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Thermodynamics of a multicomponent-atom sample in a tightly compressed atom trap
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We use classical statistical mechanics and thermodynamics to describe the response of a trapped multi-
species atomic sample to a local deformation in the confining potential. An adiabatic deformation may not only
increase the peak phase-space density, but also lower the temperature and spin-polarize the atoms.
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The manipulation of atoms in microscopic potential wells
is the technology presently regarded as the most likely foun-
dation for practical applications of atom optics and Bose-
Einstein condensation(BEC) [1,2]. Well-localized magnetic
[2–4] or electric [5,6] fields above the surface of a solid
substrate have been successfully used to control the motion
of microscopic atom samples[2,5] and to essentially sim-
plify the creation of BEC[2,7,8].

In regard to BEC, phase-space density is the key param-
eter. It cannot be increased by scaling the trapping potential
[9,10], but may be substantially adjusted by adiabatically
deforming the trap[10–13]. This is also the case in evapora-
tive cooling, where the trap is deformed in order to release
atoms with a high kinetic energy. A similar increase of the
phase space density is achieved by adding a tight potential to
a wide trap. This method together with subsequent evapora-
tion has been used to reach Bose-Einstein condensation of
cesium[14] and, very recently, to create a two-dimensional
BEC of cesium directly in a surface trap[15].

Phase space compression by a local change in the trap-
ping potential has been studied theoretically for a single
atomic species[11]. However, a given trap may carry more
than one species, each of which may respond differently to
the deformation. The present paper is based on our realiza-
tion that allowing transitions between the Zeeman states of
the atoms in conjunction with adjustments of the shape of an
atom trap adds flexibility to the preparation of an atomic
sample in a microtrap that could be part of an “atom chip”
[1]. Such a chip could contain not only magnetic microtraps,
but also static electric or all-optical traps. If, for instance, the
chip substrate is made of material which is transparent to
light, a gravito-optical surface trap[16–18] could serve as a
container of cold atoms and as a trap to be modified locally.

In the present paper we use classical statistical mechanics
and thermodynamics to investigate in general the properties
of a multicomponent atom sample in a trap with locally de-
formed potential, allowing for both thermal and chemical
equilibration. We demonstrate how an adiabatically driven
deformation may decrease the temperature, increase the
phase-space density of atoms in a particular magnetic state,

and spin-polarize atoms in an initially spin-independent atom
trap.

Even though our method works for an arbitrary 3D atom
trap, for illustration we consider a model for a surface trap so
simple that the ensuing numerics can be handled with unso-
phisticatedMATHEMATICA programs. Thus, the atoms are
bound to a potential of the formUsxd+ULsyd+Uhszd, where
x,y, andz are Cartesian coordinates. The dependence onz is
assumed to be harmonic,Uhszd=mw0

2z2/2, with m being the
atomic mass andw0 the trapping frequency in the direction
perpendicular to the surface. In thex and y directions the
atoms are confined to a slab of lengthl and widthL. We set
ULsyd;0, andUsxd is a step function with the valueL added
to a constant background in an interval ofx of length hl,
with h,1. Overall, the potential inside the slab reads as
Utsx,y,zd=mw0

2z2/2+Usxd. Figure 1 shows the trap bound-
aries and the potentialUtsx,y,zd in a planesx,zd at a fixed
value of y. Simplistic as the model is, we believe that it
produces qualitatively correct results for the generic case
when a potential is modified by an amountL in a fractionh
of the trap volume.

