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Polymer scaling and dynamics in steady-state sedimentation at infinite Péclet number

V. Lehtola,1 O. Punkkinen,1 and T. Ala-Nissila1,2,*
1Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 TKK, Finland

2Department of Physics, Brown University, Providence, Rhode Island 02912-1843, USA
�Received 9 March 2007; published 8 November 2007�

We consider the static and dynamical behavior of a flexible polymer chain under steady-state sedimentation
using analytic arguments and computer simulations. The model system comprises a single coarse-grained
polymer chain of N segments, which resides in a Newtonian fluid as described by the Navier-Stokes equations.
The chain is driven into nonequilibrium steady state by gravity acting on each segment. The equations of
motion for the segments and the Navier-Stokes equations are solved simultaneously using an immersed bound-
ary method, where thermal fluctuations are neglected. To characterize the chain conformation, we consider its
radius of gyration RG�N�. We find that the presence of gravity explicitly breaks the spatial symmetry leading to
anisotropic scaling of the components of RG with N along the direction of gravity RG,� and perpendicular to it
RG,�, respectively. We numerically estimate the corresponding anisotropic scaling exponents ���0.79 and
���0.45, which differ significantly from the equilibrium scaling exponent �e=0.588 in three dimensions. This
indicates that on the average, the chain becomes elongated along the sedimentation direction for large enough
N. We present a generalization of the Flory scaling argument, which is in good agreement with the numerical
results. It also reveals an explicit dependence of the scaling exponents on the Reynolds number. To study the
dynamics of the chain, we compute its effective diffusion coefficient D�N�, which does not contain Brownian
motion. For the range of values of N used here, we find that both the parallel and perpendicular components of
D increase with the chain length N, in contrast to the case of thermal diffusion in equilibrium. This is caused
by the fluid-driven fluctuations in the internal configuration of the polymer that are magnified as polymer size
becomes larger.

DOI: 10.1103/PhysRevE.76.051802 PACS number�s�: 82.35.Lr, 47.57.Ng

I. INTRODUCTION

The rheological properties of polymer melts and solutions
have been under intense study for many decades due to their
non-Newtonian hydrodynamic behavior and important appli-
cations in materials processing �1�. Most recently, with the
rapidly developing field of nanofluidics and microfluidics
�2,3�, and their important application in “lab-on-a-chip”
based technologies, it has become crucial to understand the
behavior of single �bio� molecules in restricted geometries,
and under nonequilibrium conditions. Using modern fluores-
cence techniques, it is now possible to experimentally mea-
sure the transport of individual DNA fragments in nano-
fluidic and microfluidic channels �4�. In the case of shear
flow, in particular, there exist numerous experimental �5–11�
and theoretical �12,13� studies of single-chain dynamics.

However, in microchannels the polymer transport is typi-
cally driven by an external force or by a pressure-driven flow
�4,14�. In the special case where the external force is due to
gravity, the problem of chain transport through a Newtonian
solvent fluid becomes a problem of sedimentation of the
polymer chain �15�. In the dilute limit, the sedimentation of
rigid bodies such as spheres and spheroids and rods is well
understood. However, at finite volume fractions the dynam-
ics of even simple spherical particles is highly nontrivial
�16–19�. Moreover, it has been shown that inertial effects
can play a very significant role in the orientational behavior
of spheroids. This raises an interesting question regarding the

sedimentation of flexible polymer chains. As a polymer chain
is inherently a many-particle system with strong topological
constraints �as determined by the connectivity and nonover-
lap conditions for the monomers�, it is expected that chain
dynamics under steady-state flow is highly nontrivial, too.

