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We use classical statistical mechanics and thermodynamics to describe the response of a trapped multi-
species atomic sample to a local deformation in the confining potential. An adiabatic deformation may not only
increase the peak phase-space density, but also lower the temperature and spin-polarize the atoms.
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The manipulation of atoms in microscopic potential wellsand spin-polarize atoms in an initially spin-independent atom
is the technology presently regarded as the most likely fountrap.
dation for practical applications of atom optics and Bose- Even though our method works for an arbitrary 3D atom
Einstein condensatio(BEC) [1,2]. Well-localized magnetic trap, for illustration we consider a model for a surface trap so
[2-4] or electric[5,6] fields above the surface of a solid simple that the ensuing numerics can be handled with unso-
substrate have been successfully used to control the motigshisticated MATHEMATICA programs. Thus, the atoms are
of microscopic atom samplg®,5] and to essentially sim- bound to a potential of the fortd(x)+U, (y)+U(2), where
plify the creation of BE([2,7,8. X,y, andz are Cartesian coordinates. The dependenceisn

In regard to BEC, phase-space density is the key parangssumed to be harmonig(z)=mwgz?/2, with m being the
eter. It cannot be increased by scaling the trapping potentigltomic mass anek, the trapping frequency in the direction
[9.10, but may be substantially adjusted by adiabaticallyperpendicular to the surface. In tixeandy directions the
deforming the traj10-13. This is also the case in evapora- atoms are confined to a slab of lengthnd widthL. We set
tive cooling, where the trap is deformed in order to releaseUL(y)Eo’ andU(x) is a step function with the valug added
atoms with a high kinetic energy. A similar increase of theyy 5 constant background in an interval of length 7!,
phase space density is achieved by adding a tight potential {gith ;< 1. Overall, the potential inside the slab reads as
a wide trap. This method together with subsequent evaporgy (x,y,z):mvxézZ/2+U(x). Figure 1 shows the trap bound-
tion has been used to reach Bose-Einstein condensation Qﬁies and the potential,(x,y,2) in a plane(x,2) at a fixed
cesium[14] and, very recently, to create a two-dimensionaly 5,6 of y. Simplistic as the model is, we believe that it

BEC of cesium directly in a surface trgf3]. roduces qualitatively correct results for the generic case

Phase space compression by a local change in the tra /hen a potential is modified by an amouktin a fraction»
ping potential has been studied theoretically for a singleOf the trap volume

atomic specie$11]. However, a given trap may carry more —\ye gart by considering an ensemble of identical, but, in

than one species, each of which may respond differently %he sense of classical physics, distinguishable particles in the

the deformaﬂqn. The p'r('esent paper is based on our realiz otential described above. As customary in kinetic theory for
tion that allowing transitions between the Zeeman states

) ) . . . ilute gases, we ignore the effect of the interactions on the
the atoms in conjunction with adjustments _Of the shape of _a'%quilibrium. ForN particles the canonical partition function
atom trap adds flexibility to the preparation of an atomic;
sample in a microtrap that could be part of an “atom chip”
[1]. Such a chip could contain not only magnetic microtraps, _1
but also static electric or all-optical traps. If, for instance, the N7 NI
chip substrate is made of material which is transparent to ] )
light, a gravito-optical surface traji6—19 could serve as a wherekg is Boltzmann’s_ constant, is th.e absolufce telmpera-
container of cold atoms and as a trap to be modified locallyiure, andH=p?/2m+Uy is the one-particle Hamiltonian.

In the present paper we use classical statistical mechanics ¥ Utx.2)
and thermodynamics to investigate in general the properties X
of a multicomponent atom sample in a trap with locally de-

formed potential, allowing for both thermal and chemical

1 N
(Zﬁ)gfd% dSp e—H/kBT> , (1)

equilibration. We demonstrate how an adiabatically driven Xx TAl
deformation may decrease the temperature, increase the z ! 240 nl ¥
phase-space density of atoms in a particular magnetic state, @ ®)

FIG. 1. (a) The trap boundaries in theandy directions.(b) The
trapping potentialJy(x,y,2), in a plane(x,z) at a fixedy from the
*Electronic address: andrej@focus.hut.fi interval 0<y<L. In the sketchA is negative.

