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Homogenization principles and effect of mixing on

dielectric behavior

Ari Sihvola

Aalto University School of Electrical Engineering

Department of Radio Science and Engineering

Box 13000, FI–00076 AALTO, Finland

Abstract

This paper consists of two parts. First, a review of classical mixing principles
lists the multitude of the various ways to characterize the effective permittivity
of heterogeneous materials. Different connections between the various mixing
formulas are underlined and the homogenization principles are classified into
families of mixing rules. The second part emphasizes and analyzes the richness
of the manner how the mixing process is able to create new types of dielectric
behaviors, in particular with respect to enhancement of dielectric polarization,
shifts of the dispersion parameters, and emergence of new effects in electrical
response.

Keywords: mixing formulas, homogenization, polarizability, Maxwell
Garnett, Bruggeman, dispersion models, percolation, emergence

1. Introduction

It is conceptually and practically easy to compute the density of a given
sample of heterogenous medium: it is the volume average of the densities of the
components that constitute the medium. However, not all intensive physical
properties are as straighforward to homogenize as mass density. The calcu-
lation of the effective “electrical density”, in other words the permittivity of
heterogeneities, is an example of such a case.

Needless to say, knowledge of the effective electrical properties of materi-
als are needed in a myriad of fields and applications. The understanding of
wave interaction with natural materials is essential in remote sensing of the
environment requiring the effective description of geophysical media like snow,
ice, precipitation, vegetation, etc. In biological and living matter the multiscale
messiness of structural heterogeneities cause significant challenges for under-
standing the electromagnetic field behavior. And of course in metamaterials
research, the effective characterization of a composite formed by complex, res-
onating, and interacting elements may succeed only after substantial simplifying
assumptions.
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Homogenization theories for dielectric properties have a long history. Pio-
neering works on this topic appeared already in the 19th century authored by
people like Mossotti, Clausius, L.V. Lorenz, H.A. Lorentz, and Lord Rayleigh.
Brosseau [1] has depicted the history of homogenization principles as a play
with five scenes. The first one is the J.C. Maxwell Garnett formula to predict
the macroscopic permittivity of a two-phase mixture. The next step came along
with D.A.G. Bruggeman who developed an “effective medium approximation”
for the homogenization problem. After the analysis and theories of bounding
principles by Beran, Hashin, Shtrikman, and Bergman, the fourth stage was the
understanding of the phenomenon of percolation. Finally, the advent of compu-
tational electromagnetics with powerful computers and efficient numerical codes
opened unforeseen views for the dielectric homogenization research effort.

To this picture one could add another phase in the path towards better
understanding of heterogeneities, which we are presently experiencing. The
recent progress in homogenization principles has been particularly boosted in
connection of materials with complicated responses. Starting in the late 1980’s,
much electromagnetics research focused on chiral and bianisotropic materials.
In that connection, the homogenization principles needed to be generalized to
account for anisotropic and magnetoelectric couplings. The developments in the
present century in materials research have expanded this line of studies to such
an extent that it is not unfair to talk about a new electromagnetics paradigm:
metamaterials research.

The history of effective material properties in the context of electromagnetics
has been told from several perspectives. The homogenization problem is indeed
a classical problem in statistical physics [2]. References [1, 3, 4, 5, 6, 7] pro-
vide more detailed information about the history and past achievements about
electromagnetic homogenization.

The inherent limitation of the macroscopic, coarse-grained description of the
medium is that the inhomogeneity scale is much smaller than the wavelength
of the operating field. The mixing rules are often based on static field solutions
for the structure. Hence, once the operating frequency increases sufficiently, the
validity of the result is lost. It is not easy to give an exact upper frequency limit
for effective permittivity of the sample because the exact response of a randomly
heterogeneous medium is beyond analysis. However, the following estimate is
often used: the size of an inclusion in the mixture must not exceed a tenth of
the wavelength in the effective medium. However, this very crude estimate is
popular among people working with positive-permittivity, isotropic, and low-loss
materials for which the effective permittivity does not display very surprising
effects. Consequently, in the homogenization business of metamaterials, one
may need to require much stricter limitations in terms of allowed ratio between
the inclusion size and the wavelength, even down to one over a hundred [8, 9].

