
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Sanja Šćepanović

Mitigating DDoS attacks

with cluster-based filtering

Master’s Thesis
Espoo, June 14, 2011

Supervisor: Professor Tuomas Aura, Aalto University
Professor Peeter Laud, University of Tartu

Instructor: Andrey Lukayenko, MSc. (Tech.), Aalto University

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Sanja Šćepanović

Title:
Mitigating DDoS attacks with cluster-based filtering

Date: June 14, 2011 Pages: 77

Professorship: Data Communication Software Code: T-110

Supervisor: Professor Tuomas Aura
Professor Peeter Laud

Instructor: Andrey Lukayenko, MSc. (Tech.)

Distributed Denial of Service (DDoS) attacks are considered one of the major
security threats in the current Internet. Although many solutions have been
suggested for the DDoS defense, real progress in fighting those attacks is still
missing.

In this work, we analyze and experiment with cluster-based filtering for DDoS
defense. In cluster-based filtering, unsupervised learning is used to create a nor-
mal profile of the network traffic. Then the filter for DDoS attacks is based on
this normal profile. We focus on the scenario in which the cluster-based filter
is deployed at the target network and serves for proactive or reactive defense.
A game-theoretic model is created for the scenario, making it possible to model
the defender and attacker strategies as mathematical optimization tasks. The ob-
tained optimal strategies are then experimentally evaluated. In the testbed setup,
the hierarchical heavy hitters (HHH) algorithm is applied to traffic clustering and
the Differentiated Services (DiffServ) quality-of-service (QoS) architecture is used
for deploying the cluster-based filter on a Linux router.

The theoretical results suggest that the cluster-based filtering is an effective
method for DDoS defense, unless the attacker is able to send traffic which per-
fectly imitates the normal traffic distribution. The experimental outcome con-
firms the theoretical results and shows the high effectiveness of cluster-based
filtering in proactive and reactive DDoS defense.

Keywords: DDoS, clustering network traffic, DiffServ

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Sanja Šćepanović

Työn nimi:
Klusterointipohjainen liikenteensuodatus puoluksena hajautettuja palvelunesto-
hyökkäyksiä vastaan

Päiväys: 18. kesäkuuta 2011 Sivumäärä: 77

Professuuri: Tietoliikenneohjelmistot Koodi: T-110

Valvoja: Professori Tuomas Aura
Professori Peeter Laud

Ohjaaja: Diplomi-insinööri Andrey Lukayenko

Hajautetut palvelunestohyökkäykset ovat yksi nyky-Internetin suurimmista tieto-
turvahaasteista. Vaikkakin näitä hyökkäyksiä vastaan on kehitetty lukuisia puo-
lustusmekanismeja, mikään näistä ei tarjoa täydellistä suojaa.

Tämä työ tutkii klusterointiin perustuvaa liikenteensuodatusta ja sen käyttöä
puolustuksena palvelunestohyökkäyksiä vastaan. Klusterointipohjaisessa suo-
datuksessa suodatin oppii itsenäisesti normaalit liikennejakaumat. Tämän
jälkeen näitä liikennejakaumia voidaan käyttää suodattamaan palvelunesto-
hyökkäyksestä johtuvaa ylimääräistä liikennettä. Diplomityö tutkii skenaariota,
jossa käytetään sekä proaktiivista, että reaktiivista klusterointipohjaista puolus-
tusmenetelmää. Lisäksi skenaariosta formuloidaan peliteoreettinen malli, jonka
avulla erilaisten hyökkäys- sekä puolustusmenetelmien analyyttinen tutkiminen
on mahdollista. Analyyttisesti saatuja tuloksia evaluoidaan kokeellisesti Linux-
reitittimessä hyödyntäen Hierarchical Heavy Hitter — klusterointialgoritmia sekä
DiffServ-arkkitehtuuria.

Diplomityön teoreettiset tulokset osoittavat, että klusterointiin perustuva suoda-
tus on tehokas puolustus palvelunestohyökkäyksiä vastaan ellei hyökkääjä kyke-
ne tekemään imitoimaan tavallista liikennejakaumaa palvelunestohyökkäystä teh-
dessään. Kokeelliset tulokset vahvistavat teoreettiset tulokset ja osoittavat klus-
terointipohjaisen suodatuksen tehokkuuden palvelunestohyökkäyksiä vastaan.

Asiasanat: hajautettu palvelunestohyökkäys, klusterointi, DiffServ

Kieli: Englanti

3

Contents

Abbreviations and Acronyms 6

1 Introduction 8
1.1 Motivation . 8
1.2 Research goals . 9
1.3 Thesis outline . 10

2 Background and related work 11
2.1 DDoS attacks . 11
2.2 DDoS defense types . 13

2.2.1 DDoS detection mechanisms 14
2.2.2 DDoS source identification techniques 15
2.2.3 DDoS prevention and reaction mechanisms 15

2.3 Traffic clustering in DDoS defense 18
2.3.1 Clustering algorithms for network traffic 18
2.3.2 Traffic clustering as a DDoS detection technique 19
2.3.3 Traffic clustering in the role of DDoS prevention and

reaction . 20
2.4 DiffServ in DDoS defense . 21

3 Theoretical model 23
3.1 Terminology . 23
3.2 Scenario . 23
3.3 Problem classification and preliminaries 25

3.3.1 The multiplier search method for the continuous con-
vex nonlinear knapsack problem 27

3.4 Mathematical model . 29
3.4.1 Mathematical notation 29

3.5 Analysis of the mathematical model 32
3.5.1 Attacker strategy — minimization problem 32
3.5.2 Proactive defense — maximization problem 1 36

4

3.5.3 Reactive defense — maximization problem 2 39

4 Experimental setup and evaluation 43
4.1 Testbed methodology and requirements 43

4.1.1 Hierarchical Heavy Hitters algorithm 43
4.1.2 DiffServ environment 45

4.1.2.1 DiffServ queuing disciplines (qdiscs) 46
4.1.2.2 HTB queuing discipline 47

4.2 Testbed setup . 49
4.3 Experiments . 50

4.3.1 Applying the HHH algorithm 51
4.3.2 Creating HTB filters 52
4.3.3 DiffServ in proactive DDoS defense: scenario 2 53
4.3.4 DiffServ in reactive DDoS defense: scenario 3 56

5 Discussion 59
5.1 Research results . 59
5.2 Discussion on the theoretical results 60
5.3 Discussion on the experimental results 63

6 Conclusions 65
6.1 Future work . 66

A First appendix 73

B Second appendix 76

5

Abbreviations and Acronyms

ADHIC Approximate Divisive Hierarchical Clustering
CBQ Class Based Queuing
CERT Computer Emergency Response Team
CIDR Classless Inter Domain Routing
DoS Denial of Service; Internet attacks
DDoS Distributed Denial of Service
DiffServ Differentiated Services
DSCP Differentiated Services Code Point
HHH Hierarchical Heavy Hitters; A clustering method
HTB Hierarchical Token Bucket
HTTP Hypertext Transfer Protocol
IDS Intrusion Detection System
IP Internet Protocol
ISP Internet Service Provider
kbs kilo bytes per second
KKT Karus-Kuhn-Tucker conditions
KL-divergence Kullback-Leibler divergence or relative entropy
NIDS Network Intrusion Detection System
NPSR Normal packet survival ratio
PFIFO Packet limited First In First Out
PHB Per Hop Behavior
RFC Request For Comments
SFQ Stochastic Fairness Queuing
SYN TCP flag - synchronize sequence numbers
TBF token bucket filter
tc traffic conditioning
TCP Transmission Control Protocol
qdisc queuing discipline
QoS Quality of Service
URL Uniform Resource Locator

6

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Tuomas Aura
from Aalto University. I deeply appreciate the time he has spent on discussing
my topic and on supporting and guiding my work. His mentorship has been
invaluable not only for this thesis, but it will stay a great inspiration for my
future works. My supervisor from University of Tartu, Prof. Peeter Laud,
provided constant remote support and I express my gratitude and heartiest
thanks to him.

I would also like to thank my thesis instructor Andrey Lukayenko for his
helpful direction and valuable ideas without which the theoretical part of
my thesis could not be done. Also, I am extremely grateful to Aapo Kalliola
who is a PhD researcher at Aalto University. His implementation of the HHH
algorithm was greatly useful during my thesis experimental work.

I want to extend a special thanks to Eija Kujanpää, Anna Stina Sinisalo,
and Vaisanen Misela as well as other administrative members of the Nord-
SecMob programme for retaining the excellent quality of the program and for
the two years of invaluable experience for me. A special thanks to Adolfsson
Soili for all the administrative tasks she has done for me and other students
to ease our thesis work.

Furthermore, I wish to thank to my friends Sajjad Rizvi, Rushil Dave,
Roberto Calandra and Minel Dunar with whom my work and stay in Helsinki
was so enjoyable and fun.

Last, but not the least, I address my deepest gratitude to my friends
in Montenegro and my family who sincerely supported me throughout the
whole duration of my Master studies.

Espoo, June 14, 2011

Sanja Šćepanović

7

Chapter 1

Introduction

1.1 Motivation

Among the many security threats in the current Internet, Distributed Denial
of Service (DDoS) attacks are considered to be one of the most serious.

Denial of Service (DoS) attacks aim to make the resources of the computer
system of the victim unavailable or unreliable in providing their intended
services. In the context of this thesis, DoS attacks try to consume and
exhaust the victim’s bandwidth or the server capacity. In DDoS attacks, the
attacker compromises a large number of hosts in Internet and instructs them
to conduct a coordinated attack. The network of the compromised hosts is
called a botnet.

While progress has been made in preventing or at least significantly less-
ening the impact of various security vulnerabilities, real progress in fight-
ing DDoS is still missing. While automated software updates and antivirus
programs can limit the number of compromised computers, there are still
botnets comprising of millions of nodes. Another potential defense is to filter
the packets sent by the DDoS attacker at a firewall after detecting the attack
with and intrusion detection system (IDS). These rule-based detection and
filtering techniques have not been successful in filtering DDoS traffic because
the DDoS attacker can send seemingly legitimate traffic. In the case of open
services, such as web servers, the DDoS attacker only needs to send large
quantities of useless service requests. Thus, there might be no specific fea-
tures of DDoS attack traffic that the rule-based filters can be instructed to
filter. With such malicious but legitimate traffic, DDoS attackers are able to
relatively easily bypass most means of DDoS defense.

For the reasons explained above, much effort has been put into finding new
methods for defending against DDoS attacks, also in the academic commu-

8

CHAPTER 1. INTRODUCTION 9

nity. Among the many proposed solutions, one is to cluster network packets
or service request with a learning algorithm and to use the learned clusters
later to classify and filter the traffic. This is the DDoS defense method on
which we focus in this thesis. The cluster-based filtering solutions do not
require changes in the existing Internet model, and show promising results in
DDoS defense since the problem of legitimate but malicious traffic is tackled
from a different perspective. Namely, the clustering algorithms can be ap-
plied to unlabeled data, i.e., there is the unsupervised learning phase. During
such a phase, the particular normal traffic distribution can be learned. Af-
terwards, the filter created according to the normal profile gives precedence
to the traffic matching the normal classes. In such a way, the attack traffic,
unless it matches the normal profile, is filtered, without the need to explicitly
identify it as malicious.

1.2 Research goals

In this thesis, we analyze and experiment with a cluster-based filtering method
in DDoS defense. The idea behind this method is that the normal traffic is
clustered using a data mining algorithm, and the filter for DDoS traffic is
created based on the output cluster set. Some of the questions that should
be resolved in the thesis are the following:

(i) For which types of DDoS defense the cluster-based filtering method can
be employed?

(ii) What is the filtering policy when cluster-based method is used for proac-
tive DDoS defense with a fixed strategy?

(iii) What is the filtering policy when cluster-based method is used for a
reactive DDoS defense with a fast-adapting strategy?

(iv) How effective is cluster-based filtering in DDoS proactive or reactive
defense?

(v) What is the most effective attack strategy when the defender is using a
fixed cluster-based filtering policy?

(vi) Can existing quality-of-service (QoS) capabilities in standard operating
systems and routers be used to implement the cluster-based filtering for
DDoS defense?

CHAPTER 1. INTRODUCTION 10

We first theoretically model and analyze the cluster-based filtering method
in DDoS prevention. Our focus is on a scenario where a web server or a fire-
wall is applying the clustering on HTTP request data in order to defend
against request flooding or packet flooding. We analyze the attack and de-
fense strategies. Particularly, we create a game-theoretic model of the traffic
filtering based on clustered traffic. Using this model, we find the optimal ca-
pacity reservations for the traffic classes in order to to maximize the amount
of honest traffic served during the attack, also called the normal packet sur-
vival ratio (NPSR).

In the second part of the thesis, we experiment with the model using a
particular clustering algorithm, hierarchical heavy hitters (HHH), and the
Differentiated Services (DiffServ) quality-of-service feature in Linux routers.
In this testbed, we confirm our theoretical results. The traffic data used
in the experiments is a mixture of traffic logs from a web server at Aalto
University and synthetic attack traffic.

1.3 Thesis outline

The thesis is structured as follows. Chapter 2 presents background about
DDoS attacks and an overview of existing DDoS defense methods with par-
ticular focus on solutions based on clustering the traffic as well as solutions
that employ DiffServ. In chapter 3, we present a game-theoretic model of
cluster-based filtering and calculate optimal strategies for the attacker and
the defender. Chapter 4 describes the testbed setup and the results of the
experimental evaluation. Last, we discuss the obtained results in chapter 5
and give our conclusions in chapter 6.

Chapter 2

Background and related work

2.1 DDoS attacks

Denial of Service (DoS) attacks, as the terminology suggests, aim at disrupt-
ing the normal functioning of services and access to resources. In Internet,
network or bandwidth DoS attacks are performed by sending large volumes
of useless traffic in order to exhaust network capacity and deny the victim’s
connectivity. In distributed DoS (DDoS) attacks, the attacker is able to com-
promise a large number of computer hosts in the network and exploit them
for perpetrating a coordinated attack. The compromised hosts are called
zombies or bots and, collectively, a botnet. Such scenario is depicted in figure
2.1. While the owners of the bots are usually not aware of the whole process,
the victim may be easily overwhelmed with the vast amount of malicious
traffic sent to them.

The first DDoS attack conducted at a large scale has being reported more
than a decade ago, on the network of University of Minnesota [18]. The fact
that the CERT (Computer Emergency Response Team) has decided not to
publish the number of DDoS attacks reported since 2004 due to the exces-
sive number of such security incidents, witnesses the threat DDoS attacks are
representing in the Internet world nowadays. Besides that, finding accurate
data about DDoS attacks is difficult due to the fact that companies are not
willing to publish the attacks that they face, and another reason is that mea-
suring and comparing of DDoS attacks is not simple. However, some data
statistics about recent DDoS attacks can be found in the World Wide Infras-
tructure Security Survey for the year 2010 [13]. Figure 2.2 shows the increase
in the power of DDoS attacks as reported by 37 large ISPs participating in
the survey.

11

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Figure 2.1: Common DDoS senario.

