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Polarizability of a dielectric hemisphere
Henrik Kettunen,a� Henrik Wallén, and Ari Sihvola
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�Received 1 March 2007; accepted 1 July 2007; published online 22 August 2007�

This article presents a method for solving the polarizability of a dielectric hemispherical object as
a function of its relative electric permittivity. The polarizability of a hemisphere depends on the
direction of the exciting electric field. Therefore, the polarizability can be written as a dyadic
consisting of two components, the axial and the transversal polarizabilities, which can be solved
separately. The solution is based on an analytical approach where the electrostatic potential function
is written as a series expansion. However, no closed-form solution for the coefficients of the series
is found, so they must be solved from a matrix equation. This method provides very high accuracy.
However, it requires construction of large matrices which consumes both time and memory.
Therefore, approximative expressions for the polarizabilities with absolute error less than 10−5 are
also presented. © 2007 American Institute of Physics. �DOI: 10.1063/1.2769288�

I. INTRODUCTION

This article focuses on the computation of the electro-
static response of a dielectric hemispherical object when it is
exposed to a uniform electric field. In a static electric field a
dielectric object becomes polarized and gives rise to a sec-
ondary electric field, the main component of which is a di-
polar field. Therefore, the polarized object can be considered
a dipole moment. The polarizability � is a parameter which
describes the magnitude of the polarization. It is defined as
the ratio of the dipole moment and the magnitude of the
incident field,

p = �Ee, �1�

where Ee is the uniform external field and p is the induced
dipole moment.

The electric response of a single object also determines
the characteristics of large mixtures of such objects. There-
fore, the knowledge of polarizability is important when de-
signing, for example, artificial composite materials by mix-
ing dielectric inclusions into some background material.

The polarizability of a homogeneous sphere is an ex-
ample which has a closed-form analytical solution.1 If a
sphere with permittivity �i is embedded in an environment
with permittivity �e, the polarizability can be obtained by
determining the dipole moment. It is often more convenient
to write the polarizability as a dimensionless number normal-
ized by the volume of the object V and the permittivity of the
environment �e. The normalized polarizability for a sphere is

�n =
�

V�e
= 3

�r − 1

�r + 2
, �2�

where �r=�i /�e is the permittivity ratio between the inclusion
and the environment.

In general, when the object has no special symmetries
the polarizability is dependent on the direction of the electric
field. For example, the polarizability of an ellipsoid is deter-
mined by three orthogonal components. A sphere is a special

case of an ellipsoid where these components become all the
same. In addition to the sphere, the dielectric ellipsoid is the
only example of an anisotropic object whose polarizability
components have simple analytical closed-form solutions.2

The polarizability of an arbitrarily shaped object can be
evaluated using numerical methods. There exist reported re-
sults, for example, for circular cylinders3 and for regular
polyhedra �tetrahedron, cube, octahedron, dodecahedron, and
icosahedron�, also known as the Platonic solids, in cases
where they are ideally conducting4 and in cases where they
are dielectric with arbitrary permittivity.5

An interesting polarizability problem has also been the
case of two spheres, separate or intersecting. Several articles
considering analytical approaches to this double-sphere case
can be found.6–9

However, polarizability of a hemisphere has not been
considered before, although a hemisphere is a very simple
and elementary geometry. Like a sphere, it is defined by one
single parameter, its radius r. The results presented in this
article are also a valuable reference in testing numerical pro-
grams which are being developed for treating more complex
geometries.

For the hemisphere the relation Eq. �1� must be written
in a more general form,

p = �� · Ee, �3�

where the polarizability is expressed as a dyadic. For the
hemisphere, or any object with rotational symmetry which
now is chosen to be with respect to the z-axis, the polariz-
ability dyadic is of the form

�� = �t�uxux + uyuy� + �zuzuz, �4�

where �z and �t are the axial and the transversal polarizabil-
ities, respectively. These polarizability components can be
determined separately by solving the potential function of
the hemispherical object situated in an external uniform axial
and a transversal electric field. In the next section, the solu-
tion for the electrostatic potential in both of these cases is
studied in a generalized case of a double hemisphere whicha�Electronic mail: henrik.kettunen@tkk.fi
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consists of two joint hemispheres with different permittivi-
ties.

