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Abstract. We introduce a simple theoretical model that describes the
interaction of light with optical metamaterials in terms of interfering optical
plane waves. In this model, a metamaterial is considered to consist of planar
arrays of densely packed nanoparticles. In the analysis, each such array
reduces to an infinitely thin homogeneous sheet. The transmission and reflection
coefficients of this sheet are found to be equal to those of an isolated nanoparticle
array and, therefore, they are easy to evaluate numerically for arbitrary shapes
and arrangements of the particles. The presented theory enables fast calculation
of electromagnetic fields interacting with a metamaterial slab of an arbitrary
size, which, for example, can be used to retrieve the effective refractive index
and wave impedance in the material. The model is also shown to accurately
describe optically anisotropic metamaterials that in addition exhibit strong
spatial dispersion, such as bifacial metamaterials.
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Optical metamaterials are man-made materials composed of densely packed subwavelength-
size nanoparticles appearing like artificial atoms to light. While the optical response of each
individual nanoparticle can be revealed using, e.g. the electromagnetic multipole expansion [1],
the description of the macroscopic optical response of a real three-dimensional metamaterial
still remains a challenge. This description is complicated by non-trivial interactions between
the nanoparticles, including evanescent-wave coupling between them. In this work however,
we propose a way to calculate the transmission and reflection characteristics of metamaterial
slabs, including anisotropic and spatially dispersive ones, without resorting to evanescent
waves.

So far, both numerical [2–5] and experimental [6–9] techniques have been used to obtain
the transmission and reflection coefficients for metamaterial slabs with a rather limited number
of nanostructured layers. The coefficients obtained for such slabs do not necessarily describe
the properties of a bulk metamaterial. One approach to characterize the material would be
to successively increase the number of layers and see if the optical characteristics converge
[3, 4, 9]. However, the understanding of the real physics that determines the final transmission
properties is lost when using this procedure. The important question is then whether a certain
metamaterial slab can be treated as a slab of homogeneous material. To answer this question,
one can for example calculate the Bloch eigenmodes in an infinitely extended metamaterial and
then, in an additional calculation, check which modes are involved when light is reflected by a
semi-infinite metamaterial [10, 11]. If the calculations show that all but the fundamental Bloch
mode are negligible, one can introduce wave parameters, such as the refractive index and wave
impedance, for this mode and treat the material as homogeneous. Here, we propose a more
straightforward approach, where the properties of a homogenizable metamaterial slab of any
thickness are directly linked to the properties of a single layer of the material.

Recently, several retrieval procedures have been introduced to obtain the effective wave
parameters, from the reflection and transmission coefficients of a metamaterial slab [10, 12–17].
These retrieval procedures rely upon the Fresnel coefficients which are derived for dipolar
media. However, for the class of bifacial metamaterials in which the electric quadrupole
excitations are present [18], the classical electromagnetic boundary conditions do not hold
[19, 20]. Consequently, neither the standard Fresnel coefficients nor the retrieval procedures
based on these coefficients can be applied to these metamaterials. The development of an
adequate theory for the description of highly spatially dispersive metamaterials, such as bifacial
metamaterials, would be of great practical importance, e.g. for solar cell applications.

In this work, we re-examine the propagation of light through a slab of spatially dispersive
optical metamaterial. We find that both the transmission and reflection by the slab can be
surprisingly accurately described in terms of propagating optical plane waves only, which
dramatically simplifies the description. We introduce simple analytical expressions that enable
one to evaluate the optical characteristics of a thick metamaterial slab by using only the
transmission and reflection coefficients of a single layer of the nanoparticles. The single-
layer coefficients are evaluated numerically. These coefficients enable one to calculate the
electromagnetic fields inside the material and thereby evaluate the wave parameters, such as the
refractive index and wave impedance. Compared to previously reported theoretical approaches
to the problem, our approach is easy to use in practice independently of the shapes and material
compositions of the nanoparticles and of the propagation direction and polarization of the
optical waves as long as the material is homogenizable.
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Figure 1. A metamaterial slab (a) that is composed by stacking layers of arbitrary
scatterers, S, is described as (b) an array of infinitesimally thin sheets. The
transmission and reflection coefficients (τL, τR, ρL and ρR) for each of these
sheets are taken to be equal to those of a single isolated layer of the metamaterial.