Current Internet architecture and DDoS

According to Peng et al. [46], the inherent design principles of the Internet
architecture which made Internet so widely adopted are at the same time
causes of many security threats in it, particularly DDoS attacks. For in-
stance, Internet is a packet-switching network intended to provide best-effort
service to users by sharing all the resources. However, this feature that
makes Internet flexible, has the shortcoming that one user’s service might be
disrupted by the behavior of some other users. Unintended disruption ap-
pears, for example, in the case of flash crowds, while intended disruptions are
DoS attacks. The end-to-end design principle means that the core networks
should be simple while complex tasks are pushed to the end hosts. While
supporting easier development of new protocols and applications, this means
lack of authentication in core routers of Internet thus enabling IP spoofing.
Similarly, multipath routing makes Internet efficient and scalable, but tracing
of packets in the network becomes difficult. Finally, the decentralized man-
agement that enabled fast Internet growth, requires deployment of security
solutions on many locations, which in particular leads to expensive DDoS
defense mechanisms.

Taking into account the previous statements, a broad categorization of
suggested solutions for defense against DDoS attacks would be:

(i) solutions that demand changes in the whole Internet model,

CHAPTER 2. BACKGROUND AND RELATED WORK 13

Figure 2.2: Maximum DDoS attack scale observed per year 2005-2010.
Source [13].

(ii) solutions that easily integrate with the existing Internet architecture.

This work focuses on cluster-based traffic filtering which belongs to the
second category of solutions.

2.2 DDoS defense types

DDoS defense mechanisms can be classified according to the main role they
take in the process of defense as follows:

(i) detection mechanisms,

(ii) source identification techniques,

(iii) prevention and reaction mechanisms.

The distinction between DDoS prevention and reaction is not always clear,
since often one mechanism serves for the both of the functions, depending on
its location in the network. That is the case with the method we focus on,
the cluster-based traffic filtering, as we will discuss later. Thus, it is useful to
add to the previously stated categorization, the following distinction between
the prevention and reaction mechanisms:

CHAPTER 2. BACKGROUND AND RELATED WORK 14

(i) prevention mechanisms — are deployed close to the attack sources,

(ii) reaction mechanisms — are deployed close or at the attack target.

2.2.1 DDoS detection mechanisms

Detection mechanisms might not obviously seem necessary, since the DDoS
attacker does not focus on hiding the attack which becomes apparent as
soon as the disruption of resources causes degradation of target’s services.
However, from the defender’s point of view, the moment of detection of the
attack is important. First, earlier detection will enable faster reaction to the
attack and lessening its impact. Second, detection can help in finding the
sources of the attack and eventually identifying the attackers.

The two main types of detection mechanisms are determined depending
on the concept that detection is based on:

• detection based on specific features of the DDoS traffic,

• anomaly-based detection.

Before describing DDoS detection based on specific features of the DDoS
traffic, we should mention the security platform called network intrusion
detection system (NIDS). Namely, NIDS are implemented as a separate de-
vices or software components with the function of monitoring both ingress
and egress traffic in order to detect intrusions. Intrusions include different
types of malicious activities and attacks, particularly DDoS attacks. The
detection based on specific features of the attack traffic is often the part of
signature-based network intrusion detection systems. Signatures are formed
from specific features of the know attack types. Example assumptions that
are made about specific features of DDoS traffic are:

• the DDoS traffic does not comply with the TCP flow control,

• there is a disproportion between the packet rate at the victim and close
to the sources,

• the ratio of SYN packets compared to FIN and RST packets will be
unbalanced in the case of SYN attacks.

However, these assumptions are not always valid. For example, an attack
using a large number of bots may be conducted in such a way that each of
them opens a legitimate TCP connection to the target. The attacker may
send the FIN or RST packets in conjunction with the SYN.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

In order to bypass the problem of finding specific features of the attack
traffic, the anomaly-based detection schemes use different approach to tackle
the challenging task of DDoS detection. Anomaly-based detection relies on
finding normal traffic patterns and then classifying any traffic that does not
comply with those patterns as malicious. The advantage of such approach is
that previously unknown types of attacks can be detected. However, an obvi-
ous weakness of the anomaly-based detection is in false positives. NIDS that
are based on anomaly-detection are called anomaly-based intrusion detection
systems (ADS). Normal traffic is analyzed using approaches such as artificial
intelligence, data mining or statistical modeling for finding the normal traffic
patterns. Later on, the traffic is monitored and distance from normal pat-
terns is measured using some statistical metric. When the difference value is
above a certain threshold, an alarm for a DDoS is raised.

Clustering of network traffic in the role of DDoS detection belongs
to the anomaly-based detection. Decision upon specific features to be used in
the data mining is needed, as well as the choice of the most suitable cluster-
ing algorithm. The final task is to define the distance between the normal
patterns, i.e, observed cluster set and the attack traffic. If the threshold for
the distance is exceeded, the attack alarm is raised.

2.2.2 DDoS source identification techniques

Source identification techniques try to identify the attack sources. In the case
of a single flooding source this is still doable. In the case of DDoS, having
many bots involved and with the attacker’s communication to them usually
being encrypted, source identification is difficult or impossible to achieve.
Examples of source identification are IP traceback schemes with hash-based
IP traceback scheme arguably be the most effective [48], [49].

2.2.3 DDoS prevention and reaction mechanisms

Prevention mechanisms are intended to prevent the attack traffic from reach-
ing the target preferably close to the attack sources, while reaction mecha-
nisms need to be launched as the final defense step, when prevention tech-
niques fail and after the attack is detected. The main classes of prevention
mechanisms include:

• general mechanisms which prevent host compromise,

• identifying and disrupting botnets, and

• filtering techniques when deployed close to the attack sources.

CHAPTER 2. BACKGROUND AND RELATED WORK 16

DDoS reaction mechanism comprise

• filtering techniques when they are employed for the target bandwidth
management.

General mechanisms include common techniques that help in improving
the security of the system, such as, disabling unused services, replication of
resources, installing newest security updates, and disabling IP broadcast [20].

Since botnets are the most important resource for the DDoS attacker, it
is crucial to identifying and disrupt the botnets. Nowadays, the attackers are
able to compromise large botnets, having hundreds of thousands or even mil-
lions of bots. Thus many Community Emergency Response Teams (CERTs)
and also the corporations such as Microsoft, have taken part in actions for
disrupting some of the large botnets [39], [40]. Being outside of the scope
of the thesis, we herein only refer to some of the academic solutions in this
domain [36], [9].

Some of the filtering techniques taking the role in DDoS prevention are
briefly discussed bellow. Ingress and egress filtering of traffic [17] needs to be
deployed on the edge routers of the network. Essential for this type of filter-
ing is the knowledge about which IP addresses can be expected in the packets
entering or leaving the network on specific ports. One weakness of ingress
and egress filtering is that providing the routers with the mentioned type of
knowledge is not easy in complicated topologies existing today in Internet.
Park et al. [44] proposed routers-based packet filtering (RPF) which should
be deployed on the core routers and use the knowledge about BGP (Bor-
der Gateway Protocol) routing topology. The authors provide simulation
results that RPF would reduce the number of spoofed packets significantly if
the method is deployed by 18% of the autonomous systems (AS) that form
the Internet. One weakness is that RPF thus requires changes in the whole
Internet. Also, the attacker could still spoof the IP addresses from inside
one domain. Source Address Validity Enforcement (SAVE) [31] demands
changes in the routing protocol. Routing tables containing expected IP ad-
dresses at specific interfaces need to be created. Weaknesses are that SAVE
requires changes in the Internet routing and if partially deployed, the aim
of preventing spoofing will not be achieved. Keromytis et al. [25] proposed
implementing a new routing protocol for the purpose of DDoS prevention
named Secure Overlay Service (SOS) protocol. The aim of SOS is to provide
communication between legitimate users and the victim during the DDoS
attack. Again, the changes in the existing Internet model are required, with
additional security treat due to introducing the new routing protocol. The
common weakness applies to all the filtering methods described above. They
base the prevention on the assumption that DDoS traffic is spoofed. Thanks

CHAPTER 2. BACKGROUND AND RELATED WORK 17

to the possibility of compromising the whole botnets, DDoS attacks nowa-
days do not need to be based on the spoofed traffic. Anderson et al. [2]
proposed capability based method in DDoS prevention where the destina-
tion has the ability to control the traffic directed towards itself. By sending
specific tokens to the chosen hosts, the receiver grants permissions to those
hosts to send the traffic to it. While addressing the problem of spoofed traffic
in a novel way, the capabilities based method enables a new type of attacks
in Internet — Denial of Capability (DOC). In the case of DOC, the attacker
prevents the capability-setup packets from reaching the hosts.

Mere prevention mechanisms in the case of DDoS attacks are not suf-
ficient due to the following reasons. Since the attacks are based on the
quantity of the sent traffic and not on the type of packets, DDoS attacks can
be conducted with the traffic that imitates the normal traffic. Due to the
distributed nature of the attack, there are many compromised hosts each of
them sending seemingly normal traffic. This feature of legal but malicious
traffic makes DDoS traffic difficult to distinguish from normal, especially
close to the sources. That is why reaction mechanisms in DDoS defense are
also necessary.

History based filtering methods [20] suggest recording the normal traffic
during some period of time and using those traffic records as baselines for
filtering later on. Namely, the idea is that the structure of the DDoS traffic
will differ from the structure of the normal traffic. A straightforward idea is
that the set of observed IP addresses will differ during the attack. Pang et
al. [45] analyze using a database of observed IP addresses (IAD) on the edge
router in order to prevent requests with the addresses that are not recorded
previously. The weakness of using IAD is cost of storage and, similarly to
the previously described filtering methods, the assumption that the attack
traffic is spoofed.

Cluster-based traffic filtering, when implemented close to the attack
sources is a DDoS prevention mechanism, while when it is deployed at the
target network, serves as a target bandwidth management scheme in DDoS
reaction. The method conceptually belongs to the history based prevention
since it relies on finding clusters in the normal traffic, and using them as
filters when the malicious traffic appears.

Clustering of traffic as a DDoS prevention or reaction has one important
advantage over the other filtering methods. While the previously described
filtering methods need to distinguish is some way between the normal and
the attack packets, the cluster-based filtering does not need such distinction.
Filtering based on clusters prioritizes some traffic classes over others, thus
increasing normal packet survival ratio (NPSR), but inside each of the classes
it is not necessary to know which packets are malicious. This also means that

CHAPTER 2. BACKGROUND AND RELATED WORK 18

there is no distinction made between the attack and a congestion caused, for
instance, by a flash crowd. Both are treated in the same way, the packets
are dropped according to the normal traffic profile. From the explained, the
importance is clear of the quality of the clustering for the effectiveness of the
cluster-based filtering.

In the scenario we examine, a cluster-based filter is placed on a router
between the web server, which is the target, and the Internet. The filter
is used for the bandwidth management by setting different reservations of
bandwidth for the traffic classes corresponding to the different clusters. We
focus on the question how to create the bandwidth management policy using
clusters so that the DDoS attack impact is maximally reduced. We consider
first proactive and then reactive DDoS defense.

2.3 Traffic clustering in DDoS defense

In the previous section we have described which roles can take cluster-based
traffic filtering in the DDoS defense. In this section we present an overview
of different academic proposals that involve clustering the network traffic in
DDoS defense.

2.3.1 Clustering algorithms for network traffic

As we discussed in the previous section, the important factor in DDoS defense
that uses cluster-based filtering is to find ‘the good set of clusters’ in the
traffic. Thus many academic solutions are focused solely on the question
how to cluster network traffic into qualitatively good classes.

Erman et al. [14] examined existing data mining algorithms : density-
based spatial clustering of applications with noise (DBSCAN) [16], K-Means
[35] and AutoClass [7] [8]. The algorithms are evaluated and compared from
the point of accuracy of clustering traffic into known traffic classes, then
from the point of algorithm speed and number of clusters that is produced.
McGregor et al. [38] also applied machine learning techniques to cluster net-
work packet header traces. The authors showed appropriate correspondence
between known traffic types in the traces, such as HTTP, SMTP, IMAP or
TCP DNS, and the traffic classes obtained by the clustering.

However, the common data mining algorithms are not the best choice
for the network traffic data. Firstly, the traffic datasets have larger size
compared to the common datasets in data mining. Secondly, for the purpose
of DDoS defense, network traffic often needs to be examined in real time,
meaning that clustering should be applied to the data stream. Common

CHAPTER 2. BACKGROUND AND RELATED WORK 19

data mining algorithms are slow for such task, or would require so high
computing resources that are not available in networking devices. Third, the
traffic features such as IP addresses and URLs, have the specific hierarchical
structure. Thus researchers developed specific algorithms for clustering the
network traffic.

Cormode et al. [10] [11] developed the hierarchical heavy hitters algorithm
(HHH) which is an extension to the heavy hitters algorithm and takes into
account the hierarchical structure of the network traffic. The authors also
provide approximate versions of the HHH algorithm that are fast enough
to cluster the data stream. Theoretical proofs on the error bounds for the
approximate algorithms are provided. Since we use an implementation of the
HHH algorithm in the evaluation phase, a more detailed description of HHH
is given in chapter 4. Hijazi et al. [22][23] developed another algorithm which
takes into account specific features of the network traffic. The algorithm
is named approximate divisive hierarchical clustering (ADHIC). ADHIC is
an adaptive algorithm since the features used during the clustering, called
(p,n)-grams, are chosen depending on the structure of the particular dataset.
(p,n)-grams are defined as ”a byte strings of length n located at an offset p
in a packet within a data stream.“ The authors of ADHIC also developed
a fast and lightweight algorithm implementation intended for the streaming
data which is called netADICT.

2.3.2 Traffic clustering as a DDoS detection technique

Most of the prior work involving traffic clustering focuses on anomaly and,
particularly, DDoS detection.

Lakhina et al. [29] describe an anomaly detection method that relies on
changes in the feature distributions of traffic. In the case of DDoS, the au-
thors find that features that are affected are source and destination addresses.
Entropy is used as a metric when detecting changes in traffic distributions
induced by anomalies. The main advantage of using entropy over volume-
based metrics is that entropy can detect and classify low-volume anomalies,
such as port scan, which stay undetected, or it is not possible to distinguish
their structure by volume-based methods. However, entropy cannot distin-
guish between different distributions having the same amount of uncertainty.
Gu et al. [19] create a detection model that uses relative entropy that avoids
such problem in detection. Relative entropy or Kullback-Leibler divergence
(KL-divergence) [28] [27], is a measure of the difference between two prob-
ability distributions and is often interpreted as non-symmetric metric. The
authors first decide on a certain number of packet classes, precisely 2348
two-dimensional classes induced by the protocol and port numbers. Second,

CHAPTER 2. BACKGROUND AND RELATED WORK 20

the maximum-entropy configuration is calculated by feature selection and
parameter estimation giving an initial, normal traffic, configuration. This
configuration is then used as a reference point to compare the monitored
traffic to it. If the KL-divergence from the maximum-entropy distribution
is found to be greater than a threshold value on any packet class, then an
alarm for that packet class is raised. Stoecklin [50] suggests improving the
work of Gu by using symmetrical KL divergence as the deviation measure.
The author provides experimental evidence that such detection is resilient to
periodical changes in normal traffic which reduces false positives.

Oldmeadow et al. [43] present a time-varying adaptive clustering algo-
rithm that is based on the fixed-width clustering [15]. Fixed-width clustering
is a clustering algorithm that is based on a geometric framework and can
be applied to unlabeled data. The authors improve the detection based on
fixed-width clustering by traffic feature weighting. Zhong et al. [53] ap-
ply two exisitng clustering algorithms to DDoS detection. The algorithms
used are: fuzzy c-means (FCM) algorithm [3] and apriori association algo-
rithm [1]. After creating the normal traffic profile, the authors developed the
model to discern abnormal traffic and measure its duration. The evaluation
in LAN network showed that the DDoS detection reaches up to 97% accu-
racy. Ming-Yang et al. [51] applied to DDoS detection the k-nearest neighbor
(KNN) algorithm [21] improved by feature weighting and selection based on
a genetic algorithm [24]. Overall accuracy over 97% for known DDoS attacks
is achieved, and over 78% in the case of unknown attacks.

