPP with a newx coor-
dinate chosen from the appropriate spatial distribution. The

Fourier transform of the corresponding spatial probability
distribution functionPHPP(x) is given exactly by@17#

P̂HPP~q!522cosq2A~22cosq!221, ~1!

whereq52pn/L, with n50,1, . . . ,L21. The general for-
mula for nonzero drift can be found in Ref.@17#.

Although the HPP method makes it possible to simulate
systems of infinite size in they direction exactly, with grow-
ing spatial structures the random walkers spend more and
more time in trying to find available growth sites. Indeed, we
expect that the time grows typically asL2 in self-similar
systems of sizeL. The additional idea here is to speed up the
RW process at every possible step. This can be achieved with
the so-called square propagator~SQP! which we here define
to be the probability distribution for a particle released at the
center of a square of linear sizes, to appear at any site which
is a NN to the perimeter sites of the square. When the par-
ticle moves from a lattice sitexW one checks the largest empty
square around the sitexW ~see technical details on how this is
efficiently done in Sec. III! and propagates the particle in-
stantaneously to its perimeter with the appropriate probabil-
ity distribution. This way the particles can be very efficiently
propagated to available growth~absorbing! sites, as shown
schematically in Fig. 1.

To define the SQP, we consider a square of sizes52,
11, where thejump index,50,1,2, . . . , andwhere the par-
ticle initially sits at the center row,11. LetTn be the trans-
fer matrix that gives the probability to move from thenth
row to the (n11)th row ~see Fig. 1!. Thus, the element
Tn(i , j) of this matrix is the probability to jump from the site
i on row n, to site j on row n11. In the Appendix A we
derive a recursion relation for the matrixTn and solve it
using the discretez transform. What follows is the probabil-
ity distributionPSQPfor the walker to enter thekth site at, for
example, the bottom row just outside to the bottom perimeter
of the square~see Fig. 1!, and it is given by

PSQP~k!5 (
n51

s

xn
k f ~ln!xn

,11 , ~2!

where f (l)5(l1
,111l2

,11)21, l65l/26A(l/2)221, xn
k

5A2/s11sin(pnk/s11), and lk5422 cos(pk/s11), with
k51,2, . . . ,s.

In analogy with the HPP distribution, it is fast to calculate
and tabulate the required SQP at the beginning of the simu-
lation @17#.

The displacementk can be found efficiently from the
probability distributionP(k) using two arrays with indices
n50,1, . . . ,N21, where the lengthN51/Dj is chosen such
that Dj,mink@P(k)#. With such a smallDj , each interval of
the random numbernDj<j,(n11)Dj belongs to the range
of one or two displacements at most. To distinguish between
the two displacements in the latter case, we find the smallest
displacementk in the cumulative distribution which is still
larger than the lower boundarynDj . For this purpose, we
define two arrays as follows:

FIG. 1. Illustration of the transition matrixTn for a square of
size s55. Absorbing sites are shown as shaded. The product
(T5T4T3)m,k gives the probability for the walker starting at the
center row site (m,3) to end up in any of the absorbing sites at the
bottom (k,6).The random path~denoted by the dashed line! is re-
placed by a single SQP leap.

ASIKAINEN, HEINONEN, AND ALA-NISSILA PHYSICAL REVIEW E 66, 066706 ~2002!

066706-2

A~n!5kn ,

B~n!5(
z50

kn

P~z!, ~3!

where kn50,1, . . . ,kmax is the smallestk for which nDj

,(z50
k P(z). For each random number 0<j,1, the dis-

placementk is found as

k5H A~ int@jN# !, j,B~ int@jN# !

A~ int@jN# !11, j>B~ int@jN# !,
~4!

where int@y# is the largest integer which is smaller thany.
This is a fast method for any fixed probability distribution
P(k) such as SQP and HPP here.

When using the square propagator, we choose to tabulate
only one half of the probability distributionPSQP(z) because
the size of the search arrays grows rapidly with the range of
the distribution. We utilize the symmetry by dividing the
square into eight segments and use two random numbers to
find the final position on the perimeter of the square. The first
random number is used to find the displacementk
51,2, . . . ,,11 in Eq.~2! using Eq.~4!. The second random
number is used to choose one of the eight segments.

To illustrate the large distances that can be covered within
a single propagation step to bring the particle to the NN sites
of the growing aggregate we show in Fig. 2 sample configu-
rations of both the DLA and HBAK models in the early time
regime.

III. INDEX SEARCH ALGORITHMS

While the use of the square propagator clearly gives a
significant advantage in simulation efficiency, it is of no use
if finding the proper square size takes too much time. Thus,
the crucial aspect in the actual implementation of the SQP
method is how to find the jump index, corresponding to the
largest possible free square around the position of the walker.
To this end, we have compared two different algorithms in
the DLA simulations, which we call the Array Index search,
and the Multigrid Index search. For the case of the HBAK
model, the search can be further simplified using a linear
index search algorithm. In this section we discuss all these
algorithms in detail, and present theoretical arguments for
the performance of their implementations.