Consider a metamaterial slab that is created by stacking two-dimensional arrays of
nanoscatterers in a transparent dielectric medium (see figure 1(a)). When illuminated by an
optical plane wave, the first layer of nanoscatterers transmits a certain portion of the incident
field. A part of this transmitted field is then reflected back by the second layer and the
rest is partially absorbed and partially transmitted further to the third layer. Provided that
the periodicity within each layer is sufficiently smaller than the illumination wavelength, the
diffracted waves will be evanescent and the propagating field between the neighboring layers
will consist of two optical plane waves. Furthermore, since the particles in each layer are packed
very densely, their collective evanescent field can have a very short decay length in the direction
perpendicular to the layer; note that the individual evanescent fields of the particles are still of a
long range compared to the particle separation. This effect makes it possible to neglect the near-
fields of the layers and describe each layer simply as an infinitesimally thin sheet surrounded
by the host dielectric (see figure 1(b)). The total transmission and reflection of the slab is then
described in terms of the transmission and reflection coefficients of the individual sheets in a
way resembling the description of Fabry–Perot interferometers. Similar division of metamaterial
slabs into homogenized layers has been applied in the context of effective electromagnetic
parameter retrieval [21, 22].

Our approach is as follows. For a single isolated layer of a metamaterial, we first
numerically calculate the transmission and reflection coefficients and assign them to an
equivalent infinitesimally thin sheet in the middle of the unit cells. These coefficients depend
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Figure 2. Light propagation through a metamaterial described by an array of
infinitesimally thin sheets. Between each pair of such sheets there are two
counter-propagating plane waves with transverse field components U j and U ′

j .
The unit cells of the metamaterial are shown with dashed lines.

on both the angle of incidence θ and the polarization of the incident field. In addition, for
bifacial nanoscatterer arrays, the reflection coefficient changes if the illumination direction is
reversed [18, 23]. Therefore, for the wave propagating to the right (left) within the metamaterial,
we use the reflection coefficient ρL (ρR) to describe the reflection from the left (right) side of
each layer. Likewise, the transmission coefficient τL (τR) describes the transmission of a wave
incident from the left (right) side of each layer. Optical reciprocity ensures that the transmission
coefficients must be the same if normal incidence illumination is considered. When calculated in
this way, the parameters ρL, ρR, τL and τR automatically include the near- and far-field coupling
between the scatterers within the layer in question. As has been already mentioned, this coupling
makes the extent of the evanescent wave along the layer’s normal shorter for denser packing of
the scatterers.

Let a plane wave with a transverse field amplitude U0 and a wave vector kin = x̂kx + ẑkz

be incident on a metamaterial slab that consists of N layers of thickness 3 and has its
surface normal along the z-axis (see figure 2). The wave is assumed to have either transverse
electric (TE) or transverse magnetic (TM) polarization. Treating each nanoscatterer layer as an
infinitesimally thin sheet, we consider the counter-propagating waves between the sheets to have
wave vectors k± = x̂kx ± ẑkz, because the material between the sheets is considered to be the
same as outside the slab. Assuming that the polarization state is conserved, the transverse fields
U j and U ′

j after each sheet j in figure 2 must satisfy the following equations:

U j = fLU j−1 + gRU
′

j , (1)

U
′

j = gLU j + fRU
′

j+1, (2)

where fL = τL exp(ikz3), fR = τR exp(ikz3), gL = ρL exp(ikz3) and gR = ρR exp(ikz3). For
chiral metamaterials, both polarization states must be considered simultaneously. In this case,
U j and U ′

j would be two-element vectors, while fL, fR, gL and gR would be 2 × 2 matrices.
Using (1) and (2), we derive separate relations for the forward and backward propagating fields:

βU j+1 + U j−1 − αU j = 0, (3)

βU
′

j+1 + U
′

j−1 − αU
′

j = 0, (4)
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where α = fR + f −1
L (1 − gLgR) and β = fR/ fL. With the help of (1) and (3) and the fact that

U ′

N = 0, we obtain the transmission coefficient of the slab to be

t =
UN

U0
=

fL

G N − β fLG N−1
. (5)

Here we have introduced the G-polynomial that is calculated as

G0 = 0, (6)

G1 = 1, (7)

G j = αG j−1 − βG j−2. (8)

Similarly, using (1), (2) and (4) we derive the reflection coefficient

r =
U

′

0

U0
= gL f −1

L G N t. (9)

Equations (5) and (9) enable direct calculation of the transmission and reflection coefficients
of an arbitrarily thick metamaterial in terms of the transmission and reflection coefficients of
an isolated monolayer of the metamaterial. For N = 1, equations (5) and (9) correctly yield
t = τL exp(ikz3) and r = ρL exp(ikz3) and for N = 2 the well-known results for a Fabry–Perot
etalon are obtained.

In order to demonstrate the applicability of our theory, we compare it with rigorous
numerical calculations. This is done by selecting some non-trivial nanoscatterers, such
as nanoshells (figure 3(a)), nanorings (figure 4(a)) and nanodimers (figure 5(a)). These
nanoscatterers are considered to compose stacks of two-dimensional periodic arrays that are
embedded in a dielectric host medium of refractive index 1.5. The necessary transmission and
reflection coefficients for a single array are calculated using the computer software COMSOL
Multiphysics. The obtained coefficients are then used in (5) and (9) to acquire the transmission
and reflection coefficients for several layers. These coefficients are compared with the results
of direct numerical calculations of the whole stack with COMSOL. For these calculations we
choose TM-polarized illumination with θ = 45◦ and a slab consisting of N = 5 layers. This
choice is general enough for demonstrating the applicability of the model.

We first consider a metamaterial with an isotropic unit cell containing a silver nanoshell
as depicted in figure 3(a). The nanoshells have an outer radius R = 35 nm and a thickness
h = 7 nm. They form a cubic lattice with period 3 = 130 nm. The optical properties of
such nanoshells are well investigated [24–26] and similar structures can be relatively readily
fabricated [27, 28]. For the calculations, the optical characteristics of silver were taken
from [29]. The calculated transmission and reflection spectra in the wavelength range from
500 to 1000 nm for the nanoshell slab are shown in figure 3(b). The spectra obtained by
using (5) and (9) are in a very good agreement with the direct numerical calculations, indicating
that the plane-wave description of the light propagation is appropriate and that the evanescent-
wave coupling between the layers is indeed weak. A more detailed description of the influence
of this coupling on the transmission and reflection spectra is presented later on in the paper.

While direct numerical calculations are always limited by the present computational
resources, the introduced theory allows us to calculate the response of an arbitrarily thick slab. In
figure 3(c) the reflection spectrum for a slab of 1000 nanoshell layers is shown by the red curve.
For this particular case of nanoshells, the spectrum of 1000 layers is close to the spectrum of
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Figure 3. (a) Geometry of the nanoshell (2R = 70 nm, h = 7 nm and 3 =

130 nm). (b) Transmission and reflection spectra of a five-layer thick slab for
TM-polarized incident light with the angle of incidence of 45◦. The numerically
calculated spectra (solid and dashed lines) are shown along with the analytical
results (circles and stars) obtained from (5) and (9). (c) Reflection spectra for
increasing number of layers as obtained from (5) and (9).

the five-layer slab and it is already indistinguishable from the spectrum of an infinitely thick
metamaterial.