The computation of the polarizability components this
way however requires some effort. Therefore, also approxi-
mative expressions for the polarizabilities as functions of
relative permittivity are derived by fitting interpolation
curves into very accurate computed data.

II. SOLUTION OF THE ELECTROSTATIC POTENTIAL
IN A HEMISPHERICAL REGION

The determination of the polarizability requires solving
the electrostatic potential function in a situation where a
hemispherical object is located in a uniform electric field. It
is possible to examine a more general situation where the
object consist of two hemispheres with different electric per-
mittivities. Let us call such an object a double hemisphere. If
the permittivity of one half of the sphere is the same as of the
surrounding environment, what is left is a single hemisphere.

The solution of the electrostatic potential with material
discontinuity in a spherical geometry is considered in Refs.
10–12. Let us also follow a similar procedure.

The space must now be divided into three regions: the
upper and the lower regions inside the sphere with radius a
and the one outside the sphere �see Fig. 1�. In each region,
the electrostatic potential function � must satisfy the Laplace
equation,

�2� = 0. �5�

A. Double hemisphere in an axial electric
field

In the axial case the external electric field is of the form
Ee=Eeuz �see Fig. 2� and the corresponding potential can be
written as

�e�r� = − Eez = − Eer cos � = − EerP1�cos �� , �6�

where Pn�x� is the Legendre polynomial of order n.

The potential functions in each region can be written as
series expansions as follows:

�c�r� = �
k=0

�

Ckr
kPk��� , 0 � � �

�

2
, r � a , �7�

�d�r� = �
k=0

�

Dkr
kPk��� ,

�

2
� � � �, r � a , �8�

�o�r� = �
n=0

�

Bnr−�n+1�Pn��� + �e

= �
n=0

�

Bnr−�n+1�Pn��� − EerP1���, r 	 a , �9�

where �=cos �.
The unknown coefficients Ck, Dk, and Bn must be solved

by applying the boundary conditions. The continuity of the
potential � itself is required. Also, its normal derivative mul-
tiplied by the permittivity, ��� /�n, must be a continuous
function. This leads to six equations which must all be sat-
isfied.

The Legendre polynomials have the following proper-
ties. With odd k, Pk�0�=0 and with even k, �d/d��Pk�0�=0.
Therefore, on the boundary inside the sphere, the relation
between the coefficients Ck and Dk becomes

Ck = 
kDk,


k = � 1, k even
�r2

�r1
, k odd �. �10�

Solving the coefficients Bn by applying the boundary condi-
tions on the surface of the sphere becomes more problematic
because the Legendre polynomials Pk��� do not form an or-
thogonal set of functions on the intervals 0���1 or −1
���0. For example, on the boundary r=a and 0��
�� /2, from which it follows that 0���1, two equations
can be formed based on the boundary conditions. If, with
each value of k, these equations are multiplied by Pk��� and
integrated with respect to � over the interval 0���1, a set
of k equations is obtained, each equation including an infinite
sum over index n.

The same procedure is followed on the surface of the
lower hemisphere, i.e., r=a and −1���0. Two more equa-
tions can be formed and, with every value of k, they are also
multiplied by Pk��� and now integrated with respect to � over
the interval −1���0.

Now the sets of equations obtained from the upper and
the lower hemisphere must be combined. Since Pn��� is an
even/odd polynomial when n is even/odd, the following ap-
plies for the integrals of the Legendre polynomials:

�
−1

0

Pn���Pk���d� = �− 1�n+k�
0

1

Pn���Pk���d� . �11�

Also, the relation Eq. �10� must be taken into consideration.
For every k, the coefficients Bn satisfy

FIG. 1. Double hemisphere located in the spherical coordinate system.

FIG. 2. Double hemisphere in an axial electric field.
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�
n=0

�

Bna−�n+2��
k�n + 1� + 
kk�r1 + �− 1�n+k�n + 1�

+ �− 1�n+kk�r2�Un,k

= Ee�
kk�r1 − 
k + �− 1�1+kk�r2 − �− 1�1+k�U1,k, �12�

where

Un,k = �
0

1

Pn���Pk���d� . �13�

These integrals can be computed analytically. For their ex-
pressions, see Eq. �A18� in the Appendix.