A. Array index search

The first algorithm that we implemented is based on stor-
ing the indices in a 2D array corresponding to the sites of the
underlying lattice. After the walker sticks to one of the pos-
sible growth sites of the substrate, one has to update the
index configuration around the sticking site.

Let us define a shell around an occupied site as the set of
neighbors of the sticking site which possess the same jump
index , ~in the absence of other occupied sites! as shown in
Fig. 3. Now the local, incremental index updating is per-
formed as follows.

First, the sticking site is set to,522 and its vacant NN’s
are set to,521. The corresponding negative square sizes
s52,11,0 indicate that no jump is possible from these
sites. Then, a directed walk is started on the shell with,
50. At each site the walker steps on the index,8 of the site
is checked against the shell number,. If ,,,8, the index is
changed to,. If any of the indices on shell, is changed, a
walk is started on the next shell,11. This process is con-
tinued until no sites are updated on shell,, or until ,
5,max, the largest index value that is allowed. A further
constraint for the indices to be taken into account is that
direct jump to sites for whichy.yHPP11 is not allowed to
ensure that no approximations are made with the half plane
propagator. This algorithm needs about log2(,max) bits for
each site but in practice, 32-bit integers are an appropriate
choice.

A similar idea has been used by Meakin@18#, but in an
approximate way combined with off-lattice walks. We denote
this the array index search~AI ! algorithm.

FIG. 2. ~a! A sample DLA cluster in the growth regime.~b! A
sample configuration generated by the HBAK model. In both fig-
ures, the diffusing particle denoted by a cross can arrive at any of
the sites denoted by open circles by a single SQP leap. In both
figures the axes are in units of lattice spacing.

EXACT AND EFFICIENT DISCRETE RANDOM WALK . . . PHYSICAL REVIEW E66, 066706 ~2002!

066706-3

In the case of the DLA clusters, the free space between
the growing structures can become very large. In fact, since
the empty area grows proportional to the square of the sys-
tem size, one expects that the index updating with no con-
straints can for large enough systems become the dominant
part of simulation. This could be circumvented by setting a
constraint to the maximum step size. However, in this case
additional time must be spent due to the larger number of
diffusion steps. Since it is not obvious which way is better,
we present here a detailed analysis of these two cases.

The total CPU time per particlet tot,AI can be split into
three parts: LettSQP,AI denote the average time per particle
needed to perform the accelerated SQP walk with the AI
algorithm and lettu,AI denote the index updating time be-
tween the walkers. Thent tot,AI can be written as

t tot,AI5nSQPtSQP,AI1tu,AI1nHPPtHPP, ~5!

wherenSQP is the number of SQP leaps~We will discuss the
behavior of nSQP in Sec. IV!, tSQP,AI is the average time
needed to take a single SQP leap and the number of HPP
steps is expected to scale roughly asnHPP5aHPPL (aHPP
5const). The timetSQP,AI is composed of two parts: First,
the index, is found and then, using, and the current posi-
tion of the particle, the final position is calculated. The time
needed for a single HPP leaptHPP is found to be constant
with L ~see Sec. IV!.

Next, we consider the behavior of the first two terms in
the RHS of Eq.~5! for two possible implementations. First,
we examine the case where all the possible indices in the
lattice are updated. As noted above, the updating timetu,AI
will in this case be proportional toL2. Second, we impose a
constraint on the indices so that no indices larger than a
pre-defined value,max are updated. This reduces the contri-
bution of index updating time toO(L) ~see Sec. IV!. Below
we show how the average SQP walk timetSQP,AI behaves in
the two cases.

Let P(,,L) denote the probability of using the SQP cor-
responding to jump index, in the simulation of a lattice of
sizeL. We have calculated the index distribution numerically
from our simulation, and the result is shown in Fig. 4. From
the figure we see thatP(,);,22. The cutoff visible in Fig.
4 is due to the finite system size and it scales linearly inL.
Thus,P(,,L) can be approximated as

P~,,L !5C,22u~rL 2, !, ~6!

whereu is the Heaviside step function, the constantr is close
to 1/2, and the normalization factorC is practically indepen-
dent ofL. Then,tSQP,AI can be written as

tSQP,AI~L !5 (
,51

`

P~,,L !tSQP,AI8 ~, !, ~7!

wheretSQP,AI8 (,) is the time needed to take a step of size,.
Let us consider the first case where no restrictions are

imposed on the indices. We denote the constant timetSQP,AI8
by aSQP,AI which is independent of,, and Eq. ~7! gives
simply thattSQP,AI5aSQP,AI is constant inL.