Next, we introduce an anisotropic (uniaxial) unit cell containing a silver nanoring as
depicted in figure 4(a). An interesting application of such structures as optical security marks
is proposed in [30]. The ring has an outer radius R1 = 20 nm, inner radius R2 = 10 nm and
thickness h = 10 nm. The rings form a cubic lattice with period 3 = 50 nm, such that each layer
is aligned with the xy-plane. Note that within each layer the interparticle separation distance is
only 10 nm. The calculated transmission and reflection spectra for the nanoring slab are shown
in figure 4(b). The theory yields excellent agreement with direct numerical calculations also for
these nanoscatterers. The reflection for 1000 layers, depicted by the red curve in figure 4(c),
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Figure 4. (a) Geometry of the nanoring (2R1 = 40 nm, 2R2 = 20 nm, h = 10 nm
and 3 = 50 nm). Panels (b) and (c) are as in figure 3.

shows that the bulk metamaterial behaves quite differently from a single layer due to the
interlayer interaction. One can notice that if the number of layers is large, the metamaterial
acts as a spectrally selective broad-band reflector with a nearly flat-top spectral profile.

As a final example, we consider a bifacial metamaterial slab that exhibits strong spatial
dispersion. Such metamaterials have not been studied much in terms of their reflection and
transmission characteristics. The unit cells of the material contain asymmetric silver nanodimers
(see figure 5(a)). These nanodimers have been shown to exhibit complete suppression of the
electric dipole excitation in a narrow wavelength range when illuminated from the smaller
disc side [18]. However, in a metamaterial, there will be two counter-propagating waves and
the electric dipole moment cannot be suppressed for both of them simultaneously [23]. The
nanodimer geometry is described by the radii R1 = 15 nm and R2 = 20 nm of the discs and
dimensions h = s = 10 nm defined in figure 5(a). A cubic lattice with period 3 = 50 nm is
now composed of the nanodimers such that the smaller discs are on the left-hand side. As
a consequence of the asymmetry of the unit cell, we calculate the single layer response to
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Figure 5. (a) Geometry of the disc nanodimer (2R1 = 30 nm, 2R2 = 40 nm,
h = s = 10 nm, 3 = 50 nm). Panel (b) is as in figure 3(b). The numerically and
analytically calculated reflections from the side of the larger discs are shown
by the additional red dotted line and red triangles, respectively. (c) Reflection
spectra for 1000 layers as obtained from (5) and (9).

illumination from both sides in order to obtain the reflection coefficients ρL and ρR. The
invariance of the nanodimers with respect to rotation around the symmetry axis z ensures that
τL = τR.

Using (5) and (9) we calculate the transmission and reflection spectra for a nanodimer slab
illuminated from the two sides and compare them with the numerical results. Figure 5(b) shows
that while the theory very accurately resolves all spectral features, there is a slight deviation
of the analytically obtained values from the exact numerical values for the wavelengths around
600 nm. This deviation obviously originates from the evanescent-wave coupling between the
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adjacent layers. However, considering that the gap size between the discs in the adjacent layers
is only 20 nm, the agreement is still remarkably good. We obtained a similar good agreement
between our theory and the numerical calculations also for angles of incidence of 0◦, 30◦ and
60◦ as well as for the TE polarization. The reflection spectra of 1000 layers of nanodimers are
depicted in figure 5(c). When illuminated from the small disc side, the reflection coefficient
significantly decreases at around the electric dipole suppression wavelength of 618 nm.

