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Eigenvector approach for solving nonisotropic mixing formulas 

Ari Sihvola 

Electromagnetics Laboratory, Helsinki University of Technology, Espoo, Finland 

Frank Olyslager 
Department of Information Technology, University of Ghent, Ghent, Belgium 

Abstract. This paper deals with mixtures of nonisotropic media. The mixing formulas to 
describe the effective material parameters of the mixture are complicated expressions 
where the different parameter dyadics are coupled. Using six-vector notation, the different 
mixing rules become more manageable. However, for certain effective theories the matrix 
equations have been tractable only through numerical approach. Here we present a way to 
solve the effective material parameters in closed form, using an approach where the 
eigenvectors of the material six matrix are exploited. As a numerical example, the effective 
parameters of a mixture are calculated where the inclusion material is a mirror image of 
the background medium. 

1. Introduction 

The family of mixing formulas according to [Sih- 
vola, 1989] 

8eft -- 80 8 -- 80 
=f (1) 

280 + •Seff - 80) 8 + 280 + •Seff - 80) 

predicts the effective permittivity 8eft of a mixture 
where inclusions of permittivity e are embedded in 
free-space background (80). The volume fraction of 
the inclusions is f. This expression contains important 
mixing rules that can be picked up with the dimen- 
sionless parameter •,. For example, the choice •, = 0 
reproduces the Maxwell Garnett formula [Maxwell 
Garnett, 1904]: 

8 -- 8 0 

8eft-- 80 q- 3f80 (2) 
• + 2•0 -f(s - •0) 

Other integer values for •, give other well-known 
mixing rules. The value •, = 3 gives the so-called 
"Coherent Potential (CP) formula" [Kohler and Pa- 
panicolaou, 1981]. Correspondingly, •, = 2 gives the 
B6ttcher mixing rule [Bruggeman, 1935; BOttcher, 
1952], often labeled as the "Bruggeman formula." 

To look at more complex materials, bianisotropic 
media obey the constitutive relations 
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(4) 

Here the relation between the electric and magnetic 
fields (E and H) and the electric and magnetic flux 
densities (•) and •) is contained in the permittivity 
• - 80•r and permeability • = /•0•r and the 

: 

magnetoelectric crosscoupling in • and •. The dyadic 
nature of these material quantities emphasizes the 
anisotropy of the material. The biisotropic material is 
an important special case [Lindell et al., 1994] which 
requires four parameters' All dyadics are (bec_ause of 

_ 

is_otr_opy) multiples of the unit dyadic: • = •I, • = 
P], } = (X -jK)X//-•080•, and } = (X + JK)V'/-•080•. 
Here X and • are the dimensionless nonreciprocity 
and chirality parameters, respectively, and/•0, 80 are 
the vacuum constants. 

Six-vector approach has been developed to account 
for bianisotropic effects in electromagnetics problems 
[Lindell et al., 1995]. Six vectors combine electric and 
magnetic quantities (that both have three compo- 
nents) into a single vector with six components. The 
electromagnetic six-vector field o and six-vector flux 
density d look like 

] Icao (5) 

where use is made of the idea by Rikte [1994] to 
balance dimensionally the fields and flux densities. 
The constants are c = 1/V'/-•080 and ,/ = X//-•0/80. 
Then the constitutive relations (3)-(4) can be written 
as a single equation: 

1399 
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d= M.e (6) 

where 

M= c} •1, r (7) 

is the six dyadic of the material parameters. It has a 
6 x 6 element matrix representation, and the full 
medium description requires 36 parameters. 

Using six vectors and six dyadics, the dielectric 
mixing rule (1) can be generalized into mixtures with 
bianisotropic inclusions. Sihvola and Pekonen [1996] 
make the conjecture that the effective material six 
dyadic 

[•_eff, r C •eff Meff-- C•eff •1, eff, r (8) 

obeys the formula 

(Meff - M0)' [Meff + 2M0 + •'(Meff - M0)] -1 

=f(M - M0)' [M + 2M0 + •'(Me• - M0)] -1 (9) 

The formula (9) satisfies the tests of reducing to all 
previously known isotropic and nonisotropic mixing 
rules. The inclusion six-dyadic M can be fully bianiso- 
tropic (36 parameters), and the medium on which the 
polarizabilities are referred to is allowed to be biiso- 
tropic (four parameters) in the most general case. 
This medium is, for example, M 0 for Maxwell Garnett 
and Meff for the Bruggeman case. Note, however, that 
since the terms in (9) are dyadic, the order of 
multiplication and inversions needs more attention 
than in the scalar isotropic case. Equation (9) is a 
second-order matrix equation for Meff which is more 
difficult to solve than the pure scalar dielectric case 
(1). The iterative approach to (9) has been shown to 
be successful [Sihvola and Pekonen, 1996]. In the 
following we look for a direct approach to derive Mef r. 