Cluster analysis of traffic is used for proactive DDoS defense by Lee et al.
[30]. Namely, by exploiting the specific architecture of DDoS attacks, they
provide evidence that it is possible to detect five different phases of the DDoS
attack by looking into specific traffic features in that phase. Such early phase
detection is promising since appropriate prevention and reaction techniques
could be launched in the earlier time.

2.3.3 Traffic clustering in the role of DDoS prevention
and reaction

As we discussed before, filters based on clustered traffic are often used for
both functions, for the DDoS prevention and reaction.

Muhai et al. [42] present a mathematical nonlinear defense model against
DDoS. They involve the victim, a router and an additional application server
in the defense process. Using the model it is possible to control how much
of the attacker and regular user traffic is served. The main weakness is in
the assumption that the regular user traffic and the attacker traffic can be

CHAPTER 2. BACKGROUND AND RELATED WORK 21

distinguished. However, depending on how well is the attack adapted to
the normal traffic patterns (for example by spoofing addresses so that they
appear legitimate) such distinction might not be possible. The authors also
describe DDoS detection by the traffic analysis. After the attacks is detected,
the application server sends the signal to the router to start the nonlinear
traffic control system.

Similarly to our approach, Matrawy et al. [37] do not explicitly distin-
guish between malicious and regular traffic, but rather filter disruptive traffic
according to its membership in clusters. The authors deploy traffic clustering
as a reaction technique in DDoS defense in the following way. The clustering
algorithm that is used is ADHIC, developed particularly for the traffic data
as we described in section 2.3.1. Adaptive traffic management based on traf-
fic shapers is applied after establishing the baselines. A common weakness
with our approach is the assumption that the attacker cannot observe or
accurately imitate honest traffic. In our work, different clustering algorithm
is used, HHH algorithm, and the implementation of bandwidth management
which is based on DiffServ is different. In our opinion, DiffServ enables more
possibilities in DDoS defense, since among other traffic provisioning features
it can, in particular, provide the traffic shaping.

Even though not employing a classical clustering mechanism, the ap-
proach by Li et al. [32] is similar to our work in building a mathematical
model based on traffic classes and bandwidth measurements. After creating
the model, the bandwidth reservations decided by the model are allocated
to the specific classes. We follow the similar procedure in chapter 3. How-
ever, unlike in our approach, the traffic, is classified into only two classes:
normal and anomalous. The traffic feature used to distinguish those two
classes is the ratio of the number of common, i.e., users that have been al-
ready recorded, to the number of users that have been recorded for the first
time. Instead, we apply the similar ratio of normal traffic rate to the one
observed during the congestion, on each of the traffic cluster. We thus create
more fine-grained filter without need to explicitly classify traffic packets into
normal or malicious.

2.4 DiffServ in DDoS defense

DiffServ is a quality-of-service provisioning framework that we used in evalua-
tion phase for creating filtering policy based on clusters. DiffServ is described
in chapter 4. In this section we describe some of the academic DDoS defense
solutions using DiffServ.

The idea of using DiffServ in DDoS defense is not new. We briefly describe

CHAPTER 2. BACKGROUND AND RELATED WORK 22

some of the solutions bellow. An approach for adaptive traffic management is
suggested by Lin et al. [34]. The DiffServ environment with CBQ algorithm
is used for reducing disruption of normal traffic during the attack. After de-
ciding whether the incoming packet is normal or not, it is passed to the high
priority queue or low priority queue, following the queuing discipline. The
decision about the packet type is based on the difference from the harmonic
mean of the intervals of transmission times of incoming packets. Differing
from the mentioned approach, we use HTB queuing discipline, which is an
advancement of CBQ. One of the early papers with similar idea [47] describes
implementing CBQ mechanism as a prevention technique against DDoS on
a router. CBQ and RED queuing disciplines were shown to be successful
in providing fixed bandwidth to legitimate users and reducing the impact
of DDoS. Our work differs from the described proposals since we combine
DiffServ with traffic clustering. Thus we effectively use the DiffServ capabil-
ity of provisioning many different traffic classes, instead of having only two
classes (normal and anomalys). Presented in the paper [33] is another simi-
lar approach to the ours, due to the use of DiffServ and priority scheduling.
However, the authors employed DiffServ for the DDoS detection, while we
focus on the DDoS reaction. Based on the mathematical analysis of traffic
constraint function as introduced in another paper on DiffServ traffic pro-
visioning [52] and by introducing the average traffic constraint, the authors
describe DDoS detection model in the DiffServ environment. They provide
experimental evidence of detecting DDoS attack using DiffServ, with proba-
bility guaranties on identification rate, false positives and false negatives.

Chapter 3

Theoretical model

3.1 Terminology

In order to model and analyze traffic clustering as a DDoS defense mecha-
nism, we first chose a particular scenario in which traffic clustering is de-
ployed. Since we focus on traffic clustering as a DDoS reaction mechanism,
we deploy the mechanism close to the target in the scenario. Secondly, a
theoretical model for traffic clustering is created by abstracting only relevant
elements from the scenario. Afterwards, mathematical analysis is applied to
the theoretical model. The results of the analysis provide an insight into the
effectiveness of traffic clustering as a DDoS reaction technique.

Many solutions based on traffic clustering use two versions of the cluster-
ing algorithm, which are often called the offline and online algorithm. The
offline algorithm is applied to recorded normal traffic to obtaining the normal
traffic clusters. The online algorithm is an approximation of the offline algo-
rithm. It is faster and less demanding, so that it can be applied to the live
data stream. Clustering of streaming data is necessary in DDoS detection
and also for the adaptive DDoS reaction.

A traffic cluster is defined by ranges of traffic feature values. All the
packets in which the feature values are inside these ranges form a traffic class.
The terms traffic class and traffic cluster are often used interchangeably.
Additionally, we also take as a part of the cluster definition the amount of
the recorded traffic belonging to the class.

3.2 Scenario

In our scenario, the target is a web server, as shown in figure 3.1. The
web server has exposed its services through a router on which the clustering

23

CHAPTER 3. THEORETICAL MODEL 24

Figure 3.1: Scenario with clustering mechanism deployed.

mechanism is deployed. To make our model as general as possible, in the
start, we do not think of a particular clustering algorithm — we just take
the algorithm as a black box that outputs clusters from the network traffic.

In the scenario, the normal traffic is observed over a certain period of
time. Afterwards, some offline algorithm is applied to the traffic records.
The offline algorithm outputs a cluster set which represents the normal traffic
profile. A filtering policy on the router is created using that profile. When
the attack happens, a predefined action using the filtering policy is taken on
the router as a DDoS defense reaction. The heavy task of the initial cluster
computation may be allocated to a separate server which executes the offline
algorithm. In that case, such a server may instruct the router about the
filtering policy that the router should deploy. The online algorithm might
be employed on the router to cluster the traffic stream passing through the
router. In the case of an attack, the online algorithm provides information
about the distribution of the attack traffic. Using the output of the online
algorithm, the filter reservations may be adapted so that the DDoS reaction
is improved. The success of this method, however, depends on the particular
clustering algorithm used. If successfully employed, this method can be also
used for DDoS detection. We analyze different possibilities when only the
offline algorithm is used.

Depending whether the attacker or defender is more agile in changing its
attack or defense strategy, we distinguish the following cases in our scenario:

CHAPTER 3. THEORETICAL MODEL 25

(i) In scenario 1, the defender ’makes the first move’, meaning that we start
from a fixed defender strategy and analyze what is the best strategy
for the attacker, who is the more agile party. We analyze such a
scenario in section 3.5.1.

(ii) In scenario 2, the defender is the less agile party and decides to use
the filtering policy that will serve as the optimal proactive defense
against the more adaptive attack. We find out in section 3.5.2 that such
optimal filtering policy should allocate cluster reservations proportion-
ally to the normal traffic cluster sizes.

(iii) In scenario 3, the attacker ’makes the first move’. When the attack is
launched, the changes in the amounts of traffic recorded per class will
be observed by the filtering mechanism on the router. Using the data
about new traffic amounts, the defender can adapt its filtering policy
for the optimal reactive defense. Thus, in this case, the defender
is the more agile party. We mathematically analyze such a scenario in
section 3.5.3.

In this chapter, we find mathematical results for the optimal strategies in
the described cases, and then experimentally evaluate those results in chapter
4. Since the scenario that we describe is simple, the model we create from it
in the next section is general. This means that it may be applied with some
modifications to other scenarios, such as when traffic clustering is deployed
at other locations, for instance on the server itself or at edge routers in the
network.

3.3 Problem classification and preliminaries

As stated in our definition of DDoS attacks, we focus on capacity exhaustion
attacks. Thus the capacity of the server is the main resource we need to
model. The filtering policy on the router will be based on different bandwidth
allocations to traffic classes corresponding to different clusters. Our aim
is to find the optimal filtering policies that will serve for DDoS defense in
the different scenarios that we described above. The class of mathematical
problems which deal with allocating resources in an economic way is called
resource allocation or knapsack problems. Thus, the problems that will arise
during the analysis in our model can be classified as knapsack problems.

The knapsack problem has two distinct variants, depending on the
variable that is optimized:

• discrete knapsack problems, and

CHAPTER 3. THEORETICAL MODEL 26

• continuous knapsack problems.

When commonly referring to the knapsack problems, it is usually intended to
think of the discrete knapsack case. The knapsack problem in that context
can be simply defined as follows. We have a finite number k of items available.
Each item has a value and a price associated with it. The requirement is
to choose a subset of the items from the available set which will give the
highest value sum for a defined price that we can afford. The name for the
knapsack problem comes from the most often described example where it can
be applied. A person intends to go to a trip taking her stuff in one knapsack.
She wants to take the most important (value) stuff that she needs and as
many as possible of them. But she is bounded by the size of the knapsack
(the maximum price) and the volume that each item requires (the price of
the item). The knapsack problem is to choose the set of items which can be
taken in the knapsack so that their value is maximal. Further on, there are
different variants of the knapsack problem depending on the set of available
items. Different possibilities include the cases when all the items in the set
are distinct, or when there is a certain bound on the number of items of each
type, or if there is an infinite number of each type of items.

However, in our model, we need to deal with the less well known vari-
ant of the knapsack problem, the continuous knapsack problem. In the
continuous knapsack problem, a fraction of an item can be taken, i.e., the
variable values are not constrained only to the integers, but can take the real
values.

Another categorization of knapsack problems is done depending on the
objective function that is optimized:

• linear knapsack problems, and

• nonlinear knapsack problems.

The knapsack problem as we described it above has the feature that
the objective function in the problem is linear. Thus until this point we were
discussing the class of the linear knapsack problems. A class of more complex
resource allocation problems appears in the case when the objective function
is nonlinear and they are called nonlinear knapsack problems.

(Coming back to the common example with the stuff that needs to be
optimally packed in a knapsack, we see now that we may classify such a
problem as a discrete linear knapsack problem.)

A continuous form of the linear knapsack problem is solvable more easily
compared to the discrete knapsack case since the solution can be given in
the form of a simple greedy approximation algorithm, as proposed by Dantzig

CHAPTER 3. THEORETICAL MODEL 27

[12]. According to the algorithm, the items are sorted depending on the item
value, and we keep on taking the most valuable item as long as it is available.
Then the following most valuable item is being consumed and so on, until
we reach the price limit or exhaust all the items available.

One of the optimization tasks that we will define for the defender strat-
egy in our model belongs to the class of continuous linear knapsack problems.
That optimization will be solved in section 3.5.3 using the above mentioned
greedy algorithm. The optimization problem for the attacker optimal strat-
egy and the second optimization task for the optimal defender strategy in
our model will both be classified as a continuous nonlinear knapsack prob-
lems. However, while the optimization of the defender strategy is possible
to solve using the simple derivative approach, as we show in section 3.5.2,
the attacker strategy optimization in section 3.5.1 will require a more ad-
vanced algorithm. That algorithm is called the multiplier search method for
the continuous convex nonlinear knapsack problem [5] and, since it is not as
well known as the derivative approach in optimization, we describe it in more
detail in the following section.

3.3.1 The multiplier search method for the continuous
convex nonlinear knapsack problem

The characteristic that defines knapsack problems in the group of all opti-
mization problems is that they have one linear constraint besides bounds on
the variables. For that reason, each algorithm that is defined as a solution
for a general optimization problem with many constraints can be applied to
solving the knapsack problems. However, since such algorithms are rather
complex and slow, there are specialized algorithms for solving the different
variants of the knapsack problems.

Depending on the properties of the problem, different algorithms have
been developed for the variants of nonlinear knapsack problems. The prop-
erties that define different variants of the problem include:

• whether it is a continuous or a discrete problem,

• whether the objective function is convex or not,

• whether the objective function is separable or not.

A function f(x1, ..., xk) is separable if it can be represented in the form

f =
k∑
i=1

fi(xi). (3.1)

CHAPTER 3. THEORETICAL MODEL 28

The multiplier search method is applicable to the continuous nonlinear
knapsack problems having separable and convex objective function. A gen-
eral form of such a problem is given bellow:

min f = min
k∑
i=1

fi(xi), (3.2)

subject to constraints:

k∑
i=1

g(xi) ≤ b, li ≤ xi ≤ ui, for i = 1, ..., k. (3.3)

It is assumed that each function fi is convex.
Methods for solving nonlinear optimization are in general based on La-

grange multipliers and they use Karus-Kuhn-Tucker (KKT) conditions. the
multiplier search method manipulates with the KKT conditions for the non-
linear knapsack problem, in order to simplify the general solution based on
solving the set of KKT. Namely, solving of a set of KKT conditions is reduced
to finding only one multiplier, λ∗. The solution of the given problem using
the multiplier search method follows. If the Lagrange multipliers are defined
so that λ ≥ 0 is the multiplier for

∑k
i=1 g(xi) ≤ b and vi ≥ 0 is the multiplier

for li ≤ xi and wi ≥ 0 is the multiplier for xi ≤ ui, the KKT conditions for
such a problem can be written as bellow:

λ

(
k∑
i=1

gi(xi)− b

)
= 0, (3.4)

∂fi
∂xi

+ λ
∂gi
∂xi
− vi + wi = 0, (3.5)

vi(li − xi) = 0, (3.6)

wi(xi − ui) = 0, for i = 1, ..., k, (3.7)

Additional conditions for the purpose of the multiplier search method
method are defined as follows:

xi(λ) =


li if x̃i(λ) ≤ li

x̃i(λ) if li < x̃i(λ) < ui,

ui if x̃i(λ) > ui

(3.8)

vi(λ) =

{
∂fi(li)
∂xi

+ λ∂gi(li)
∂xi

if x̃i(λ) ≤ li

0 if x̃i(λ) > li.
(3.9)

CHAPTER 3. THEORETICAL MODEL 29

wi(λ) =

{
0 if x̃i(λ) < ui,
∂fi(ui)
∂xi

+ λ∂gi(ui)
∂xi

if x̃i(λ) ≥ ui
(3.10)

The multiplier search method can now be defined in the form of the
following algorithm.

step 1: Solve the equation ∂fi
∂xi

+ λ ∂gi
∂xi

= 0 finding x̃i as a function of λ.
step 2:
if
∑k

i=1 gi(x̃i) ≤ b then
λ∗ = 0

else
calculate λ∗ from condition λ∗ > 0 and

∑k
i=1 gi(x̃i) = b.

end if
step 3: Substitute λ∗ into formulas 3.8 to 3.10 to obtain the optimal
solution xi.

