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Polarizability of conducting sphere-doublets using series of images

Henrik Wallén® and Ari Sihvola
Electromagnetics Laboratory, Helsinki University of Technology, P.O. Box 3000 FIN-02015 HUT, Finland

(Received 26 January 2004; accepted 17 May 2004

The classical electrostatic problem of two nonintersecting conducting spheres in a uniform incident
electric field is considered. Starting from the basic Kelvin's image principle, the two spheres are
replaced with equivalent series of image sources, from which the polarizability is calculated.
Explicit expressions for the axial and transversal components of the polarizability dyadic are found
by solving the recurrence equations. Efficient numerical evaluation of the different series is also
discussed. @004 American Institute of Physid®Ol: 10.1063/1.1769094

I. INTRODUCTION polarizability is defined as the ratio between the induced di-
e momenip and the amplitude of the incident fiek,.

In general, the polarizability is a linear mapping that can
expressed using a dyadicas

Polarizability is one of the basic parameters describingpOI
the electrostatic response of a given object. It is of greabe
importance in modeling of the effective permittivity of ran-
dom and ordered heterogeneous materials as well as the first- p=a - Ey. (G8)]
order scattering effects. Accurate information of the polariz-
ability of interacting objects helps us to find a more realistic
model for a dense material mixture where scatterers are _
closely located to each other. @

In this paper we consider the electrostatic boundary ] o ] ]
problem of two conducting spheres of radiaisdistancel wheree is the permittivity of.the s.urrou'n(jl_ng space a‘ﬁal;
apart as shown in Fig. 1, placed in a uniform incident electrich® volume of the object. With this definition the normalized
field E,. We restrict the consideration to the nonintersecting®olarizability of a conducting object depends only on the

caseL >2a, and only consider the polarizability of the dou- Shape of the object. _ o
blet. Consider first one conducting sphere of radaisn a

The problem is not new and numerous solutions andiniform incident fieldE,. The perturbation of the field out-
applications have been presented, but there is still room fofide the sphere can be calculated exactly by replacing the
improvement for the solution of this canonical problem. ~ SPhere with a dipole

Perhaps the first complete solution, based on solving the  p = 3¢VE, = 47rea’E, (3)
Laplace’s equation in bispherical, coordinates, was presented ] o
by Levine and McQuarrié.Solutions using series of images 2t the center of the sphe‘?é’.hus, the normalized polarizabil-
have also been presented, e.g., in Refs. 2—4. However, dl¥ Of a conducting sphere is a scalag=3. _
presented results contain infinite series, in one form or an-  Consider now the polarizability of the conducting sphere
other. The limiting case of touching spheres has an analytifoublétin Fig. 1. Due to the rotational symmetry, the polar-
solution. All series converge rapidly when the distance beiZability dyadic must be axial. Choosing the coordinate sys-

tween the spheres is large, but near contact the convergent@™ such that the symmetry axis is parallel to #exis, we
is very slow. can express the normalized polarizability as

The intersecting casé,< 2a, has also been considered @n = ay(UyUy + Uyl,) + a U Uy, (4)
in many papers. Recently, Felderhof and Palaniappae- . )
sented a general solution in integral form. The integrals caM/nere a; and a; are the normalized transversal and axial
easily be numerically evaluated with high accuracy, so therePolarizabilities.
fore we can consider the intersecting case solved.

Let us define the normalized polarizability of an object as

=]

(2)

n_E_V,

lll. KELVIN'S IMAGE PRINCIPLE

Il. POLARIZABILITY The Kelvin's image principléoffers an elegant solution
The polarizability of an object is a measure of its re- for the electrostatic boundary problem of a point charge near

sponse to an incident electric field. Assume a uniform elec conducting sphere. Consider a point cha@gat distance

tric field Ey in a homogeneous space with permittivigy

When we introduce an object in the incident field, the total o

field will be perturbed. If the object has no net charge, it can L
be approximated by its induced dipole mom@ntand the
3Electronic mail: henrik.wallen@hut.fi FIG. 1. Geometry of the problem: a pair of conducting spheres.
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FIG. 2. Kelvin's image principle for a point charge near a grounded con- dy v
ducting sphere. N

. . FIG. 4. Image systems for the transversal case.
d>a from the center of a grounded conducting sphere with ge sy

radiusa as in Fig. 2. The potential outside the sphere remains
the same if we replace the sphere with an image point chargd. IMAGE SYSTEMS FOR THE SPHERE DOUBLET

a To solve the polarizability of the sphere doublet, it is
Q=--0Q, (5)  sufficient to consider the cases of transversal and axial exci-
d tations(Eq L u, andEgyllu,, respectively.