1050-2947/2004/10)/0114034)/$22.50 70011403-1 ©2004 The American Physical Society



SHEVCHENKO, KAIVOLA, AND JAVANAINEN

Helmholtz free energy§=-kgT In Zy is found to be

F = NkgT| In| —; p( ~1), )
f (dxll)e—U(X)IkBT
0
where
2mh3wN
T=—S— 3
p(T) KRT?mIL &
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ables, respectively. By solving E@L1), one can findl;, and
subsequently, all other thermodynamic parameters of the
system.

We proceed to the case in which two or more atomic
specie, each in thermal equilibrium in its own locally de-
formed potential well, are allowed to exchange energy but
not particles. The final equilibrium temperatufe of the
whole system is then calculated by equating the initial and
final total energies of the system. On the other hand, if the
deformations are varied adiabatically starting from a com-

is the usual phase space density at the bottom of the confifoon temperature, the final temperature is found by equating

ing potential in the absence of the deformation, and

_ /M WoN
n(m = 2mkgT IL @

is the corresponding density. The final -1 in E8) origi-
nates from the Stirling expansion as inNH=N In N-N.
The entropyS=-dF/JT is

M|, W

| ’
f (dxeynet | €T
0

S=Nkg| 3-1n (5)

where(U,) is the thermal expectation value of the potential
U(x). The chemical potential is found as=dF/JN. For the
stepwise shape dfl(x), we derive the following analytical
one-particle dimensionless entropy

expressions for

the entropy of the whole system before and after the
transformation,

> ST A, 7N = 2 Sd(Tr, A, )N (12
K K

Next we think of atoms in a particular quantum state as a
species thatan exchange particles with the other species.
Zeeman states in an angular-momentum degenerate energy
level serve as an example. Equilibration between the species
can be controlled with rf driving fields, or with laser driven
Raman transitions. Inasmuch as the rotating wave approxi-
mation of quantum optics is applicable, the detunings set the
relative energies of the states for the purposes of
thermodynamics.

Again we start by considering the case when each species
is initially in its own equilibrium at a temperatufig;, where-

=S/Nkg, mean energy per particle expressed in units of temafter the exchanges of energy and particles equilibrate the

perature e=(F+TS/Nkg, and chemical potentiak=u/kg

similarly in units of temperature,
p(T) ne ¥'TA

s=3-1In , 6
L=t e Ta-ge ey ©
~A/T
E:€o+2T+77e—A_A/T! %
1-n+qe
_ pM )
§—60+T(|n1_7’+7’e_A/T 1. (8)

Here A=A/kg is the local change of the potential agglthe
potential at the bottom of the nondeformed trap, both also in

whole system. Since the system as a whole is closed, the
total energy is conserved. We therefore write

> &l Teir Ak MONG = 2 €(Tr, Ay, 7Nis- (13
k k

The final state will contain species with equal chemical po-
tentials. We have

(T, Ak ) = & (T, A, i) (14)

> N =N, (15
k

units of temperature. The phase space density at the potential _ _ )
minimum within the deformation and the corresponding denWherek andk’ denote different species, amdlis the con-

sity are obtained from

__pM

p(T1A177)_ 77+(1_77)eA/T1 (9)
B n(T)

n(TyAv 77) - 77+ (1 _ n)eA/T! (10)

with p(T) andn(T) defined in Eqs(3) and (4).

served total number of atoms. The final temperafyrand
the atom numbers for each spechyg are found by solving
the coupled equationd3)—(15).