The multiplier search method has its name because solving of a set of
KKT conditions is reduced to finding only one multiplier, λ∗.

The optimization task for the attacker strategy in our model is a continu-
ous nonlinear knapsack problem with a separable objective function. We also
find that it is possible to slightly transform the problem so that the objective
function is convex. Thanks to that, our task fulfills the requirements for the
application of the multiplier search method.

3.4 Mathematical model

The server bandwidth in our model is normalized to 1, corresponding to
100% utilization. We also need to model the cluster set and corresponding
cluster sizes which are the output of the clustering algorithm. Finally, the
filtering policy on the router needs to be modeled. The policy uses the
knowledge about the clusters and allocates reservations to the corresponding
traffic classes according to a predefined algorithm. We want to find out the
best algorithm for each of the different scenarios described in the previous
section.

3.4.1 Mathematical notation

For each of the identified elements to model, we introduce notation as given
in table 3.1.

CHAPTER 3. THEORETICAL MODEL 30

symbol conditions description

C = {c1, ..., ck}
The set of clusters created from the
normal traffic.

ci ci ∈ C A cluster from the set of clusters C.
ρ : C → [0, 1]
ρ(ci) = ρi

k∑
i=1

ρi = 1
Reservations of capacity per cluster as
decided by the filter policy.

α : C → [0, 1]
α(ci) = αi

k∑
i=1

αi = A

A ≤ 1

Volumes of recorded normal traffic in
each cluster. We assume A ≤ 1,
i.e., normal users are not exceeding the
maximum capacity.

β : C → [0,+∞)
β(ci) = βi

k∑
i=1

βi = B

A+B > 1

Volumes of attacker traffic in each clus-
ter. We assume A + B > 1 because
otherwise there is no congestion and no
DDoS attack.

τ : C → [0,+∞)
τ(ci) = τi

k∑
i=1

τi = T

T = A+B > 1

Volumes of total observed traffic in
each cluster during the attack. T > 1
because otherwise there is no conges-
tion and no DDoS attack.

Table 3.1: Notation for the mathematical model.

CHAPTER 3. THEORETICAL MODEL 31

The main function we want to observe in the model is the total amount
of honest user traffic served; let us denoted it by S. On each cluster ci, we
denote this value as fi. Then the total amount of served honest traffic equals

S =
k∑
i=1

fi. (3.11)

During the normal traffic periods, the amount of honest user traffic served
on the cluster ci equals αi and all user traffic is served, i.e, S = A.

During a DDoS attack, the amount of honest user traffic served on cluster
ci will have two possible values depending on the attack traffic falling in that
cluster. If the total observed traffic on cluster ci, that is τi = αi + βi, is not
exceeding the given reservation to that cluster, ρi, then all the honest traffic
is still served since there is no need to drop packets from that class. If the
attack traffic leads to higher total traffic volume in ci than the reservation,
then the assumption is that packets are randomly dropped from this cluster.
The proportion of dropped normal and attack packets will correspond to the
proportion of such packets in the analyzed traffic. Thus, the volume of the
normal traffic served on ci is represented by the following formula:

fi =

{
αiρi
αi+βi

, when βi > ρi − αi,
αi, when βi ≤ ρi − αi for i = 1, ..., k.

Equivalently, we can represent fi without using values βi as bellow: 1

fi =

{
αiρi
τi
, when τi > ρi,

αi, when τi ≤ ρi for i = 1, ..., k.

Having introduced this notation and functions:

(i) The attacker’s goal to maximally disrupt the normal user service, corre-
sponds to achieving the following optimum in our mathematical model:

min
β
S = min

β

k∑
i=1

fi.

(ii) On the other hand, the defender’s (filtering policy) goal is to achieve
the following optimum:

max
ρ
S = max

ρ

k∑
i=1

fi,

1The capacities of attackers traffic cannot be measured directly but we can only measure
the total τi. However, βi are needed for modeling attacker strategy in the theoretical
model.

CHAPTER 3. THEORETICAL MODEL 32

with a natural constraint that comes in our model: αi ≤ ρi, so that the
filtering policy itself does not create a congestion on any of the clusters.

3.5 Analysis of the mathematical model

The introduced formal model of cluster-based traffic filtering enables us to
model the strategies of the attacker and the defender in a given scenario as
optimization problems. Recalling the three cases described in section 3.2,
three optimization tasks need to be solved. By solving those optimization
problems, we gain an insight into the impact of traffic clustering mechanism
on the capabilities of the attacker and the defender in DDoS attacks.

First, in section 3.5.1, we analyze the capabilities of the attacker to disrupt
normal users traffic when a cluster-based filtering policy is fixed on the router.
Second, in section 3.5.2, the optimal filtering policy against the maximally
adaptive attack is found. Third, in section 3.5.3, we describe the algorithm
for adapting the filtering policy for the optimal defense against a certain
DDoS traffic distribution.

3.5.1 Attacker strategy — minimization problem

In this section, we analyze scenario 1 as described in section 3.2. The at-
tacker wants to send malicious traffic so that regular traffic is maximally
disrupted. For that he needs to decide on the amounts of different types
of traffic he will send. In our model, that corresponds to deciding on the
traffic amounts the attacker will send in each of the classes existing in the
router’s filter: β1, ..., βk. The function of honest throughput 3.11 is to be be
minimized.

Lemma 3.5.1. The best strategy for the attacker depends on the amount of
traffic B he has at his disposal for conducing the attack. If B is not high
enough, the best strategy is to skip attacking some of the clusters. In order
for the best strategy to be to attack all of the clusters, the amount B should
be high enough so that the proportion of the normal traffic in each cluster is
higher than the following value(k∑

j=1

√
αjρj

)2
(A+B)2

.

Proof. The following optimization problem models the strategy of the
attacker.

CHAPTER 3. THEORETICAL MODEL 33

min
β
S = min

β

k∑
i=1

fi.

The objective function is given by 3.11 with β = (β1, ..., βk) as the function
variable, and

fi(βi) =

{
αiρi
αi+βi

if βi > ρi − αi
αi if βi ≤ ρi − αi for i = 1, ..., k.

(3.12)

The constraints for the optimization are

k∑
i=1

βi = B, βi ≥ 0.

Similar to other resource allocation problems, our problem may be classi-
fied as a nonlinear knapsack problem [6]. Analysis of the task shows that we
can simplify it in order to apply the multiplier search method as described in
section 3.3. We mentioned there that we need a slight transformation to the
problem. As is shown in figure 3.2, the functions fi from formula 3.12 are not
fulfilling all the requirements for the application of KKT-conditions. First,
the functions are not continuously differentiable at βi = ρi− αi and, second,
they are not convex. We can, however, solve the task using the functions fi
defined for βi > ρi − αi (represented by the dashed line in the figure). We
should add an aditional constraint to our problem to take care of solutions
0 < βi ≤ ρi − αi since they represent the boundary case for the functions fi.
For such solutions, we should simply assign βi = 0.

The multiplier search method application to our optimization task

According to the algorithm described in [5], the two sets of constraints are
formalized for the optimization task. Namely, together with the common set
of constraints in solving optimization problems with Lagrange multipliers,
the additional set of constraints specific for the multiplier search method is
defined.

The first set of constraints is given bellow.

k∑
i=1

βi = B (3.13)

βi > ρi − αi or βi = 0 (3.14)

CHAPTER 3. THEORETICAL MODEL 34

Figure 3.2: Graph of a function fi from 3.12 is given by the green line. The
function we analyse instead is represented by the dashed blue line.

αiρi
(αi + βi)2

− λ− µi = 0, for i = 1, ..., k (3.15)

µi(βi − ρi + αi) = 0 or µiβi = 0, for i = 1, ..., k (3.16)

vµi ≥ 0, for i = 1, ..., k (3.17)

At this step, the algorithm we apply differs from the common Lagrange
multipliers approach. First we need a partial solution β̃i(λ) of the derivative
Lagrangian function bellow for every i:

αiρi
(αi + βi)2

− λ = 0.

Then the obtained solution

αiρi
(αi + βi)2

= λ ⇒ β̃i(λ) =

√
αiρi√
λ
− αi, (3.18)

is used to define two additional constraints specific to this algorithm:

βi(λ) =

{
0 if β̃i(λ) ≤ ρi − αi
β̃i(λ) if β̃i(λ) > ρi − αi

(3.19)

µi(λ) =

{
αiρi

(αi+βi)2
− λ if β̃i(λ) ≤ ρi − αi

0 if β̃i(λ) > ρi − αi.
(3.20)

CHAPTER 3. THEORETICAL MODEL 35

The two additional constraints together with 3.14 to 3.17 all satisfy KKT
conditions [5]. Therefore, it is only left to find λ so that the constraint 3.13
is also satisfied.

Combining βi(λ) from formula 3.19 and condition 3.14, we differentiate
the cases when:

(i) ˜βi(λ) > ρi − αi for all i = 1, ..., k having

k∑
i=1

β̃i(λ) = B

(ii) ˜βi(λ) > ρi − αi for i = 1, ..., s and ˜βi(λ) ≤ ρi − αi for i = s+ 1, ..., k in
which case the sum becomes

s∑
i=1

β̃i(λ) +
k∑

i=s+1

0 = B.

In the first case, λ is calculated easily:

√
λ =

k∑
j=1

√
αjρj

A+B
. (3.21)

The assumption that all ˜βi(λ) > ρi − αi in this case gives
√

αi

ρi
>
√
λ. As

we explained, if a solution is found so that βi ≤ ρi − αi, then such solutions
should be assigned βi = 0. That, together with λ calculated in 3.21, gives
the conditions that must hold on all the clusters so that all corresponding
βi > 0, i.e., so that every cluster is attacked:

αi
ρi
>

(
k∑
j=1

√
αjρj

)2

(A+B)2
for all i = 1, ..., k.

With this is our lemma proved.

One comment about the interpretation of the lemma is that by increas-
ing the attack capacity B, the attacker may always reach the point when
attacking all the clusters is his optimal strategy.

Theorem 3.5.2. If there is enough attack capacity B, the attacker should
send to each traffic class in the defender’s filter the amount of traffic that
makes the total amount of traffic in the class proportional to the geometric
average of the capacity reservation and normal traffic volume at that class
(
√
αiρi).

CHAPTER 3. THEORETICAL MODEL 36

Proof. If the lemma condition is satisfied, then all βi > 0, and inserting the
result for λ from formula 3.21 in ˜βi(λ) as calculated in 3.18 gives the desired
solution:

βi = (A+B)

√
αiρi

k∑
j=1

√
αjρj

− αi. (3.22)

Such βi are the values of the attack traffic in each cluster ci if the attacker’s
best strategy is to send the traffic to all the clusters.

When the attacker does not have enough capacity to attack all the clus-
ters, it is necessary to first find the number of clusters s that will be attacked
for the best strategy. Also λ needs to be recalculated based on that. The
solution in this case can be given in the form of an algorithm.

Algorithm 1 describes the general algorithm for the attacker to calculate
his optimal strategy.

3.5.2 Proactive defense — maximization problem 1

In this section, we analyze scenario 2 as described in section 3.2. In this
scenario, the defender is the less agile party and he wants to fix the strategy
that is the optimal proactive defense against an adaptive attacker. This
kind of strategy corresponds to expecting an attacker who will always find the
best attack strategy following results from theorem 3.5.2. In the worst case
scenario, the attacker will have at least enough capacity B at his disposal so
that all the clusters are attacked.

In our mathematical model, this corresponds to finding the optimal reser-
vations ρi when the values βi are the optimal values as calculated in formula
3.22. Since we model the defender strategy, the function of honest through-
put 3.11 is to be maximized in this case.

Theorem 3.5.3. The best proactive defense against DDoS attack when us-
ing cluster-based filtering is to assign the traffic reservations to the classes
proportional to the normal traffic amounts in the classes.

Proof. The following optimization problem models the strategy of the
defender:

max
ρ
S = max

ρ

k∑
i=1

fi.

CHAPTER 3. THEORETICAL MODEL 37

Algorithm 1 Algorithm for finding attackers optimal strategy.

step 0: initialize s = k {A variable which represents the number of clusters
being attacked.}
step 1: sort the values αi

ρi
in decreasing order, and put them in a queue

α1

ρ1
≥ α2

ρ2
≥ ...

αi
ρi
... ≥ αk

ρk

step 2: calculate λ according to

λ =

(
s∑
j=1

√
αjρj)

2

(A+B)2

step 3:
if for all i = 1, ..., s holds

αi
ρi
>

(
s∑
j=1

√
αjρj)

2

(A+B)2

then
return

βi = (A+B)

√
αiρi

s∑
j=1

√
αjρj

− αi for i = 1, ..., s, and,

βi = 0 for i = s+ 1, ..., k

else
set A = A− αs and s = s− 1 and go to step 2

end if

CHAPTER 3. THEORETICAL MODEL 38

The objective function is given by 3.11 with ρ = (ρ1, ..., ρk) as the function
variable, and the values βi are fixed to the optimal values as calculated in
3.22.

The constraints are:

k∑
i=1

ρi = 1, ρi ≥ 0, ρi ≤ τi,

and each fi equals:

fi =

{
αiρi
τi
, when τi > ρi,

αi, when τi ≤ ρi for i = 1, ..., k.
(3.23)

The last constraint leads to reducing the domain of fi and thus simplifying
the functions to

fi =
αiρi
αi + βi

for i = 1, ..., k.

Using the optimal values for βi in these functions, we get the following value
of the objective function S = S(ρ):

S(ρ) =
k∑
i=1

αiρi
√
αiρi

k∑
j=1

√
αjρj

(A+B)− αi + αi
=

1

A+B

(
k∑
i=1

√
αiρi

)2

.

The function S is a sum of continuously differentiable functions on the
defined feasibility region. Thus we are dealing with a continuous nonlinear
knapsack problem. However, it is possible to avoid the linear constraint and
then transform the knapsack problem to a nonlinear optimization problem
which is solvable using the simplest derivative approach. Namely, we can
transform the objective function S to depend only on on the first k − 1
values ρi, while the last ρk is fixed to ρk = 1 −

∑k−1
i=1 ρi. Now the objective

function takes one variable less:

S(ρ) =
1

A+B

(
k−1∑
i=1

√
αiρi +

√
αkρk

)2

.

According to the derivative approach, the points that are the potential
solutions (called stationary points) should have the partial derivatives ∂S

∂ρi
equal zero.

The stationary points have the following partial derivatives:

CHAPTER 3. THEORETICAL MODEL 39

∂S
∂ρi

=
1

2(A+B)

(√
αi√
ρi
−
√
αk√
ρk

)
·2 ·

k∑
j=1

√
αjρj.

From the condition ∂S
∂ρi

= 0

⇒
√
αi√
ρi
−
√
αk√
ρk

= 0,

we easily calculate ρi depending on ρk:

ρi =
αi
αk
ρk.

Summing up obtained results in order to satisfy the previously skipped
constraint

∑k
i=1 ρi = 1 gives

ρi =
αi
k∑
j=1

αj

=
αi
A
. (3.24)

3.5.3 Reactive defense — maximization problem 2

In this section, we analyze scenario 3 as described in section 3.2. In the
previous section, we analyzed the possibilities for the defender when the
attacker is agile. In this section we focus on the different case. The attacker
’makes the first move’ and he sends fixed attack traffic. The defender is
agile and tries to adapt its filtering policy for the best defense against that
particular attack. Through analysis of this scenario, we want to find the
optimal reactive defense when under the attack.

