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Polarizability of conducting sphere-doublets using series of images
Henrik Walléna) and Ari Sihvola
Electromagnetics Laboratory, Helsinki University of Technology, P.O. Box 3000 FIN-02015 HUT, Finland

(Received 26 January 2004; accepted 17 May 2004)

The classical electrostatic problem of two nonintersecting conducting spheres in a uniform incident
electric field is considered. Starting from the basic Kelvin’s image principle, the two spheres are
replaced with equivalent series of image sources, from which the polarizability is calculated.
Explicit expressions for the axial and transversal components of the polarizability dyadic are found
by solving the recurrence equations. Efficient numerical evaluation of the different series is also
discussed. ©2004 American Institute of Physics. [DOI: 10.1063/1.1769094]

I. INTRODUCTION

Polarizability is one of the basic parameters describing
the electrostatic response of a given object. It is of great
importance in modeling of the effective permittivity of ran-
dom and ordered heterogeneous materials as well as the first-
order scattering effects. Accurate information of the polariz-
ability of interacting objects helps us to find a more realistic
model for a dense material mixture where scatterers are
closely located to each other.

In this paper we consider the electrostatic boundary
problem of two conducting spheres of radiusa, distanceL
apart as shown in Fig. 1, placed in a uniform incident electric
field E0. We restrict the consideration to the nonintersecting
case,L.2a, and only consider the polarizability of the dou-
blet.

The problem is not new and numerous solutions and
applications have been presented, but there is still room for
improvement for the solution of this canonical problem.

Perhaps the first complete solution, based on solving the
Laplace’s equation in bispherical, coordinates, was presented
by Levine and McQuarrie.1 Solutions using series of images
have also been presented, e.g., in Refs. 2–4. However, all
presented results contain infinite series, in one form or an-
other. The limiting case of touching spheres has an analytic
solution. All series converge rapidly when the distance be-
tween the spheres is large, but near contact the convergence
is very slow.

The intersecting case,L,2a, has also been considered
in many papers. Recently, Felderhof and Palaniappan5 pre-
sented a general solution in integral form. The integrals can
easily be numerically evaluated with high accuracy, so there-
fore we can consider the intersecting case solved.

II. POLARIZABILITY

The polarizability of an object is a measure of its re-
sponse to an incident electric field. Assume a uniform elec-
tric field E0 in a homogeneous space with permittivitye.
When we introduce an object in the incident field, the total
field will be perturbed. If the object has no net charge, it can
be approximated by its induced dipole momentp, and the

polarizability is defined as the ratio between the induced di-
pole momentp and the amplitude of the incident fieldE0.

In general, the polarizability is a linear mapping that can
be expressed using a dyadica% as

p = a% ·E0. s1d

Let us define the normalized polarizability of an object as

a% n =
a%

eV
, s2d

wheree is the permittivity of the surrounding space andV is
the volume of the object. With this definition the normalized
polarizability of a conducting object depends only on the
shape of the object.

Consider first one conducting sphere of radiusa in a
uniform incident fieldE0. The perturbation of the field out-
side the sphere can be calculated exactly by replacing the
sphere with a dipole

p = 3eVE0 = 4pea3E0 s3d

at the center of the sphere.6 Thus, the normalized polarizabil-
ity of a conducting sphere is a scalaran=3.

Consider now the polarizability of the conducting sphere
doublet in Fig. 1. Due to the rotational symmetry, the polar-
izability dyadic must be axial. Choosing the coordinate sys-
tem such that the symmetry axis is parallel to thez axis, we
can express the normalized polarizability as

a% n = atsuxux + uyuyd + azuzuz, s4d

where at and az are the normalized transversal and axial
polarizabilities.

III. KELVIN’S IMAGE PRINCIPLE

The Kelvin’s image principle7 offers an elegant solution
for the electrostatic boundary problem of a point charge near
a conducting sphere. Consider a point chargeQ at distance

a)Electronic mail: henrik.wallen@hut.fi FIG. 1. Geometry of the problem: a pair of conducting spheres.
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d.a from the center of a grounded conducting sphere with
radiusa as in Fig. 2. The potential outside the sphere remains
the same if we replace the sphere with an image point charge

Qi = −
a

d
Q, s5d

inside the sphere at the inverse point

di =
a2

d
. s6d

If the sphere is insulated we need to add a balancing charge
−Qi at the center of the sphere to get zero total charge on the
sphere.