The coefficients of the potential inside the double hemi-
sphere are obtained from the equation system

�
k=0

�

Dka
k	
k + 
k

k�r1

n + 1
+ �− 1�n+k + �− 1�n+k k�r2

n + 1

Uk,n

= − Eea	 1

n + 1
+ 1 +

�− 1�1+k

n + 1
+ �− 1�1+k
U1,n, �14�

and the coefficients Ck are obtained from the relation Eq.
�10�.

In computation of the polarizability, only the coefficients
of the potential outside the sphere, Bn, are needed. They can
be solved from the system Eq. �12� by writing it as an
N�N matrix equation by taking N equations each consisting
of a sum over N terms as

MB = A ,

where

Mkn = a−�n+2��
k�n + 1� + 
kk�r1��+ �− 1�n+k�n + 1�

+ �− 1�n+kk�r2�Un,k, �15�

and

Ak = Ee�
kk�r1 − 
k + �− 1�1+kk�r2 − �− 1�1+k�U1,k. �16�

B. Double hemisphere in a transversal electric
field

In the transversal case the external electric field is no
longer azimuthally symmetric. Let the direction of the field
be Ee=Eeux �see Fig. 3�. The corresponding potential func-
tion becomes

�e�r� = − Eex = − Eer sin � cos � = − EerP1
1���cos � .

�17�

Now, a cos � dependency is included and, instead of the
Legendre polynomials, the associated Legendre functions
Pn

m��� are required.
The expansions of the electrostatic potential are

�c�r� = �
k=1

�

Ckr
kPk

1���cos � , �18�

�d�r� = �
k=1

�

Dkr
kPk

1���cos � , �19�

�o�r� = �
n=1

�

Bnr−�n+1�Pn
1���cos � − EerP1

1���cos � . �20�

Again, the coefficients Ck, Dk, and Bn are obtained by apply-
ing the boundary conditions and following the same proce-
dure as in the axial case.

The associated Legendre functions Pk
1��� have the fol-

lowing properties. With even values of k, Pk
1�0�=0 and with

odd values of k, �d/d��Pk
1�0�=0. Therefore,

Ck = 
kDk,


k = � 1, k odd,

�r2

�r1
, k even. � �21�

The following equations system can be derived for Bn:

�
n=1

�

Bna−�n+2��
k�n + 1� + 
kk�r1 + �− 1�n+k�n + 1�

+ �− 1�n+kk�r2�Un,k
1

= Ee�
kk�r1 − 
k + �− 1�1+kk�r2 − �− 1�1+k�U1,k
1 , �22�

and for Dk

�
k−0

�

Dka
k	
k + 
k

k�r1

n + 1
+ �− 1�n+k + �− 1�n+k k�r2

n + 1

Uk,n

1

= − Eea	 1

n + 1
+ 1 +

�− 1�1+k

n + 1
+ �− 1�1+k
U1,n

1 . �23�

The coefficients Ck are obtained from the relation Eq. �21�.
The integrals

Un,k
1 = �

0

1

Pn
1���Pk

1���d� , �24�

can also be evaluated analytically. For their expressions, see
Eq. �A20� in the Appendix.

In the derivation of Eq. �22�, the relation

�
−1

0

Pn
1���Pk

1���d� = �− 1�n+k�
0

1

Pn
1���Pk

1���d� , �25�

is used. The relation Eq. �25� follows from the even/odd
properties of the associated Legendre functions.

FIG. 3. Double hemisphere in a transversal electric field.
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Again, the required coefficients are solved from an
N�N matrix equation.

III. POLARIZABILITY OF A HEMISPHERE

If �r2=1, only one hemisphere is left. As stated before,
the main component of the secondary electric field caused by
the polarization of the object is the dipolar one. The polar-
ized object can therefore be approximated using an electric
dipole. The induced dipole moment p can be determined by
comparing the dipolar term of the series expansion of the
potential function with the potential function of an electric
dipole, which is of the form1

�d�r� =
p · ur

4��er
2 . �26�

In the axial case the dipole is z-directed. The potential Eq.
�26� becomes

�d�r� =
p · ur

4��er
2 =

p cos �

4��er
2 , �27�

and the dipolar term in the series expansion Eq. �9� is

�d�r� =
B1

r2 P1��� =
B1

r2 cos � . �28�

Therefore, the magnitude of the dipole moment is

p = 4��eB1, �29�

and the normalized axial polarizability becomes

�zn =
p

Ee�eV
= 6

B1

Eea
3 . �30�

To determine the polarizability, only the coefficient B1 is
needed. However, it cannot be solved separately. Instead, an
N�N matrix equation must be constructed and all coeffi-
cients up to BN must be solved.

