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The authors investigate the translocation dynamics of heteropolymers driven through a nanopore
using a constant temperature Langevin thermostat. Specifically, they consider heteropolymers
consisting of two types of monomers labeled A and B, which are distinguished by the magnitude of
the driving force that they experience inside the pore. From a series of studies on polymers with
sequences A,,B, the authors identify both universal as well as specific sequence properties of the
translocating chains. They find that the scaling of the average translocation time as a function of the
chain length N remains unaffected by the heterogeneity, while the residence time of each bead is a
strong function of the sequence for short repeat units. They further discover that for a symmetric
heteropolymer A,B,, of fixed length, the pattern exhibited by the residence times of the individual
monomers has striking similarity with a double slit interference pattern where the total number of
repeat units N/2n controls the number of interference fringes. These results are relevant for

designing nanopore based sequencing techniques. © 2007 American Institute of Physics.

[DOLI: 10.1063/1.2719198]

I. INTRODUCTION

The transport of a polymer through a nanopore plays a
critical role in numerous biological processes, such as DNA
and RNA translocation across nuclear pores, protein trans-
port through membrane channels, and virus injection.l_3 Due
to various potential technological applications, such as rapid
DNA sequencing,“’5 gene therapy, and controlled drug
delivelry,6 polymer translocation has become a subject of in-
tensive experimental,ﬁz] theoretical,zl*43 and numerical
studies.”® ™

For a polymer threading through a nanopore, loss of
available configurations due to the geometric constriction
leads to an effective entropic barrier. Kasianowicz et al’
demonstrated that an electric field can drive single-stranded
DNA and RNA molecules through the water-filled
a-hemolysin channel and that the passage of each molecule
is signaled by a blockade in the channel current. These ob-
servations can directly be used to characterize the polymer
length, and with further improvements the technique could
be used to read off the nucleotide sequence of DNA or RNA.
Other recent experiments14 also show that an orientation
asymmetry plays an important role in the translocation due to
the complex interaction of DNA nucleotides with the protein
nanopore. In addition to the a-hemolysin channel, experi-

YAuthor to whom correspondence should be addressed. Electronic mail:
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ments have been done with solid state nanopores, 2 whose

advantages are tunable pore size and stability over changes
in external conditions including voltage, temperature, salin-
ity, and pH.

Theoretically, translocation dynamics was initially ex-
amined by considering equilibrium entropy of the polymer as
a function of the position of the polymer through the
nanopore.23’26’28’31 This has been indicated to be inappropri-
ate for the study of translocation dynamics.%f44 Most re-
cently, we have investigated both free and forced transloca-
tion using both the two-dimensional fluctuating bond model
with single-segment Monte Carlo moves*** and Langevin
dynamic simulations.*** For the free translocation,“’44 we
numerically verified that the translocation time 7~ N'*27,
where N is the chain length and v is the Flory exponent.5 6.57
For forced translocation,”** we found a crossover scaling
from 7~ N?" for relatively short polymers to 7~N'*" for
longer chains.

However, most of the theoretical treatments of translo-
cation have assumed a homogeneous polymer, although sev-
eral experimentslz’16 show that in the real biological systems
inhomogeneities in the structure and interactions between
polymer and other molecules might have a significant effect
on the overall dynamics. Based on the equilibrium entropy of
the polymer, Muthukumar theoretically discussed some ef-
fects of sequence on translocation by considering diblock
copolymers.28 It was found that for the weak driving forces

© 2007 American Institute of Physics
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the translocation time depends on which polymer end begins
the translocation process. In addition, Kafri et al.*® also stud-
ied the effect of sequence heterogeneity in polymer translo-
cation and found that the heterogeneity might lead to anoma-
lous dynamics at some conditions.

The purpose of this paper is to investigate systematically
how the pore can sense the effect of heterogeneity of the
chain manifested through quantities related to its transloca-
tion dynamics. To this end, we use Langevin dynamics simu-
lations in two dimensions (2D). We consider a coarse-
grained model heteropolymers composed of two kinds of
monomers labeled A and B. Under an applied external field,
the driving forces for A and B are different. With this in mind
we launch a series of investigation on chains with repeat unit
A, B, and study various properties as a function of such
units. In Sec. II, we briefly describe our model and the simu-
lation technique. In Sec. III, we present our results. Finally,
the discussion and conclusions are in Sec. IV.