The image principle for a dipole can be obtained by
considering a system of two point charges +Q and −Q sepa-
rated by a distanceb. Lettingb→0, while keeping the dipole
momentp=Qb constant, we get the image systems shown in
Fig. 3. In the transversal case, we get an oppositely directed
image dipole

pi = −
a3

d3p s7d

at the inverse pointdi. In the radial case, we get a dipolepi

as well as a point chargeQi at the inverse pointdi:

pi =
a3

d3p, Qi = ±
a

d2upu s8d

whereQi .0 if the dipolep is directed away from the sphere
as in the figure andQi ,0 in the opposite case. For an insu-
lated sphere we also need to add a charge −Qi at the center of
the sphere to get a zero total charge.

A system of two nonintersecting conducting spheres can
be replaced by infinite series of images inside both spheres.
This idea is about as old as the basic Kelvin’s image prin-
ciple itself,8 and it has also been treated in several books,
e.g., by Maxwell9 and Smythe10 for calculating the capaci-
tance of two spheres.

IV. IMAGE SYSTEMS FOR THE SPHERE DOUBLET

To solve the polarizability of the sphere doublet, it is
sufficient to consider the cases of transversal and axial exci-
tations(E0'uz andE0iuz, respectively).

In both cases we replace the spheres by equivalent image
sources. To solve the polarizability components we need to
compute the total induced dipole moment, which we get by
summing the dipole moments of the image dipoles and pairs
of image point charges.

A. Transversal case

In the transversal case the excitationE0 is perpendicular
to the symmetry axis of the doublet. In this case the image
series will just consist of dipolespniE0.

To construct the image series we proceed as follows:
First replace each sphere with a dipolep0=3eVE0 at the
center of the sphere. Then add dipolesp1 using Eq.(7) to
compensate for the first dipoles. Further, add dipolesp2 to
compensate for the dipolesp1 and so on as shown in Fig. 4.

We can express the image positions as distances from the
center of the spheres as

d0 = 0, dn+1 =
a2

L − dn
, s9d

and the amplitudes of the dipoles are

p0 = 3eVE0, pn+1 =
a3

sL − dnd3pn. s10d

The induced dipole moment is simply the sum of all dipoles
pn. Thus, the normalized polarizability is

at =
1

eVE0
o
n=0

`

s− 1dnpn = 3o
n=0

`

s− 1dnpn

p0
. s11d

Since the dipoles have alternating directions, we get an alter-
nating sum for the normalized polarizability.

In the touching limit, whenL→2a, the solutions of Eqs.
(9) and (10) are

dn =
n

n + 1
a, pn =

p0

sn + 1d3 , s12d

as is easy to verify. The limiting value for the normalized
transversal polarizability can therefore be expressed using
the Riemann zeta functionzsxd as

at = 3o
n=0

`
s− 1dn

sn + 1d3 =
9

4 o
m=1

`
1

m3 =
9

4
zs3d < 2.704 63. s13d

FIG. 2. Kelvin’s image principle for a point charge near a grounded con-
ducting sphere.

FIG. 3. Images for a dipolep at distanced from the center of a conducting
sphere of radiusa.

FIG. 4. Image systems for the transversal case.

J. Appl. Phys., Vol. 96, No. 4, 15 August 2004 H. Wallen And A. Sihvola 2331
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B. Axial case

In the axial case the excitationE0 is parallel to the sym-
metry axis of the doublet, and the image system consists of
both series of dipolespn and series of point chargesQn.