In the second case let us impose a restriction to the indi-
ces in the following way: let,max be the largest value that
will be updated and used. The average number of stepsnSQP
remains the same if we consider fictitious steps for larger
indices. Now a SQP step with,.,max actually consists of
successive SQP steps of size,<,max. The time needed to
take a step of size, can thus be given as

tSQP,AI8 ~, !5H aSQP,AI, if ,<,max

aSQP,AI~,/,max!
2, if ,.,max.

~8!

SubstitutingtSQP,AI8 (,) into Eq. ~7! and approximating the
summation with an integral yields

tSQP,AI~L,,max!5aSQP,AIC@~121/,max!

1~rL 2,max!/,max
2 #. ~9!

FIG. 3. Illustration of the shells used in the incremental index
updating. The gray occupied site at the center has the index,
522 and its vacant nearest neighbors possess the value,521,
etc.

FIG. 4. The distributionP(,) giving the probability for using a
jump index , in cylindrical DLA. The dashed line indicates the
slope22. System size in the simulation wasL5512.

ASIKAINEN, HEINONEN, AND ALA-NISSILA PHYSICAL REVIEW E 66, 066706 ~2002!

066706-4

The idea now is to minimize the dominant scaling exponent
of t tot,AI in Eq. ~5! with the system sizeL. As will be dis-
cussed in Sec. IV,nSQP5anL (an5const) quite accurately.
Sincetu,AI5au,AI,max

2 (au,AI5const) one obtains the optimal
dominant scaling of Eq.~5! if one chooses,max}AL, and
then

tSQP,AI5
3

2
aSQP,AIC~121/AL ! ~10!

becomes constant (3/2)aSQP,AI with largeL. The same scal-
ing of ,max is obtained by minimizing the total CPU time
with fixed L. In addition, a prefactor comes out from the
minimization. For cases,max!L we get

,max'S anaSQP,AI

au,AI
D 1/4

L1/2. ~11!

In terms of Eq.~21!, the optimal maximum index can be
given as,max'(b3 /b4)1/4AL. The simulation results in Sec.
IV show that (b3 /b4)1/4 is close to unity and the minimum
CPU time can therefore be obtained with,max5AL.

Collecting these results together, we thus find that the
total simulation time behaves as

t tot,AI5H nSQPaSQP,AI1
1

4
au,AIL

21aHPPL if ,max5L/2

3

2
nSQPaSQP,AI1au,AIL1aHPPL if ,max5AL,

~12!

whereaSQP,AI, au,AI , andaHPP are constants. The RW algo-
rithm is actually identical to the AI algorithm with,max50
although we have implemented a separate RW algorithm for
efficiency. In Sec. IV we show thatnSQP scales essentially
linearly with L, which means that using the index cutoff,
which is between the RW and the unrestricted AI algorithms,
is the preferred way here.

We also note that simulation of, e.g., diffusion in static
porous structure with arbitrary distribution of pore sizes@15#
can be efficiently done by applying the AI method. One first
calculates the index configuration and then uses the SQP for
speed up of the diffusion process~no updating of the indices
needs to be done here!.

B. Multigrid index search

A more sophisticated way to update the jump indices is to
coarse grain the lattice in such a way that one divides the
lattice into 232 blocks that are mapped onto one site at a
higher level, continuing the mapping to as high level as
needed~this hierarchical mapping algorithm was also used in
Ref. @10#!. If any of the four sites is occupied by the sub-
strate, the site at the higher level becomes occupied, other-
wise it becomes vacant. At each step, when one wants to
know the largest empty square around a given site, one
checks from the hierarchical structure level by level if the
site has occupied neighbors. Updating in this way after the
walker sticks is fast and simple, and the time scales as

tu,MG}O(ln L) at most. Another advantage of this approach
is that at each level one can describe the state of 32 sites
using one 32-bit integer only. At the lowest level, each lattice
sites requires one bit but only 1/4 bits at the next leveletc.
Therefore, each site requires about 4/3 bits in total. This
bit-packing saves a lot of memory, and in the large system
size limit increases efficiency due to reduction of cache mis-
matches. We refer this approach as the multigrid~MG! algo-
rithm here. One should note that also the length of the HPP
search arrays in Eq.~3! is of the order ofL2. However, when
the interest is in the large time properties of the aggregate as
in the present study, vertical lattice size is very large as com-
pared to the horizontal lattice sizeL, and thus the memory
requirement of the lattice dominates.

To analyze the performance of the MG algorithm let
tSQP,MG denote the average time per particle to perform the
accelerated SQP walk within MG. Similarly to Eq.~7!, this
can be written as

tSQP,MG~L !5 (
,51

`

P~,,L !tSQP,MG8 ~, !, ~13!

where tSQP,MG8 (,) now is the time needed to take a step of
size ,. Most of the time is consumed in finding the jump
index , corresponding to the largest available empty square
around the present position. The larger, is, the higher level
of the hierarchical tree must be checked. By construction,
tSQP,MG8 (,) scales as

tSQP,MG8 ~, !} ln ,1const, ~14!

where the constant term counts for the time needed to calcu-
late the final position in the step of size,. Taking this into
account, the average step time can be written as

tSQP,MG~L !5 (
,51

`

,22ln~, !u~rL 2, !1const. ~15!