Using (1)–(4), one can retrieve the electric and magnetic fields at any point inside the
metamaterial and use them to directly extract the effective wave parameters, such as the
refractive index and wave impedance. As an example, consider a non-chiral centrosymmetric
material, for which fL = fR = f and gL = gR = g. Propagation of a plane wave over a single
unit cell in the homogenized material must satisfy

U j = U j−1 exp(iγz3), (10)

where γz is the z component of the effective propagation constant and 3 is the unit-cell size in
the z direction. Equation (3) then leads to the following expression:

γz3 = ± arccos

(
1 − g2 + f 2

2 f

)
+ 2πm, (11)

where m is an integer. The effective refractive index is related to the wave vector k in the host
medium through

neff = ±

√
γ 2

z + k2
x

k0
, (12)

which follows from the phase matching condition kx = γx ; k0 is the wave number in vacuum.
The effective wave impedance can be obtained by considering the spatially averaged electric
and magnetic fields between the sheets introduced in figure 1. Since in the host medium
the fields are right-handed, the total electric field component that is transverse to z is
U j exp(ikzz) + U

′

j exp(−ikzz), whereas the magnetic field component that is transverse to z is
[U j exp(ikzz) − U

′

j exp(−ikzz)][kz/k]p/Z , with p = ±1 denoting the TE and TM polarizations,
respectively. Here Z denotes the wave impedance in the host medium. We can now define

Z⊥ = Z
〈U j exp(ikzz) + U

′

j exp(−ikzz)〉

〈U j exp(ikzz) − U
′

j exp(−ikzz)〉

(
k

kz

)p

(13)

that describes the ratio between the transverse components of the averaged electric and magnetic
fields; the angle brackets denote averaging over the unit cell. Taking into account the fact that
the propagation angle of the effective wave is determined by γz/γ , one can find the effective
wave impedance Zeff = Z⊥(γz/γ )p. Performing the averaging in (13), we obtain

Zeff = Z
g + [1 − f exp(−iγz3)]

g − [1 − f exp(−iγz3)]

(
kγz

kzγ

)p

, (14)

where U ′

j was expressed in terms of U j using (1) and (10). We recall that γ = neffk0. One can
also obtain the corresponding relative electric permittivity and magnetic permeability as

εeff =
neff

Zeff/Z0
, (15)

µeff = neff Zeff/Z0, (16)
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figure 4. A TE-polarized wave propagating at θ = 45◦ in the host medium is
considered.

where Z0 is the wave impedance in vacuum. It can be verified that the expressions for neff, Zeff,
εeff and µeff are in full agreement with the commonly used expressions introduced in [15]. The
derivations above can be repeated also for more complex materials, with fL 6= fR and gL 6= gR.

The parameters neff, Zeff, εeff and µeff calculated for the nanoring material of figure 4 are
shown in figure 6, for θ = 45◦ and TE polarization. This example is of interest in view of the
possibility to tune neff and Zeff, because the rings are somewhat similar to traditional split-ring
resonators. A strong electric-dipole resonance at around λ0 = 870 nm is observed in the spectra
of neff and εeff. The modification of µeff in this spectral range is not large and can be interpreted as
a result of the finite periodicity 3 (see e.g. [31]). At wavelengths shorter than λ0 = 800 nm, the
behavior of εeff resembles that of a Drude metal. A thick nanoring material could therefore have
a high reflectivity in this region, which is supported by the values of the wave impedance. It is
interesting, however, that at λ0 ≈ 590 nm the material is characterized by neff ≈ 1 and Zeff ≈ Z0,
leading to an efficient suppression of both optical reflection and refraction at an air–metamaterial
interface.

The accuracy of the presented theory depends on the extent of the evanescent waves
produced by the nanoparticle layers. Qualitatively, for the theory to be exact, the evanescent
waves associated with the cut-off diffraction orders must have a decay length that is much
shorter than the spacing between the particles in two adjacent layers. For a two-dimensional
square array of period 3x = 3y , the longitudinal wave vector of the first such order kz1 = [k2

−

(2π/3x − kx)
2]1/2 is imaginary, with k and kx being the magnitudes of the total and transverse

wave numbers of the incident light. The next order would be kz2 = [k2
− (2π/3x + kx)

2]1/2. We
define the decay length δ of the evanescent field to be the distance for which the field amplitude
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has decayed by a factor of exp(−1). The gap d between the particles in the z-direction must
then be much larger than

δ =
1

Im{kz1}
=

[(
2π

3x
− kx

)2

− k2

]−1/2

. (17)

Considering the nanoshells with 3x = 130 nm, λ0 = 500 nm and kx = k/
√

2, we obtain a
decay length δ ≈ 34 nm that is smaller than the 60 nm gap between the adjacent shells. For
the nanodimers, with 3x = 50 nm, λ0 = 500 nm and kx = k/

√
2, the decay length is δ ≈ 9 nm.