Again, we first replace each sphere with a dipolep0 at
the center of the sphere. Using Eq.(8) we get the images of
the first dipoles at distanced1=a2/L from the center of the
spheres as

p1 =
a3

L3p0, Q1 =
a

L2p0. s14d

Then we need to compensate for bothp1 andQ1, giving the
images at distanced2=a2/ sL−d1d from the center of the
spheres as

p2 =
a3p1

sL − d1d3, Q2 =
ap1

sL − d1d2 +
aQ1

sL − d1d
, s15d

and so on as shown in Fig. 5. Note that all dipoles have the
same direction asE0 and that the signs of the chargesQ1,Q2

above are for the left sphere in the picture. All point charges
in the right sphere have opposite signs.

Actually, we should also add a balancing charge7Qn at
the center of the spheres at each step, but this would lead to
an ever increasing number of series of point charges, which
would be highly inefficient. Instead, we add an initial charge
Q0 at the center of the left sphere and −Q0 at the center of the
right sphere and require that the total charge in each sphere is
zero. The recurrence equation forQn then becomes

Qn+1 =
a

L − dn
Qn +

apn

sL − dnd2, o
n=0

`

Qn = 0. s16d

For dn andpn we get the same recurrence equations, Eqs.(9)
and(10), as in the transversal case. This time all dipoles have
the same orientation and furthermore we must take the
charges into account when calculating the normalized polar-
izability as

az = 3o
n=0

`
pn

p0
− 3o

n=0

` SL

2
− dnDQn

p0
. s17d

Again, in the touching limitL→2a, we get the solutions
in Eq. (12) for dn andpn and Eq.(16) is simplified to

Qn+1 =
n + 1

n + 2
Qn +

p0

asn + 1dsn + 2d2 . s18d

This is a linear first-order difference equation of the form

xn+1 = cnxn + bn, s19d

which has the general solution11

xn = Sp
k=0

n−1

ckDx0 + o
m=0

n−2 S p
k=m+1

n−1

ckDbm + bn−1. s20d

Using Eq.(20) and the summation formula

o
k=1

n
1

ksk + 1d
= o

k=1

n S1

k
−

1

k + 1
D = 1 −

1

n + 1
, s21d

the solution of Eq.(18) can be simplified to

Qn =
sQ0 + p0/adn + Q0

sn + 1d2 , s22d

whereQ0 is yet to be determined. This presents a somewhat
pathological problem since the sumonQn diverges like the
harmonic series unless we chooseQ0=−p0/a, but then again
the total charge is still not zero:

o
n=0

`

Qn = 5 − `, Q0 , − p0/a

− sp0/adzs2d, Q0 = − p0/a

`, Q0 . − p0/a.

s23d

The limiting value of the polarizability is, however, well de-
fined if we setQ0=−sp0/ads1+dd and letd→0, giving

az = 6zs3d − 3dzs2d ——→
d→0

6zs3d < 7.212 34, s24d

in agreement with previously published results.1–4

V. SOLUTION OF THE RECURRENCE EQUATIONS

The recurrence equations fordn, pn, and Qn can be
solved also in the general case using some suitable substitu-
tions and recurrence formulas for the Chebyshev polynomi-
als.

Let us start with Eq.(9) for dn. This is a special case of
the Riccati equation,11 whence we make a substitution

un+1

un
=

L − dn

a
, u0 = 1, s25d

which gives an ordinary linear second-order recurrence equa-
tion

un =
L

a
un−1 − un−2, u0 = 1, u1 =

L

a
. s26d

Comparing the above with the recurrence relations for the
Chebyshev polynomials11

Tn+1sxd = 2xTnsxd − Tn−1sxd, T0 = 1, T1 = x, s27d

Un+1sxd = 2xUnsxd − Un−1sxd, U0 = 1, U1 = 2x, s28d

we see that the general solution can be expressed as a linear
combination ofTnsL /2ad and UnsL /2ad. Using the initial
values we getun=UnsL /2ad, whence the solution of Eq.(9)
is

dn =
Un−1sL/2ad
UnsL/2ad

a. s29d

Now Eq. (10) for pn can be easily solved as

FIG. 5. Image systems for the axial case.
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pn =
a3pn−1

sL − dn−1d3 =
Un−1

3
¯ U1

3U0
3

Un
3Un−1

3
¯ U1

3p0 =
p0

Un
3 , s30d

where we have denotedUn=UnsL /2ad for brevity. The nor-
malized transversal polarizability can then be expressed as

at = 3o
n=0

`
s− 1dn

Un
3 , s31d

which is equivalent to the expression given by Levine and
McQuarrie,1 when we take into account the different normal-
izations used.