In both cases we replace the spheres by equivalent image
sources. To solve the polarizability components we need to
compute the total induced dipole moment, which we get by
d = a_. (6) summing the dipole moments of the image dipoles and pairs

d of image point charges.

If the sphere is insulated we need to add a balancing charge
—-Q; at the center of the sphere to get zero total charge on th/g T
sphere ransversal case

The image principle for a dipole can be obtained by In the transversal case the excitatiggpis perpendicular
considering a system of two point charge® &nd -Q sepa- to the symmetry axis of the doublet. In this case the image
rated by a distanchk. Lettingb— 0, while keeping the dipole series will just consist of dipoles, | Eo.
momentp=Qb constant, we get the image systems shownin  To construct the image series we proceed as follows:
Fig. 3. In the transversal case, we get an oppositely directeirst replace each sphere with a dipglg=3€eVE, at the
image dipole center of the sphere. Then add dipofgsusing Eq.(7) to

compensate for the first dipoles. Further, add dip@gso

_ a’ compensate for the dipolgs and so on as shown in Fig. 4.
Pi== @p (7 We can express the image positions as distances from the
center of the spheres as
at the inverse poindl;. In the radial case, we get a dipgbe a2
as well as a point charg®; at the inverse poind: dp=0, dpy= " 9)
n
a3 . .
and the amplitudes of the dipoles are
pi= 3p, QI 2|p| (8) P P
d “d a3
= 3eVE,, 1= Pn (10
Po EO Pn+1 (L _ dn)3pn

whereQ; >0 if the dipolep is directed away from the sphere
as in the figure an@; <0 in the opposite case. For an insu- The induced dipole moment is simply the sum of all dipoles
lated sphere we also need to add a chaiQeat the center of  Thus, the normalized polarizability is
the sphere to get a zero total charge.

A system of two nonintersecting conducting spheres can E
be replaced by infinite series of images inside both spheres. 4= VEo s
This idea is about as old as the basic Kelvin’s image prin-
ciple itself® and it has also been treated in several booksSince the dipoles have alternating directions, we get an alter-
e.g., by Maxwefl and Smyth& for calculating the capaci- nating sum for the normalized polarizability.
tance of two spheres. In the touching limit, wher. — 2a, the solutions of Egs.

(9) and(10) are

(- )"y =33 (- P, (11)
n=0 pO

n __ Po

p, ... I :. pi’Qi.'. p dn n+ 1a1 pn (n+ 1)31 ( )
Vo P - —
. "d—" "d_" as is easy to verify. The limiting value for the normalized
T el transversal polarizability can therefore be expressed using
the Riemann zeta functiof(x) as
(a) transversal case (b) radial case "
D" 9 1 9
FIG. 3. Images for a dipolp at distanced from the center of a conducting 32 = 2 —=-0(3)=2.70463. (13
sphere of radius. (n +1) 4m-1 m 4
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.............. o1 n=2 / n-1
Xn = (HCK)XO+ E ( H Ck)t)m"'bn—l- (20)
Po Py Py -0, k=0 m=0 \ k=m+1
J k_gl % L & Using Eq.(20) and the summation formula
IR "1 (1 1 1
' ' E—:E(—— ):1— : (21)
FIG. 5. Image systems for the axial case. k=1 k(k+1) k=1 k k+1 n+1

the solution of Eq(18) can be simplified to
_ (Qo+po/a)n+Qo

B. Axial case

In the axial case the excitatidgy is parallel to the sym- Qn= (n+1)2 , (22)
metry axis of the doublet, and the image system consists of
both series of dipolep,, and series of point charge€y,. whereQy is yet to be determined. This presents a somewhat

Again, we first replace each sphere with a dippjeat  pathological problem since the sulQ, diverges like the
the center of the sphere. Using E§) we get the images of harmonic series unless we chod3g=—py/a, but then again
the first dipoles at distancs =a%/L from the center of the the total charge is still not zero:
spheres as

5 o - %, QO< - pOIa
PL= 2Por Q1= s Po. (14 2 Qv=1-(P/a)d(2), Qo=-poa (23
L L " 2, QO == pO/a

Then we need to compensate for bpghand Q;, giving the  The limiting value of the polarizability is, however, well de-
images at distance,=a?/(L—d;) from the center of the fined if we setQ,=—(po/a)(1+8) and lets— 0, giving
spheres as

a3p1 ap, aQ,
= s = + s
Pe= = ap 2™ a2 -y

and so on as shown in Fig. 5. Note that all dipoles have the
same direction agy and that the signs of the charg®s, Q,
above are for the left sphere in the picture. All point charges/. SOLUTION OF THE RECURRENCE EQUATIONS
in the right sphere have opposite signs. )

Actually, we should also add a balancing cham@, at The recurrence equations fak, p, and Q, can be
the center of the spheres at each step, but this would lead &plved also in the general case using some suitable substlFu—
an ever increasing number of series of point charges, whicHons and recurrence formulas for the Chebyshev polynomi-

would be highly inefficient. Instead, we add an initial charge@lS-

= 60(3) - 350(2) — - 60(3) ~7.21234, (24

15 _ . .
in agreement with previously published resdits.