This sum can be approximated by an integral, whose upper
limit is tSQP,MG(L),tSQP,MG(`)5aSQP,MG is constant. Thus
we get the final scaling oft tot,MG as

t tot,MG5nSQPtSQP,MG1tu,MG1nHPPtHPP

5nSQPaSQP,MG1au,MGln L1aHPPL, ~16!

whereaSQP,MG, au,MG, andaHPP are constants. Comparison
with Eq. ~12! shows that both the optimal AI and the MG
algorithms have the same asymptotic scaling for large sys-
tems, and they both reduces the CPU time by a factor pro-
portional to the system sizeL as compared to the RW algo-
rithm.

C. Linear index search

In the HBAK case the index search can be further simpli-
fied since only a one-dimensional vectorh(x) is needed to
keep track of the occupied sites at eachx. When the walker is
at point (x,y), the proper jump index, can be found using
simple linear search. One starts at the pointx with initial

EXACT AND EFFICIENT DISCRETE RANDOM WALK . . . PHYSICAL REVIEW E66, 066706 ~2002!

066706-5

index set to zero and checks if the corresponding square at
heighty fits betweenh(x), h(x11), h(x21), and the line
y5yHPP. This procedure is continued by increasing, at
each step by one until the square thus drawn hits~at least!
one of the constraints. This will be referred to as the linear
index ~LI ! algorithm. Within it, the scaling of the total time
per particle behaves as

t tot,LI5nSQPtSQP,LI1nHPPtHPP, ~17!

wherenSQP,LI is the number of SQP steps per particle,tSQP,LI
is the average time needed to take a single SQP step within
LI, and we expect thattSQP,LI depends only weakly onL ~see
Sec. IV!.

IV. RESULTS

As a first check on our algorithm, we calculated the frac-
tal dimension of a DLA cluster in a cylindrical geometry.
The initial configuration was such that the bottom line of a
lattice of widthL was filled by the aggregate particles, while
the rest of the lattice was empty. Periodic boundary condi-
tions were imposed in the horizontal direction.

The scaling of the massM of the DLA structure was mea-
sured in the saturated regime, i.e., in the regime where the
surface roughness of the growing fractal has saturated in
time. This was done in order to avoid the influence of the
initial line source. The surface roughness, or global width of
the surface, is measured as the standard deviation of single-
valued interface heighth(x,t) @19#:

w~ t,L !5^@h~x,t !2h̄~ t !#2&1/2, ~18!

where the overbar denotes spatial averaging over the system
of sizeL and angular brackets denote configuration averag-
ing. The global width satisfies the Family-Viscek scaling an-
satz @20# w(t,L);tb f (t/Lz), where the scaling function
f (u→0)5const andf (u→`)}u2b. Here, b defines the
~global! growth exponent. The dynamic exponentz describes
the scaling of saturation timets with system size,ts;Lz, and
b andzare connected through the global roughness exponent
x as b5x/z @21#. The regime of our measurements corre-
sponds to surface roughnessw(t,L)}Lx independent of
time.

The lateral system sizes used in the calculation ranged
from L516 to 512. A fit to the data on a logarithmic scale
yielded the estimateD51.6660.01 for the fractal dimen-
sion, which is in excellent agreement with previous studies
@22–25#. In our recent work@19# we have used the method
described to measure some quantities characterizing interface
dynamics in growth of DLA structures. An example is the
time-dependentqth order height-height fluctuation correla-
tion function Cq(t0 ,t)5^@dh(x,t0)2dh(x,t01t)#q&1/q,
where dh[h2h̄ is the deviation from the average height
~the over bar denotes averaging overt0 and the brackets
denote configuration averaging!. The function is evaluated in
the saturated regime and large enough systems (1024

332 768 in our work@19#! must be used to avoid finite size
effects. Simulation of such systems with conventional RW
algorithm is very tedious.

A. Application to DLA

To quantitatively compare the performance of the differ-
ent algorithms in the DLA case, we measured their perfor-
mance in the saturated regime. This is the worst case sce-
nario in the sense that the fractal structure is sparse, and the
empty area where diffusion occurs is large. In particular, we
concentrate on the scaling of the relevant parts of the differ-
ent algorithms with the system size. We note that within the
SQP method, the scaling ofnSQP(L) does not depend on the
algorithm used~AI, MG, LI !, and thatnHPP(L) always scales
asL.