The defender, using the filtering policy deplyed on the router, may change
reservations of bandwidth given to different classes so that the effects of
the attack are minimized. In our mathematical model, this corresponds to
knowing normal traffic capacities αi and having measured the total traffic
volumes τi, during the attack, and then finding the optimal reservations ρi.
The function of honest throughput 3.11 is to be maximized in this case.

Theorem 3.5.4. The best reactive DDoS defense when using the cluster-
based filtering is to prioritize the traffic classes. The priorities are given by
the ratio αi

τi
of the previously observed normal traffic to the amount of traffic

observed during the attack. The classes with the highest such values receive
all the requested capacity, or as much capacity as is left, until there is no
more server capacity remaining. The other classes are left without a traffic
reservation.

CHAPTER 3. THEORETICAL MODEL 40

Proof. The following optimization problem models the strategy of the
defender:

max
ρ
S = max

ρ

k∑
i=1

fi.

The objective function is given by 3.11 with ρ = (ρ1, ..., ρk) as the function
variable, and each fi equals:

fi =

{
αiρi
τi
, when τi > ρi,

αi, when τi ≤ ρi for i = 1, ..., k.
(3.25)

The constraints are
k∑
i=1

ρi = 1, ρi ≥ 0, ρi ≤ τi.

The last constraint needs a practical explanation. Having ρi = τi means that
all the traffic coming to the cluster ci gets served. Having ρi > τi would
practically mean wasting server capacity, which is obviously not desirable
under congestion.

Thanks to the explained constraint, the domains of functions fi are re-
duced and they get the simplified form:

fi =
αiρi
τi

for i = 1, ..., k.

The terms αi

τi
may be interpreted as fixed coefficients. We can think of those

coefficients as the cost for the corresponding capacity ρi. Let us denote such
costs by ci. In the end the, objective function becomes

S =
k∑
i=1

ciρi.

Such S is a linear function. Since the constraints are also linear functions, our
optimization task represents a simple case of the continuos linear knapsack
optimization [12]. The solution of such problems is based on the greedy
algorithm and the solution in our case can be intuitively described as follows.
Since, we want to maximize S, we should take the elements of the linear sum
which have the highest cost ci and give them the maximum corresponding
capacity value ρi. We keep choosing the elements in this way until there is
no more capacity left at our disposal. Thus, the last element taken into the
sum might not get the maximum capacity ρi, and there might be elements
left over, that will not be taken into the sum.

First, the simplest, 2-dimensional case is solved bellow since it gives a
good illustration of how the solution is obtained in the k-dimensional case.

CHAPTER 3. THEORETICAL MODEL 41

2-dimensional case

Figure 3.3: Feasibility region and possible boundary solutions (blue dots) in
the 2-dimensional case.

Let the number of clusters k = 2. The feasibility region is the set in which
the solutions of an optimization problem must belong to. Since the sum of
the capacities in our problem equals 1, the solutions of our problem belong
to the line ρ1 + ρ2 = 1. As shown in figure 3.3, the feasibility region in our
case comprises the segment of the line ρ1 + ρ2 = 1 between its intersections
with ρ1 = τ1 and ρ2 = τ2. The solutions are found on some of the boundary
points. In the example we assume α2

τ2
≥ α1

τ1
and the boundary point in which

ρ2 = τ2 (blue), is the solution. In this boundary point, the value of f is
maximum.

Now, depending on the value of τ2, the two possible cases are presented.
In the left figure τ2 ≤ 1 and the (remaining) value assigned to ρ1 is 1− ρ2. It
can be also zero, if no capacity is left after assigning to ρ2, as the right figure
shows.

If the cluster c1 gets to be served, additional subcases arise depending
whether τ1 ≤ 1 − ρ1. If τ1 ≤ 1 − ρ1, the cluster c1 is fully served; otherwise
it is partially served.

Algorithm 2 describes the solution of our optimization problem in general,
the k-dimensional case. The algorithm represents the optimal strategy of the
defender at the time of a DDoS attack.

CHAPTER 3. THEORETICAL MODEL 42

Algorithm 2 Algorithm for the optimal strategy of the defender.

step 0: assign value 0 to RC {A variable which will represent reserved
capacity. }
step 1: sort values ci = αi

τi
in increasing order and put them in a queue.

step 2: remove the maximal value ci from the queue, and assign to the
corresponding ρi the minimum of the following values: 1−RC, τi. Increase
the value RC by the value assigned to ρi.
step 3:
if RC == 0 then

assign value 0 to all the unassigned ρi in the queue and
return 0

else
go to step 2

end if

Chapter 4

Experimental setup and evalua-
tion

4.1 Testbed methodology and requirements

In this chapter, we create an experimental testbed for evaluating the results
obtained in chapter 3. The experiments will be conducted to follow the
scenario and to correspond to the mathematical model presented previously.
Three virtual machines are set up in a virtual network in order to serve
for the router, the server and the user in the scenario, respectively. Using
the real data from a web server at Aalto university, we simulate the normal
traffic, and we generate different types of attack traffic for different attack
scenarios. The clustering algorithm we applied to the web server traffic
records in our experiments is the hierarchical heavy hitters algorithm (HHH),
and we describe it in more detail in section 4.1.1. Using the output from
the clustering algorithm, we create the filters for the Differentiated Services
(DiffServ) environment, particularly using its HTB queuing discipline. The
cluster-based filter is deployed on the router in our experiments. DiffServ is a
quality-of-service (QoS) provisioning environment and, for our task, it is used
for defining the bandwidth management policy and for filtering the traffic
according to the policy. We describe the basic principles of DiffServ, the
HTB queuing discipline, and their concrete application to our requirements
in section 4.1.2.

4.1.1 Hierarchical Heavy Hitters algorithm

In the heavy hitters data mining algorithm, the data are grouped into clusters
based on the frequency of data items having common values on a certain
subset of features. A threshold is defined, and all the feature combinations

43

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 44

having a frequency over the threshold define clusters in the dataset. For
instance, having the client IP address as the only feature in the feature set,
heavy hitters would be defined as all the individual addresses that are found
in the number of packets that is not smaller than the threshold value. Since
the algorithm is based on finding high-frequency features, it is called heavy
hitters.

In data mining traffic datasets, as we explained, we deal with large, some-
times live data streams, and also, as with the example of the IP address, the
features of the data have a hierarchical structure. That is why Cormode at el.
[10], [11] adapted the heavy hitters approach to the traffic data (or any other
type of data having the hierarchical structure in features). The idea behind
the hierarchical heavy hitters (HHH) approach is that when using individual
features, such as single IP addresses, we cannot always define well the heavy
hitters in the dataset. It can happen that there are many users from the
campus subnet who are accessing the web server of the university. Each of
the individual users is not having a number of requests to the server high
enough to account his address for a heavy hitter. But all the campus users
together form a subset of the requests which exceeds the threshold value and
it is obviously useful to consider such a subset as a cluster since it describes
a meaningful structure in the dataset. In such example, as we see, it is useful
to consider the frequency of the IP address feature on the higher level of the
hierarchy, i.e., on the level of subnets.

Our examples focus on the IP address as a feature because that is the
feature we used for clustering our datasets. Examples of other traffic features
that have a hierarchical structure are URLs, protocol types, port numbers
(here the hierarchical structure can be defined in different ways, more or less
artificially chosen according to the needs of the particular clustering).

Without the need, however, to consider multi-dimensional feature spaces,
and thinking only of the IP address feature, we can still realize that the task of
HHH clustering is complex. Namely, at the fine-grained level, the IP address
feature can be considered to have 32 levels of hierarchical structure, each level
being defined by one bit in the 32-bit binary representation of the IP address.
A smaller number of levels inside IP addresses can be defined, for example
4 levels, each corresponding to eight bits. The decision about defining the
granularity of the hierarchy is up to the implementors of HHH, and they
need to decide depending on the specific application of the algorithm. A
more granular hierarchy will enable finding more precise heavy hitters in
the dataset, but it has the disadvantage of making the clustering algorithm
computationally intensive.

For the purpose of clustering the streaming data, different solutions are
proposed in order to make the HHH algorithm less computationally demand-

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 45

ing and faster. In those approaches a common idea is approximating the
quality of the cluster output, with certain error guaranties.

Since the traffic records, in our scenario, are clustered offline, we could
afford high computational requirements as well as the algorithm taking long
time to compute the clusters. For that reason, in our implementation of
HHH, the IP address feature is divided into full 32 levels of hierarchy.

4.1.2 DiffServ environment

DiffServ is a networking architecture for QoS provisioning proposed by the
IETF (Internet Engineering Task Force). The architecture of DiffServ is de-
scribed by the RFC document [4], while other relevant RFC documents de-
scribe PHBs (per hop behaviors), DSCP (differentiated services code point)
in IPv4 and IPv6, framework for Integrated Services operation using DiffServ
environment etc. Kilkki, in his book [26], gives an overview of the RFC doc-
uments related to DiffServ and the applications of DiffServ. DiffServ receives
special attention as nowadays many applications have emerged that require
assurances of provisioning and monitoring of QoS that cannot be provided
by the existing network architecture. DiffSerf is a promising architecture to
support the critical requirements of the new generation applications. Diff-
Serv also enables providing different levels of service according to service level
agreement (SLA) profiles between different domains such as ISPs, companies
and users.

The idea behind the DiffServ is that the differentiation of services should
be based on the essential service features, such as throughput, jitter, delay,
packet loss, relative priority etc. Per-hop behaviors (PHBs) are DiffServ
functional units that make such differentiation possible by classifying packets
into different queues in the routers. The classification is based on the bits
in the differentiated services (DSCP) field or uses some other features of the
traffic for differentiation, which are supported by DiffServ. The architecture
document specifies three types of DiffServ forwarding nodes (corresponding
to the network routers in practice): interior nodes, ingress nodes and egress
nodes. The functions of the nodes are separated according to one of the main
principles of the current Internet — that is keeping the core of the network
simple and scalable, and moving intelligence and computational burden to
the edges of the network. This means that the edge nodes do the tasks
of classification, metering and marking of packets, while the core nodes are
usually only classifying and forwarding or delaying and possibly dropping the
packets according to the DSCP field and the respective PHBs. The DiffServ
architecture fulfills our requirements for a DDoS defense mechanism since it
is simple and complies with the current Internet model.

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 46

A QoS provisioning environment such as DiffServ may be used in our
DDoS defense mechanism thanks to the PHB as means of resource allocation.
DiffServ provides coarse-grained QoS provisioning, and PHB provides the
means of resource allocation to aggregate streams. Thus, we can use PHBs
for the bandwidth allocation to the different classes of traffic (corresponding
to our clusters).

Practical details about the deployment of DiffServ in our testbed exper-
iment are given in section 4.2. The current section continues by describing
different DiffServ queuing disciplines and explains why we decided to use the
HTB discipline.

4.1.2.1 DiffServ queuing disciplines (qdiscs)

The DiffServ forwarding nodes need to implement queues in which the pack-
ets are buffered in order to get delayed and prioritized according to different
PHBs before being transmitted. Thus, a very important part in the imple-
mentation of DiffServ are queuing disciplines (qdiscs). The two main types
of the queuing disciplines are:

(a) classless queueing disciplines,

(b) classful queueing disciplines.

Common examples of classless queuing disciplines are:

• PFIFO (packet limited first in first out)

packets are queued and forwarded in the order that they come in; if
the queue is full as defined by the limit, packets are dropped,

• WFQ (weighted fair queuing)

serve packets according to precomputed time they would take to com-
plete the services under given conditions,

• SFQ (stochastic fairness queuing)

it is intended to provide fair queuing to each of the flows, achieving the
aim by creating many FIFO queues per hashed value per each flow and
distributing the packets in round robin fashion from these queues,

• TBF (token bucket filter)

works on the principle of tokens in a bucket, allowing packets to be sent
by not exceeding the assigned limit; however, when it is needed and if
possible, packets may be sent with short burst excesses in the rate.

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 47

However, the real power of DiffServ comes with the classful queuing dis-
ciplines :

• PQ (priority queuing)

enables filtering traffic according to the DSCP field or other features
of the traffic as supported by the traffic conditioning (tc) filter. The
different classes are given different priority (prioritized class will have
a larger buffer allocated);

• CBQ (class based queuing)

the most complex queuing discipline available; it utilizes exponential
weighted moving average (EWMA) for measuring the idle time of the
link, and according to assigned bandwidth reservations, tries to make
the link idle necessarily long time in order to reduce the real bandwidth
to the configured rate,

• HTB (hierarchical token bucket)

HTB can be seen as a hierarchical CBQ. Additionally, HTB is also a
classful TBF discipline.

It is worth noting that, inside each individual class in a classfull discipline,
we can attach some of the classless queuing disciplines that were defined
previously. HTB is the queuing discipline we use, because it is created to
be a simpler, yet more powerful replacement for CBQ, and it fulfills other
requirements for our DDoS defense mechanism, as described in more detail
in the following section.

4.1.2.2 HTB queuing discipline

HTB defines a hierarchical structure of classes, and by default, each of the
classes contains a PFIFO qdisc attached. When a packet is received, the
HTB qdisc starts from the root class and examines whether it should enqueue
the packet by consulting the filter that is attached to the class. If not, the
classes attached to the root class are examined, and so on recursively. If the
process comes to examining a leaf class and the filter accepts it, the packet is
enqueued there. If no class filter is found to accept the packet, it is possible
that a default class is defined, in which case such packet gets enqueued in
the default class, or otherwise it stays enqueued in the last examined class.
Such rules ensure that each packet gets enqueued into some of the classes.
The DiffServ traffic polycing is depicted in figure 4.1.

HTB has with each of the classes associated the following set of parame-
ters:

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 48

Figure 4.1: Schema representing DiffServ traffic filtering with HTB qdiscs

(i) AR — assured rate; the class should get at least this much bandwidth
when needed,

(ii) CR — ceil rate; this is the maximum bandwidth the class can get
despite the conditions,

(iii) P — priority; each class is assigned a priority number: lower numbers
correspond to higher priority,

(iv) level — level in the hierarchical queuing discipline structure,

(v) Q — quantum; used to decide the rate the classes get in the case of
borrowing, as explained bellow.

According to the requirements of our bandwidth filter, we decide to use
the HTB mode with link sharing, i.e, borrowing in the DiffServ terminology,
between the classes. In such a case, the formula for the bandwidth of a class
c, i.e., its actual rate Rc, becomes:

Rc = min(CRc, ARc +Bc),

where Bc is the borrowed bandwidth that comes from the ancestors classes
and CRc and ARc are the parameters of the HTB class c as defined above.
Direct ancestor (parent) of c is denoted by p, and the set of other descendants
of p that want to borrow from the parent is denoted by Desc(p). Then Bc is
calculated according to the following formula:

Bc =


QcRp∑

ai∈Desc(p)

Qi
if min

ai∈Desc(p)
Pi ≥ Pc,

0 otherwise.

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 49

The formula above implies that the bandwidth will be borrowed only if
all the other descendant classes ai ∈ Desc(p) have higher priority number Pi
compared to priority Pc of class c. Thus the class c needs to have the highest
priority among the descendants. Otherwise the other, higher-priority classes
will be served first. The formula also shows that the parent bandwidth is
divided to the descendants with the same priority, in proportion with the
values Q.

