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We show that in interpreting the conoscopic interference fringes, one should exercise care in
employing approximate expressions which fail for certain crystal cuts. In this paper, we study 64°-
and 128°-rotatedY-cut andZ-cut LiNbO3 wafers. We show that the error made in using the
approximate formulae for the samples is more than 25% and that one has to use exact formulae in
order to attain quantitative agreement with the experimental data. ©1997 American Institute of
Physics.@S0021-8979~97!04619-7#

INTRODUCTION

Recently, Jen and Hartmann1 described how the orienta-
tion of uniaxial crystals applied as substrates for surface-
acoustic wave~SAW! devices may conveniently be deter-
mined optically. The orientation was established with
conoscopic interference for several crystals and crystal cuts
commonly used in SAW components. The authors concluded
that the method is best suited for a relative comparison
among wafers from a discrete set. We propose to use cono-
scopic interference as a quantitative tool for determining the
orientation of SAW wafers. However, we find that the ap-
proximate formulae used by Jen and Hartmann do not yield
accurate results. Therefore, in this paper we employ more
precise expressions for crystal optics which we demonstrate
to provide improved fits to experimental data. In particular,
we study 64°- and 128°-rotatedY-cut and Z-cut LiNbO3

wafers.
Conoscopic interferometry is a well-established method

for studying the optical properties of birefringent crystals.
The basic structure of a conoscope is simple,2,3 which makes
it convenient for laboratory use as a quick identification
method. Conoscopic interference is based on the fact that
light propagating in birefringent crystals is divided into two
mutually orthogonal polarization components~the electric
displacement vectors for the two rays are perpendicular to
each other!. The two components traverse the sample with
unequal velocities and the light becomes elliptically polar-
ized. By analyzing the polarization state of the outcoming
light with a linear polarizer, interference fringes become vis-
ible. The shape, intensity and density of the fringes depend
on the optical properties of the sample. Owing to the bire-
fringence of several minerals, conoscopic interference is
widely used in mineralogy for sample identification.4 In fab-
ricating SAW components it is vital to know the crystal ori-
entation precisely since the propagation of SAWs strongly
depends on the wave-propagation direction.5

EXPERIMENTAL TECHNIQUE

In this paper we use a conoscope setup similar to the one
of Ohtsukaet al.,2 ~see Fig. 1!. The birefringent sample is
illuminated with a converging beam of linearly polarized
light. As the source of light, we use a 1.7 mW He–Ne laser
(l5632.8 nm!. The spot size on the sample is about 1 mm.
As light emerges from the sample, it is analyzed with a
crossed polarizer. Interferograms are recorded on the screen
28 mm from the sample. The shape and the density of the
fringes depend on the material and thickness of the sample
and on the direction of the optic axes. For uniaxial crystals,
the interference fringes are families of conic sections.

ANALYSIS

The phase difference between the two rays may be
evaluated as reported in the literature.6 Upon traversing a
crystal slab of thicknessh, the two rays acquire an optical
phase difference of

d5
2ph

l
~n9 cosu92n8 cosu8!, ~1!

a!Permanent address: Dept. of Physics, University of Joensuu, P.O. Box 111,
FIN-80101 Joensuu, Finland.

b!Electronic mail:Martti.Salomaa@hut.fi

FIG. 1. Structure of a conoscope. The shape and density of the interference
fringes on the screen depend on the direction of the optic axes and on the
optical properties of the sample.
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wherel is the wavelength of light in vacuum andu8, u9 and
n8, n9, respectively, are the angles and indices of refraction
for the two rays in the crystal. The geometry of the refracted
rays is indicated in Fig. 2. Equation~1! is valid for both

uniaxial and biaxial crystals. In general, bothn8 andn9 de-
pend on the direction of ray propagation. However, for
uniaxial crystals only the refractive index for the extraordi-
nary ray, n9, depends on the direction of ray propagation
while the one for the ordinary ray,n8, is a constant. The
values for the two refractive indices are

n825no
2 ; n925no

21~ne
22no

2!sin2 c, ~2!

wherec is the angle between the extraordinary ray and the
optic axis andno and ne are the refractive indices for the
ordinary and extraordinary rays along the principal dielectric
axes. We emphasize that Eq.~1! is exact within ray optics.
The indicesn8 andn9 may be related to the anglesu8 andu9
by applying Snell’s law, which yieldsn8sinu85n9 sinu 9,
where one must take into account the angular dependence of
n9. In this connection, simplifying approximations are often
made, as specified below. Observe that because of the refrac-
tion at the exit surface, Eq.~1! is implicit and we determine
the phase difference on the screen iteratively.

FIG. 2. Definitions of the angles used in the calculations for uniaxial crys-
tals. The angles of refraction for the two rays areu8 andu9; their average is
u. The angle between the extraordinary ray and the optic axis is denoted as
c.