Using the solutions in Eqs.(29) and (30) for dn andpn,
Eq. (16) for Qn can be simplified to

Qn+1 =
Un

Un+1
Qn +

p0

aUn+1
2 Un

. s32d

Using Eq.(20) we get the solution

Qn =
Q0

Un
+

p0

aUn
o
m=0

n−1
1

Um+1Um
, s33d

which simplifies to

Qn =
Q0

Un
+

Un−1

Un
2

p0

a
, s34d

using the formula

Un−1

Un
= o

k=0

n−1
1

Uk+1Uk
, n . 0, s35d

which can be proven using induction after first deriving the
auxiliary resultUn+1Un−1=Un

2−1. The authors were unable to
find this summation formula in the literature, but it seems
likely that we have just reinvented a not so well-known for-
mula. The initial chargeQ0 is finally determined by the con-
dition that the total charge is zero as

Q0 = −
p0

a
So

n=0

`
Un−1

Un
2 DSo

n=0

`
1

Un
D−1

. s36d

To simplify the expression for the normalized axial po-
larizability, we first simplify

L

2
− dn =

L

2a
Un − Un−1

Un
a =

sUn+1 − Un−1d
2Un

a =
Tn+1

Un
a, s37d

using Eq.(28) and the formula12 Un+1−Un−1=2Tn+1. Collect-
ing the results, we have

az = 3So
n=0

`
1

Un
3D − 3So

n=0

`
Tn+1Un−1

Un
3 D

+ 3So
n=0

`
Tn+1

Un
2 DSo

n=0

`
Un−1

Un
2 DSo

n=0

`
1

Un
D−1

, s38d

which can be further simplified, using the formula12 Tnsxd
=Unsxd−xUn−1sxd, to

az = 3So
n=0

`
1

Un
3D +

6a

L
So

n=0

`
TnTn+1

Un
3 D

−
6a

L
So

n=0

`
Tn+1

Un
2 DSo

n=0

`
Tn

Un
2DSo

n=0

`
1

Un
D−1

. s39d

All the series in Eq.(39) are convergent whenL.2a. The
series converge rapidly whenL@2a, but near contact,L
<2a, the convergence is slow. In the limiting case,L→2a,
we haveUn→n+1, Tn→1, whenceaz→6zs3d as before.

The equivalence between Eq.(39) and the expression
given by Levine and McQuarrie1 is not immediately obvious.
The numerical results are, however, the same within the ob-
tainable precision.

VI. NUMERICAL EVALUATION

A. Transversal case

In the transversal case, the alternating series in Eq.(11)
can be evaluated by truncation. Figure 6 gives a straightfor-
ward implementation, which is quite efficient ifL.2.01a, or
if only a modest precision is needed. For instance, for six
digit precision, 100 terms are sufficient whenL=2a and
much fewer terms are needed whenL.2a.

Since the sum has alternating terms, the convergence can
be dramatically improved using Euler’s transformation13

o
n=0

`

s− 1dnpn = o
n=0

k−1

s− 1dnpn + o
n=0

`
s− 1dn

2n+1 Dnpk, s40d

whereD is the forward difference operator,

Dnpk = Dn−1pk+1 − Dn−1pk, D0pk = pk. s41d

Using an implementation14 of Euler’s transformation, which
optimizes the parameterk, we get 15 digits precision using
no more than the 32 first terms. Furthermore, the terms are
simple to compute iteratively using Eqs.(9) and (10).

Figure 7 shows the normalized transversal polarizability
at as a function ofL /a=0, . . . ,5. The values for the inter-
secting caseL /a,2 are computed using the formulas by
Felderhof and Palaniappan.5 Note that the polarizability is a
continuous and smooth function for allL /a.0.

B. Axial case

In the axial case, a brute force implementation of Eq.
(17) is more complicated since the initial chargeQ0 is un-
known. Figure 8 gives one reasonably simple implementa-
tion where the contribution fromQ0 is handled separately

FIG. 6. Computeat as a function ofL8=L /a. The final error is less thant.