In the transversal case the dipole is along the x axis. The
potential of the dipole becomes

�d�r� =
p · ur

4��er
2 =

p sin � cos �

4��er
2 . �31�

The dipolar term in the series expansion Eq. �20� is of the
form

�d�r� =
B1

r2 sin � cos � . �32�

Again, the magnitude of the dipole moment becomes

p = 4��eB1, �33�

and the normalized transversal polarizability is also deter-
mined by

�tn = 6
B1

Eea
3 . �34�

IV. RESULTS

The normalized polarizabilities of a hemisphere only de-
pend on the relative permittivity. Next, the convergence of

the result is studied as a function of the size N of the matrix
equation by choosing a hemisphere with relative electric per-
mittivity �r=10 and computing its normalized axial polariz-
ability �zn. Let us assume that the result converges toward
the real physical value, and the matrix size N=6500 already
gives a very accurate result �acc. Now, if the polarizabilities
with N=20 ,21 ,22 , . . . ,212 are computed, the relative error

erel =

�acc − �zn


�acc
,

can be calculated.
Figure 4 shows the relative error as a function of N. It

can be seen that, already, with N	20 the relative error is less
than 1%. Choosing N	200 should approximatively give the
accuracy of 10−5. The accuracies of the order of 10−7, how-
ever, require N	1700. The value of the permittivity �r af-
fects the speed of convergence very little.

There are no large differences in convergence between
the axial and the transversal case. In the transversal case, the
result however seems to converge even slightly faster.

Figure 5 presents the normalized axial and transversal
polarizabilities �zn and �tn of a hemisphere as functions of
relative permittivity �r computed with matrix size N=200. In
addition, comparative results are computed using COMSOL

MULTIPHYSICS, which is a commercial software based on the
finite element method, FEM. The results coincide very well.

FIG. 4. �Color online� Relative error of the normalized axial polarizability
as a function of matrix size N when �r=10.

FIG. 5. �Color online� Normalized axial and transversal polarizabilities of a
hemisphere as a function of relative permittivity compared with the numeri-
cal results computed using COMSOL MULTIPHYSICS.
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The relative error for both polarizabilities is in the worst case
only of the order of 10−5.

Figure 6 presents the normalized axial and transversal
polarizabilities of a hemisphere as a function of relative per-
mittivity on a logarithmic scale computed with matrix size
N=200. They are compared with the normalized polarizabil-
ity of a homogeneous sphere �n,sphere. It can be noted that �zn

has values smaller and �tn greater than the homogeneous
sphere. However, the sphere and the hemisphere are not
comparable as objects in this way because the three-
dimensional characteristics of the hemisphere must be taken
into consideration. Therefore, the average normalized polar-
izability of the hemisphere, �av= ��zn+2�tn� /3, is computed
and plotted. It can be seen that its absolute value is always
greater than the one of the homogeneous sphere computed at
certain permittivity value.

These observations seem reasonable. The dimension of
the hemisphere in the transversal direction is twice as large

as in the axial direction. Therefore, it is expected that its
response to the electric field in the transversal direction be-
comes larger than in the axial direction. Also, the behavior of
the average polarizability of the hemisphere makes sense,
since it is known that the sphere is the geometry with the
minimum absolute value of the polarizability. Any deviation
from spherical symmetry therefore increases the magnitude
of the average polarizability of the object.13,14

V. APPROXIMATIVE FORMULAS

Let us next form approximative formulas for the normal-
ized polarizabilities by finding a fit with the computed re-
sults. It is convenient to write the formulas as Padé approxi-
mations which are of the form

�n��r� �
P��r�
Q��r�

, �35�

where P��r� and Q��r� are polynomials of the mth order. The
higher the order m is, the better the accuracy of the approxi-
mation becomes. However, with large m, the formulas be-
come very complicated with many parameters to be fitted. In
this case, the order m=4 is a good compromise.