We start by considering an ensemble of identical, but, in
the sense of classical physics, distinguishable particles in the
potential described above. As customary in kinetic theory for
dilute gases, we ignore the effect of the interactions on the
equilibrium. ForN particles the canonical partition function
is

ZN =
1

N!
S 1

s2p"d3 E d3r d3p e−H/kBTDN

, s1d

wherekB is Boltzmann’s constant,T is the absolute tempera-
ture, andH=p2/2m+Ut is the one-particle Hamiltonian.
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FIG. 1. (a) The trap boundaries in thex andy directions.(b) The
trapping potential,Utsx,y,zd, in a planesx,zd at a fixedy from the
interval 0,y,L. In the sketch,L is negative.
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Helmholtz free energyF=−kBT ln ZN is found to be

F = NkBT1ln3 rsTd

E
0

l

sdx/lde−Usxd/kBT4 − 12 , s2d

where

rsTd =
2p"3w0N

kB
2T2mlL

s3d

is the usual phase space density at the bottom of the confin-
ing potential in the absence of the deformation, and

nsTd =Î m

2pkBT

w0N

lL
s4d

is the corresponding density. The final −1 in Eq.(2) origi-
nates from the Stirling expansion as in lnN! = N ln N−N.
The entropyS=−]F /]T is

S= NkB13 − ln3 rsTd

E
0

l

sdx/lde−Usxd/kBT4 +
kUxl
kBT 2 , s5d

wherekUxl is the thermal expectation value of the potential
Usxd. The chemical potential is found asm=]F /]N. For the
stepwise shape ofUsxd, we derive the following analytical
expressions for one-particle dimensionless entropys
=S/NkB, mean energy per particle expressed in units of tem-
peraturee=sF+TSd /NkB, and chemical potentialj=m /kB

similarly in units of temperature,

s= 3 − ln
rsTd

1 − h + he−D/T +
he−D/TD

Ts1 − h + he−D/Td
, s6d

e = e0 + 2T +
he−D/TD

1 − h + he−D/T , s7d

j = e0 + TSln
rsTd

1 − h + he−D/T − 1D . s8d

HereD=L /kB is the local change of the potential ande0 the
potential at the bottom of the nondeformed trap, both also in
units of temperature. The phase space density at the potential
minimum within the deformation and the corresponding den-
sity are obtained from

rsT,D,hd =
rsTd

h + s1 − hdeD/T , s9d

nsT,D,hd =
nsTd

h + s1 − hdeD/T , s10d

with rsTd andnsTd defined in Eqs.(3) and (4).
In the case of a single atomic species in the trap, an adia-

batic change of the potential is described by

ssTi,Di,hid = ssTf,D f,h fd, s11d

which is the requirement for conservation of entropy. The
indicesi and f denote the initial and final values of the vari-

ables, respectively. By solving Eq.(11), one can findTf, and
subsequently, all other thermodynamic parameters of the
system.

We proceed to the case in which two or more atomic
speciesk, each in thermal equilibrium in its own locally de-
formed potential well, are allowed to exchange energy but
not particles. The final equilibrium temperatureTf of the
whole system is then calculated by equating the initial and
final total energies of the system. On the other hand, if the
deformations are varied adiabatically starting from a com-
mon temperature, the final temperature is found by equating
the entropy of the whole system before and after the
transformation,

o
k

sksTi,Dki,hkidNk = o
k

sksTf,Dkf,hkfdNk. s12d

Next we think of atoms in a particular quantum state as a
species thatcan exchange particles with the other species.
Zeeman states in an angular-momentum degenerate energy
level serve as an example. Equilibration between the species
can be controlled with rf driving fields, or with laser driven
Raman transitions. Inasmuch as the rotating wave approxi-
mation of quantum optics is applicable, the detunings set the
relative energies of the states for the purposes of
thermodynamics.

Again we start by considering the case when each species
is initially in its own equilibrium at a temperatureTki, where-
after the exchanges of energy and particles equilibrate the
whole system. Since the system as a whole is closed, the
total energy is conserved. We therefore write

o
k

eksTki,Dk,hkdNki = o
k

eksTf,Dk,hkdNkf. s13d

The final state will contain species with equal chemical po-
tentials. We have

jksTf,Dk,hkd = jk8sTf,Dk8,hk8d, s14d

o
k

Nkf = N, s15d

wherek and k8 denote different species, andN is the con-
served total number of atoms. The final temperatureTf and
the atom numbers for each speciesNkf are found by solving
the coupled equations(13)–(15).