J. Appl. Phys., Vol. 96, No. 4, 15 August 2004 H. Wallen And A. Sihvola 2333
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(Q8, etc.). The summation is stopped when the change is less
than a given tolerancet, but the actual precision achieved is
worse. ForL.2.01a, the algorithm is reasonably fast and
accurate, but forL,2.0001a, we need many terms and start
to lose precision.

The expression for the transversal polarizability, Eq.
(31), is not very useful from a computational point of view,
but in the axial case we can accelerate the convergence by
converting the five series in Eq.(39) to alternating ones us-
ing the following van Vijngaarden transformation:13

o
n=0

`

bn = o
k=0

`

s− 1dkak, ak = o
j=0

`

2jb2jsk+1d−1. s42d

Then, the new alternating series can be effectively computed
using Euler’s transformation. Using this approach, we can
computeaz for any L.2a. This seems good enough for
most practical purposes, but a further improvement would be
to use a more sophisticated convergence acceleration tech-
nique such as the combined nonlinear-condensation transfor-
mation (CNCT).15

Figure 9 shows the normalized axial polarizabilityaz as
a function ofL /a=0, . . . ,5. The values for the intersecting
caseL /a,2 are computed using the formulas by Felderhof
and Palaniappan.5 The polarizability is a continuous function
for all L /a.0, but at contactL /a=2 the right sided deriva-
tive is −̀ .

C. Asymptotics

For the axial case it would be interesting to know the
asymptotic behavior ofaz asL /a→2. The first four series in
Eq. (39) are approachingzs3d and zs2d, but the series
on1/Un approaches the harmonic series and therefore di-
verges at contact.

Using a different approach Jeffrey and Onishi16 found
the asymptotics

az > 6zs3d −
p4

6flns2d + 2g − lnsddg
, d → 0, s43d

whereL /2a=1+d. Numerically this seems to match our re-
sults, as seen in Fig. 10, but the connection to Eq.(39) seems
hard to find.

VII. CONCLUSIONS

Using Kelvin’s image principle, it is fairly simple to con-
struct the series of images needed to calculate the transversal
and the axial polarizability of a pair of conducting spheres.
The series are, however, converging very slowly whenL
→2a.

FIG. 7. Normalized transversal polarizabilityat as a function ofL /a. The
intersecting case(dashed line) is computed using the formulas by Felderhof
and Palaniappan(see Ref. 5).

FIG. 8. Computeaz as a function ofL8=L /a.

FIG. 9. Normalized axial polarizabilityaz as a function ofL /a. The inter-
secting case(dashed line) is computed using the formulas by Felderhof and
Palaniappan(see Ref. 5).

FIG. 10. Normalized axial polarizabilityaz as a function ofL /a. Asymp-
totics (see Ref. 16) (dashed line) compared to numerical results(solid line).
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A very efficient way of calculating the transversal polar-
izability for any Lù2a has been presented. But as was no-
ticed in Sec. VI, the axial polarizability is much more diffi-
cult to calculate with high accuracy.

It is also instructive to connect the calculated polarizabil-
ity results with physical principles. The polarizability is a
measure of the object to become dipolarized. The normalized
polarizability of a single sphere isas=3, and we can observe
that for the transversal case we haveat,as and for the axial
case we haveaz.as. The largest difference arises for touch-
ing spheres. This behavior is natural because for an elon-
gated object(a prolate spheroid, for instance), the axial po-
larizability is larger and the transversal polarizability is
smaller than for a sphere of the same size.17 Note, however,
that the trace of the polarizability(isotropic average) is al-
ways larger than that of a corresponding sphere.

The dramatical differences in the behavior near contact
for the transversal and axial polarizability components can
also be qualitatively explained using physical principles. In
the transversal case, the two spheres are always at the same
potential regardless of the distanceL. Thus, one can expect
that nothing dramatical happens when the spheres touch each
other. In the axial case on the other hand, it is clear that there
is a potential difference between the spheres when they are
apart. At contact the potentials are forced to be the same, so
we can expect some irregular behavior.
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