The described HTB behavior in combination with the clustering output
offers a range of possibilities for deploying the DDoS filtering policy. De-
pending on the type of the DDoS defense we want to deploy, we shall assign
different rate, ceil and priority values, to the different classes of traffic cor-
responding to the clusters. In such a way, DiffServ will do the filtering of
DDoS traffic according to our cluster set.

4.2 Testbed setup

Figure 4.2: Virtual scenario for experiments corresponding to 3.2.

According to the scenario presented in section 3.2, we employ three virtual
machines using VirtualBox Version 3.2.8 OSE r64453 on the Ubuntu 10.10
Maverick Meerkat host virtual machine. The host machine is used as the user
(and as the attacker later) in the scenario. For the Linux router we use
Kubuntu 10.10, the Lucid Lynx virtual image with the kernel version 2.6.35-
22-generic. The server image is another Ubuntu 10.10 Maverick Meerkat
machine. The described virtual scenario is presented in figure 4.2.

VirtualBox offers a few different virtual networking modes between the
virtual machines and the host. We connect the router to the host using

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 50

the host-only networking mode, while between the router and the server
the connection is based on the internal networking mode. The host-only
mode enables the router to be connected directly to the host, as well as
to the Internet through a virtual interface created on the host. The internal
networking mode corresponds to the idea of the web server being connected to
the Internet only through the router. The machines on the internal network,
that is the router and the server in our case, can communicate privately,
hiding their traffic from the host system (the users and the attacker) and the
outside world.

The Kubuntu image kernel version 2.6 enabled us to use DiffServ sup-
ported by Linux without the need for kernel recompilation, which was nec-
essary for the versions of kernel prior to 2.4.20. In our case all the necessary
modules were present and enabled, and also the HTB queuing discipline is
present in kernel versions after 2.4. Thus we could just start using DiffServ
after installing the tc command line utility, which is essential for manipu-
lating the DiffServ qdiscs. The tc command is used to create the classes, to
attach qdiscs to them and for defining the filters.

The HTB based DiffServ scripts that we use are created at the same time
when the initial normal traffic records are clustered. The HTB classes are
created to correspond to the different clusters and the parameters of the HTB
class are set according to the amount of traffic in that traffic class.

Since we simulate the real traffic based on the Apache logs, a script is
made to send normal traffic requests from the user machine to the server
machine, with source IP addresses corresponding to the Apache log files.
After testing the available bandwidth rate between the user and the server
in our testbed network, we set the rate in the script to be no more than 40%
of the available bandwidth. As figure 4.2 shows, the link between the server
and the router is limited to 100 kbps (kilo bytes per second), while we send
the normal traffic with the traffic rate not exceeding 40 kbps. For sending the
traffic, the hping3 command is used, particularly invoking it from the TCL
scripts. The hping3 command is invoked with the parameters --faster and
--flood when sending the attack traffic. The parameter --faster instructs
the machine to send 1000 packets per second, while the parameter --flood

is used to send the packets at the highest possible rate by the machine.

4.3 Experiments

In the scenario described in section 3.2, we discussed the the two cases with
focus on the defender strategy:

• In scenario 2, the defender is the less agile party and uses the filtering

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 51

policy as the optimal proactive defense against an adaptive attacker.

• In scenario 3, the defender is more agile and adapts his filtering policy
for improving the DDoS reaction to the particular attack.

In this chapter, we conduct sets of experiments to correspond to the two
scenarios above. First, we apply the HHH algorithm to the chosen normal
traffic datasets. Second, we create the HTB filters corresponding to the
cluster sets output by HHH with different threshold values. Finally, we
simulate attack scenarios in the testbed and record normal traffic rate at the
server. In order to cause a congestion to happen only at the link between the
router and the server during the attack, we make an outbound filter at the
host machine. With the help of this filter we make sure that all the traffic
sent from the host machine, the one corresponding to the user and the one
corresponding to the attacker, are transmitted to the router. In this way,
we model any number of independent connections that might be coming to
the router. In the first set of experiments, we send the attack traffic with
randomly spoofed source IP addresses. In the second set of experiments, we
chose the attack traffic to originate from only a certain number of different
IP addresses.

4.3.1 Applying the HHH algorithm

Figure 4.3: Clusters created by HHH using 5% threshold. Apache log De-
cember 2009.

To simulate the two scenarios in our testbed, we use the real traffic
datasets from a web server at Aalto university network. The data are in
the form of the whole month Apache logs with HTTP requests to the web
server. We chose the log from September 2007 and another log from De-
cember 2009, to serve as the history, i.e., as the normal traffic records. The
HHH algorithm is applied on the HTTP requests from the logs, based on one
hierarchical feature — the source IP address in the requests. Afterwards, the
traffic logs from the months that follow the months chosen for the history,

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 52

October 2007 and January 2010, respectively, are used to generate the nor-
mal traffic stream. The attacks are conducted against those traffic streams,
and we test the filter based on clusters created from the preceding months
in DDoS defense. In this way, we simulate the normal web server function-
ing in our experiments (however, conducting the tests in rather shorter time
compared to real web server functioning).

The HHH algorithm is applied to the chosen datasets using different
threshold values, ranging from 20% to 0.5%. Since the HHH algorithm out-
puts the clusters with similar size, this implies that the number of clusters
output from the traffic was 4-5 with the 20% threshold, and reached 50-100
clusters with the smallest threshold. An example cluster output from clus-
tering the log from December 2009 using the threshold value 20% is shown
in figure 4.3. We see that there are 4 clusters output, including the default
cluster. For each of the clusters, the CIDR (classless inter-domain routing)
number and the number of hits are shown.

4.3.2 Creating HTB filters

Figure 4.4: Clusters created by HHH using 10% threshold. Apache log De-
cember 2009.

Listing 4.1: Example code for creating HTB classes

HTB f i l t e r f o r the c l u s t e r i n g
d e f i n t i o n o f the roo t q d i s c
tc qd i s c add dev eth4 handle 1 : root htb d e f a u l t 10

d e f i n i t i o n o f one roo t c l a s s under the roo t q d i s c
tc c l a s s add dev eth4 parent 1 : c l a s s i d 1 :1
htb ra t e 100 kbps c e i l 100 kbps

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 53

d e f i n i t i o n o f the s u b c l a s s e s under the roo t c l a s s
d e f a u l t c l a s s d e f i n t i o n
tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :10
htb ra t e 1kbps c e i l 100 kbps
another c l a s s
tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :12
htb ra t e 13 kbps c e i l 100 kbps

s e t t i n g the f i l t e r f o r the c l a s s
tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip
u32 match ip s r c 0 . 0 . 0 . 0 / 1 f l ow id 1 :12

The experiments are conducted using different threshold values for the
HHH algorithm. For each different threshold value, we use the data from the
HHH output: the number of clusters and the corresponding traffic amounts,
to create the HTB filters. The number of clusters determines the number
of classes in the HTB filter. The traffic amount is represented by the value
rate in the filter command, and in value ceil we set the total bandwidth
available for that class since borrowing between the classes is allowed. For
the default cluster, there is a default class in HTB exactly suiting for the
purpose. All the traffic that is not classified to other classes will be enqueued
to the default class.

As an example, we show, in listing 4.1, the part of the HTB filter code
corresponding to the clustering with 10% threshold that is shown in figure
4.4. In the example, the root qdisc 1: is defined and the root class 1:1

is attached to this qdisc. Under the root class, we add two subclasses, class
1:10, which is defined to be the default class, and class 1:12, corresponding
to the cluster with CIDR 0.0.0.0/1 shown in figure 4.4.

Since we conducted a number of experiments that follow using the 10%
threshold clustering, we give the code for creating the whole HTB filter ac-
cording to this clustering in appendix A.

4.3.3 DiffServ in proactive DDoS defense: scenario 2

We presented the mathematical analysis for scenario 2 in section 3.5.2. The
results of the analysis show that the best proactive defense is to use the
reservations for traffic, ρi, proportional to the amounts in the traffic classes
that correspond to the clusters in the normal traffic, αi. Thus we found that
we should assign ρi = αi

A
for i = 1, ..., k.

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 54

Attacks without a filter at the router

In the first run, the normal traffic transmission is started with the rate
40kbps, and after 60s, the randomly spoofed attack traffic is generated with
the rate 500kbps. We keep on sending until 1000000 attack traffic packets are
sent, which is approximately 120s from the start of the normal transmission.
The results for the NPSR and the number of normal packets served during
this case can be found in table 4.1.

In the second run, the attack traffic originating from ten distinct source
IP addresses is sent in a similar way. Since the link between the router and
the server is limited to 100kbps, as shown in figure 4.2, the attack traffic rate
recored at the server has the flat ceiling at 100kbps. This case is shown in
figure 4.5(a). The damage to the normal traffic rate, represented by the green
color, is obvious during the attack period. Since there is no filter deployed
at the router, the damage to the normal traffic rate is similar to the previous
case.

Attacks with different filters deployed on the router

In the following round of experiments we instruct the DiffServ on the router
to filter the traffic according to the normal traffic profile. Particularly, the fil-
ters with reservations proportional to the normal traffic classes are deployed.
It is suggested by our mathematical analysis to be the optimal proactive
DDoS defense. That mathematical result is evaluated in this section. HTB
filters are created to correspond to different clustering outputs depending on
the threshold. For each different threshold, we repeat the experiment after
deploying the corresponding filter. An improvement is noticeable after de-
ploying filters with the smallest number of classes, corresponding to the 20%
threshold clustering.

We run the randomly spoofed attack traffic first. The results for all the
different clusterings that we tested are summarized in table 4.1. The increase
in NPSR during the attack period is significant. It reaches 89.9% with 1%
threshold clustering in the experiment with Apache log from October 2007.
We give graphs showing the normal traffic rate recorded at the server for this
case in appendix B.

We run the experiment for the second time with the attack traffic orig-
inating from ten distinct source IP addresses. The traffic rate recorded at
the server when the HTB filter created according to the 10% clustering is
deployed is given in figure 4.5(b). The increase in the normal traffic rate is
visible. However, high peaks and sudden drops in the rate are appearing dur-
ing the attack, and we explain that by the relatively small number of classes

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 55

(a) First run: no filter is deployed at the router

(b) Second run: Optimal HTB filter for proactive defense corresponding
to 10% clustering is deployed at the router

(c) Third run: Optimal HTB filter for proactive defense corresponding
to 1% clustering is deployed at the router

Figure 4.5: Scenario 2: The traffic output at the server when the normal
traffic is generated from the Apache log from January 2010 and the attack
traffic originates from ten different source IP addresses. The black line rep-
resents the attack traffic rate. Normal traffic rate is represented by the green
bars area.

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 56

Apache log January 2009 Apache log October 2007
threshold in % # of packets NPSR # of packets NPSR

no filter 4689 12.8 5895 15.1
20 6141 16.8 15740 40.4
10 11978 32.78 17711 45.4
5 17189 47.0 21204 54.4
1 23244 63.6 35035 89.9

Table 4.1: Increase in normal packet survival ratio using different clusterings.
Randomly spoofed attack traffic is sent.

most of them being on the low level in HHH hierarchical output. This we
could see in figure 4.4 above. Particularly, lower IP mask number means that
the class includes a larger range of different IP addresses. That practically
means that the attack traffic has a higher probability to match the filter of
some of those classes. Thus, it is expected that a filter with a lower threshold,
which implies the higher number of clusters, will provide a better protection
for the normal traffic. We show the result when the experiment is repeated
with the HTB filter corresponding to 1% threshold clustering in figure 4.5(c)
which confirms our expectation.

4.3.4 DiffServ in reactive DDoS defense: scenario 3

In this section we describe the experiments related to the optimal strategy
of the defender in the case when the attacker strategy is fixed. Mathemat-
ical analysis of this scenario and the results presented in section 3.5.3 are
experimentally evaluated in this section.

For the purpose of this experiment, we divide the Apache logs from Jan-
uary 2010 and October 2007, used to generate the normal traffic stream,
both into three approximately equal subsets. During the division, we follow
the timeline of the requests in the log so that the traffic from the first subset
would correspond to the earlier period of the month compared to the traffic
in the second subset.

We use the first subset from an Apache log in the first phase of our
experiment to generate the normal traffic stream. In this experiment, we
are sending the attack traffic from the start of the normal transmission.
Assuming that the router detects the attack and decides to deploy a filter
as a reaction, in the second phase, when we send the traffic stream from
the second subset, the HTB filter is being deployed on the server. Attack
conditions remain the same, but we expect improvement due to the filter,
as the previously conducted experiments in section 4.3.3 confirmed. More

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 57

importantly for this experiment, the filter deployed during the second phase
is used for detecting the changes in the traffic amounts in the different classes
created by the attack. By applying the algorithm 2 described in section 3.5.3,
the HTB filter on the router is adapted and the new HTB filter is created
for the third phase. Thus the second phase can be considered as a learning
phase for the defender before optimally adapting to the attacker strategy. In
the third phase the new HTB filter is deployed on the router and the data
from the third subset are used for generating the normal stream. We expect
additional improvement since the defender strategy is now adapted to the
particular attacker strategy.

We run the experiment with randomly spoofed attack traffic first. The
traffic rate recorded during each of the three phases described above is given
in a separate figure. In the two last figures, when the HTB filters are used,
they are created according to the 10% threshold clustering.

The HTB filter intended for the best proactive defense (first phase) is
adapted for the best reactive defense against the particular attack profile
(second phase). Adapting the filter is done according to algorithm 2 pre-
sented in section 3.5.2. In that case, some of the classes are left without the
capacity. In the particular case, the 10-class initial HTB filter is transformed
to a new HTB filter having only 5 classes. This gives an example when a
filter with fewer classes is better in DDoS protection compared to the filter
having twice as many classes (still, only in the particular attack case). In
appendix A we provide the code of the adapted HTB filter.

We similarly run the three experiment phases while sending the attack
traffic from ten fixed IP address sources. The results from this set of experi-
ments are summarized in table 4.2. Also, we give graphs with normal traffic
rate recorded during such an experiment corresponding to Apache log from
October 2007 in appendix B.

Apache log January 2009 Apache log October 2007
threshold = 10 % # of packets NPSR # of packets NPSR

1st phase 17029 34.32 12576 25.57
2nd phase 35510 71.55 43412 88.36
3rd phase 36114 72.77 47698 97.08

Table 4.2: Increase in normal packet survival ratio during the three exper-
iment phases. The HBT filters are created from the 10% HHH clustering.
Attack traffic from ten fixed IP address sources is sent.

CHAPTER 4. EXPERIMENTAL SETUP AND EVALUATION 58

(a) First phase: no filter is deployed at the router.

(b) Second phase: Optimal HTB filter for proactive de-
fense is deployed at the router.

(c) Third phase: HTB filter is adapted to this particular
attack distribution according to algorithm 2.

Figure 4.6: The traffic output at the server when normal traffic is generated
from the three subsets of Apache log from January 2010 and attack traffic is
randomly spoofed. The black line represents the attack traffic rate. Normal
traffic rate served during the attack is represented by the green bars area.
The green line is added for the relative estimate and shows the traffic rate
recored during normal traffic conditions.

Chapter 5

Discussion

Our research goals are stated in section 1.2. In section 5.1 we discuss our
results on those goals. In particular, theoretical results about the effective-
ness of the cluster-based filtering in DDoS defense are discussed in chapter
3 and in chapter 4 the experimental evaluation of those theoretical results is
presented. In this chapter, we provide a discussion on the theoretical results
in section 5.2 and a discussion on the experimental results in section 5.3.