Qo at the center of the left sphere an@g-at the center of the Let us start V‘{ithlEQ(g) for d. This is a special case of
right sphere and require that the total charge in each sphere §3€ Riccati equatioh; whence we make a substitution
zero. The recurrence equation 1@y, then becomes Unet _ L-d, =1 25
iz 20+~ 30 (16 no
" L-d, " L-dy? S which gives an ordinary linear second-order recurrence equa-
tion
For d, andp, we get the same recurrence equations, E9)s.
and(10), as in the transversal case. This time all dipoles have U = Eu —u U=1 U= L (26)
the same orientation and furthermore we must take the " a "+ "2 077 1T g
charges into account when calculating the normalized polar- . . .
Y Comparing the above with the recurrence relations for the
izability as :
Chebyshev polynomlajl§
=33 P33 (5 - dn)%. (17) Toet(0) = 2XTo0 = Ta (), To=1, Ty=X, (27
n=0Po  n=0\2 o

Again, in the touching limit. — 2a, we get the solutions Uns1(X) = 2XUp(X) = Up-a(X), Ug=1, Ug=2x, (28)

in Eq. (12) for d, andp,, and Eq.(16) is simplified to we see that the general solution can be expressed as a linear
combination ofT,(L/2a) and U,(L/2a). Using the initial

n+1 Po .
1= + . 18 values we geti,=U,(L/2a), whence the solution of E¢9
n+l n+2Qn a(n+1)(n+2)2 ( ) i geu, n( ) q )
This is a linear first-order difference equation of the form B Un—1(|-/23)a 29
Xn+1 = CpXn bnv (19) " Un(l—/za) .

which has the general solutithn Now Eq.(10) for p, can be easily solved as
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@y Up U0 po
Pn

- - p -3 (30)
(L=-dyp)® UUE U3 U2

where we have denotdd,=U,(L/2a) for brevity. The nor-

malized transversal polarizability can then be expressed as

©

= 32

n=0

(- 1"
Up

, (31

which is equivalent to the expression given by Levine an
McQuarrie,1 when we take into account the different normal-
izations used.

Using the solutions in Eq$29) and(30) for d, andp,,
Eq. (16) for Q,, can be simplified to

Un Po
Qni1= Qn+ : (32
n+1 Uy n aUﬁﬂUn
Using Eq.(20) we get the solution
n-1
Q 1
Qu==2+ 23 , (39
Un  aUp o UmeUn
which simplifies to
Qo , Un-1 Po
==+ —= =, 34
Qn Un Uﬁ a ( )
using the formula
n-1
U, 1
=3 , n>0, (35)
Un k=0 Uk+1Uk

H. Wallen And A. Sihvola 2333

Require: L' >2,7>0
d=0
while p < tdo
p=-p/(L'-d)’
d=1/(U'-4d)
o =0,+p
end while

d:IG. 6. Computey, as a function oL’ =L/a. The final error is less than

©

p)

n=0

1
u;

>

n=0

6a

g
I

TnThet

3
n=0 Un

2olEdze)

All the series in Eq(39) are convergent wheh>2a. The
series converge rapidly whelh>2a, but near contactL
~2a, the convergence is slow. In the limiting cate 2a,
we haveU,—n+1, T,— 1, whencea,— 6{(3) as before.

The equivalence between E(B9) and the expression
given by Levine and McQuarrtds not immediately obvious.
The numerical results are, however, the same within the ob-
tainable precision.

>

R

Tn+ 1

Uy

|

o

>

n=0

L
Un

Tn

_6a Tn
Uy

L

>

n=0

(39)

VI. NUMERICAL EVALUATION
A. Transversal case

In the transversal case, the alternating series in(EL.
can be evaluated by truncation. Figure 6 gives a straightfor-
ward implementation, which is quite efficientlif>2.01a, or

which can be proven using induction after first deriving the;s only a modest precision is needed. For instance, for six

auxiliary resulty,,,U,_1= Uﬁ— 1. The authors were unable to

digit precision, 100 terms are sufficient whén2a and

find this summation formula in the literature, but it seemsy, ch fewer terms are needed wHen 2a.

likely that we have just reinvented a not so well-known for-
mula. The initial charg€), is finally determined by the con-
dition that the total charge is zero as

2%z

>
n=0

To simplify the expression for the normalized axial po-

larizability, we first simplify

]

>

n=0

1
Un

_Po
a

Un-a

2 (36)