FIG. 3. Interferogram for aZ-cut LiNbO3 wafer with the calculated curves superimposed on the measured data. Here the optic axis is perpendicular to the
plane of the paper. The two ‘‘dark brushes’’~crossed zeroes in intensity! are in the directions of the polarizer and analyzer.
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FIG. 4. Calculated fringes for a 64°-rotatedY-cut LiNbO3 wafer. Solid
curves are calculated with the exact formula, Eq.~1!, dashed-dotted with the
approximate one, Eq.~4!. The difference between the two curves increases
with the anglec.

FIG. 5. Relative error of the approximate interferogram in Fig. 4, calculated
for y50 ~solid!. The error is the difference between the exact and the
approximate locus divided by the distance between two successive fringes.
For comparison, the equivalent curve for 128° is also shown~dashed-
dotted!.

FIG. 6. Interference fringes for a 64°-rotatedY-cut LiNbO3 wafer and the calculated interferogram. The ‘‘dark brushes’’ due to Malus’ law~cf. Fig. 3! are
here situated outside the image area.

4041J. Appl. Phys., Vol. 82, No. 8, 15 October 1997 Äyräs et al.
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It is customary to approximate Eq.~1! by assuming that
the ordinary and extraordinary rays propagate equal dis-
tances in the crystal. Thus, in this approximation, the phase
difference on the back surface of the sample is

d5
2ph

l cosu
~n92n8!, ~3!

whereu5(u81u9)/2 andh/cosu is the average geometrical
path of the two rays~see Fig. 2!. Whenn92n8!n8, n9 one
finds with the aid of Eq.~2! a simple approximate form for
the phase difference6

d5
2ph

l cosu
~ne2no!sin2 c. ~4!

This equation is only valid for uniaxial crystals. The deceiv-
ing simplicity in the application of this equation is due to the
feature that one need not calculate the angular dependence of
the refractive indices.

RESULTS

The measured and calculated interferogram for aZ-cut
LiNbO3 wafer is superposed in Fig. 3 where the interference
pattern is calculated using Eq.~1!. Here the optic axis is
perpendicular to the plane of the paper and the interference
fringes form concentric circles. The dark lines in the figure
are in the directions of the polarization axes of the polarizer
and analyzer. The pattern arises as the result of pure mode
propagation, i.e., with either the ordinary or extraordinary
ray propagating in these directions. The pure modes are ex-
tinguished in the crossed polarizer. Similar ‘‘dark brushes’’
appear for other orientations as well, in accordance with
Malus’ law. However, by choosing the directions of the po-
larizer and analyzer suitably, the brushes for them are pro-
jected outside the detected area of the interferogram. The
orientation of the optic axis of the sample is determined by
comparing the calculated interferogram with the measured
one. Values for the sample thickness were provided by the
manufacturer; values for indices of refraction are derived
from the literature.7

DISCUSSION

We compare our experiments with the interferograms
calculated with both the exact and the approximate formulae.
The difference between the fringe patterns calculated with
these two formulae is visualized in Fig. 4: the two families of
graphs differ substantially. These differences are relevant as
one tries to quantitatively fit the calculated interferogram
with the measured one. Figure 5 shows how the relative error
in the approximate expression increases withc. The data are
for the same 64°-rotated wafer as in Fig. 4 and calculated at

y50. Similar investigations are made for the 128° wafer; the
shape of the curve is different but the relative error is of the
same order.

The samples we use are commercial SAW wafers. One
side of the sample is polished while the other is rough. The
exit surface of the sample must be polished, otherwise the
scattering of light destroys the interference pattern. The en-
trance surface may well be unpolished and this feature can,
in fact, be used to an advantage.1 The scattering of light at
the front surface increases the radiation cone within the crys-
tal, and thus one sees a larger interferogram on the screen.

In Fig. 6, the interferogram calculated using Eq.~1! is
superposed onto a recorded interferogram for a 64°-rotated
Y-cut LiNbO3 wafer. It is seen that now the fitting is fair.
The interferograms are evaluated for destructive interference
since this makes the fitting more precise, due to the property
that the dark lines are thinner than the bright ones in the
recorded data. The most crucial part in the fitting is the area
where the fringes are densest. All the wafers studied are
optically uniaxial ~like the wafers commonly used in SAW
devices!. Biaxial crystals may also be studied with cono-
scopic interference; for lack of space these results will be
presented elsewhere.

In conclusion, like Jen and Hartmann, we find that cono-
scopic interference is convenient for quickly identifying
samples from a discrete set; it is used for determining the
orientation of SAW wafers in industrial applications. We
have shown that the approximate expression for the phase
difference is inadequate for quantitative analysis; we propose
to improve conoscopic interferometry to provide an accurate
method for determining the orientation of SAW wafers.
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