By determining the values of the polarizability before-
hand at certain permittivities, the number of fitted parameters
can be reduced. Let us denote �0=��0� and ��=���r�, when
�r→�. The polarizability �� can be solved by deriving new
equation systems by substituting �r1→� into Eqs. �12� and
�22�. The division by zero in computation of the polarizabil-
ity with �r=0 can be avoided by turning the hemisphere
around and choosing �r1=1 and �r2=0. Also, naturally ��1�
=0.

In the axial case these values become �0�−2.215 15
and ���2.189 38 and in the transversal case �0�
−1.368 53 and ���4.430 30.

The approximative equations become

�zn��r� � 2.18938��r − 1�
�r

3 + 4.91591�r
2 + 6.45198�r + 2.21515

�r
4 + 6.35053�r

3 + 12.8989�r
2 + 9.48877�r + 2.18938

, �36�

and

�tn��r� � 4.43030��r − 1�
�r

3 + 4.05220�r
2 + 4.51906�r + 1.36853

�r
4 + 7.71930�r

3 + 18.7410�r
2 + 16.5759�r + 4.43030

. �37�

The average normalized polarizability can be computed as �av= ��zn+2�tn� /3 or using the approximative formula,

�av��r� � 3.68332��r − 1�
�r

3 + 4.31762�r
2 + 5.08292�r + 1.65074

�r
4 + 7.54217�r

3 + 17.5848�r
2 + 14.5778�r + 3.68332

. �38�

With permittivity values �r
0, the absolute errors of these
formulas are always less than 10−5.

VI. CONCLUSIONS

In this article, the polarizability of a homogeneous hemi-
spherical object was considered. The polarizability consisted

of two components, the axial polarizability �z and the trans-

versal polarizability �t. A method, based on an analytical

approach where the potential functions were written as series

expansions, was presented. However, the coefficients of the

expansions could not be solved separately and an equation

FIG. 6. �Color online� Normalized axial and transversal polarizabilities of a
hemisphere and their average compared with the polarizability of a homo-
geneous sphere as a function of relative permittivity.
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system of N equations each including a sum over N terms
was constructed and written as a matrix equation. All matrix
elements, however, were analytically evaluable. With large
matrices, this method provided very accurate results. Also,
easy-to-use approximative formulas for the polarizabilities
were presented. Hopefully, the reader will find these results
useful. At least, they provide a reliable reference in testing
numerical methods.

The polarizability of the object does not, however, give
the whole picture of the electric response of the object be-
cause the polarizability is determined only by the dipolar part
of the response. Only for spheres is the response purely di-
polar. Deviations from elliptic geometries give rise to higher
order field components. These components, however, decay
very fast as a function of distance. For example, in the case
of the hemisphere, the sharp edge has a significant effect on
the electric response. The electric field is actually known to
be singular near the edge.15,16

The method described in this article is based on solving
all the coefficients of the series expansion outside the hemi-
sphere. This means that also the higher order components up
to the order N can be determined at the same time. Also, the
expressions for the coefficients inside the hemisphere are
presented. Therefore, it is possible to solve the potential
functions and the electric fields in the whole space.

An obvious situation would be a dielectric hemisphere
located for example in vacuum where �r=�i /�e	1. This
method can also be used in a situation of a hemispherical
hole in a dielectric environment where 0��r�1. In compu-
tation there are actually no restrictions for even negative val-
ues of permittivity. The interest toward the negative permit-
tivity has increased along with the research of artificial
materials with tunable material parameters. Also, for metals
with optical and UV frequencies, the real part of permittivity
can actually be negative. The electric response of an object
can be assumed to behave somewhat differently with nega-
tive values of permittivity than with positive, natural, permit-
tivities. This can be seen also from Eq. �2�. With �r=−2, the
polarizability of a sphere is singular. In the case of the hemi-
sphere the situation seems much more complex, providing a
new area for future research.
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APPENDIX: COMPUTATION OF THE INTEGRALS