In this paper, our aim is to quantitatively model the
steady-state sedimentation of a single polymer chain in a
good solvent. To this end, we consider a general coarse-
grained model of a flexible polymer chain in a good solvent.
The chain is dragged through the liquid by gravity. By using
a recently developed immersed boundary method �16–19�
we couple the motion of the chain to a Newtonian fluid as
described by full Navier-Stokes equations with a finite Rey-
nolds number Re in the noncolloidal limit, where there is no
Brownian motion. We study the scaling of the radius of the
gyration of the chain and its velocity fluctuations under
steady state. Our numerical results demonstrate that the hy-
drodynamic coupling of the individual segments leads to
static and dynamical scaling behavior of the chain. To theo-
retically explain these results, we consider a generalization
of the Flory argument for the present case of steady-state
sedimentation. In particular, this argument reveals an explicit
dependence of the scaling on the effective Re of the chain
thus highlighting the importance of inertial effects in gravity-
driven microflows of polymers.

II. MODEL

The model system we consider in this work comprises a
single polymer chain immersed in a good solvent. As we
wish to keep the model as general as possible, we use the*Author to whom correspondence should be addressed.
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standard coarse-grained bead-spring model of polymers
�20,21�. There is a repulsive Lennard-Jones type of pair po-
tential VLJ�r� between all beads to prevent overlap, and a
finitely extensible nonlinear elastic �FENE� potential
VFENE�r� between adjacent beads �22�. They are given by

VLJ�r� = 4���
r �12,

VFENE�r� = − 0.5kR0
2 ln�1 − � r

R0
�2� , �1�

where k=30� /�2, R0=1.5�, and �=2a. The distance be-
tween particles r is the distance between their center-of-mass
�c.m.� and a is the radius of the Kuhn segment. The param-
eters were set to �=30 and a=1 here. The gravitational con-
stant is 3, and it is used in the Navier-Stokes solver explained
in �23�. This results into one-particle Stokes velocity of 0.55.

The fluid phase in the system is treated as continuum in a
periodic three-dimensional �3D� box by using the full
Navier-Stokes equations with a finite Reynolds number Re.
The Reynolds number is an estimate of the ratio between the
inertial and viscous forces in the Navier-Stokes equation, and
is given by

Re =
2UL�

�
, �2�

where U and L denote the typical velocity and length scales
in the system, and � is the fluid viscosity. The factor of 2 is
included for convenience. In the present work, we set the
single-particle Reynolds number Re=0.25 for most of the
numerical work. If we neglect the inertial forces, we end up
with the Stokes approximation Re=0, which is commonly
used in analytic and numerical studies �15�. However, recent
works have shown that inertial effects can play an important
role when particle dynamics is considered under steady-state
sedimentation �16–19�.

In the numerical computation, we simultaneously solve
for the discrete particle phase and the Navier-Stokes equa-
tions using a multigrid solver for the Navier-Stokes fluid
�19,23�. The no-slip boundary condition between the fluid
and the particles is implemented using the idea of the im-
mersed boundary method first introduced by Fogelson and
Peskin �24�. The method assumes that the fluid fills the
whole volume of the system. This model has been tested
extensively and used previously for studies of steady-state
sedimentation of spherical particles and spheroids �16–19�. It
should be noted that in the model the particles are non-
Brownian, with an effectively infinite Péclet number Pe,
which is the dimensionless measure of the relative impor-
tance of flow and thermal diffusion in the suspension

Pe =
UL

D
, �3�

where D is the thermal diffusivity. In the case of a sediment-
ing particle in a gravitational field one may assume that U
equals the Stoke’s velocity of a falling particle, in which case
the Péclet number can be written as

Pe =
�mgL

kBT
, �4�

where g is the usual acceleration due to gravity, and �m is
the mass density between the sedimenting particle and the
mass of an equal volume of fluid. Here we set the density
difference between the particles and the fluid to be 1.5 times
the density of the fluid. If we consider a suspension in water
at room temperature �T=293 K�, in which Pe=100, for ex-
ample, the sedimenting particles �assumed to be spheres�
would have a radius of about 1.6 �m and a mass of 2.5
�10−14 kg in this non-Brownian limit.