Yet another situation occurs if the local deformations of
the states evolve adiabatically in an already equilibrated sys-
tem. Then the chemical potentials of the subensembles will
be equal to each other at each moment of the transformation
and the entropy of the whole system will be conserved.
Hence, the equations for calculation Bf and Ny; are

In the case of a single atomic species in the trap, an adia-

batic change of the potential is described by
S(Ti, A, ) = (T, At 71),, (11

which is the requirement for conservation of entropy. The
indicesi andf denote the initial and final values of the vari-

E(Te, A, mip) = & (T, At i) (16)

> N =N, 17
k
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2 ST Ay 7 NN = 25 ST, Ay, 7eNiep) N ! n
k k o 0.8 - :g.ggs
(18) = 081 —0.015
< 04 0.0
_ o = [0.05
Now that the procedure for solvin@; and N in different 0.2
thermodynamic processes has been laid down, we proceed to 0 . i . = =
applications. We first consider the possibility to reach a (@) 0 25 5 AT';’T 10 125 15
lower temperature in laser cooling by introducing a small 600 |Ail/To
potential well in the trap during the cooling stage and adia- _3'0001
batically removing the well after the cooling is complete. S 400 |0-0002
This method can be applied if the cooling efficiency does not = ] g-ggg‘;
change in the presence of the subtrap and if the cooled I 200 ]0.0016
sample can reach thermal equilibrium before the cooling = ]
mechanisms are switched off. These conditions can be satis- 0
fied, e.g., in evanescent-wave cooling of atoms in a GOST (b) 0o 5 10 15 20
[12,15-18. In fact, a “dimple” subtrap created in a GOST |Arl/ To

with an infrared focused laser beam is frequently employed
[12,15. Figure 2a) shows the final temperatur@;(A;, ),
that can be achieved by using a subtrap of initial depth
|Aj] (A;<0) and effective volume characterized by The
calculations are done with the aid of K1), whereA; is set
to 0 and bothy, and #; are replaced with the same parameter
7. For generality, we use the dimensionless variabjesd (© 0 5 1 15 20 25

p(AsM)/Po

|Ai|/ To, whereT, is the initial temperatur¢To=T;=T;(A; ) AdlTo

=0)]. The calculations show that after cooling of the atoms

in the presence of a small subtrap, the temperature may be v 08 -

decreased by an additional order of magnitude by slowly =3 (]

switching the subtrap off. The method allows reduction of = o064 (17 3.9
i imi i /S 0.24

the temperature below the recoil limit, a problematic task for 0.12

laser cooling alone. We note that in general the use of a 0.4 2.2

smaller but deeper subtrap will allow the temperature to de- d) 0 25 5 75 10 125 15

crease to a lower level. However, depending on the total Ad Ty

number of atoms, this can lead to an inappropriately high )
loss rate of the trapped atoms due to inelastic two- and three- F!G- 2. (8) A decrease of temperature in an atom trap caused by

body collisions. The calculated curves o/ T, help to find the adiabatic removal of a subtragh) An increase of the peak
optimum values for the paramet ndA. phase-space density of trapped atoms caused by adiabatic insertion
ensal i

In the next example we calculate the peak phase spac%{ a subtrap.(c) An increase of the peak phase-space density of
oms in a particular magnetic state due to adiabatic deformation of

. . . . . . al
giﬁgﬁﬂ?&iﬁ&gg;:,g&:g::;.%;am? lrlg|£:§rtt§?t;Ubthe trap With_ a static magnetic fiel(id_) The spin _polarization of_

o ) ) P 7 atoms in a dipole trap due to adiabatic deformation of the trapping
9“9'”&' valuep0=p(Af.=0) is shown in Fig. ®) as a func- potential with a static magnetic field.
tion of 7, volume ratio, andA;|/T,, the final depth of the
subtrap over the initial temperature. The calculations are cabersme={-1,0, +1. When the trap is deformed with a lo-
ried out using Eq(11) with A;=0 and=%=nto findT;,  cally high magnetic field, the atoms witm-=+1 are at-
and Eq.(9) to find p(T¢,A¢, ) = p(A¢, ). The results agree tracted to the deformation, while atoms with-=-1 are
well with the experiments of Ref[12], where the phase repelled from it. The deformation can also be created by
space density was locally increased by two orders of magnidsing a magnetic-field minimum which will attraot-=-1
tude using a “dimple” trap within a GOST. It can be seen tha@toms. Independently of the deformation type, there will be
at each fixed value ofy, there is an optimum value of three speciesk=1,2,3 with A;=0 andA,={-A¢,0, +A¢},
|A¢|/ Ty, at which the phase-space density reaches its maxivhere nowA; is chosen to be positive. All the parametejs
mum. Above this value, the number of atoms transferred int@nd 7,; are set to the same valug
the subtrap becomes too large, so that the rest of the atoms in Let us denote the initial temperature By, and the initial
the trap can no longer keep the temperature at a low enougthase-space density, equal for all speciegpdoyVe calculate
level. the enhancement of the phase-space densitT;,