Qo

L
Zun_ Un-1

Un

a= (Un+1 B Un—l)a
2U,,

Thea

Un

= -d,=

> a, (37

using Eq.(28) and the formul¥ U,,;—U,_;=2T,.;. Collect-
ing the results, we have

3( )3(2 U3
A3)5%)Es

n=0
n=0
which can be further simplified, using the formtflar,(x)
=Up(X) =xUp_1(%), to

[

)y

n=0

1 ToeUn
Up

oo

>

n=0

o

>

n=0

1
Un

Tn+l
U

Un—l
U

(38)

Since the sum has alternating terms, the convergence can
be dramatically improved using Euler’s transformation

o k-1 o n
2 (1= 2 (- )P+ 2 (;n—?lA”pk, (40)
n=0 n=0 n=0
whereA is the forward difference operator,
Ay = A" py — ATy, A%y = py. (41)

Using an implementati&ﬁ of Euler’s transformation, which
optimizes the parametds, we get 15 digits precision using
no more than the 32 first terms. Furthermore, the terms are
simple to compute iteratively using Eq®) and (10).

Figure 7 shows the normalized transversal polarizability
o as a function ofL/a=0,...,5. The values for the inter-
secting casd./a<2 are computed using the formulas by
Felderhof and Palaniappdmote that the polarizability is a
continuous and smooth function for &lfa> 0.

B. Axial case

In the axial case, a brute force implementation of Eqg.
(17) is more complicated since the initial char@g is un-
known. Figure 8 gives one reasonably simple implementa-
tion where the contribution fronQ, is handled separately
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FIG. 7. Normalized transversal polarizability as a function of_/a. The ~ FIG. 9. Normalized axial polarizabilityr, as a function of./a. The inter-
intersecting casédashed lingis computed using the formulas by Felderhof Secting casedashed lingis computed using the formulas by Felderhof and
and Palaniappasee Ref. b Palaniapparisee Ref. b

(Q’, etc). The summation is stopped when the change is les§- Asymptotics

than a given tolerance but the actual precision achieved is For the axial case it would be interesting to know the

worse. ForlL>2.01a, the algorithm is reasonably fast and asymptotic behavior of, asL/a— 2. The first four series in

accurate, bu_t _foL<2.000h, we need many terms and start g (39) are approaching/(3) and (2), but the series

to lose precision. S =,1/U, approaches the harmonic series and therefore di-
The expression for the transversal polarizability, Eq.yerges at contact.

(31), is not very useful from a computational point of view, Using a different approach Jeffrey and OntéHound

but in the axial case we can accelerate the convergence hije asymptotics

converting the five series in E¢39) to alternating ones us-

ing the following van Vijngaarden transformatioh: 4

= 6{(3) - ul 50 43)
. - 4= 6[In(2) + 2y—In(8)]’ !
2 0,= 2 (- Ve, &= 2 2bgiger 1. (42)
n=0 k=0 1=0 wherel/2a=1+4. Numerically this seems to match our re-

sults, as seen in Fig. 10, but the connection to(B) seems
Then, the new alternating series can be effectively computelard to find.

using Euler’s transformation. Using this approach, we can
compute «, for any L>2a. This seems good enough for

most practical purposes, but a further improvement would be
to use a more sophisticated convergence acceleration tec\ﬁ
nique such as the combined nonlinear-condensation transfor- Using Kelvin's image principle, it is fairly simple to con-

: 15
mat|qn (CNCT). . . o struct the series of images needed to calculate the transversal
Figure 9 shows the normalized axial polarizabilityas 54 the axial polarizability of a pair of conducting spheres.

a function ofL/a=0,...,5. The values for the intersecting The series are, however, converging very slowly when
casel/a<2 are computed using the formulas by Felderhof_, 5,

and Palaniappa?f.l’he polarizability is a continuous function
for all L/a>0, but at contact./a=2 the right sided deriva-

Il. CONCLUSIONS

. . 75
tive Is -,
7 L
Require: L' >2,7>0 651
d=0, p=a=0=3, aV=0 ol

Q=%,=0, ¢'=%,=1"
oy =L'/2 55}
while o, — ™V < 7 do

0= p/(L'~d)?+0/(L'~d) i
p=p/(L'-a)’ 45}
=0/('-d)

d=1/(L'-d) 4t
Tp=Zp+0, Zy=Zy+C 35t
a=oa+p-Q(L'[/2-4d) ¢
aQ,=aQ,+Q’(L’/2—d) 3

ol V=0, a=ata,Z,/s,
end while

FIG. 8. Computer, as a function olL’=L/a.

2 2.05 2.1 215

FIG. 10. Normalized axial polarizability, as a function ofL/a. Asymp-
totics (see Ref. 1p(dashed lingcompared to numerical resuitsolid line).
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