Il. MODEL AND METHOD

In the simulations, the polymer chains are modeled as
bead-spring chains of Lennard-Jones (LJ) particles with the
finite extension nonlinear elastic (FENE) potential. Both ex-
cluded volume and van der Waals interactions between beads
are modeled by a repulsive L] potential between all bead
pairs,

4el(a/n)"? = (oI +e, r<2"c
Upy(r) = 0 T

(1)

where o is the diameter of a bead and e is the parameter
adjusting the depth of the potential.

The connectivity between the beads is modeled as a
FENE spring,

1 2
Upeng(r) = - EkR% ln(l - ;_%>, (2)
where r is the separation between consecutive beads, k is the
spring constant, and R, is the maximum allowed separation
between connected beads.
In the Langevin dynamics method, each bead obeys the
following equation of motion:™®

mi; == V(Uyy+ Uggng) + Fex — &V, +£i(1), (3)

where m is the monomer’s mass, ¢ is the friction coefficient,
and v; is the monomer’s velocity. F.,, denotes the external
force due to the applied external field. fi(¢) is the random
force and satisfies the fluctuation dissipation theorem,

(fi(1)=0,
fit) - fi(t')) = 6kgTES,; 6t —1"). 4)

The wall is described as L columns of stationary par-
ticles within distance o from one another, which interact
with the beads by the repulsive Lennard-Jones potential. The
wall particle positions are not changed in the simulations.
The pore is introduced in the wall by simply removing W
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beads from each column. The external field exists only inside
the pore corresponding to an external voltage applied across
both ends of the pore.

In our coarse-grained model, a polymer is composed of
two kinds of monomers A and B, which may have different
charges. Under the applied electric field, the driving force is
proportional to the net charge on the monomer. Within the
pore the external forces take the value F.,=(F+A)i for
monomer A and F ,=(F-A)i for monomer B, with i being
the unit vector in the direction along the pore. For a ho-
mopolymer, A=0. This model is not intended for a quantita-
tive study of any real biopolymer such as DNA, where no
charge difference between the monomers exists, but rather
for a study of the generic features induced by heterogeneity,
such as scaling behavior of various physical quantities.

In our simulations, the LJ parameters ¢ and o fix the
system energy and length units, respectively. The time scale
is given by t,;=(mo?/&)"?. The parameters are o=1, R,
=20, k=Te, kzgT'=1.2¢, and reduced friction £=0.7. In the
simulations, L=1 and W=2 unless otherwise stated. The
Langevin equation is integrated in time by a method de-
scribed by Ermak and Buckholz” in 2D. To create the initial
configuration, the first monomer of the chain is placed in the
entrance of the pore. The polymer is then allowed to relax to
obtain an equilibrium configuration such that the first mono-
mer position is fixed at the entrance but the other monomers
are under thermal collisions described by the Langevin ther-
mostat. In all of our simulations we did a number of runs
with uncorrelated initial states and random numbers describ-
ing the random collisions. The translocation time is defined
as the duration of time it takes for the chain to move through
the pore in the direction of the driving force.

As to heteropolymer translocation, the reduced driving
force is set as F=5g/0 and A=2.5e/0 unless otherwise
stated. The corresponding voltages of these parameters are in
the range of real values used in the experiments.7’11

lll. RESULTS AND DISCUSSION

Since our primary objective is to study the effect of het-
erogeneous sequences, it will be useful to present the simu-
lation results into four main categories. As mentioned earlier,
in our model the specific details of the beads are distin-
guished only when they are inside the pore where each type
of bead experiences force Fy=(F+A) and Fz=(F-A). This
gross simplification is deliberately done to identify specific
pore effects on the chain which is assumed to be the most
dominant interaction between the two dissimilar species of
monomers (notice that we do not differentiate the two spe-
cies outside the pore).