This presentation reviews most important dielectric homogenization princi-
ples and their generalizations. There is no single solution for the effective char-
acterization of materials with random structure and the question arises about
the capability of a given mixing formula to explain the macroscopic properties
of a given sample. However, it is astonishing that often very simple-looking mix-
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ing rules work well. It is also extremely interesting that these mixing principles
may predict very unexpected behavior types for the composite which very often
correspond to real physical phenomena. These will be introduced and analyzed
in the present paper.

2. Classical mixing formulas

Mixing rules enumerate the effective permittivity εeff (or any other macro-
scopic material parameter) of a mixture, or of a heterogeneous medium that
consists of medium components that are dielectrically different from each other.
Let us start with two-phase mixtures, one of which forms the background (en-
vironment), and the other one is embedded as a guest, forming the inclusions
phase. Let the dielectric relative permittivity of the host material be εe, and
that of the guest εi. The volume fraction of the inclusions is denoted by p. Then
the fractional volume occupied by the host is 1 − p. The treated mixtures are
three-dimensional unless otherwise stated.

In the following, the permittivities are relative, in other words dimensionless
quantities. This is to avoid keeping the free-space permittivity ε0 along in the
results. Furthermore, the time-harmonic convention exp(jωt) is followed which
leads to negative imaginary part of the permittivity for dissipative media. This
makes the definition εeff = ε′eff − jε′′eff convenient.

Maxwell Garnett formula

The prediction for the effective permittivity εeff according to the Maxwell
Garnett formula is [10]

εeff = εe + 3pεe
εi − εe

εi + 2εe − p(εi − εe)
(1)

for this mixture under consideration.
If the roles of the host and guest are reversed in the Maxwell Garnett formula,

we arrive at the so-called inverse Maxwell Garnett rule, which consequently
reads

εeff = εi + 3(1− p)εi
εe − εi

εe + 2εi − (1− p)(εe − εi)
(2)

Predictions for a two-phase mixture effective permittivity may differ quite strongly
depending on whether the Maxwell Garnett or its inverse is applied, especially
if the permittivity contrast is strong between the two phases. This is natural
due to the very different morphology of the two structures: the environment
forms a continuous phase whereas the inclusions are separated islands. In terms
of connectivity, the two scenarios are labeled 0–3 and 3–0 composites.

Bruggeman formula

According to the Bruggeman (symmetric) mixing rule [11], the effective per-
mittivity follows the relation

(1 − p)
εe − εeff
εe + 2εeff

+ p
εi − εeff
εi + 2εeff

= 0 (3)
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The essence of the Bruggeman formalism is the equality between the two phases
in the mixture. There is neither host nor guest. An interpretation of (3) is that
the homogenized medium itself is the background against which polarizations
are measured. Then it also follows that no “inverse Bruggeman formula” exists:
the mixture and its complement (which emerges through the transformation
εi → εe, εe → εi, p → 1− p) lead the the same equation. Hence the connectiv-
ity character of the Bruggeman model is fundamentally different from Maxwell
Garnett. Both components form a three-dimensional continuum and the con-
nectivity is rather of 3–3 type as opposed to the raisin-pudding (0–3) or the
Swiss cheese (3–0) composites.

Coherent potential formula

One further formula which is relevant in the theoretical studies of wave
propagation in random media is the so-called Coherent potential formula [12].
It can be written in the form

εeff = εe + f(εi − εe)
3εeff

3εeff + (1− f)(εi − εe)
(4)

A family of mixing rules has been presented in [13] which contains all the previ-
ous aspects of dielectric mixing rule. For the case of isotropic spherical inclusions
εi in the isotropic environment εe, the formula looks like

εeff − εe
εeff + 2εe + ν(εeff − εe)

= p
εi − εe

εi + 2εe + ν(εeff − εe)
(5)

and includes a dimensionless parameter ν. For different choices of ν, the various
mixing rules are recovered: ν = 0 gives the Maxwell Garnett rule, ν = 2 gives
the Bruggeman formula, and ν = 3 gives the Coherent potential approximation.