2. Eigenvector Solution 

We now will derive a systematic solution of the 
matrix (9). In general, it is possible to diagonalize 
every matrix except for very special cases where the 
algebraic and geometric multiplicity of the eigenval- 
ues differ. We will not consider these special cases 
here. As a first step, we diagonalize the matrix M 0 as 

Mo = Vo' Lo' V• -1 (10) 

where L 0 is a diagonal matrix with the eigenvalues of 
the matrix M 0 on its diagonal and V 0 is a matrix with 
the eigenvectors of M 0 as its columns. (Although the 
background material is not allowed to be fully bi- 
anisotropic, it is not necessarily diagonal. For isotro- 
pic chiral and nonreciprocal media there are off- 
diagonal terms in the matrix Mo. ) From the 
diagonalization of M 0 it is easy to construct its square 
root denoted by X/-•0: 

•0 = V0' •0' V• -1 (11) 

where the square root of the diagonal matrix is the 
diagonal matrix with the square roots of the diagonal 
elements. After multiplication from the left by 
X/-•0 -1 and from the right by X/-•0, (9) can be 
rewritten as 

•0 -1. (Meff _ Mo)' •0 -1' •0' [Meff + 2Mo 

+ l,'(Meff- Mo)] -1 . •0 --f•0 -1 

ß (M - Mo)' •0 -1" •0' [M + 2M0 

+ v(Meff- Mo)] -1' •o (12) 

Let us now define M r and Meff, r as 

-1 M. x/-•o Mr -- h/--•0 ß -1 (13) 

and 

Meff, r -- •j-•0-1' Meff ß •0 -1 (14) 
With these definitions, (12) becomes 

(Meff, r - I) ' [Meff, r + 21 + •'(Meff, r - I)]-1 

= f(Mr -I)' [Mr + 21 + v(Meff, r -I)] -1 (15) 

where I is the 6 x 6 unit matrix. Multiplying from the 
right by [Mr + 21 + v(Mefr, r - I)] and from the left by 
[•eff, r q- 21 + 1,,(•eff, r - I)] and noting that the 
dyadics •eff, r -- I and •eff, r + 21 + 1,,(•eff, r - I) 
commute, we arrive at 

2 [Mr + 2(1- •,)l f(1 + •,)(M -I)] •'Meff, r + Meff, r ' -- r 

-- [Mr + (2 - •')l + f(2 - •,)(Mr - I)] = 0 (16) 

(Two dyadics of the form aMeff, r + /31 with arbitrary 
scalar coefficients a and /3 commute.) To solve this 
equation, we also diagonalize the matrix M r as 

Mr = Vr' Lr' V• -1 (17) 
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where now ¾r contains the eigenvectors of M r and I r 
its eigenvalues. Define a new matrix Leff, r as 

leff, r = V• -1' Meff, r ß Vr (•8) 

where as for now, the matrix leff, r is of unknown type. 
With these definitions it is possible to rewrite (16) as 

2 

vLett, r +Lett, r' [Lr + 2(1 - v)l-f(1 + v)(Lr - I)] 

- [Lr + (2- v)l+f(2- v)(Lr-I)] = 0 (19) 

Since we know the matrices L r and I to be diagonal, 
the unknown matrix Leff, r must also be a diagonal 
matrix. Consequently, the matrix equation is reduced 
to an uncoupled set of six scalar quadratic equations: 

2 

Vh. eff, r,i + h. eff, r,i[h.r, i + 2(1 - v)--f(Xr,i- 1)(1 + v)] 

--[•.r,i q- 2- 1• q- f(•r,i- 1)(2- v)] = 0 (20) 

where Xeff, r,i and Xr,i, (i = 1, ..., 6), are the diagonal 
elements of leff, r and lr, respectively. The solution of 
(20) is given by 

Xr, / q- 2(1- v) 
heft'r'/ = -- 2v (21) 
with 

A =f2(hr, i - 1)2(1 + v) 2- 2f(Xr, i -- 1)[hr,i(1 + v) 

+ 2(1 - 2v)] + [Xr, i + 2(1 - v)] 2 

+ 4V(Ar,i + 2- v) (22) 

where we only kept the positive square root. In 
tracing back on our steps we can easily express Meff as 

Mett: •0' Vr'/eff, r' V•-i. •r-•0 (23) 
which is the desired solution. 