5.1 Research results

In this section we discuss the results on our previously stated research goals.

(i) For which types of DDoS defense the cluster-based filtering method can
be employed?

In chapter 2, we present a number of solutions in academic literature in
which the cluster-based filtering method is employed for the different
roles in DDoS defense. The role depends on the location of the cluster-
based filter in the network and we identified solutions that use the traffic
clustering method for DDoS detection, prevention or reaction. Our
study focuses on the scenario when the cluster-based filter is deployed
at the target network. In such a scenario, the cluster-based filtering
takes the roles in proactive and reactive target bandwidth-management
defense.

(ii) What is the filtering policy when cluster-based method is used for proac-
tive DDoS defense with a fixed strategy?

We resolve this research goal in section 3.5.2. Proactive defense is a
technique of a less agile defender expecting a more adaptive attacker.

59

CHAPTER 5. DISCUSSION 60

In such a case, the defender should deploy a filter with reservations to
the traffic classes corresponding and proportional in sizes to the classes
found by clustering the normal traffic.

(iii) What is the filtering policy when cluster-based method is used for a
reactive defense with a fast-adapting strategy?

This research question is resolved in section 3.5.3. The defender us-
ing reactive defense is more agile and he adapts his existing filtering
policy to serve optimally against the particular attack. For the filter
adaptation the defender should apply algorithm 2.

(iv) How effective is cluster-based filtering in DDoS proactive or reactive
defense?

The two research results above are found in the game-theoretic model.
We experimentally evaluate the effectiveness of the theoretical results
as described in chapter 4. The experimental results show the increase
in NPSR from 72% to 97% when proactive defense is used.

(v) What is the most effective attack strategy when the defender is using a
fixed cluster-based filtering policy?

Optimal attacker strategy when the defender is using a fixed cluster-
based filtering policy is analyzed in section 3.5.1. For the optimal at-
tack, the attacker should create his strategy according to algorithm 1.

(vi) Can existing quality-of-service (QoS) capabilities in standard operating
systems and routers be used to implement the cluster-based filtering for
DDoS defense?

The experiments presented in chapter 4 are conducted using DiffServ
embedded in a standard Linux kernel. The cluster-based filter is imple-
mented using DiffServ HTB queuing discipline. Thus, the filter imple-
mentation is very efficient and suitable for live data streams filtering. A
significant increase in the number of served non-attack requests resolves
this research question positively.

5.2 Discussion on the theoretical results

Talking in the terms of game theory, we analyzed the cases when one of the
parties in the DDoS scenario ‘makes the first move’. This means that either
the defender or the attacker is clearly more agile than the other and can
adapt his strategy to the slowly-changing strategy of the other party. This

CHAPTER 5. DISCUSSION 61

corresponds to standard game-theoretic models. Quite different modeling
techniques would be needed if both parties were equally adaptive or if they
competed on the speed of the adaptation.

The quality of the DDoS defense in our analysis is measured by the
amount of the normal traffic served during the attack, or NPSR. That is
one limitation of our study, since we have not considered traffic flows neither
the different requirements that some types of flows might demand. Namely,
as described by Mirkovic et al. [41] the DDoS defense quality is not only mea-
sured by the NPSR or similar quantitative measures of traffic, but different
requirements for different protocols and applications should be considered.
Such protocol and application-specific requirements are obviously not covered
by abstract mathematical model like the one in this thesis.

In section 3.5.1, we found how the attacker, having the amount of traffic
B at his disposal, should distribute the DDoS traffic into the classes in the
cluster-based filter so that his attack is most successful. If the given value B
is not high enough, the attacker should attack some clusters, while if he can
increase B to the sufficient level, then he achieves the goal of attacking and
disrupting all the normal traffic classes.

In the analysis described above, the attacker is assumed to have full in-
formation about the defender. In reality such an assumption is not a simple
goal for the attacker. The attacker might reason about the normal traffic
profile, for example, about the regular visitors accessing a web site. But it
is questionable how accurately he can create a picture of such a profile. Ad-
ditionally, the attacker also needs to find out about the particular filtering
policy the defender is using. One possible mean for the attacker is to use
probing of different traffic classes in order to detect reservations assigned to
them. If the defender is using a clustering algorithm such that it is difficult
for the attacker to guess the output classes, then the attacker’s goal becomes
additionally complex.

In the end, even while knowing the normal profile, it might not be easy
for the attacker to ‘choose’ which type of attack traffic he can send. The
DDoS attacker might be restricted in the scope of source IP addresses or
other features of traffic for conducting the attack. Such attacker capabilities
depend on the available attack tools and the location in Internet and size
of the botnets he controls. Also, the effectiveness of the clustering defense
against such an attack depends on the traffic clustering algorithm and on the
traffic features that the algorithm uses. If the algorithm finds cluster features
that are specific to the normal traffic and difficult to imitate by the attacker,
then the attacker cannot conduct the optimal attack and the impact of the
attack will be less serious. This highlights the importance of the quality of
the clustering algorithm.

CHAPTER 5. DISCUSSION 62

Since the capabilities of DDoS attacker to adapt the attack traffic are not
well known, we can keep on reasoning from the defender side about it in two
directions. If we assume that it is equally possible for the attacker to adapt
his traffic to different normal traffic classes, then the best cluster reservations
for the defender should have approximately equal size. In this way, no large
traffic class can be easily damaged by the attacker — he needs to adapt his
traffic to many different clusters. The HHH algorithm is a good clustering
choice if this is the case since it outputs approximately equal traffic amounts
in each cluster class.

On the other hand, if the attacker is better able to adapt his traffic to
the certain classes, then the analysis becomes more complex. In that case,
the defender could use the knowledge about the attacker to adapt the cluster
reservations accordingly, or even his choice of the clustering algorithm could
be influenced by that knowledge. However, the analysis in this case would
require data about real DDoS attacks or a set of experiments conducted in
order to find about the real capabilities of DDoS attackers.

The results of the optimization task solved in section 3.5.2 show that the
best proactive defense strategy against the more agile attacker is to initially
reserve traffic amounts proportional to the normal traffic cluster sizes. This
strategy does not depend upon the attacker strategy. However, it is easy
to observe that using such a filtering policy, the proportion of the honest
traffic served under the best attack in each of the classes is equal to α

α+β
.

This means that the same total amount of the normal traffic A
A+B

is served
as when there was no traffic filtering policy deployed. The conclusion is that
under perfectly adapted attack traffic, a fixed cluster-based filter does not
have any effect in DDoS reaction. However, we point out again that it is not
clear how well the attacker is able to adapt his traffic, especially in the case of
a good clustering algorithm based on a feature space with many dimensions.

In section 3.5.3, algorithm 2 gives the best reactive strategy for the de-
fender, who uses the clustering-based filter when under the attack. However,
the algorithm does not give any guarantees on the amount of honest traffic
served. It just finds the adapted defense strategy which is optimal under the
current attack. The same limitation of the clustering technique applies in this
case as previously: if the attack traffic perfectly imitates the normal traffic,
i.e., if the values βi are proportional to the values αi, then the clustering
technique does not give any benefit compared to using no clusters. However,
in the other attack cases, as the experiments show, the cluster-based filters
can significantly increase the NPSR.

CHAPTER 5. DISCUSSION 63

5.3 Discussion on the experimental results

The traffic clustering can be done offline, by clustering the offline traffic
records as in our experiments, or it can be done online. In the second case,
the normal traffic profile is created by clustering a live data stream and
such a clustering is more demanding in computational resources and time.
At hight speed links, it is often necessary to sample the traffic stream in
order to apply the online clustering. However, the filtering method that we
implemented works with both of the described clustering types, and itself is
a lightweight process that can filter live data streams.

In this thesis, we have picked one algorithm, the hierarchical heavy hitters
(HHH), from the literature and do not compare it with other clusterings.
We conducted the tests with the HHH clustering based only on one traffic
feature, the client IP address. If the clustering was based on more features,
for instance port numbers, it can be expected that the results in the DDoS
defense would be be improved.

Figure 5.1: Classes inside the normal traffic that is served under randomly
spoofed attack. The filter created by HHH using 10% threshold. The black
line shows the total normal traffic rate. The default class is represented by
the blue bars. Class with CIDR 130.233.192.0/22 is represented by the green
line. Apache log January 2009.

Our results of preserving the normal traffic packets during DDoS attack
using DiffServ show promising results. Using the largest number of clusters,
with 1% threshold clustering, we obtain the highest NPSR. With such clus-
tering, the NPSR corresponding to the Apache log files from January 2010
and from October 2009, respectively, equals 63% and 89% in the first sce-
nario and, 72% and 97% in the second scenario. Without the filter the NPSR
rates were between 12% and 35%. We analyze how the significant increase
in NPSR is achieved. According to the filtering policy, the dropped traffic

CHAPTER 5. DISCUSSION 64

mostly belongs to the default class, since that is the class in which the most
of the attack packets are queued. That means, the normal traffic belonging
to the default class is the most damaged, as shown in figure 5.1. However,
the normal traffic belonging to the other classes is well preserved, as can be
seen from the same figure for the class with CIDR 130.233.192.0/22.

The normal requests that are classified in the default cluster correspond
mostly to the ’random’ users, i.e., those who visit the web server for the first
time or rarely. Thus, it can be considered a good policy that those users get
lower priority, compared the ’common’ users of the web server.

Our virtual testbed was deployed on one machine using virtual machines.
Thus we did not test the DDoS scenario in a real network environment and
did not obtain accurate quantitative performance results. However, the ef-
fectiveness of the filtering was tested.

Because of the limitations of the DiffServ traffic classification in our
testbed conditions, it was not possible to test the filters based on cluster
set with more than 100 clusters. In reality, however, with high-bandwidth
links it would make sense to have a larger number of clusters. Our assump-
tion is that the tests with filters based on clusterings with smaller threshold
than 0.1% could give valuable insight about the best number of clusters, as
we will discuss in section 6.1.

The normal traffic was generated with source IP addresses based on the
real traffic logs, but at a fixed rate which is many times higher than in real
scenarios. Two types of synthetic attack traffic were generated: randomly
spoofed attack traffic and the attack traffic having a certain number of fixed
sources. It might be relevant to test different traffic distributions in future
experiments.

Although in our testbed environment many real parameters are omitted
or could not be tested, the results suggest possibilities of using the exist-
ing DiffServ implementation embedded in standalone routers and also in the
Linux kernel for cluster-based filtering in DDoS prevention. Thus, our exper-
iments can be taken as a starting point for implementing the cluster-based
filtering for real network services.

Chapter 6

Conclusions

Cluster-based traffic filtering as a DDoS defense technique has received atten-
tion in the academia since the first such approaches were described a decade
ago. However, after surveying the literature and readings on different solu-
tions that involve clustering of network traffic in DDoS defense, we did not
find a general analysis on the method. Developing such an analysis is the
main contribution of this thesis.

We focus on solutions that use unsupervised learning to cluster normal
traffic and create filters for DDoS prevention or reaction based on the clusters.
Particularly, we chose a scenario in which the cluster-based filter is deployed
at the target or at a router near the target. In such a scenario, the cluster-
based filter can serve as a proactive or reactive DDoS defense.

The central part of our study involves creating a game-theoretic model
for cluster-based filtering in the described scenario. The generality of the
model makes our analysis applicable in different DDoS defense scenarios.
Optimal filtering policies are modeled for the defense in the cases when the
attacker is adaptive or when he uses a fixed strategy. Also, the best attack
strategy is evaluated when the defender is using a fixed cluster-based filter.
Our theoretical results give insight into the applicability of filters based on
traffic clusters to DDoS defense. The only case when the method does not
provide any benefit is when the attack traffic perfectly imitates the normal
traffic distribution. However, such attacker capability is unlikely in reality,
for example, for the IP address distribution.

In the second part of this thesis, we developed a testbed in order to
experimentally evaluate the cluster-based filtering. We applied the HHH
algorithm to model normal traffic as set of clusters and implemented the
cluster-based filter using a standard quality-of-service architecture, DiffServ.
Particularly, we conducted experiments to evaluate our theoretical model.
The experiments confirm the theoretical results. Additionally, the experi-

65

CHAPTER 6. CONCLUSIONS 66

mental results suggest high effectiveness of cluster-based filtering, with NPSR
reaching above 97% with the most fine-grained clusterings.

The results suggest that the cluster-based filtering can be applied for
practical DDoS defense. In particular, a rather simple approach such as
Diffserv would be useful in DDoS defense for a small web server because
it would not require a large investment in hardware or software. Also, in
cooperation with ISPs, this method could protect against bandwidth-band
DDoS attacks on the ISP links for the specific domain.

6.1 Future work

As a first step in the future work, we plan to conduct the similar experiments
in a real network with DiffServ filter implementation at a real router. Such
experiments would provide accurate quantitative performance results. As a
second step, generating and testing additional attack traffic profiles would
provide more confidence about the quality of the DDoS defense results.

We used one traffic feature to cluster the traffic with the HHH algorithm.
Applying the HHH algorithm to a multi-dimensional feature space is one
direction for future experiments. Namely, the more features the clustering is
based on, the more difficult it becomes for the attacker to adapt his traffic
to the normal traffic classes.

One of the improvements for the future implementation of the DiffServ
cluster-based filters would be to test attaching other queuing disciplines to
the HTB classes. In the HTB filter implementation, we used the default
PFIFO queuing discipline. For instance, SFQ scheduling discipline is a
promising method for improving traffic throughput per flow, which could lead
to qualitatively better DDoS defense, following the suggestion by Mirkovic
et al. [41].

Another possible step in our future work is to develop a model for com-
peting strategies of the attacker and defender. Such model would cover the
cases when both of the parties are adapting the strategies simultaneously.

As explained in chapter 4, we did not test HBT filters based on clustering
with threshold smaller than 1%. In the future we plan to test filters based
on clusterings with smaller threshold since they could give a valuable insight
into the optimal number of clusters. This idea is based on the possibility of
over-learning by the clustering algorithm. Namely, in our results, the filters
based on a smaller threshold clusterings are better. Our assumption is that
bellow a certain threshold value, the clusterings would not give better results
anymore. Such a threshold value would correspond to the optimal number
of clusters for the particular traffic dataset.

Bibliography

[1] Agrawal, R., and Srikant, R. Fast algorithms for mining associ-
ation rules in large databases. In Proceedings of the 20th International
Conference on Very Large Data Bases (San Francisco, CA, USA, 1994),
VLDB ’94, Morgan Kaufmann Publishers Inc., pp. 487–499.

[2] Anderson, T., Roscoe, T., and Wetherall, D. Preventing inter-
net denial-of-service with capabilities. SIGCOMM Comput. Commun.
Rev. 34 (January 2004), 39–44.

[3] Bezdek, J. C. Fuzzy Mathematics in Pattern Classification. PhD
thesis, Applied Math. Center, Cornell University, Ithaca, 1973.

[4] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and
Weiss, W. RFC 2475: An architecture for differentiated services, Dec.
1998. Status: PROPOSED STANDARD.

[5] Bretthauer, K. M., and Shetty, B. The nonlinear resource allo-
cation problem. Operations Research 43, 4 (1995), 670–683.

[6] Bretthauer, K. M., and Shetty, B. The nonlinear knapsack prob-
lem - algorithms and applications. European Journal of Operational
Research 138, 3 (May 2002), 459–472.

[7] Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W.,
and Freeman, D. Readings in knowledge acquisition and learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993,
ch. AutoClass: a Bayesian classification system, pp. 431–441.