Multiphase mixtures

The previous mixing rules can be rather straightforwardly generalized into
multiphase mixtures. For example, in a mixture where only the environment is
of 3-dimensionally continuous connectivity and N other phases are as spherical
inclusions, the Maxwell Garnett formula attains the form

εeff − εe
εeff + 2εe

=

N
∑

n=1

pn
εi,n − εe
εi,n + 2εe

(6)

where pn is the volume fraction of the inclusions of the nth phase in the mixture,
and εi,n is its permittivity.

Shape effects of inclusions

The spherical shape for the inclusions is symmetric, simple, and natural.
By numerical efforts, this assumption can be relaxed, but it turns out that
simple analytical solutions can be found also for the electrostatic problem with
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ellipsoidal geometries. An ellipsoid allows two more degrees of freedom over
sphere, and contains practical special cases, like discs and needles.

The important parameters in the geometry of an ellipsoid are its depolariza-
tion factors. If the semi-axes of an ellipsoid in the three orthogonal directions
are ax, ay, and az, the depolarization factor Nx (the factor in the x-direction)
is [3]

Nx =
axayaz

2

∞
∫

0

ds

(s+ a2x)
√

(s+ a2x)(s+ a2y)(s+ a2z)
(7)

For the other depolarization factor Ny (Nz), interchange ay and ax (az and ax)
in the above integral. The three depolarization factors for any ellipsoid satisfy

Nx +Ny +Nz = 1 (8)

A sphere has three equal depolarization factors of 1/3. The other two special
cases are a disc (depolarization factors 1, 0, 0), and a needle with circular cross
section (0, 1/2, 1/2). For ellipsoids of revolution, prolate and oblate ellipsoids,
closed-form expressions for the integral (7) can be found in [14].

The normalized polarizability of a homogeneous dielectric sphere with per-
mittivity ε in free space reads α = 3(ε − 1)/(ε + 2). For the ellipsoid the
polarizability depends on the direction of the field excitation:

αj =
ε− 1

1 +Nj(ε− 1)
, i = x, y, z (9)

Furthermore, the mixture with aligned ellipsoids of permittivity εi are embedded
in the environment εe is anisotropic with different permittivity components
along the principal directions. The Maxwell Garnett formula for this mixture is

εeff,x = εe + pεe
εi − εe

εe + (1− p)Nx(εi − εe)
(10)

with the respective relations for εeff,y and εeff,z. For a random mixture, the
effective permittivity is isotropic as the three polarization components have to
be averaged [3]. For further analysis about the effects of ellipsoidal shapes, see
[15, 16].

The result (10) is particularly instructive because it not only describes the
aligned ellipsoid mixture but it also opens up the Maxwell Garnett model into
other spatial dimensions. For example, a cylinder with circular cross section is a
two-dimensional sphere for electric field perpendicular to the cylinder axis. Since
the depolarization factor for this case is Nx = Ny = 1/2 (and the axis-directed
factor is Nz = 0), we have the two-dimensional Maxwell Garnett mixing rule
from (10)

εeff = εe + 2pεe
εi − εe

εi + εe − p(εi − εe)
(11)

and the one-dimensional case (Nz = 1) reads accordingly

εeff = εe + pεe
εi − εe

pεe + (1− p)εi
=

εiεe
pεe + (1− p)εi

(12)
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which can be recognized as the effective permittivity of a planar layered struc-
ture for polarization perpendicular to the plane.

The world of two-dimensional mixtures is extremely fascinating and would
deserve a chapter of its own, especially due to the fact that there exist many
fundamental principles—like, for example, the Keller theorem [17]—that do not
have any equivalents in three dimension.

Further mixing models

A widely used class of mixing models in remote sensing applications is the
“power-law” approximations:

εaeff = pεai + (1− p)εae (13)

As examples, in the Birchak formula [18] the parameter is a = 1/2, which means
that the volume-weighted square roots of the component permittivities add up
to the square root of the effective permittivity. Another known formula is the
Looyenga formula [19] for which a = 1/3.

Sometimes the simple avarage is used:

εeff = pεi + (1− p)εe (14)

which corresponds to a = 1 in (13). This mixing rule is the exact static solu-
tion for a planar mixture with no depolarization (in other words, for the same
mixture as in (12) but the field is polarized parallel to the planes). Since the
depolarization factor is Nx = 0, formula (14) can be recovered from (10).