One may note that for isotropic background the 
determination of X/--•0 becomes trivial. In the case of 
fully biisotropic background medium the calculation 
of X/--•0 and also M r for general bianisotropic inclu- 
sions can be done in closed form as shown in the 

appendix. Remark that the only difficulty in this 
procedure is the determination of the eigenvalues of 
Mr. In general, this needs to be done numerically. 
Fortunately, very good numerical software packages 
are available to determine eigenvalues and eigenvec- 
tors, certainly for these low-dimensional matrices that 
we encounter here. Finally, we want to remark that 
these diagonalization procedures are independent of 

the volume fraction f and the nature of the mixing 
rule v. (The appearance of v in the denominator of 
(21) may bother those who are interested in looking 
for Maxwell Garnett results of effective media (v = 0 
gives the Maxwell Garnett formula). However, for the 
MG case the starting equation itself (9) can be written 
in a linear explicit form for Meff and calculated easily, 
and there is no need for the eigenvector approach at 
all.) 

We intentionally used the subscript r in Meff, r and 
M r to indicate that these are the material parameters 
relative to the background. In the case of a vacuum 
background medium the elements in the Meff, r and 
M r matrices are the traditional relative material 
parameters. 

3. Special Cases 

In this section three examples will be studied to 
illustrate the solution technique. We will start with 
isotropic chiral inclusions embedded in isotropic 
background. In the second example the background 
will also become chiral. As mentioned, it is possible to 
construct Meff in closed form as soon as the eigenval- 
ues of the M 0 and M r matrices are known. For 
isotropic chiral media their calculation is simple. In 
the last special case, inclusion materials consisting of 
coaxial bianisotropic inclusions are considered. 

3.1. Isotropic Chiral Inclusions in Vacuum 
Background 

Vacuum background means M 0 = I, and (13) 
shows that M r - M. For isotropic chiral inclusions the 
M r matrix can be written as 

Mr = jgj i,l,r! ] (24) 
The eigenvalues of this matrix are easily obtained. 
There are only two different eigenvalues Xr,+_ each 
with threefold multiplicity. 

___+ + 32 (25) Ar,___ - 2 - 2 

The eigenvector matrix V r can be written with the two 
eigenvectors as the columns, and also its inverse is 
found easily: 

Vr '-- (Er- •r,+)• (Er- •r,-) • (26) 
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1 

j•:(Ar,+ - Ar,-) 
(er -- •-r - )• --j •=i] 1 •'r q- •/•-0,+ •-0,- 
--(8 r --,•.'r,+)• jKIJ (27) •r = 00,+X0,-( XX•0,+ + X•0,-) 

The effective medium matrix comes from using (23) 
(note that M 0 is the unit matrix now): 

1 

Meff = Meff, r = Xr,+ -- Xr,- 

•-eff, r,+(Sr -- •-r-)- •-effr,-(Sr- •-r +)]• ' jK(Xe'ff, r,+ -- •.e'ff, r,-)• ' 

--jK(Aeff, r,+ -- Aeff, r,_)• ] [,•-eff, r,-(•r- '•-r,-)- ,•-eff, r,+ (•r- '•-r,+)] • (28) 
This is an explicit result for the effective material 
parameters of the chiral-in-vacuum mixture for all 
different mixing rules. Earlier in the literature these 
results have been calculated iteratively only [Kampia 
and Lakhtakia, 1992; Sihvola and Pekonen, 1996]. 

3.2. Isotropic Chiral Inclusions in Isotropic 
Chiral Background 

Let us next allow also the background medium to 
be chiral. Denote the background parameter values 
with a tilde, whence M 0 is of the form 

' [•'r• --j•=•] 
Mo [j•I •CrI ] (29) 

The two different eigenvalues are 

_ + + •2 (30) A 0,__+ - 2 - 

This means that we can write X/-•O -1 as 

with 

1 •'r q- N/•' 0,+ 
00,+x0,-( + x/x0,-) 

+ 

(3•) 

(32) 

(33) 

(34) 

If the inclusions are described by the six-dyadic M of 
the form 

M • •r• --Jql (35) jK] p, rI J 
then the matrix M r is given by: 

Mr • (36) 
with 

•r /&r K 
= -- + -- q- 2 -- (37) /•r /}r •: •k• r 

/&r Er 

•r = q- -- -[- 2 -- (38) 
gr a 

•r /&r K K 

k- k•r + kX•r +-- + (39) • •/t} r/•, r 

Now the problem has been reset into the complexity 
of the previous section. To find Meff, r one proceeds as 
was done for the case with vacuum background. The 
final step, calculating the absolute material parame- 
ters in Meff , is done easily by multiplying Meff, r from 
the left and the right with X/-•0 as shown in (23). 