[8] Cheeseman, P., and Stutz, J. Advances in knowledge discovery
and data mining. American Association for Artificial Intelligence, Menlo
Park, CA, USA, 1996, ch. Bayesian classification (AutoClass): theory
and results, pp. 153–180.

67

BIBLIOGRAPHY 68

[9] Cooke, E., Jahanian, F., and Mcpherson, D. The zombie
roundup: Understanding, detecting, and disrupting botnets. pp. 39–
44.

[10] Cormode, G., Korn, F., Muthukrishnan, S., and Srivastava,
D. Finding hierarchical heavy hitters in streaming data. ACM Trans.
Knowl. Discov. Data 1 (February 2008), 2:1–2:48.

[11] Cormode, G., and Muthukrishnan, S. Diamond in the rough:
Finding hierarchical heavy hitters in multi-dimensional data. In In Pro-
ceedings of the 23rd ACM SIGMOD International Conference on Man-
agement of Data (2004), ACM Press, pp. 155–166.

[12] Dantzig, G. Linear programming and extensions. Rand Corporation
Research Study. Princeton Univ. Press, Princeton, NJ, 1963.

[13] Dobbins, R., and Morales, C. Worldwide infrastructure security re-
port. Tech. rep., Arbor Networks, Corporate Headquarters, Chelmsford,
Massachusetts, USA, 2010.

[14] Erman, J., Arlitt, M., and Mahanti, A. Traffic classification us-
ing clustering algorithms. In Proceedings of the 2006 SIGCOMM work-
shop on Mining network data (New York, NY, USA, 2006), MineNet
’06, ACM, pp. 281–286.

[15] Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo,
S. A geometric framework for unsupervised anomaly detection: De-
tecting intrusions in unlabeled data. In Applications of Data Mining in
Computer Security (2002), Kluwer.

[16] Ester, M., peter Kriegel, H., S, J., and Xu, X. A density-based
algorithm for discovering clusters in large spatial databases with noise.
AAAI Press, pp. 226–231.

[17] Ferguson, P., and Senie, D. Network ingress filtering: Defeating
denial of service attacks which employ IP source address spoofing, 2000.

[18] Garber, L. Denial-of-service attacks rip the internet. Computer 33
(April 2000), 12–17.

[19] Gu, Y., McCallum, A., and Towsley, D. Detecting anomalies in
network traffic using maximum entropy estimation. In Proceedings of the
5th ACM SIGCOMM conference on Internet Measurement (Berkeley,
CA, USA, 2005), IMC ’05, USENIX Association, pp. 32–32.

BIBLIOGRAPHY 69

[20] Gupta, J., and Misra. Distributed Denial of Service prevention tech-
niques. International Journal of Computer and Electrical Engineering 2
(April 2010), 268–276.

[21] Hastie, T., and Tibshirani, R. Discriminant adaptive nearest neigh-
bor classification. IEEE Trans. Pattern Anal. Mach. Intell. 18 (June
1996), 607–616.

[22] Hijazi, A., Inoue, H., Matrawy, A., van Oorschot, P., and
Somayaji, A. Discovering packet structure through lightweight hier-
archical clustering. In Communications, 2008. ICC ’08. IEEE Interna-
tional Conference on (may 2008), pp. 33 –39.

[23] Hijazi, A., Inoue, H., Matrawy, A., van Oorschot, P., and
Somayaji, A. Lightweight hierarchical clustering of network packets
using (p, n)-grams. Tech. rep., Technical Report TR-09-03, School of
Computer Science, Carleton University, 2009.

[24] Holland, J. H. Adaptation in natural and artificial systems. MIT
Press, Cambridge, MA, USA, 1992.

[25] Keromytis, A. D., Misra, V., and Rubenstein, D. SOS: secure
overlay services. In Proceedings of the 2002 ACM SIGCOMM Conference
on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM ’02) (New York, NY, USA, 2002),
ACM Press, pp. 61–72.

[26] Kilkki, K. Differentiated Services for the Internet. Macmillan Pub-
lishing Co., Inc., Indianapolis, IN, USA, 1999.

[27] Kullback, S. Information Theory and Statistics. Wiley, New York,
1959.

[28] Kullback, S., and Leibler, R. A. On information and sufficiency.
Annals of Mathematical Statistics 22 (1951), 49–86.

[29] Lakhina, A., Crovella, M., and Diot, C. Mining anomalies using
traffic feature distributions. In In ACM SIGCOMM (2005), pp. 217–
228.

[30] Lee, K., Kim, J., Kwon, K. H., Han, Y., and Kim, S. DDoS
attack detection method using cluster analysis. Expert Syst. Appl. 34
(April 2008), 1659–1665.

BIBLIOGRAPHY 70

[31] Li, J., Mirkovic, J., Wang, M., Reiher, P., and Zhang, L.
Save: source address validity enforcement protocol. In INFOCOM 2002.
Twenty-First Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE (June 2002), vol. 3, pp. 1557
– 1566.

[32] Li, M., Li, M., and Jiang, X. DDoS attacks detection model and its
application. W. Trans. on Comp. 7 (August 2008), 1159–1168.

[33] Li, M., and Zhao, W. Reliably identifying traffic abnormality un-
der DDOS flood attacks in differentiated services environment based on
traffic constraint, 2007.

[34] Lin, C.-H., Liu, J.-C., Huang, H.-C., and Yang, T.-C. Using
adaptive bandwidth allocation approach to defend DDoS attacks. In
Proceedings of the 2008 International Conference on Multimedia and
Ubiquitous Engineering (Washington, DC, USA, 2008), IEEE Computer
Society, pp. 176–181.

[35] Macqueen, J. B. Some methods of classification and analysis of mul-
tivariate observations. In Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability (1967), pp. 281–297.

[36] Masud, M. M., Gao, J., Khan, L., Han, J., and Thuraising-
ham, B. Peer to peer botnet detection for cyber-security: a data mining
approach. In Proceedings of the 4th annual workshop on Cyber security
and information intelligence research: developing strategies to meet the
cyber security and information intelligence challenges ahead (New York,
NY, USA, 2008), CSIIRW ’08, ACM, pp. 39:1–39:2.

[37] Matrawy, A., van Oorschot, P., and Somayaji, A. Mitigating
network denial-of-service through diversity-based traffic management. In
Applied Cryptography and Network Security, J. Ioannidis, A. Keromytis,
and M. Yung, Eds., vol. 3531 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2005, pp. 443–471.

[38] Mcgregor, A., Hall, M., Lorier, P., and Brunskill, J. Flow
clustering using machine learning techniques. In In PAM (2004),
pp. 205–214.

[39] Microsoft corporation:. Taking Down Botnets: Microsoft and the
Rustock Botnet, May 2011.

[40] Microsoft corporation:. The official Microsoft blog, May 2011.

BIBLIOGRAPHY 71

[41] Mirkovic, J., Hussain, A., Fahmy, S., Reiher, P., and Thomas,
R. K. Accurately measuring denial of service in simulation and testbed
experiments. IEEE Trans. Dependable Secur. Comput. 6 (April 2009),
81–95.

[42] Muhai, L., and Ming, L. An adaptive approach for defending against
DDoS attacks. Mathematical Problems in Engineering 2010 (2010).

[43] Oldmeadow, J., Ravinutala, S., and Leckie, C. Adaptive clus-
tering for network intrusion detection. In PAKDD (2004), pp. 255–259.

[44] Park, K., and Lee, H. On the effectiveness of route-based packet
filtering for distributed DoS attack prevention in power-law internets.
In In Proc. ACM SIGCOMM (2001), pp. 15–26.

[45] Peng, T., Leckie, C., and Ramamohanarao, K. Protection from
distributed denial of service attacks using history-based IP filtering.
In Communications, 2003. ICC ’03. IEEE International Conference on
(may 2003), vol. 1, pp. 482 – 486 vol.1.

[46] Peng, T., Leckie, C., and Ramamohanarao, K. Survey of
network-based defense mechanisms countering the DoS and DDoS prob-
lems. ACM COMP. SURV 39, 1 (2007).

[47] Simon, F. L., and Rubin, S. H. Distributed denial of service attacks,
2000.

[48] Snoeren, A. C., Partridge, C., Sanchez, L. A., Jones, C. E.,
Tchakountio, F., Kent, S. T., and Strayer, W. T. Hash-based
IP traceback. SIGCOMM Comput. Commun. Rev. 31 (August 2001),
3–14.

[49] Snoeren, A. C., Partridge, C., Sanchez, L. A., Jones, C. E.,
Tchakountio, F., Kent, S. T., and Strayer, W. T. Hash-based
IP traceback. In Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications
(New York, NY, USA, 2001), SIGCOMM ’01, ACM, pp. 3–14.

[50] Stoecklin, M. Anomaly detection by finding feature distribution out-
liers. In Proceedings of the 2006 ACM CoNEXT conference (New York,
NY, USA, 2006), CoNEXT ’06, ACM, pp. 32:1–32:2.

[51] Su, M.-Y. Real-time anomaly detection systems for denial-of-service
attacks by weighted k-nearest-neighbor classifiers. Expert Syst. Appl. 38
(April 2011), 3492–3498.

BIBLIOGRAPHY 72

[52] Wang, S., Xuan, D., Bettati, R., and Zhao, W. Providing ab-
solute differentiated services for real-time applications in static-priority
scheduling networks. IEEE/ACM Trans. Netw. 12 (April 2004), 326–
339.

[53] Zhong, R., and Yue, G. DDoS detection system based on data min-
ing. In Proceedings of the Second International Symposium on Network-
ing and Network Security (ISNNS 2010) (Jinggangshan, P. R. China,
April 2010), pp. 062–065.

Appendix A

First appendix

Listing A.1: Example code: creating proactive HTB filter according to 10%
clustering

HTB f i l t e r f o r the 10 pc t c l u s t e r i n g
tc qd i s c add dev eth4 handle 1 : root htb d e f a u l t 10

tc c l a s s add dev eth4 parent 1 : c l a s s i d 1 :1
htb ra t e 100 kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :10
htb ra t e 1kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :12
htb ra t e 13 kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :13
htb ra t e 10 kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :14
htb ra t e 10 kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :15
htb ra t e 13 kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :16
htb ra t e 11 kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :17

73

APPENDIX A. FIRST APPENDIX 74

htb ra t e 15 kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :18
htb ra t e 12 kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :19
htb ra t e 10 kbps c e i l 100 kbps

tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip
u32 match ip s r c 130 . 233 . 192 . 0/22 f l ow id 1 :19

tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip
u32 match ip s r c 6 4 . 0 . 0 . 0 / 6 f l ow id 1 :17

tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip
u32 match ip s r c 8 0 . 0 . 0 . 0 / 6 f l ow id 1 :18

tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip
u32 match ip s r c 8 8 . 0 . 0 . 0 / 5 f l ow id 1 :16

tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip
u32 match ip s r c 6 4 . 0 . 0 . 0 / 3 f l ow id 1 :13

tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip
u32 match ip s r c 1 2 8 . 0 . 0 . 0 / 3 f l ow id 1 :14

tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip
u32 match ip s r c 1 9 2 . 0 . 0 . 0 / 3 f l ow id 1 :15

tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip
u32 match ip s r c 0 . 0 . 0 . 0 / 1 f l ow id 1 :12

Listing A.2: Example code: the HTB filter above is adapted to a random
attack in order to serve as the best reactive DDoS defense for such attack.
label

HTB f i l t e r f o r the 10 pc t c l u s t e r i n g
adapted to the random attack .

tc qd i s c add dev eth4 handle 1 : root htb d e f a u l t 10

APPENDIX A. FIRST APPENDIX 75

tc c l a s s add dev eth4 parent 1 : c l a s s i d 1 :1
htb ra t e 100 kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :13
htb ra t e 35 kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :16
htb ra t e 27 kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :17
htb ra t e 18 kbps c e i l 100 kbps

tc c l a s s add dev eth4 parent 1 :1 c l a s s i d 1 :18
htb ra t e 20 kbps c e i l 100 kbps

tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip u32
match ip s r c 6 4 . 0 . 0 . 0 / 6 f l ow id 1 :17

tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip u32
match ip s r c 8 0 . 0 . 0 . 0 / 6 f l ow id 1 :18

tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip u32
match ip s r c 8 8 . 0 . 0 . 0 / 5 f l ow id 1 :16

tc f i l t e r add dev eth4 parent 1 : p r i o 1 p ro to co l ip u32
match ip s r c 6 4 . 0 . 0 . 0 / 3 f l ow id 1 :13

tc f i l t e r add dev eth4 parent 1 : p r i o 7 p ro to co l ip u32
match ip s r c 0 . 0 . 0 . 0 / 0 f l ow id 1 :10

Appendix B

Second appendix

(a) First run: no filter is deployed at the router

(b) Second run: Optimal HTB filter for proac-
tive defense corresponding to 10% clustering is
deployed at the router

(c) Third run: Optimal HTB filter for proac-
tive defense corresponding to 1% clustering is
deployed at the router

Figure B.1: The traffic output at the server when the normal traffic is gen-
erated from the Apache log from January 2010 and the attack traffic is ran-
domly spoofed.

76

APPENDIX B. SECOND APPENDIX 77

(a) First phase: no filter is deployed at the
router.

(b) Second phase: Optimal HTB filter for
proactive defense is deployed at the router.

(c) Third phase: HTB filter is adapted to this
particular attack distribution according to algo-
rithm 2.

Figure B.2: The traffic output at the server when the normal traffic is gener-
ated from the three subsets of Apache log from October 2007. Attack traffic
is generated to originate from ten fixed IP addresses.

	Cover page
	Contents
	Abbreviations and Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Research goals
	1.3 Thesis outline

	2 Background and related work
	2.1 DDoS attacks
	2.2 DDoS defense types
	2.2.1 DDoS detection mechanisms
	2.2.2 DDoS source identification techniques
	2.2.3 DDoS prevention and reaction mechanisms

	2.3 Traffic clustering in DDoS defense
	2.3.1 Clustering algorithms for network traffic
	2.3.2 Traffic clustering as a DDoS detection technique
	2.3.3 Traffic clustering in the role of DDoS prevention and reaction

	2.4 DiffServ in DDoS defense

	3 Theoretical model
	3.1 Terminology
	3.2 Scenario
	3.3 Problem classification and preliminaries
	3.3.1 The multiplier search method for the continuous convex nonlinear knapsack problem

	3.4 Mathematical model
	3.4.1 Mathematical notation

	3.5 Analysis of the mathematical model
	3.5.1 Attacker strategy — minimization problem
	3.5.2 Proactive defense — maximization problem 1
	3.5.3 Reactive defense — maximization problem 2

	4 Experimental setup and evaluation
	4.1 Testbed methodology and requirements
	4.1.1 Hierarchical Heavy Hitters algorithm
	4.1.2 DiffServ environment
	4.1.2.1 DiffServ queuing disciplines (qdiscs)
	4.1.2.2 HTB queuing discipline

	4.2 Testbed setup
	4.3 Experiments
	4.3.1 Applying the HHH algorithm
	4.3.2 Creating HTB filters
	4.3.3 DiffServ in proactive DDoS defense: scenario 2
	4.3.4 DiffServ in reactive DDoS defense: scenario 3

	5 Discussion
	5.1 Research results
	5.2 Discussion on the theoretical results
	5.3 Discussion on the experimental results

	6 Conclusions
	6.1 Future work

	A First appendix
	B Second appendix