Yet another situation occurs if the local deformations of
the states evolve adiabatically in an already equilibrated sys-
tem. Then the chemical potentials of the subensembles will
be equal to each other at each moment of the transformation
and the entropy of the whole system will be conserved.
Hence, the equations for calculation ofTf andNkf are

jksTf,Dkf,hkfd = jk8sTf,Dk8f,hk8fd, s16d

o
k

Nkf = Nt, s17d
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o
k

sksTi,Dki,hki,NkidNki = o
k

sksTf,Dkf,hkfNkfdNkf.

s18d

Now that the procedure for solvingTf and Nkf in different
thermodynamic processes has been laid down, we proceed to
applications. We first consider the possibility to reach a
lower temperature in laser cooling by introducing a small
potential well in the trap during the cooling stage and adia-
batically removing the well after the cooling is complete.
This method can be applied if the cooling efficiency does not
change in the presence of the subtrap and if the cooled
sample can reach thermal equilibrium before the cooling
mechanisms are switched off. These conditions can be satis-
fied, e.g., in evanescent-wave cooling of atoms in a GOST
[12,15–18]. In fact, a “dimple” subtrap created in a GOST
with an infrared focused laser beam is frequently employed
[12,15]. Figure 2(a) shows the final temperature,TfsDi ,hd,
that can be achieved by using a subtrap of initial depth
uDiu sDi ,0d and effective volume characterized byh. The
calculations are done with the aid of Eq.(11), whereD f is set
to 0 and bothhi andh f are replaced with the same parameter
h. For generality, we use the dimensionless variablesh and
uDiu /T0, whereT0 is the initial temperaturefT0;Ti ;TfsDi

=0dg. The calculations show that after cooling of the atoms
in the presence of a small subtrap, the temperature may be
decreased by an additional order of magnitude by slowly
switching the subtrap off. The method allows reduction of
the temperature below the recoil limit, a problematic task for
laser cooling alone. We note that in general the use of a
smaller but deeper subtrap will allow the temperature to de-
crease to a lower level. However, depending on the total
number of atoms, this can lead to an inappropriately high
loss rate of the trapped atoms due to inelastic two- and three-
body collisions. The calculated curves forTf /T0 help to find
optimum values for the parametersh andDi.

In the next example we calculate the peak phase space
density of atoms in a trap with an adiabatically inserted sub-
trap[11]. The peak phase space densityrsD f ,hd related to its
original valuer0=rsD f =0d is shown in Fig. 2(b) as a func-
tion of h, volume ratio, anduD fu /T0, the final depth of the
subtrap over the initial temperature. The calculations are car-
ried out using Eq.(11) with Di =0 andhi =h f ;h to find Tf,
and Eq.(9) to find rsTf ,D f ,hd;rsD f ,hd. The results agree
well with the experiments of Ref.[12], where the phase
space density was locally increased by two orders of magni-
tude using a “dimple” trap within a GOST. It can be seen that
at each fixed value ofh, there is an optimum value of
uD fu /T0, at which the phase-space density reaches its maxi-
mum. Above this value, the number of atoms transferred into
the subtrap becomes too large, so that the rest of the atoms in
the trap can no longer keep the temperature at a low enough
level.

We proceed to the case when a spin-independent atom
trap is locally deformed with a magnetic field. In a dipole
trap with, e.g., spin-unpolarized87Rb in the lower hyperfine
ground state, the magnetic field splits up the sample into
three species characterized by the magnetic quantum num-

bersmF=h−1,0, +1j. When the trap is deformed with a lo-
cally high magnetic field, the atoms withmF= +1 are at-
tracted to the deformation, while atoms withmF=−1 are
repelled from it. The deformation can also be created by
using a magnetic-field minimum which will attractmF=−1
atoms. Independently of the deformation type, there will be
three speciessk=1,2,3d with Dki=0 andDkf=h−D f ,0 , +D fj,
where nowD f is chosen to be positive. All the parametershki
andhkf are set to the same valueh.