A. Effect of sequence on heteropolymer translocation
with a fixed N

As mentioned in the Introduction, one of the main ob-
jectives of studying the translocation dynamics of a single
molecule through a nanopore is to develop methods where
the pore can distinguish polynucleotides not only of different
chain lengths but also of a fixed length with different se-
quences. With that in mind we present in the following sec-
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TABLE I. The translocation times for heteropolymers of the chain length

Heteropolymer translocation

N=128. The driving force F=5.0 and A=2.5

Pure B

ApB, AoB, AoB;
Pure A 110 069400 110 069400 110 069400
AB A\B, A\B, A B
41 460+139 66 734+227 80610+284 89 387+314
AzB, AsB, AsB, AsB;
41460+139 59 069+201 72 681258 81508+293
A3By A3B, A3By A3B;
41460+139 55376+198 67 625+245 76237279

tion some of the specific sequence results. Without any loss
of generality here we present results for a chain of length
N=128, but most of our conclusions are valid for longer
chains as well.

In Table I, we show the average translocation times for
multiblock copolymers with repeat units A,,B,,, where m and
n<3. Increasing row index corresponds to increasing rela-
tive volume fraction for species A. Likewise, for a given row,
an increasing column index raises the volume fraction of
species B. Obviously, the indices n=0 and m=0 represent
homopolymers A and B, respectively. We define m+n as the
block length, and the volume fraction of the B component in
the polymer fz=n/(m+n). As intuitively expected, 7 in-
creases with increasing fp because the driving force for the B
segments is smaller than that for the A species. A three-
dimensional surface plot of the average translocation time is
also shown in Fig. 1.

As an example, let us look at the histograms of translo-
cation times for multiblock copolymers with repeat units
AAAB, AAB, and AB more closely. Here, the values for f3
are 1/4, 1/3, and 1/2, respectively. As shown in Figs.
2(a)-2(c), the histograms for different polymers all obey
Gaussian distribution. With increasing f3, the distribution of
translocation times is wider. If we assume that the relative
increase in 7 is simply proportional to the increase in fp, 7
has an exponential dependence on the volume fraction [Fig.

120000
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§ 80000 " .zo % E!lsg? "4'3? 7
5 A z-é%&‘i"'iﬂ!.""“ S

% 60000 117 “l’ 91%';!«!%4;%!\‘.&'5‘"

* AR

/]

40000 {17 .g?‘ ,4%»\‘@ of
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4 %6 177 2 ®¢
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FIG. 1. Three-dimensional picture of translocation time with repeat units.
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2(d)]. From our data, we indeed find that both the transloca-
tion time and the standard deviation can be fitted by 7
=7,e0920.03)p and g =g_,e1022095 respectively, where
74 and o4 denote the corresponding translocation time and
its standard deviation for homopolymer A.

Interestingly, we also notice that for many short repeat
units A, B,, where m and n<8, the sequence dependence of
the translocation time exhibits a very rich pattern and, in
principle, the result can be used to predict other unknown
sequences, as shown in Fig. 3, where the translocation times
are plotted as a function of f. Here the solid line represents
7=714,(1—fp)+fg7p and the dashed line corresponds to 7
=r1,e/B. A careful look at the location of the translocation
time reveals intriguing features. First, one notices that the
translocation times for all sequences with either n=1 and/or
m=1 are distributed along the curve r=7,e/8. This curve
ends at the pure species A and B. For all other sequences
A,,B,, where n and m are not equal to unity, the translocation
times lie close to the straight line, 7=7,(1—f3)+f575. There-
fore, this type of a plot could be useful for reading an un-
known sequence by looking at its location on the plot.

B. Universal features of heteropolymer translocation

In addition to exhibiting sequence dependent rich struc-
tures, the translocation of heteropolymers also exhibits cer-
tain universal aspects similar to those for the translocation of
homopolymers as found in our previous studies*** and by
other groups.21 Previously, we observed that the translocation
time and velocity of the center of mass scale as 7~ N>” and
v~ N"" for relatively short chains and for longer chains (N
=200), 7~N"*" and v~ N~!, where v=0.75 is the Flory ex-
ponent in 2D. We find that these scaling properties remain
valid for heteropolymers also with arbitrary repeat units
A,.B,, as shown in Fig. 4. This could be easily understood by
noting that at a higher level of coarse graining, the micro-
structure of the chain is irrelevant as far as universal scaling
properties are concerned. We have checked this behavior by
simulating chains of different lengths and repeat units A,,B,,.