III. RESULTS

A. Finite-size effects

The presence of long-range hydrodynamic interactions
makes it crucially important to test the role of finite-size
effects, which are important for sedimentation �18�. We have
checked the finite-size effects by requiring that the distribu-
tion of the radius of gyration RG �cf. Eq. �3�� and the average
terminal velocity of the center of mass vlim�vc.m.−	vc.m.
must be unaffected by the change of the system size. We find
that for a polymer of N beads, the grid size must be at least
2N�2N�6N grid points, where 6N is the system size in the
direction parallel to gravity. Satisfying this requirement lim-
its the systems we can presently study to a maximum chain
length of N=42 due to computational demands. We have
additionally checked that in our model the self-avoidance
condition for the polymer chain is satisfied with the present
choice of parameters.

B. Radius of gyration

Starting from an initial state with zero velocity, it takes
the polymer chains typically less than about 1500 single-
particle Stokes times to reach its steady-state distribution. In
the steady state, we have determined the average radius of
gyration from

RG
2 =

1

N�	
i

N

�r − ri�2
 , �5�

where i indexes the beads and r=	i
Nri /N is the location of

the c.m. The angle brackets denote averaging over steady-
state configurations. We have chosen the coordinate system
such that the gravity force points toward the negative z axis.
Thus, the z axis is the direction parallel to the flow ���, and
the xy plane is perpendicular ��� to it. This allows us to
write

RG
2 = RG,�

2 + RG,�
2 . �6�

In Fig. 1 we show a time series of behavior of the two com-
ponents of the radius of gyration for N=32. The steady state
is characterized by large fluctuations in the size of the poly-
mer, and the overall radius is larger perpendicular to the flow
for this value of N. While the shape fluctuations appear
rather chaotic �temporal Fourier analysis shows no peaks
corresponding to periodic oscillations�, it is interesting to
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notice that the polymer seems to have two characteristic
shapes, where the polymer is either extended along the flow
�with large RG,�� or on the plane perpendicular to it �large
RG,��. The minima and maxima for these two components of
RG are temporally out of phase, as expected. In Fig. 2 we
show snapshots of typical configurations corresponding to
how a transition occurs between these two states. First, self-
avoidance extends the polymer in the direction perpendicular
to gravity. Then, the back-flow caused by the settling poly-
mer creates a smaller pressure in the upward direction. As a
consequence, the polymer is elongated in the positive z di-
rection. The part that is left behind is pulled down by the
spring forces, making the polymer collapse into a globule.
Finally, the self-avoiding effects extend the chain in a per-
pendicular direction, and the polymer returns back to its
original horizontally extended state.

We also note that the time-series data indicate a perfect
correlation between the polymer’s c.m. velocity and RG,��t�.
This is in qualitative agreement with the Stokes friction for-
mula that the limiting velocity should be inversely propor-
tional to the component perpendicular to flow of the radius

of the object, namely v�
1/RG,�. However, quantitatively
we find that v�
N0.20±0.02, which is probably due to the in-
creasing Repl number of the polymer chain as a function of
N, as will be discussed in the next section.

In Fig. 3 we show the actual distributions for RG,� and
RG,� for chains of length N=16, 28, and 32. These distribu-
tions are quantitatively different from the usual distribution
of RG in equilibrium. The spatial symmetry breaking induced
by gravity is also clearly seen. In Fig. 4 we show the depen-
dence of RG,� and RG,� on N for N=16, 20, 24, 28, 32, and
42. In this range of N, we find that power-law scaling for
both components of RG is well satisfied, with

RG,� 
 N�,

RG,� 
 N��, �7�

where ��=0.79±0.02 and ��=0.45±0.01. For comparison,
we also show the scaling of the total radius of gyration RG
�N�, with �=0.50±0.01. All of these values are clearly dif-
ferent from the 3D self-avoiding walk exponent in equilib-
rium, which is �e=0.588 �20�. The larger scaling exponent of
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FIG. 1. Raw data for the components of the radius of gyration
with N=32 in the steady state. The vertical lines indicate the aver-
age value of the respective component, calculated from the whole
simulation data, of which only a small part is shown in the figure.