1. Simple random walk method

In this case, only thing to update after the walker has
reached the aggregate is the status of the corresponding lat-
tice site. Since we also utilize the use of HPP in all of our
simulations, it is included in the scaling of the total CPU
time per particlet tot,RW:

t tot,RW5nRW~L !tRW~L !1nHPP~L !tHPP~L !

5b1LaRW1b2LaHPP, ~19!

whereb1 andb2 are constants. The subscripts RW and HPP
refer to ~simple! random walk and half plane propagator,
respectively. Our numerical estimates for the scaling expo-
nents areaRW52.0060.02 andaHPP51.0360.01. The time
tHPP is found to be constant inL. The fit to the total CPU
time per particle gives

t tot,RW}L1.94. ~20!

In the limit L→` we thus expectt tot,RW to be proportional to
L2 as also expected from simple scaling arguments for dif-
fusion.

2. Square propagator method with AI algorithm

In the SQP walk with the AI algorithm, the time to take a
single SQP leap is essentially constant inL. However, it is on
the average about 2.5 times larger than the time needed for
taking a single RW step. The index updating after each
walker has stuck to the aggregate, on the other hand, in-
creases rapidly with the system size, as the empty area where
the change in the indices propagates increases. The total
CPU time per particle in Eq.~12! is written as

t tot,AI5nSQP~L !tSQP,AI~L !1tu,AI~L !1nHPP~L !tHPP~L !

5b3LaSQP1b4LgAI1b5LaHPP, ~21!

whereb3 , b4, andb5 are constants, andaSQP is the scaling
exponent for the number of step. Here we have to include the
time tu,AI}LgAI to describe the scaling of index updating
between walkers. Numerical estimates giveaSQP50.97
60.01 andaHPP51.0360.01. Again,tHPP does not depend
on L. When ,max is of the order of the system size,gAI

ASIKAINEN, HEINONEN, AND ALA-NISSILA PHYSICAL REVIEW E 66, 066706 ~2002!

066706-6

51.9460.07. This clearly shows that in this case index up-
dating between the walkers will eventually dominate the
scaling. On the other hand, as also expected from theoretical
considerations of Sec. III A sincetu,AI},max

2 , we measure
gAI50.9760.06 when,max5AL.

As discussed in Sec. III, this bottleneck can be avoided by
imposing a maximum index,max so that indices larger than
,max are not updated. Taking,max}AL yields theoretically
optimal behavior. Our final numerical estimates for the effec-
tive scaling of our algorithm~based on fits to total CPU time
per particle! with index cutoff,max in both cases is given by

t tot,AI}H L1.26 when ,max5L/2

L1.07 when ,max5AL,
~22!

which shows that, in the unrestricted case,max5L/2, we are
not yet in the scaling limitL→` of Eq. ~12! where t tot,AI

}L2. The latter case,max5AL is close to the predicted linear
scaling behavior of Eq.~12! wheret tot,AI}L.

However, even if one uses the AI algorithm without a
cutoff ,max in which case it scales asL2, its prefactorb4 in
Eq. ~21! is much smaller than that of the simple RW algo-
rithm, b1 in Eq. ~19!, thus yielding better efficiency.

3. Square propagator method with multigrid algorithm

Within the multigrid version of the SQP method the time
needed to update the structure is negligible between each
walk. On the other hand, the time to take a step is larger due
to the greater effort needed in finding the proper square in-
dex. The CPU time given in Eq.~16! scales as

t tot,MG5nSQP~L !tSQP,MG~L !1tu,MG~L !1nHPP~L !tHPP~L !

5b6LaSQP1bSQP1b7LgMG1b8LaHPP, ~23!

whereb6 ,b7 ,b8 are constants. Here, there is an additional
scaling termtSQP,MG(L)}LbSQP describing the time needed
for finding the proper index using MG. In this case, we ex-
pect it to depend onL rather weakly due to the efficiency of
the index search, and indeed we find numerically thatbSQP
50.3760.04. Theoretically, one expects this dependence to
be bounded from above by ln(L) by construction. The same
conclusion applies to the updating between walkerstu,MG(L)
that depends logarithmically onL, so that tu,MG(L)
;O„ln(L)…, although in practice it is negligible when com-
pared to the other terms. The other estimates for the scaling
exponents areaSQP50.8960.01 andaHPP51.0260.01, and
tHPP is again independent ofL.

To summarize, the asymptotic scaling in theL→` limit
from our numerical estimate by fitting tot tot,MG is given by

t tot,MG}L1.12. ~24!

When compared to our theoretical discussion in Sec. III B it
is apparent that we are not yet in the asymptotic scaling
regime. We expect the scaling oftu,MG to be a weak bounded
function of L so that the asymptotic dependence ofL would
be linear.

Our numerical results for the scaling of the total simula-
tion time per particlet tot for the different algorithms~RW, AI,
MG! are shown in Fig. 5. Both the optimal AI and the MG
algorithm scale almost with the same exponent but in the
former case, the prefactor is smaller. In our implementation,
the AI algorithm is roughly twice as fast as the MG algo-
rithm.