3.3. Coaxial Bianisotropic Inclusions 

As the last example, we look at a more complex 
inclusion material which still allows a closed form 

diagonalization of its six_-dyadi_c M. We assume that 
the four dyadics •r, •r, •', and • are general diagonal 
matrices 

• = O• xu xu x q- O•yUyUy q- O• zu zu z (40) 

with a = er,/.l,r, •', and •. This material is said to be 
coaxial bianisotropic, sometimes also called biaxial or 
triaxial. From the appendix it follows for a general 
biisotropic background that in Mr, given by 

the dyadics •;r, •, , and •r remain diagonal. 
The six eigenvalues of Mr are given by 

(41) 
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: _+ + c 2•-• •, (42) 
"- 2 2 

with i = x, y, and z. The eigenvector matrix V r is 
found to be 

Vr 

i•r,x,+ -- •'x i•r,x,- -- •'x 0 
0 0 ikr,y,+ -- 
o o o 

= c•x C•x o 
0 0 C•y 
0 0 0 

o o o 

i•r,y ,_ -- •y 0 0 
0 i•r,z,+ -- •'z i•r,z,- -- 
0 0 0 

C•y 0 0 
0 C•z C•z 

Finally, from (23) one derives Me•. 

(43) 

4. Numerical Example and Discussion 
To illustrate the foregoing theory, let us calculate 

the effective macroscopic parameters of a symmetri- 
cal mixture where isotropic chiral inclusions are em- 
bedded in isotropic chiral environment. The material 
parameters of the components, relative to vacuum, 
are 8 r -- 2, •r -- 1.5, and K = + 1 for the inclusions 
and 8r = 2, •r -- 1.5, and K - -1 for the 
background medium. In other words, the permittivity, 
permeability, and chirality parameters are the same 
for the inclusion and background; the only difference 
is the sign of •. This means that the media are the 
same except that samples of inclusion medium and 
background medium are mirror images of each other: 
Inclusion medium is right-handed, whereas the back- 
ground medium is left-handed. 

With the formulas of the previous section the 
effective parameters of the mixture were calculated. 
The results are shown in Figures 1-3 as functions of 
the volume fraction of the inclusions. Four different 

mixing rules are treated: Maxwell Garnett (v = 0), 
v = 1, Bruggeman (v = 2), and Coherent Potential 
(v = 3). From the calculated curves, several striking 
conclusions can be drawn. 

First, Figure 1 shows that although both compo- 

2.0 -• Moxwell Gornett // 
I \ -- - nu = 1 

I •--, Bruggemon 
,x---- ,9' 

3.7 - 

1.6 • • I I I I I 
0.0 0.; 0.s 0.s 

Volume fraction 

Figure 1. Macroscopic permittivity 8eff, r of a chiral-in- 
chiral isotropic mixture where the background is left- 
handed material with parameters •:r -- 2, [.1, r -- 1.5, and 
K r -- --1 and parameters •:r -- 2, [.1, r -- 1.5, and K r -- d-1 
for the inclusions (parameters given relative to vacuum). 
The variable f is the volume fraction of inclusions, and the 
four different models correspond to the values 0, 1, 2, and 
3 for the parameter v. Note that two of the curves (those 
corresponding to v = 1 and v - 2) are very similar. 

nents have the same electric permittivity, the mixture 
permittivity 8eft is not the same. It is lower than that 
of the components but of course approaches that for 
the limiting cases f = 0 (no inclusions but homoge- 
neous background) and f = 1 (no background, 
everything just inclusions). The effect on permittivity 
is the magnetoelectric coupling. If the chirality of the 
components vanished, the effective permittivity of the 
mixture would be constant, that of background and 
inclusion, independent of the volume fraction. The 
curves for •, = 1 and •, = 2 are symmetrical and 50/50 
mixture yields the minimum permittivity. Maxwell 

1.50 - 

'• 1.45 - .,-• 

.,• 

S •.4o - 

m 1.35 - 

• 1.30 - 

1.25 
o 

-- Moxwell Garnett / 
--- nu = 1 // 
-- Bruggemon /• 
..... Coherent Potentiol /,/ 

/? // 
/ ? /// 

/ ,,' 

"'k...... •.....•_ ,,,,,' 

o o.'3 o.'s 03 
Volume fraction 

Figure 2. The same as Figure 1, except for macroscopic 
permeability •ef•,r. 
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0.5 -'4 

• o.o- 

.• -o.5 - 
o 

• -1.0 
0 

Maxwell Oarneff 
nu = 1 
Bruggeman .-"•- 

...... Coherent Potential ..'•/_•/" 

........................................... Z;-•-• ............................................. 