In geophysical sensing, also other one-third power formulas have been used
[20]:

εi − εeff
εi − εe

= (1 − p)

(

εeff
εe

)1/3

(15)

and its dual model:
εeff − εe
εi − εe

= p

(

εeff
εi

)1/3

(16)

For more discussion on various mixing models, see [3, Chapter 9].

3. Physical phenomena explained by mixing formulas

The previous chapter showed that there are indeed a large number of mixing
models for use in different application domains. Obviously, these formulas are
very simple in appearance due to the fact that only dipolar interaction effects
were accounted for. Higher-order multipolar and spatial dispersion effects were
left out that play an important role for inclusion-rich mixtures. Nevertheless, it
is true that many of these rules are surprisingly accurate in predicting the true
effective permittivity for a given application.

In this chapter, the focus is on how the mixing process can radically create
new type of responses that are displayed by the composite but not present in
the constituent materials. This type of emergent behavior is typically affiliated
with metamaterials [21].
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Figure 1: The Hashin–Shtrikman bounds in the complex plane for a mixture of air and lossy
medium ε = 6 − j · 3 (the area between solid lines), and for the mixture of air and lossy
plasmonic medium ε = −6 − j · 3 (dashed lines.) The Bruggeman prediction falls within
the bounds in both cases (thin lines). Note the parametric display style of the curves. The
curves in the complex εeff plane start from air (εe = +1 + j · 0) and end in the lossy medium
(εi = ±6− j · 3).

3.1. Bounds and polarization enhancement

Homogenization literature contains theoretical studies on limits for the effec-
tive permittivity of a given random sample. For example, the Hashin–Shtrikman
bounds [22] apply for statistically homogeneous and isotropic mixtures. Indeed,
the bounds are exactly the Maxwell Garnett (1) and inverse Maxwell Garnett
(2) formulas!

For positive permittivity, low-loss materials, these limits may be quite strict.
However, for lossy media, or even negative-permittivity media, a very wide range
of allowed effective permittivities falls between these limits. This is illustrated
in Figure 1, where the dramatic difference of the “ordinary” lossy mixture (εi =
+6− j · 3 with εe = 1) and a lossy but plasmonic mixture (εi = −6− j · 3 with
εe = 1) can be observed. For the first case, the Hashin–Shtrikman limits are
very close to one another, whereas the effective permittivity of the plasmonic
mixture has much more freedom. For example, the allowed region is rather
“high” in the vertical direction, which means that a plasmonic composite can
be made much more lossy than either of its components. The figure also contains
the Bruggeman prediction (3) which in both cases lies in its entirety within the
allowed region.

In addition to negative-permittivity mixtures, another striking example about
loosening of the effective permittivity bounds is the case of mixtures with high
dielectric losses. In that case, the counterintuitive behavior that happens in
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Figure 2: The predictions of the Maxwell Garnett (solid blue) and Bruggeman (dashed red)
predictions for fair-loss (εi = 2− j ·2, left-hand side panel) and high-loss (εi = 2− j ·100, right-
hand side panel) mixtures. For high-loss mixtures, the model predictions differ strongly. Both
predict polarization enhancement but at different mixing ratios and of different magnitudes.
In both cases, the host medium is assumed to be free space (εe = 1).

terms of the magnitude of polarization in the effective medium has been pointed
out [23]. Even if it sounds very reasonable that the permittivity of the mixture
of two materials with different permittivities would have a value somewhere
between these two permittivities, this is not the case for lossy mixtures.

Figure 2 shows the macroscopic permittivity (the real part ε′eff) of a sim-
ple mixture where lossy spherical inclusions (with real part of the permittivity
ε′i = 2) are embedded in lossless background (εe = 1). Maxwell Garnett and
Bruggeman mixing formulas are applied.

If the losses are sufficiently small (left panel of the figure), both predictions
are reasonably similar functions of the volume fraction of the lossy phase. The
real part of the effective permittivity increases smoothly from the value 1 to
2. On the other hand, when the losses become large (right panel), the real
part may attain values much higher than those of either of the components.
This phenomenon is observed for both mixing rules, however, according to the
Maxwell Garnett model this enhancement is greatly stronger than in case of
the Bruggeman prediction. Also, the maxima take place for different volume
fractions.