B. Application to HBAK

In the HBAK model, we examined performance of the
SQP method in the growth regime. The HBAK model is
implemented with a 1D vectorh(x,t), whereh(x,t) is the
height of columnx at time t. The diffusing particle walks
until it steps on a site that is a nearest neighbor to an occu-
pied site. Then the height of the corresponding column is
increased by one unit. Note that if the particle arrives to the
side of the step, this definition implies that the particle in-
stantaneously slides down until it reaches a corner site. This
‘‘sliding-down’’ rule guarantees that the height profiles
h(x,t) obey the solid-on-solid restriction, and the steps form
compact structures.

1. Simple random walk method

The simulation time can be expressed solely in terms of
the number of walks and the time needed to take a step.
Since we also utilize the use of HPP in our simulations, it is
included in the scaling:

t tot,RW5nRW~L !tRW~L !1nHPP~L !tHPP~L !

5c1LaRW1c2LaHPP, ~25!

wherec1 and c2 are constants, and the time needed to per-
form a single step is independent ofL. Our estimates for the
scaling exponents areaRW52.1060.02 and aHPP51.08
60.02. In the infinite system size limit the fit tot tot,RW gives
the scaling

t tot,RW}L2.07. ~26!

FIG. 5. Scaling of the total CPU timet tot per particle with the
system size in the DLA model with different algorithms@see Eqs.
~19!, ~21!, and~23!#.

EXACT AND EFFICIENT DISCRETE RANDOM WALK . . . PHYSICAL REVIEW E66, 066706 ~2002!

066706-7

We note that theoretically,aRW52 for simple random walk.
The leading term of Eq.~25! gives somewhat larger value
2.10 for the dominant behavior. However, both agree well
with theoretical expectations.

2. Square propagator method

For the HBAK model there is no need for the jump index
updating schemes or hierarchical structures used in the DLA
simulations, and no additional updating is needed after the
walk is finished. Since the growing aggregate forms compact
structures with no overhangs, the proper index for taking a
SQP step can be found using simple linear search~LI !. After
finding the proper index,, taking a step using the square
propagator is independent ofL. The simulation time can now
be expressed as follows:

t tot,LI5nSQP~L !tSQP,LI~L !1nHPP~L !tHPP~L !

5c3LaSQP1bSQP,LI1c4LaHPP, ~27!

wherec3 ,c4 are constants, andaSQPandbSQP,LI are the scal-
ing exponents for the number of steps and the time needed to
take a step, respectively. Our numerical estimates for the
exponents areaSQP51.0260.01, bSQP,LI50.1360.03, and
aHPP51.0660.01. The leading behavior in the largeL limit
obtained by a fit tot tot,LI is given

t tot,LI}L1.06. ~28!

The dominant term of Eq.~27! gives t tot,LI}L1.15. The weak
dependence of the index search timetSQP,LI is seen here as
the final behavior slightly exceeds the linear scaling.

This means that one essentially saves a whole factor ofL
in the CPU time per particle by utilizing the use of the square
propagator. The scaling of the total CPU time using the
simple RW and SQP methods is illustrated in Fig. 6.

V. CONCLUSIONS AND DISCUSSION

To summarize, we have presented an exact method to
speed up discrete random walk in two-dimensional compli-
cated environments of absorbing sites. This is based on the

discrete 2D probability distribution, which can be used to
propagate walkers to~absorbing! sites outside of the periph-
ery sites of a square of linear sizes in one step, with no
approximations. The method generalizes the previously used
continuum propagation method@15# which is not exact for
lattice systems. We have presented a detailed analysis of the
performance of the square propagator~SQP! method as com-
pared to traditional simulations of random walks. Two differ-
ent types of growth models were considered to test the scal-
ing of the CPU time consumption with system size, namely
the fractal diffusion limited aggregation model@11# and a
model for anisotropic growth of isolated steps@17# which
produces compact fingerlike structures. For both cases we
have shown that with proper implementation of the SQP
method, the speedup with respect to straightforward random
walk approach is of the order of the linear system sizeL.

We also want to emphasize that the speed-up methods
described here can be easily extended for other cases. The
half plane propagator can be calculated for an anisotropic
case, including a drift term in the diffusion field@17#. This
can also be done for the square propagator. In addition, one
can calculate the probability for a particle starting at an ar-
bitrary site within a rectangle of sizesx3sy to enter a given
site outside the rectangle. In the limit wheresx is fixed andsy
goes to infinity, the average number of steps needed to exit
the strip increases only by a factor of two as compared to the
isotropic square case. Thus, the use of a rectangle instead of
square does not affect the scaling, but merely the prefactor.
Further, it should also be mentioned that time dependence of
the random walk process can be easily extracted from the
square propagator distribution, if it is needed for the problem
at hand.