I I I I I I I I I I 

0 0.• 0.2 0.3 0.• 0.5 0.6 0.? 0.8 0.9 •.0 
Volume 

Figure 3. The same as Figure 1, except for macroscopic 
chirality parameter gee. 

Garnett and Coherent Potential are unsymmetrical, and 
the lowest effective permittivity of these four models is 
predicted by the Coherent Potential mixing rule. 

Figure 2, the effective permeability /Xe•, looks 
similar in form to Figure 1. The different mixing rules 
behave similarly in terms of permeability as for 
permittivity. This is actually quite natural because of 
the duality between the electric and magnetic quan- 
tities. Chiral magnetoelectric coupling treats both 
electric and magnetic excitations on an equal footing. 

Perhaps the most interesting information can be 
gleaned from Figure 3 which displays the effective 
chirality parameter of this mixture where right- 
handed inclusions occupy space in similar but left- 
handed ambient medium. Of course, all curves, inde- 
pendent of the mixing model, run from left-handed 
(negative chirality parameter) behavior to right- 
handed (positive chirality parameter) behavior as the 
volume fraction of the inclusions increases. But we 

can observe a difference in the predictions of the 
different models: An increase in the v value increases 

the effective chirality parameter. 
Also, the point where the effective chirality factor 

vanishes depends on the model. The existence of this 
crossing point Keff = 0 is natural: For a certain mixing 
ratio a left-right mixture appears racemic. We can 
observe that the Bruggeman model predicts racem- 
ization at exactly f = 0.5. For Coherent Potential this 
"zero-crossing" volume fraction is smaller, and for 
Maxwell Garnett it is larger. In the dielectric mixing 
studies the Bruggeman mixing rule is sometimes 
termed "Bruggeman symmetric mixing rule," and in 
light of Figure 3 this label is deserved: Out of these 
four models, Bruggeman indeed treats the inclusion 
and background most symmetrically. 

This racemization prediction might serve as a sen- 
sitive test of the validity of mixing formulas. The sign 
of the effective chirality can be easily measured by 
sensing into which direction the polarization of a 
linearly polarized wave rotates as the wave propa- 
gates through a chiral sample [Lindell et al., 1994]. 
For a racemic sample the rotation vanishes. 

5. Conclusion 

In conclusion, a systematical scheme has been 
presented to calculate effective material parameters 
of complex nonisotropic mixtures using an eigenvec- 
tor decomposition of six-dyadic mixing formula. In 
the formula are contained several mixing rules that 
are established in the studies of dielectric mixtures. 

There are limitations to this formula (9). First, as all 
quasi-static mixing rules, this is also limited to low 
frequencies. It can be used for time-varying electro- 
magnetic fields as long as the wavelength of the field 
is considerably larger than the size of the inclusion 
spheres. Secondly, the material has to be isotropic or 
biisotropic to which the polarizabilities are referred. 
And third, the (bi)anisotropic inclusion spheres have 
to be aligned so that their material dyadic has the 
same orientation in the global coordinate system. If 
there is an orientation distribution, the orientational 
averaging has to be included for the inclusion mate- 
rial matrix and the formula (9) needs to be modified. 

Appendix 

The most general biisotropic medium contains four 
scalar material parameters: In addition to the permittiv- 
ity, permeability, and chirality parameters, the nonreci- 
procity parameter appears in the constitutive relations 
[Lindell et al., 1994]. In the most recent literature the 
possible existence of nonreciprocal biisotropic media 
(sometimes called Tellegen media) has been doubted 
using arguments on the structure of the electromagnetic 
theory [Lakhtakia and Weiglhofer, 1994]. There is no 
broad agreement about this question [Sihvola, 1995]. 

In this appendix, however, we give general expres- 
sions for •r for a general biisotropic background with 
M 0 given by 

•r• (•5 - J-?)•] (44) M0 = (• + j•)• •rI ] 
The eigenvalues are 

_ + + •52 + k2 (45) A 0,__+ - 2 - 2 
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which leads to 

•o -• = (46) 
, 

where (32)-(34) remain valid and where 

-- = (47) 
+ ,50,+) 

The relative matrix M r derived from the general form 
(7) now becomes 

•3r C• (48) Mr-c• •r 
where again c = 1/•0e0 and 

(49) 

Itl, r : q- q- 

+•r (50) 

q- •l•r•r 

(5•) 

(52) 
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