C. Sequence dependent features of the symmetric
blocks

Having shown the sequence dependence characteristics
of the heteropolymers as a function of fz, we now further
analyze in detail the sequence dependent results specifically
for the symmetric blocks A,B,, i.e., for fz=0.5. Here, the
block length M=2n, where the minimum value of n=1 for
the repeat unit AB and its maximum value is equal to N/2 for
a chain length N. Figure 5 shows the translocation time as a
function of the block length. The horizontal dotted line cor-
responds to (74+75)/2, where 74 and 75 are translocation
times for homopolymers A and B, respectively. We consider
two different cases where monomer A or monomer B enters
the pore first. When A enters the pore first, for M <4, 7 is
lower than the value (74+75)/2, then overshoots it with a
maximum at M= 16, and finally approaches this value as-
ymptotically for long blocks. When monomer B enters the
pore first, the qualitative behavior is very similar.
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FIG. 2. [(a)—(c)] Histogram of translocation times for multiblock copolymers A,B,, A,B,, and A;B;, which correspond to f3=0.5, 1/3, and 1/4, respectively.
(d) Standard deviation and translocation time as functions of the volume fraction of monomer B. The driving force F=5.0, A=2.5, and the chain length N

=128.

It is noteworthy in Fig. 5 that for M <16 (for N=128)
the translocation time for both cases is a strong function of
the block length. With increasing block length M the depen-
dence is small. This could be attributed to a decoherence
effect or loss of memory for the large A or B segments as
they go through the pore. The persistence length of the chain
in the vicinity of the pore is expected to be different. Let us
suppose that at a certain time the ith chain is inside the pore.

120000 - :
100000 ]
80000 1
[
60000 1
40000 .
00 02 04 06 08 1.0
fB

FIG. 3. Translocation time for heteropolymers with repeat units A, B, for
different values of m and n as a function of the volume fraction of the
monomer B. The driving force F=5.0, A=2.5, and the chain length N
=128.

Evidently, one expects that the (i—p)th monomer will feel
this effect beyond which the chain will recover its bulk char-
acteristics. Likewise, the (i+¢g)th monomer ahead of this ith
chain will also be correlated. As a result, up to the repeat unit
length (p+¢) the dependence will be strong. If one calculates
the correlation function (x(i)x(i+J)) as a function of &, it
will decay as a function of distance & from the monomer i
located at the center of the pore.

D. Waiting time distributions for multiblock
copolymers

Since the detection of the sequence from the transloca-
tion dynamics is among the central issues in this paper, we
have further investigated the increase of 7 with f5 in terms of
the waiting (residence) time distribution as we studied pre-
viously for coarse-grained homopolymers.“’44 We define the
waiting or residence time of monomer s as the average time
between the events that monomer s and monomer s+ 1 exit
the pore. The nonequilibrium nature of translocation has a
considerable influence on this variable. We have numerically
calculated the waiting times for each monomer passing
through the pore.

Figure 6 shows the waiting times for multiblock copoly-
mers with different block sizes. As a reference, we also show
waiting times for homopolymers A and B. As noted by our
previous work,** the waiting time depends strongly on the
monomer position in the chain. For a homopolymer of length
N=128 the waiting time distribution has a maximum at a
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FIG. 4. Scaling of forced translocation for symmetric heteropolymers AB as a function of chain length: (a) scaling of translocation time and (b) scaling of

average velocity of the center of mass. The driving force F=5.0 and A=2.5.

value s close to the middle monomer in the chain (Fig. 6).
We note that for a longer chain, this maximum shifts towards
the end of the chain.****