Solving the equation systems Eqs. �12� and �22� requires
computing the integrals

Un,k = �
0

1

Pn���Pk���d� , �A1�

Un,k
1 = �

0

1

Pn
1���Pk

1���d� , �A2�

where Pn
m��� are the associated Legendre functions, which

can be constructed by using the Legendre polynomials
Pn���,17

Pn
m��� = �− 1�m�1 − �2�m/2 dm

d�m Pn��� . �A3�

Let us begin with the integral Un,k
1 . By applying the formula

Eq. �A3�, it can be written as

Un,k
1 = �

0

1

�1 − �2�
d

d�
Pn���

d

d�
Pk���d� . �A4�

Then, the partial integration gives

Un,k
1 = /

0

1

�1 − �2�
d

d�
Pn���Pk���

− �
0

1 	− 2�
d

d�
Pn��� + �1 − �2�

d

d�2 Pn���
Pk���d� .

�A5�

The latter term can be modified by applying the Legendre
differential equation,17

�1 − z2�
d2w�z�

dz2 − 2z
dw�z�

dz
+ 	n�n + 1� −

m

1 − z2
w�z� = 0.

�A6�

Therefore, Pn��� satisfies

�1 − �2�
d2

d�2 Pn��� − 2�
d

d�
Pn��� = − n�n + 1�Pn��� . �A7�

Substitution of Eq. �A7� into Eq. �A5� gives

Un,k
1 = −

d

d�
Pn�0�Pk�0� + n�n + 1��

0

1

Pn���Pk���d�

= −
d

d�
Pn�0�Pk�0� + n�n + 1�Un,k. �A8�

Then, by substituting the known values17

Pn�0� =
1

��
cos��

2
n���n/2 + 1/2�

��n/2 + 1�
, �A9�

d

d�
Pn�0� =

2
��

sin��

2
n� ��n/2 + 1�

��n/2 + 1/2�
, �A10�

Eq. �A8� gives

Un,k
1 = −

2

�
sin��

2
n�cos��

2
k�An,k + n�n + 1�Un,k, �A11�

where

An,k =
��n/2 + 1�

��n/2 + 1/2�
��k/2 + 1/2�
��k/2 + 1�

. �A12�

In the integrals Eqs. �A1� and �A2�, the indices n and k can
be interchanged. For example,
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Un,k
1 = �

0

1

Pn
1���Pk

1���d� = �
0

1

Pk
1���Pn

1���d� = Uk,n
1 .

�A13�

Then, also in the Eq. �A11�, indices must be interchangeable.
It can be written

Un,k
1 = Uk,n

1 = −
2

�
sin��

2
k�cos��

2
n�Ak,n + k�k + 1�Uk,n.

�A14�

One can also note that

Ak,n =
��k/2 + 1�

��k/2 + 1/2�
��n/2 + 1/2�
��n/2 + 1�

=
1

An,k
. �A15�

From Eqs. �A11� and �A14�, we obtain

Un,k =
2

�
	 sin��/2n�cos��/2k�An,k

n�n + 1� − k�k + 1�

−
sin��/2k�cos��/2n�Ak,n

n�n + 1� − k�k + 1� 
 . �A16�

The preceding integral can be also found in the literature.18

From Eqs. �A11� and �A14�, it also follows that

Un,k
1 =

2

�
	 k�k + 1�sin��/2n�cos��/2k�An,k

n�n + 1� − k�k + 1�

−
n�n + 1�sin��/2k�cos��/2n�Ak,n

n�n + 1� − k�k + 1� 
 . �A17�

Finally, the integral Eq. �A1� can be expressed as

Un,k = �
1

2n + 1
, n = k

0, n � k , n + k even

fn,k, otherwise
�, �A18�

where

fn,k =
2

�
	 sin��/2n�cos��/2k�An,k

n�n + 1� − k�k + 1�

−
sin��/2k�cos��/2n�Ak,n

n�n + 1� − k�k + 1� 
 , �A19�

and the integral Eq. �A2� as

Un,k
1 = �

n�n + 1�
2n + 1

, n = k

0, n � k , n + k even

fn,k
1 , otherwise

�, �A20�

where

fn,k
1 =

2

�
	 k�k + 1�sin��/2n�cos��/2k�An,k

n�n + 1� − k�k + 1�

−
n�n + 1�sin��/2k�cos��/2n�Ak,n

n�n + 1� − k�k + 1� 
 . �A21�
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