Finally, we note that although the method was presented
here for the two-dimensional case, it can easily be extended
to higher dimensions. Even if the exact form of the distribu-
tion PSQP(z) would not be obtainable~we have not tried
this!, it is easy to numerically calculatePSQP(z) for hyper-
cubes of different sizes and store them in the computer
memory to be used in the simulation. As this calculation only
needs to be done once, one can reach as high an accuracy as
one needs to.

ACKNOWLEDGMENTS

This work has been supported in part by the Academy of
Finland through its Center of Excellence program. J.A.
wishes to thank the Vaisala Foundation for financial support.

APPENDIX: SQUARE PROPAGATOR

Let , denote the jump index corresponding a square of
sizes52,11. Letn be the index of a row, starting from the
top, as illustrated in Fig. 1. LetTn be the the transition ma-
trix whose (i , j) element gives the probability for the walker
at sitei on nth row to enter sitej at the next row (n11). All
the sites at rows 0 and (s11), as well as the sites at columns
0 and (s11) are considered to be absorbing sites here.

Let E be the escape matrix, which gives the probability to
exit thenth row and enter the (n11)th row. This matrix is

FIG. 6. Scaling of the total CPU timet tot per particle with the
system size in the HBAK model with different algorithms@see Eqs.
~25! and ~27!#.

ASIKAINEN, HEINONEN, AND ALA-NISSILA PHYSICAL REVIEW E 66, 066706 ~2002!

066706-8

independent ofn. Clearly, T050. At each of thes sites
within the nth row, the walker can step off the row, or step
within the row to one of the neighboring sites. ThusTn can
be decomposed as the sum of probability two terms as fol-
lows:

Tn5E1TnTn21E. ~A1!

Let D be the direct transition matrix14 I (I is the identity
matrix!, whose (i ,i)th element is the probability to step from
site i at thenth row to sitei at the (n11)th row. In addition,
let Sbe the transition matrix for the walker to step within the
row. Then, (I 2S) is a tridiagonal matrix, having entries 1 at
the diagonal and entries2 1

4 at off diagonals, and it gives the
probability to exit thenth row ~up or down!.

Now, the particle can enter the (n11)th row directly, or it
can take one or more steps within the row and then step the
(n11)th row. Thus the escape matrixE can be written as a
geometric series

E5D(
i 50

`

Si5D~ I 2S!21. ~A2!

We denote (I 2S)5 1
4 K. Thus, we can write the recursion

relation for the transition matrixTn as

Tn5K211TnTn21K21. ~A3!

This equation can be formally solved as

Tn5~K2Tn21!21. ~A4!

Using our initial value T050, we immediately getT1
5K21, T25(K2K21)21, etc.

The probability distribution for the walker to exit the
square from the last rown52,11 starting from the rown
5,11 can be obtained as the product of theTn’s as

PSQP5T2,11T2,•••T,12T,11 , ~A5!

because we consider the situation where the walker starts at
the center from the (,11)th row. Let us now define matrices
f n by @26#

Tn5 f n11
21 f n . ~A6!

Again, using the initial value forT0 we get f 050. In addi-
tion, we choosef 15I . Writing Eq. ~A3! in terms of thef n’s,
we obtain the recursion relation

f n122 f n11K1 f n50. ~A7!

It is convenient to use the discretez transform for such re-
cursion relations. Thez transform f̃ (z) of the sequencef k
(k50,1,2, . . .) is defined as

f̃ ~z!5 (
k50

`

f kz
2k. ~A8!

In particular, the transform forf k5ck is needed here as well
as for solving for the eigenvalues and eigenvectors. This is
given by

f̃ ~z!5 (
k50

`

ckz2k5
z

z2c
. ~A9!

Transforming both sides of Eq.~A7!, we get

f̃ ~z!5~z22zK1I !21zI. ~A10!

Denoting the roots of the denominator in Eq.~A10! by K6 ,
we have

K65
K

2
6AS K

2 D 2

2I . ~A11!

Next, we write the solution in terms of partial fractions to get

f̃ ~z!5~K11K2!21@~z2K1!212~z2K2!21#.
~A12!

The inversez transform can be found using Eq.~A9!, and
thus we have

f n5~K1
n 2K2

n !~K12K2!21. ~A13!

Now we can write the probability distributionPSQP in terms
of the matricesK6 ,

PSQP5T2,11T2,•••T,12T,11

5 f 2,12
21 f 2,11f 2,11

21 f 2,••• f ,12
21 f ,11

5 f 2,12
21 f ,115~K1

,111K2
,11!21. ~A14!

This equation could already be used to numerically calculate
the desired probability distributionPSQP, but one can do
better. Extracting the full solution in closed form saves a lot
of computational effort for large matrices and increases nu-
merical accuracy.