For the symmetric heteropolymer AB we notice that the
residence time portrays characters of the individual mono-
mers across the entire chain, as shown in Fig. 6. An interest-
ing result is that the residence times for the ordered het-
eropolymers A,B, (for n>2) exhibit “fringes” similar to
double slit optical grating. To draw the analogy, we note that
in a double slit experiment the diffraction envelope is limited
by the width of the individual slit. Likewise, here we note
that it is the residence times of the individual homopolymers
A and B that serve as the envelope (maximum and mini-
mum). The block length brings in additional features that
oscillate between these two bounds. It is worth noting that in
a double slit experiment the ratio d/b, where d is the distance
between the slits and b is the width of the individual slit,
dictates the number of fringes. Here, this ratio d/b translates
to N/2n. We also notice that the waiting time for the ho-
mopolymer A or B (around each maximum or minimum)
develops additional fine structures. Evidently, these addi-
tional fine structures of residence times of the individual
monomers as a function of their relative position in each

80000 I ' ' ' l :
78000-
76000—-.... P s
74000-

72000 +

Translocation time

70000 -

—eo— A enters the pore first. J
—o— B enters the pore first.

7 ¥ T s T ¥ T ) T r T L T Y T s T
0 16 32 48 64 80 96 112 128
Length of the Block

FIG. 5. Ttranslocation time as a function of the block length for multiblock
copolymers with symmetric repeat units A,B,. Here, the length of the block
M=2n, the driving force F=5.0, A=2.5, and the chain length N=128.

block are a natural consequence of the presence of a dissimi-
lar block on either side of a given block. One immediately
notices that the value of the repeat unit n can easily be read
from the number of points between two minima, enabling us
to calculate the length of each block. The number of peaks is
exactly equal to N/(2n) [128/8=16 in Fig. 6(c), 128/16=8
in Fig. 6(d), and 128/128=1 in Figs. 6(e) and 6(f)]. Thus, if
the residence time can be measured experimentally, informa-
tion about the block length is immediately accessible.

The dependence of the translocation time on the block
length, as shown in Fig. 5, can be understood according to
the waiting time distribution. As shown in Fig. 6(a), the wait-
ing times of the monomer B in heteropolymer AB are much
shorter than that of its homopolymer, while for the monomer
A they are slightly longer. For the B monomer the last and
next monomers are A, which leads to less backward events,
resulting in faster translocation. As a result, 7 is less than
(74+75)/2. In Fig. 6(b) and 6(c), for A,B, and A,B, het-
eropolymers, all the monomers in the basic block show dif-
ferent waiting time behaviors. The first A and the first B
monomers in the repeat unit show slightly longer and shorter
waiting times compared with their homopolymers, respec-
tively. However, for the other A monomers, their waiting
times are shorter than that of homopolymer A, while the
opposite is true for the other B monomers. The latter domi-
nates the final outcome for translocation time, which leads to
a rapid increase of translocation time with block size.

IV. SUMMARY AND CONCLUSIONS

In this work, we have investigated the dynamics of het-
eropolymer translocation through a nanopore driven by an
external force using 2D Langevin dynamics simulations with
an aim to characterize both specific and universal sequence
aspects of translocation. We find that scaling exponents of
the chain length dependence of the translocation time and the
velocity of the center of mass are the same as that of a
homopolymer. This can be easily reconciled with further
coarse graining of the chain in terms of the individual blocks
of length m+n for A,,B,. The translocation times plotted as a
function of m and n reveal novel features thus far not re-
ported. The plots show that the translocation time 7
=17(m,n) is unique for small values of the block m+n. We
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FIG. 6. Waiting times of all segments s for multiblock copolymers with different repeat units: (a) AB, (b) A,B,, (¢c) A4B,, (d) AgBg, and (e) AgBg, for the case
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also notice that the average translocation time 7 falls under
different curves dependent on the specific patterns of the
sequence. Moreover, a detailed analysis of the symmetric
multiblock copolymers reveals unique and intriguing fea-
tures. We find that the residence times of the individual
monomers act as a fingerprint of the sequence. In particular,
there is a striking similarity between the patterns observed
for the distribution of the residence time for heteropolymers
A,B, of length N and the interference pattern obtained from
a double slit with N/(2n) interference fringes. This mapping
can possibly be extended from symmetric blocks to arbitrary
repeat units A,,B,, which then may lead to a better under-
standing of interpreting nanopore based sequence detection.
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