We proceed to the case when a spin-independent atomA;, n)/pg, for the species with\,;=-A, considering three
trap is locally deformed with a magnetic field. In a dipole different cases. In the first case we assume that the exchange
trap with, e.g., spin-unpolarizetiRb in the lower hyperfine of energy between the species occurs much faster than par-
ground state, the magnetic field splits up the sample intaicle exchange, and ignore the latter altogether. We simply
three species characterized by the magnetic quantum nurapply the conservation of entropy in Ed.2). In the second

011403-3
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case we allow the equilibration of atom numbers to follow corresponds to the state deformed ky;-on » andA¢/ Ty is

the equilibration of temperature. We solve Et2), and then plotted in Fig. 2d). The result shows that the use of a defor-
replace allT,; in Egs. (13) and (14) with the obtainedTs. mation with a large relative volumey, and/or a large relative
Then, solving Eqs(13)—«15), we find a newT; and new  strength,A¢/ Ty, can provide nearly complete spin polariza-
atom numberd\,;. In the third casewe allow the system to tion of the atoms. By switching off the rf field and slowly
be in total equilibrium(thermal and chemicalat each mo- removing the deformation, one can then return the trap to its
ment of the transformation, and use E(E5)—(18) directly.  initial shape and the sample to its initial temperature. We
When the phase space density increases substantially for tihete that decoupling of the magnetic states by switching off
species attracted toward the deformatip(l;,—A¢, 7) > po, the rf field leads to an essential change of the system, be-
the results for the three scenarios turn out to be almost indissause the rest of the transformation proceeds without equili-
tinguishable. In Fig. @) we show a plot corresponding to bration of the magnetic-state populations. The disappearance
the first case. The dependence gifT;,—A¢,7)/p, on the  Of t_he rf field does not affect the spat_|al profiles of the mag-
parametersy and A,/T, is similar to the dependence illus- Netic energy levels and, therefore, it does not change the
trated in Fig. 2b) for a single species. However, here the t€mperature. _ ,
factor by which the phase space density increases is aboyt N conclusion, we have proposed a simple theoretical

three times larger, as if the sample was spin-polarized at th@odel based on classical statistical mechanics to describe a
temperatureT, pri(;r to applying the magnetic field. trapped sample of atoms in the presence of an adiabatically

Our final example may be of interest to those who areVarying local deformation of the confining potential. Such a

. . ) : i . deformation can substantially increase the peak phase space
searching for ways to spm—pplanze atoms W|tho_ut 'ncreas'”%ensity[lo 11, In regard to applying the model to integrated
the temperature. Let atoms in a ground state with three ma ¥

. . . ! %tom chipg1] we have noted here that a rich variety of new
netic substates be stored in a dipole trap in the presence of ys to manipulate the sample opens up by making use of

external magnetic field. The constant magnetic field splits the,o magnetic substates of an atom. Examples are presented

initial degeneracy of the species. However, if a rf field in 5 increasing the phase phase density, on atom cooling, and
resonance with the splitting is used to accelerate the equilig, polarizing the atomic spins.

bration between the species, the degeneracy is restored as far

as it comes to thermodynamics. Next, a local magnetic-field We acknowledge financial support from the Academy of
deformation is inserted adiabatically. To calculate the finaFinland, NSF, and NASA. One of ugl.J) is particularly
atom numberd\,; of the three magnetic states, we solve Eqs.grateful to the Helsinki University of Technology for the
(16)—(18) with p=mi=7, Aq=0, andA={-A¢,0,+A;}.  hospitality extended to him during the initial phases of this
The dependence of the normalized populatip/N; (k=1  work.
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