In [24], a quantitative treatment of this phenomemon can be found. The
enhancement effect requires large enough losses. The threshold for Maxwell
Garnett is the following for a mixture where the inclusion phase εi is lossy
(ε′i > 1) and the environment εe lossless, here assumed unity (εe = 1): when
the imaginary part ε′′i increases beyond the value

ε′′lim =
√

(ε′i − 1)(ε′i + 2) (17)

a maximum appears (in other words ε′eff > ε′i). This happens at the volume
fraction

fmax =
|εi − 1||εi + 2|2 − 3ε′′i |εi + 2|

|εi − 1| (|εi|2 + ε′i − 2)
(18)

where the modulus of a complex number a = a′ − ja′′ is |a| =
√
a′2 + a′′2.
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For this volume fraction of the inclusion phase with permittivity εi, the real
part of the effective permittivity is

ε′eff,max =
|εi − 1||εi + 2| − ε′′i

2ε′′i
(19)

If the imaginary part of the inclusion phase is increased, the real part ε′eff grows
to a value approaching ε′′i /2.

3.2. Change of dispersion characteristics in the homogenized mixture

Through the mixing rules, the dielectric dispersion of the homogenized mix-
ture is a nonlinear function of the dispersive properties of the constituent mate-
rials. Dispersion may change character in the mixing process. An apt metaphor
is that the macroscopic permittivity is like a child that inherits the proper-
ties of its parents (from the two component materials composing the mixture).
It is true that the properties of the child are functions of those of the earlier
generation. But children also rebel against parents and new effects emerge [25].

One example of this phenomenon is a mixture where noble metal inclusions
are embedded into a dispersionless dielectric matrix. This composite obeys a
different dispersion law than either of the constituents [3]. Metal is a Drude
medium with a given plasma frequency. But the composite becomes a Lorentz-
dispersive mixture which is characterized by a resonance frequency. It is insu-
lator at low frequencies due to the non-connectivity of the metal inclusions is
this raisin-pudding type mixture.

Another striking example of engineered dispersion is the mixing with Debye-
type materials. Debye materials (like water) have a relaxation-type dispersion

εDebye = ε∞ +
εs − ε∞
1 + jωτ

(20)

with the static εs and high-frequency ε∞ permittivities and the relaxation time
τ .

The mixing process affects the relaxation characteristics as can be seen from
the example in Figure 3. There the imaginary part of the permittivity ε′′ is
displayed as function of frequency ω for bulk medium and mixtures. A water-
like Debye medium has high losses at the relaxation frequency ωrel. Also shown
are air–Debye mixtures for the case when 10% of the volume is occupied by the
liquid phase. The Debye parameters are taken to be those of water at room
temperature. The frequency is normalized to the relaxation frequency of bulk
liquid, which is around 17GHz at room temperature for water.

The loss character depends on the model. For the raisin-pudding mixture
(water droplet is air), the losses are smallest and they are shifted to high fre-
quencies, and for the complementary case of air bubbles (water as host, air as
guest, Swiss cheese) the imaginary part of the permittivity is higher but at the
same frequency as the bulk water. The Bruggeman rule gives results between
the two Maxwell Garnett models.
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Figure 3: The imaginary part of the permittivity of water-like Debye material over a wide
frequency range (solid blue line), and also for the mixture where such material occupies 10%
of the volume in air (εe = 1). The mixture is modeled by three approaches: raisin-pudding
Maxwell Garnett (droplets in air; long-dashed red line); Swiss-cheese Maxwell Garnett (air
bubbles in water; short-dashed yellow); and symmetric Bruggeman (dotted green line).

A third example of a phenomenon how mixing changes the dispersive law is
the so-called Maxwell–Wagner effect [26]. This happens in particular in connec-
tion with thin layers and membranes that separate lossy domains, for example
cells that contain saline liquids, and is often also called interfacial polarization
effect.

However, this phenomenon does not require membranes or insulating layers.
Again, a simple application of Maxwell Garnett formula reveals the dramatic
change of dispersion: Assuming spherical inclusions with complex permittivity
ε′i − jσ/(ωε0) embedded in insulating matrix εe with volume fraction p, the
effective permittivity can be shown to follow a Debye-type dispersion with pa-
rameters

εs = εe + εe
3p

1− p
(21)

ε∞ = εe + 3p
ε′i − εe

ε′i + 2εe − p(ε′i − εe)
(22)

τ =
ε′i + 2εe − p(ε′i − εe)

(1− p)σ/ε0
(23)

Note that unlike in the first example of Drude-type inclusions where the result
was a Lorentzian composite, now the metallic conductivity of the inclusions
leads to a relaxation-type dispersion.