FIG. 2. �Color online� Snapshots of typical configurations of a
settling polymer with N=32 in the steady state. The polymer is
elongated in the horizontal direction �a�. The loose end of the poly-
mer is attracted by the smaller pressure caused by back-flow, and
the polymer elongates in the vertical direction �b�. The spring forces
pull the part that is left behind, and the polymer collapses into a
globular shape �c�, which then expands due to self-avoidance lead-
ing back to a shape of the type in �a�.
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FIG. 3. The distributions of the two components of the radius of
gyration: �a� in the direction parallel to gravity, and �b� in the di-
rection perpendicular to gravity. The chain lengths are indicated in
the figures.
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the parallel component indicates that the ratio RG,� /RG,� ac-
tually grows with increasing N, and thus the parallel compo-
nent becomes eventually larger than the perpendicular one
for long enough chains assuming that the present scaling
holds for larger values of N as well. From our scaling data,
we can extrapolate that this happens for N�120 �see Fig. 4�.
This means that on the average long chains become extended
along the direction of sedimentation, in qualitative agree-
ment with a recent numerical study of polymer sedimenta-
tion with Re=0 �15�.

C. Generalized Flory argument

For a polymer chain in thermal equilibrium, the classic
Flory mean-field argument �20� gives a very good approxi-
mation of the true scaling exponent for RG�N�. In order to
explain the numerical scaling results in the preceding sec-
tion, we present here a generalization of the Flory argument
for the present case of a polymer chain in a steady-state flow.
To this end, we construct an equilibrium free energy function
for the polymer as a function of RG�N� following the ap-
proach of Flory, but adding a kinetic energy term �25�. This
kinetic term describes the nonequilibrium behavior, and set-
ting it to zero recovers the equilibrium scaling limit. Thus,
the total energy of the polymer chain consists of the spring
forces between the monomers, the self-avoidance and the
kinetic energy contribution, and can be written as

Etotal =
1

2

k

N
RG

2 +
1

2
�c2RG

3 +
1

2
�m0N�vc.m.�RG�2, �8�

where N is the number of monomers, k is the spring constant
between two monomers, m0 is the mass of one monomer, and
c�N /RG

3 is the concentration of monomers per volume. Fur-
thermore, vc.m.�RG� is the velocity of the center of mass for a
given configuration RG.

We can further justify the inclusion of the kinetic energy
term by the following argument. In the steady state, the c.m.
of the polymer chain has reached its limiting �Stokes� veloc-
ity in the fluid vs. At the steady state the velocity field of the
chain is coupled to its instantaneous configuration in a highly
nontrivial way. Any modification in the internal configuration
of chain automatically induces a change in the velocity field,
and vice versa. As a consequence, the c.m. velocity of the
chain also fluctuates. In the limit of Pe=�, this is the only
source of velocity fluctuations. If we assume that the velocity
field adapts infinitely fast to configurational changes of the
chain, we can say that vc.m.�vc.m.�RG�. This means that mo-
mentum transport of the fluid is much faster than the particle
transport, i.e., the changes in the velocity field created by the
falling polymer relax much faster than the changes in the
internal configuration of the polymer. Thus, the chain has a
quadratic kinetic energy term arising from these inertial fluc-
tuations, given by the additional term proportional to vc.m.