To this end, one can easily write recursion relation for the
characteristic function of the eigenvalues of the matrixK.
This can be solved using thez transform again. The result for
the kth eigenvalue is

lk5422 cos
pk

s11
, with k51,2, . . . ,s. ~A15!

The same technique can be used to obtain the eigenvectors of
K yielding for thenth component of the eigenvector corre-
sponding to thekth eigenvalue, the result

xn
k5A 2

s11
sinS pnk

s11D . ~A16!

Having now calculated the eigenvectors and eigenvalues of
the matrixK, we can obtain the solution forPSQPin a closed
form. The matrixK can be diagonalized, reducing signifi-
cantly the elements needed in calculatingPSQP. What fol-

EXACT AND EFFICIENT DISCRETE RANDOM WALK . . . PHYSICAL REVIEW E66, 066706 ~2002!

066706-9

lows is that starting from the center at the (,11)th column,
the probability to enter the site at thekth column just outside
the square equals

PSQP~k!5 (
n51

s

xn
k f ~ln!xn

,11 , ~A17!

where

f ~l!5~l1
,111l2

,11!21,

and l65l/26A(l/2)221. This is the desired SQP corre-
sponding to Fig. 1.

@1# G.H. Weiss,Aspects and Applications of the Random Walk
~North-Holland, Amsterdam, 1994!.

@2# J.P. Bouchaud and A. Georges, Phys. Rep.195, 127 ~1990!.
@3# A. Bunde and S. Havlin,Fractal and Disordered Media

~Springer-Verlag, Berlin, 1991!, Vol. 1.
@4# Polymer Physics: 25 Years of the Edwards Hamiltonian, edited

by S. Bhattacharjee~World Scientific, Singapore, 1992!; The
Monte Carlo Method in Condensed Matter Physics, edited by
K. Binder ~Springer, Heidelberg, 1995!.

@5# I. Goldhirsch and Y. Gefen, Phys. Rev. A33, 2583~1986!.
@6# G.H. Weiss and S. Havlin, Physica A134, 474 ~1986!.
@7# M. Woolfson,An Introduction to X-ray Crystallography~Cam-

bridge University Press, Cambridge, 1979!.
@8# E. Ben-Jacob, O. Shochet, A. Tenenbaum, I. Cohen, A. Czirk,

and T. Vicsek, Nature~London! 368, 46 ~1994!.
@9# R.L. Gibbs, C.W. Beason, and J. Beason, Am. J. Phys.43, 782

~1975!.
@10# R.C. Ball and R.M. Bray, J. Phys. A18, L809 ~1985!.
@11# T.A. Witten and L.M. Sander, Phys. Rev. Lett.47, 1400

~1981!.
@12# T. Vicsek,Fractal Growth Phenomena~World Scientific, Sin-

gapore, 1992!; for a review, seeFractals in Natural Science,
edited by T. Vicsek, M. Schlesinger, and M. Matsuhita~World
Scientific, Singapore, 1993!.

@13# H. Kaufman, A. Vespignani, B.B. Mandelbrot, and L. Woog,
Phys. Rev. E52, 5602~1995!.

@14# S. Tolman and P. Meakin, Phys. Rev. A40, 428 ~1989!.
@15# S. Torquato and In Chan Kim, J. Appl. Phys.85, 1560~1999!.
@16# B.B. Mandelbrot, B. Kol, and A. Aharony, Phys. Rev. Lett.88,

055501~2002!.
@17# J. Heinonen, I. Bukharev, T. Ala-Nissila, and J.M. Kosterlitz,

Phys. Rev. E57, 6851~1998!.
@18# P. Meakin, J. Phys. A18, L661 ~1985!.
@19# J. Asikainen, S. Majaniemi, M. Dube´, J. Heinonen, and T. Ala-

Nissila, Eur. Phys. J. B30, 253 ~2002!.
@20# F. Family and T. Viscek, J. Phys. A18, 75 ~1985!.
@21# A.-L. Barabási and H.E. Stanley,Fractal Concepts in Surface

Growth ~Cambridge University Press, Cambridge, 1995!.
@22# P. Meakin and F. Family, Phys. Rev. A34, 2558~1986!.
@23# P. Meakin, inFractals in Physics, Proceedings of the Sixth

Trieste International Symposium on Fractals in Physics, Tri-
este, Italy, 1985, edited by L. Pietronero and E. Tosati~North-
Holland, Amsterdam, 1986!.

@24# L.A. Turkevich and H. Scher, Phys. Rev. Lett.55, 1026~1986!.
@25# R.C. Ball, R.M. Brady, G. Rossi, and B.R. Thompson, Phys.

Rev. Lett.55, 1406~1985!.
@26# Y. Stroganov ~private communication!; J. Heinonen, Ph.D.

thesis, Helsinki University of Technology, 2001.

ASIKAINEN, HEINONEN, AND ALA-NISSILA PHYSICAL REVIEW E 66, 066706 ~2002!

066706-10