3.3. Red and blueshifts

The geometry and shape of the inclusions in the mixture have also a strong
effect on the spectral behavior of the composite. Indeed, the changes can be
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seen also in the response of a single inclusion. The polarizability of an ellipsoid
(9) is dependent on the depolarization factor but also very nonlinearly on the
frequency dependence of the permittivity. Hence changing the shape of the
inclusion, plasmonic resonances shift.

Figures 4 and 5 display the effect of the geometry of the nanoparticle on the
plasmonic resonance. There the polarizability of a silver nanosphere is shown
as function of wavelength. The Drude model fitted [27] to experimental data is
used

εSilver(λ) = ε∞ − (λ/λp)
2

1− jλ/λd
(24)

where ε∞ = 5.5, λp = 130 nm, and λd = 30µm. This is a fairly good model for
the permittivity of silver in the range 320 nm < λ < 700 nm.

Three shapes are studied: a sphere, a prolate spheroid (needle-like) with axis
ratio 2:1, and an oblate spheroid (disk-like) with axis ratio 1:2. The polariz-
abilities are shown for field excitation along the axis of revolution. It is clearly
seen that the plasmonic resonance is red-shifted is the particle is elongated in
the field direction, and blue-shifted in the contrary case.

340 360 380 400 420 440
Λ @nmD

-100

-50

50

100

Α
¢

Figure 4: The real part of the polarizability of silver spheres and ellipsoids in air as function
of wavelength. Solid blue: sphere; long-dashed red: prolate ellipsoid with axis ratio 2:1
(depolarization factor in the axis direction N = 0.1736); short-dashed green: oblate ellipsoid
with axis ratio 1:2 (depolarization factor N = 0.5272).

3.4. Percolation

In the narrative by Brosseau [1], the fourth stage in the homogenization
developments was centered on the phenomenon of percolation. Percolation is a
multidisciplinary concept [28, 29]. It is not surprising that percolation appears
in different mixing rules in different ways. Coarsely speaking, percolation means
that at a certain small change of the structure of the composite, a very abrupt
change occurs in the macroscopic behavior. The effective medium may behave

11



320 340 360 380 400 420 440
Λ @nmD

0.1

1

10

100

Α
¢¢

Figure 5: As in Figure 4, for the imaginary part of the polarizability.

totally differently depending on which side of the percolation threshold its state
is.

An instructive way of appreciating the connection of mixing rules with per-
colation is to analyze the general mixing rule (5) that contains the parameter
ν. The percolation phenomenon requires very highly contrasting dielectric per-
mittivities in the mixture. Let the dielectric contrast ǫi/ǫe in become large in
(5). Then equation is approximately

εeff − εe
εeff + 2εe + ν(εeff − εe)

= p (25)

From this εeff reads

εeff = εe
1 + (2− ν)p

1− (1 + ν)p
(26)

However, this result breaks down when the denominator reaches the value zero.
It is interesting to connect this value for the volume fraction as the percolation
threshold point pc

p = pc =
1

1 + ν
(27)

The threshold depends on ν, in other words on the type of the mixing rule.
The threshold varies between pc = 1 (Maxwell Garnett) and pc = 0 (ν = ∞).
For example, for the Bruggeman formula (ν = 2), this gives the percolation
threshold 0.333 which has been known in the composite materials research for
decades. Percolating mixtures, especially in terms of their conductivity, have
been analyzed in more detail by McLachlan [30].
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Figure 6: Effective permittivity (ε′
eff

: solid line; ε′′
eff

: dashed line) of Drude spheres in air
with volume fraction p = 0.4. All other models predict a frequency band with nonzero losses
except the Maxwell Garnett formula ν = 0.

3.5. Emergent loss

The various mixing formulas in the family (5) have the common character
that for low inclusion loading, they give fairly similar effective permittivity
predictions. The linear term in the Taylor expansion (around p = 0) is the same
independently of ν. However, when p increases, the predictions start to differ
for high-contrast mixtures. This discrepancy becomes extreme when plasmonic
mixtures are analyzed.