2 .
Next, we make the assumption that the c.m. velocity can

be separated as vc.m.=vlim+	vc.m., thus consisting of the
driven constant velocity vlim�
vc.m.,�� and of small fluctua-
tions 	vc.m.�vc.m.−vlim. This can be justified by
�vlim�� �	vc.m.�, i.e., the average limiting velocity is much
larger than fluctuations in the c.m. velocity. The kinetic en-
ergy term can be then simplified by using the decomposition

vc.m.�RG�2 = vlim
2 + 2vlim · 	vc.m.�RG� + �	vc.m.�RG��2, �9�

where vlim is now independent of RG. Furthermore, the nu-
merical scaling results in the preceding section show that the
scaling exponent of the parallel component of RG�N� is much
larger than that of the perpendicular. In other words, the
polymer is more stretched out in the parallel direction. Thus,
to lowest order

Vp = RG
3 � RG,�RG,�

2 , �10�

where Vp is the volume occupied by the polymer.
To estimate the fluctuating part of the velocity, we assume

that the polymer internal motion happens slowly as com-
pared to the external velocity, and thus we can use the Stokes
approximation �Re=0� for the hydrodynamical tensor. The
velocity induced velocity fluctuations are then given by the
Zimm model �26� as �	v�
1/RG�1/RG,� in the limit where
N is large.

Plugging in these approximations to Eq. �8�, we obtain the
following functional form for the free energy of the chain:

Etotal 

1

2

k

N
RG,�

2 + RG,�
2 +

1

2
�

N2

RG,�
2 RG,�

+
1

2
�m0N�� �vlim�

RG,�
+

1

RG,�
2 � . �11�

Here we have discarded the quadratic term in vlim, being
independent of RG. The equilibrium is obtained by minimiz-
ing the free energy with respect to both RG,� and RG,� sepa-
rately,
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FIG. 4. Dependence of the total radius of gyration RG and its
parallel and perpendicular components on the chain length N, plot-
ted on a log-log scale. The values of the scaling exponents are �
=0.50±0.07, ��=0.79±0.02, and ��=0.45±0.01. From these data
we have extrapolated the critical value of N, where the parallel
component of the radius of gyration exceeds the perpendicular com-
ponent to be �120.
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�Etotal

�RG,�
= 0 and

�Etotal

�RG,�
= 0. �12�

With some algebra we have the following results for the
average components of RG:


RG,�� 
 N2/3�vlim�1/3, �13�


RG,�� 
 N7/12�vlim�−1/12. �14�

Equations �13� and �14� are the main results of this section.
In the case of the polymer chain, we can estimate the depen-
dence of the limiting velocity on RG by assuming that it is
determined simply by the average size of the polymer in the
direction perpendicular to gravity. Then, using the Stokes
formula 6��R�vlim�=Mg, M being the total mass of the poly-
mer, we can deduce that

vlim 

m0N


RG,��
. �15�

From this it follows that in the limit of low Re, the scaling of
the components of the radius of gyration is given by

RG,��
N6/11�N0.545 and 
RG,��
N9/11�N0.818. These re-
sults are consistent with our previous assumption that
RG,��RG,� for large N.

The generalized Flory argument presented here can also
be applied without invoking the Stokes formula for cases
where Re is not small. Unfortunately, we are not aware of
any exact results in this regime. However, as explained in
detail in the Appendix, there exists an empirical high Re
expansion formula for the limiting velocity, which is given
by

Mg

�vlim�
= 6�RG,���1 +

Re

4�1 + �Re�
+ 0.017 Re� , �16�

which reduces to the Stokes equation when Re�1. This can
be written as

�vlim� 
 N
−��, �17�

where 
=1 for Re�1 and 
=1/2 for Re�1. Inserting this
into Eq. �14�, we obtain the general result that


RG,�� 
 N�15+12
�/33, �18�


RG,�� 
 N�7−
�/11. �19�

In Table I, we present a comparison between the numerically
and theoretically obtained scaling exponents for low and
high Re.

We note that the empirical formula in Eq. �A4� is valid
only for Re�2�105, after which the flow becomes turbu-
lent. It should be noted that below that threshold, but with
high Re, the N dependence of the terminal velocity is of the
form �vlim�
N0.05 using our numerical result for ��. In other
words, in this limit the N dependence of vlim becomes very
weak.