This value is smaller than the gap d = 20 nm between the nanodimers, which supports the
success of our analytical calculations. In fact, if for subwavelength-sized unit cells we have
k � 2π/3x , (17) yields δ ≈ 3x/(2π). In this case the criterion for neglecting the interlayer
evanescent-wave coupling becomes d � 3x/(2π). Then, as a practical criterion for when our
theory can be applied, we require that d > 3x/2.

In order to verify the above predictions on the influence of the interlayer evanescent-wave
coupling, we numerically calculate the transmission through the nanodimer slab, while varying
the transverse and longitudinal periods separately. In figure 7(a) the transmission coefficient is
plotted for an increasing longitudinal period 3z. The transverse period is fixed to 3x = 100 nm
in order to have the evanescent-wave coupling significant enough to cause a discrepancy at
small 3z between the theory and the numerical results. We notice that when d exceeds 3x/2
(3z exceeds 80 nm), this discrepancy disappears. The transmission coefficient for an increasing
transverse period 3x = 3y is shown in figure 7(b). In this case the longitudinal period is fixed
to 3z = 70 nm, such that the evanescent-wave coupling is negligible at 3x = 50 nm. As the
transverse period is increased, the discrepancy between the theory and the numerical results
starts to appear due to an increase in the evanescent-wave coupling between the layers. We
notice however that as 3x is increased, the array also gets sparse, which reduces the influence
of the nanoscatterers on the propagating wave. This effect counterbalances the growing decay
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length of the evanescent waves produced by the nanoparticle layers, such that the discrepancy
between the theory and the numerical results remains small.

For a metamaterial slab, in which the evanescent wave coupling is negligible, one
can introduce effective material parameters. On the other hand, if the evanescent-wave
coupling exists, these parameters depend on the slab thickness and are thereby senseless [32].
By using (5) and (9) to compare the transmission and reflection coefficients of a single
nanoscatterer layer with those of two layers, one can directly assess whether the metamaterial is
homogenizable and, consequently, whether the introduction of material parameters is justified.

In summary, we have introduced a simple analytical theory for the description of
light interaction with optical metamaterials. Recognizing the subwavelength size of the
metamaterial’s unit cells, we found that the evanescent-wave coupling between adjacent
monolayers of the metamaterial does not significantly influence the light propagation in the
material. As a consequence, arbitrarily thick metamaterial slabs can be accurately described in
terms of the plane-wave transmission characteristics obtained for a single isolated monolayer,
e.g. numerically. Furthermore, we have shown that one can evaluate the fields at any point inside
the material and, consequently, obtain the effective wave parameters. The presented examples
of rigorous numerical calculations demonstrate the wide applicability of this remarkably simple
analytical model.

In contrast to existing theoretical approaches, our one also correctly describes three-
dimensional arrays of bifacial nanoscatterers, which is of practical importance for a large variety
of metamaterials, such as those with asymmetric unit cells. For homogenizable metamaterial
slabs, our method enables rapid one-layer-based extraction of the transmission and reflection
coefficients. Furthermore, propagation of an optical beam through such a metamaterial can be
described by using the angular spectrum representation with our model applied to each plane-
wave component.

The introduced theory is not limited to optical metamaterials, but can also be applied
to study wave propagation in other artificial media, such as radio-frequency and terahertz
metamaterials, and even phononic metamaterials. We believe that the presented theory has
the necessary simplicity and accuracy to accelerate the development of optical metamaterials
tailored for real applications.
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