For the case that the inclusion and the background permittivities have dif-
ferent signs, the Maxwell Garnett prediction is that for a particular volume
fraction, the effective permittivity grows without limit (in the lossless case). On
the other hand, the Bruggeman formula predicts, instead of a singularity, a re-
gion where the effective permittivity is complex [31, 32]. In other words, despite
real-values elements, the homogenized continuum becomes complex. This type
of non-dissipative damping sounds very counter-intuitive.

Let us take a parametric look at how the emergence of the imaginary part
into the effective permittivity depends on the type of the mixing formula. For
simplicity, let us treat a mixture where lossless Drude-type spheres (εi = 1 −
(ωp/ω)

2) occupy a volume fraction p = 0.4 in air (εe = 1). Varying the ν
parameter in (5) we capture different mixing rules (Maxwell Garnett for ν = 0,
Bruggeman for ν = 2, and Coherent Potential for ν = 3.) The results are
displayed in Figure 6.

An interesting phenomenon can be gathered from the figure. All models ex-
cept Maxwell Garnett predict that there is a frequency band where εeff becomes
complex. This band broadens with increasing ν. In this sense the singularity
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in the Maxwell Garnett prediction can be seen as a zero-limit loss band when
ν → 0.

Figure 6 raises also the following question: if mixing rules that are so closely
related as these four predict qualitatively different results, how can one trust
mixing formulas when they are applied in new territories? Part of the answer is
that since the morphologies of all mixtures with a given fractional volume parti-
tion are different from each other, they may in particular material combinations
behave very differently. Maxwell Garnett has been proven to be surprisingly
suited for ordered simple-cubic mixtures, even in the plasmonic case [31]. This
is the case in particular for low plasmonic inclusion loadings, for higher concen-
trations, Maxwell Garnett formula has been generalized to account for higher
order corrections.

On the other hand, the range of applicability of the Bruggeman rule falls
more into the case of random mixing of spheres that may touch each other and
even form clusters. This has been shown in the positive permittivity settings
[33]. Touching spheres involve geometric constellations with singular points, and
it is known that such special geometries lead to situations where a real-valued
negative-permittivity inclusion attains a complex polarizability [34, 35, 36].

The emergence of losses from purely real component materials has to be
approached in the realistic setting: in practice, losses are inevitable in the com-
ponent materials. Then the paradox translates into an enhancement possibility:
with extremely small losses to begin with, considerable macroscopic losses can
be generated [37]. The relative increase of the loss factor can therefore, by a
clever mixing process, be designed to be arbitrarily large.

4. Conclusion

To paraphrase David Bergman [2], the question of permittivity of a compos-
ite is a classical problem in physics. The history of dielectric homogenization
studies is long and rich, and there is no shortage of mixing principles and di-
electric effective medium models to be applied in the various fields of science,
technology, biology, or medicine, where the complexity of the medium geome-
try and structure has to be compressed into a fewer number of coarse-grained
quantities. It has been one of the messages of the present paper that despite
the formal simplicity of the mixing formulas, their validity and predictive power
is fairly strong in several relevant application situations. Furthermore, the ap-
plicability of these formulas carries over to other branches of physics, like for
modeling of heterogeneous magnetic materials.

Particular attention was paid in the present paper to the qualitatively strong
effects that the mixing process may bring forth in the frequency dispersion in
the composite. The conducting, relaxation-type, or plasmonic character of the
electric response of constituent materials may transform into significantly differ-
ent type of effective spectral behavior. Conspicuous examples of such an effect
were the shift of the relaxation frequency of Debye-type materials from the bulk
into the particular state, the appearance of the resonance character of mixtures
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with Drude-type isolated inclusions, and the mixing of lossy particles into di-
electric matrix which resulted in Maxwell–Wagner type of dispersion typical in
biological matter.

It is the obligation of the electromagnetics research community to develop
ambitious and mathematically solid first-principles homogenization theories that
lead to rigorous effective medium principles. The message of the present paper is
that, on the other hand, very often deep insight about the essential macroscopic
behavior of real-world materials may be accrued from mixing principles that are
based on rather intuitive approaches to the electrophysics of the homogenization
problem.
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