D. Velocity fluctuations and effective diffusion

A direct consequence of the random velocity fluctuations
around the steady-state limit is that in analogy to thermal
systems, such fluctuations lead to the existence of finite
transport coefficients �16–19�. In particular, using the Green-
Kubo response function formalism �27,28� the effective dif-
fusion coefficient for the c.m. of the polymer chain can be
defined by

D =
1

d
lim
T→�

�
0

T

dt
	vc.m.�t� · 	vc.m.�0�� . �20�

Here the velocity fluctuation 	vc.m.�vc.m.− 
vc.m.� is as de-
fined in the preceding section, and d=3 is the dimension of
the embedding space. In thermal equilibrium, the equilibrium
diffusion coefficient of a polymer chain in a good solvent is
known to scale as �20�

D 
 N −�D, �21�

where �D=1 for the Rouse model, and �D=�e for the Zimm
model. In the presence of the symmetry breaking gravita-
tional field, we expect this scaling law to generalize to two
independent relations as

D 
 N−�D,�,

D� 
 N−�D,�. �22�

To compute D here, we have calculated the velocity fluctua-
tion correlation functions in the steady-state regime, and
used the memory expansion method of Ref. �29�. Due to
large fluctuations in the data, we have been able to consider
chains of length N=16, 20, 28, and 32 only. In Fig. 5 we
show the scaling of the components of D for this range of
chain lengths. The surprising result here is that we find that
for this range of values of N both diffusion coefficients ac-
tually increase with increasing N, in contrast to the thermal
case. Best fit to the data gives �D,�=−0.22±0.11 and �D,�=
−1.0±0.2. In the present case this behavior can be qualita-
tively explained by the fact that in the limit of Pe=�, the
increasing size of the polymer increases the terminal velocity
of the chain. Numerically, we find that �vlim�
N0.2 for the
present range of values of N. Due to the fact that determin-
istic velocity fluctuations are proportional to the limiting ve-
locity of the sedimenting polymer, they are also amplified as
the size of the polymer increases. Furthermore, Eq. �20� sug-
gests, that D
vlim

2 , thus implicating a positive scaling expo-
nent �D for D. However, in order to quantitatively explain
the asymmetry between �D,� and �D,�, a more refined theory
is needed �30�. In particular, it is clear that D depends not

TABLE I. Comparison between the numerically obtained scal-
ing exponents and the theoretical predictions from the generalized
Flory argument for low and high Re limits.

Results Theory �
=1� Theory �
=1/2�

�� 0.45±0.07 0.545 0.591

�� 0.79±0.02 0.818 0.636
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only on the overall settling velocity of the polymer, but also
on the morphological fluctuations of the chain.

IV. SUMMARY AND CONCLUSIONS

In this work we have examined the behavior of a coarse-
grained polymer chain in steady-state sedimentation. The
Navier-Stokes fluid treated as a continuum has a finite one-
particle Reynolds number �Re=0.25�, and thus our model
properly includes inertial effects. The nonequilibrium condi-
tions dominate over thermal diffusion here. Under these con-
ditions the chain reaches a steady state, and it continues to
fluctuate irregularly through a series of configurations which
include vertical and horizontal straightening and collapsing
back to a globule. The settling velocity for the center of mass
is found to have a strong correlation with the component of
the radius of gyration perpendicular to the flow, in qualitative
agreement with the Stokes result for particle settling velocity.
The scaling exponents for the components of the radius of
gyration RG,� and RG,� are determined to be ��
=0.785±0.02 and ��=0.446±0.068, respectively, which are
markedly different from the equilibrium results in 3D. To
explain these results, we have developed a generalization of
the Flory scaling argument for the present case. It predicts
that the inertial forces induced by the nonequilibrium flow
alter the configuration probabilities radically. In particular,
there is explicit dependence of the values of the exponents
on Re. While it is difficult to quantitatively compare the
theoretical prediction with numerical results, the overall
agreement is encouragingly good, as can be seen in Table I.