Let us denote the initial temperature byT0, and the initial
phase-space density, equal for all species, byr0. We calculate
the enhancement of the phase-space density,rsTf ,
−D f ,hd /r0, for the species withDkf=−D f, considering three
different cases. In the first case we assume that the exchange
of energy between the species occurs much faster than par-
ticle exchange, and ignore the latter altogether. We simply
apply the conservation of entropy in Eq.(12). In thesecond

FIG. 2. (a) A decrease of temperature in an atom trap caused by
the adiabatic removal of a subtrap.(b) An increase of the peak
phase-space density of trapped atoms caused by adiabatic insertion
of a subtrap.(c) An increase of the peak phase-space density of
atoms in a particular magnetic state due to adiabatic deformation of
the trap with a static magnetic field.(d) The spin polarization of
atoms in a dipole trap due to adiabatic deformation of the trapping
potential with a static magnetic field.
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case, we allow the equilibration of atom numbers to follow
the equilibration of temperature. We solve Eq.(12), and then
replace allTki in Eqs. (13) and (14) with the obtainedTf.
Then, solving Eqs.(13)–(15), we find a newTf and new
atom numbersNkf. In the third casewe allow the system to
be in total equilibrium(thermal and chemical) at each mo-
ment of the transformation, and use Eqs.(16)–(18) directly.
When the phase space density increases substantially for the
species attracted toward the deformation,rsTf ,−D f ,hd@r0,
the results for the three scenarios turn out to be almost indis-
tinguishable. In Fig. 2(c) we show a plot corresponding to
the first case. The dependence ofrsTf ,−D f ,hd /r0 on the
parametersh and D f /T0 is similar to the dependence illus-
trated in Fig. 2(b) for a single species. However, here the
factor by which the phase space density increases is about
three times larger, as if the sample was spin-polarized at the
temperatureT0 prior to applying the magnetic field.

Our final example may be of interest to those who are
searching for ways to spin-polarize atoms without increasing
the temperature. Let atoms in a ground state with three mag-
netic substates be stored in a dipole trap in the presence of an
external magnetic field. The constant magnetic field splits the
initial degeneracy of the species. However, if a rf field in
resonance with the splitting is used to accelerate the equili-
bration between the species, the degeneracy is restored as far
as it comes to thermodynamics. Next, a local magnetic-field
deformation is inserted adiabatically. To calculate the final
atom numbersNkf of the three magnetic states, we solve Eqs.
(16)–(18) with hki=hkf;h, Dki=0, andDkf=h−D f ,0 , +D fj.
The dependence of the normalized populationN1f /Nt (k=1

corresponds to the state deformed by −D f) on h andD f /T0 is
plotted in Fig. 2(d). The result shows that the use of a defor-
mation with a large relative volume,h, and/or a large relative
strength,D f /T0, can provide nearly complete spin polariza-
tion of the atoms. By switching off the rf field and slowly
removing the deformation, one can then return the trap to its
initial shape and the sample to its initial temperature. We
note that decoupling of the magnetic states by switching off
the rf field leads to an essential change of the system, be-
cause the rest of the transformation proceeds without equili-
bration of the magnetic-state populations. The disappearance
of the rf field does not affect the spatial profiles of the mag-
netic energy levels and, therefore, it does not change the
temperature.

In conclusion, we have proposed a simple theoretical
model based on classical statistical mechanics to describe a
trapped sample of atoms in the presence of an adiabatically
varying local deformation of the confining potential. Such a
deformation can substantially increase the peak phase space
density[10,11]. In regard to applying the model to integrated
atom chips[1] we have noted here that a rich variety of new
ways to manipulate the sample opens up by making use of
the magnetic substates of an atom. Examples are presented
on increasing the phase phase density, on atom cooling, and
on polarizing the atomic spins.
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