It is interesting to compare the chaotic shape fluctuations
observed here to a recent study of polymer sedimentation in
the limit Re=0 �15�. In this case, for long polymers and large
driving �large Péclet number� force, chainlike polymers as-
sume a stable, elongated configuration due to an effective
stretching force on the chain. Our results indicate that such a
configuration becomes unstable against hydrodynamic fluc-
tuations for Re�0, at least for large Pe. Further systematic
studies of this transition would be of great interest.

Finally, we have also considered velocity fluctuations and
the corresponding effective c.m. diffusion coefficient of the
chain in steady state. Chain lengths of N� �16,20,28,32�
were used for the scaling of D. Due to symmetry breaking,
the scaling is anisotropic. The unexpected result here is that
for the present range of values of N, we actually find that
both the parallel and perpendicular components of D in-
crease with increasing N, and the corresponding exponents
are given by �D,�=−1.0±0.2 and �D,�=−0.22±0.11. This is
an unusual result, since for the Rouse model �D=1 and for
the Zimm model �D=�. However, it should be kept in mind
that in our model there is no thermal component in the ve-
locity fluctuations. The gravitational force acting on the
polymer increases with its mass, leading to greatly amplified
velocity fluctuations with N, in part through the increasing
settling velocity of the chain. It would be of interest to con-
sider the colloidal limit of steady-state sedimentation of
polymer chains by adding the thermal motion to the system.
This could be possible by using methods such as the lattice-
Boltzmann technique �31� or the stochastic rotation-collision
dynamics �32�. Work in this direction is in progress.
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APPENDIX: EXTENSION TO HIGH REYNOLDS
NUMBERS

The one-particle Re number for our model has a fixed
value of Re=0.25. The polymer chain is described by its
proper Reynolds number Repl, which can be written as

Repl �
2��vlim�RG,�

�
, �A1�

where vlim is the averaged steady-state settling velocity of the
center of mass. The factor of 2 is included for convenience.
For an immersed sphere the drag coefficient CD is given by
�33�

CD �
2F

�vlim
2 �RG,�

2 , �A2�

and it remains nearly constant at high Reynolds numbers �up
to about 2�105�. The external force F=Mg=Nm0g in-
creases as a function of the chain length N. With the help of
Eqs. �A1� and �A2� we define the friction coefficient

� �
Mg

�vlim�
= �1

4
�RG,���Repl CD, �A3�

where the drag coefficient CD is written as �33� CD=24/Re
+6/ �1+�Re�+0.4.

Using the empirical formula for CD, Eq. �A3� becomes
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ln
(D

’)

ln(N)

D’⊥
D’||

FIG. 5. The scaling of D�� =D�� /a2 and D��=D�� /a2 vs chain
length N. The measured scaling exponents are �D,�=−0.22±0.11
and �D,�=−1.0±0.2. See text for details.

LEHTOLA, PUNKKINEN, AND ALA-NISSILA PHYSICAL REVIEW E 76, 051802 �2007�

051802-6



Mg

�vlim�
= 6�RG,���1 +

Repl

4�1 + �Repl�
+ 0.017 Repl� .

�A4�

At the limit Repl→0, this reduces to the Stokes equation. For
Repl�1, the last term becomes dominant. We have the fol-
lowing proportionalities:

�vlim� 
 N1−��, Repl � 1,

�vlim� 
 N2/3−�� �middle term only� ,

�vlim� 
 N1/2−��, Repl � 1.

All of these share the common form of

�vlim� 
 N
−��, �A5�

where 
 is a constant with a value from 1/2 to 1. The Rey-
nolds number of a polymer Repl is dependent on the chain
length and the settling velocity, and it grows as the chain gets
longer �and heavier� or the polymer experiences a faster flow.
The prediction is that for large Repl the settling velocity be-
comes nearly independent of the chain length, which is con-
sistent with our result �vlim�
N0.05.
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