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The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated
using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long
timescale Langevin trajectories were calculated using the path integral hyperdynamics method to
evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate
length while the escape rate decreases monotonically with polymer length for ideal polymers. The
increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well
which reduces the free energy escape barrier. An effective potential curve obtained using the centroid
as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory
then applied to estimate the escape rate. While the qualitative features are well reproduced by this
approach, it significantly overestimates the rate, especially for the longer polymers. The reason for
this is illustrated by constructing a two-dimensional effective energy surface using the radius of
gyration as well as the centroid as controlled variables. This shows that the description of a transition
state dividing surface using only the centroid fails to confine the system to the region corresponding
to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A
proper definition of a transition state for polymer escape needs to take into account the shape as well
as the location of the polymer. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863920]

I. INTRODUCTION

Polymer translocation is a common process in various bi-
ological systems.1 A better understanding of these processes
is important for novel medical applications and treatments
as well as for new DNA sequencing technology where the
molecule is driven through an artificial channel in a mem-
brane and each nucleotide induces a characteristic currents
across the membrane from which it can be identified.2–5 Ex-
perimental measurements have also shown that it is possible
to separate polymers of different lengths and produce an ac-
curate drug delivery system based on translocation.6, 7 The
crossing rate of the polymer can, however, depend strongly
on the environment, thereby affecting the measured signal. A
better understanding of the translocation dynamics could help
make these types of methods more reliable.

A polymer escaping from a metastable external poten-
tial well through a narrow channel represents a generic model
of such systems. The channel represents both an energetic as
well as an entropic barrier. The energy barrier can have con-
tributions from steric effects as well as the electromagnetic
field of the channel and ions in the surrounding liquid. The
translocation rate of ideal polymers in simple external po-
tentials has been estimated analytically in limits where the
chain is either significantly larger or smaller than the exter-
nal potential well.8, 9 An analogy with semiclassical treatment
of quantum tunneling of a particle has been used.10 Other

a)Electronic mail: harri.mokkonen@aalto.fi

types of polymers, such as ring polymers have also been
studied.11–14

For more complex polymers, numerical simulations can
provide an estimate of the escape rate. But, since polymer es-
cape is typically a rare event on the time scale of atomic vi-
brations, a direct numerical solution to the equations of mo-
tion (“molecular dynamics,” MD) becomes impractical. The
timescale difference can amount to many orders of magni-
tude. The path integral hyperdynamics (PIHD) method15, 16

makes it possible to accelerate the escape by applying an
artificial bias force, thereby reducing the time interval that
needs to be simulated, and then subsequently correcting the
calculated rate to give an estimate of the true rate. This
methodology has previously been applied to polymer escape
from a one-dimensional external potential.18 PIHD has been
shown to work even for a time dependent bias force.17 We
note that this method is different from Voter’s hyperdynam-
ics method,15 where the bias potential is designed to vanish at
first order saddle points.

Alternatively, an estimate based on statistical mechanics
rather than dynamical trajectories started at the initial state
can be used to estimate transition rates, if the initial state is
assumed to reach and maintain equilibrium distribution of en-
ergy in all degrees of freedom. Such a rate theory approach in-
volves much less computational effort than simulation of tra-
jectories. Kramers theory of chemical reactions in solutions19

has, for example, been applied to estimate the escape rate
of polymers. It assumes, however, a one-dimensional reac-
tion coordinate and the question is how to define such a

0021-9606/2014/140(5)/054907/7/$30.00 © 2014 AIP Publishing LLC140, 054907-1
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coordinate in a system with multiple, coupled degrees of
freedom as in a polymer.

In this article, we present studies of the escape of poly-
mers from a two-dimensional external potential well using
standard Langevin dynamics, PIHD, and Kramers rate theory.
Two different polymer models are studied: (1) self-avoiding
polymers without bending stiffness, and (2) ideal polymers
without excluded volume. The polymers are modeled us-
ing the finite extension nonlinear elastic (FENE) model with
Lennard-Jones repulsive interaction.

The article is organized as follows: In Sec. II, the method-
ology is presented, including a description of the polymer
models, the PIHD method, Langevin dynamics, and the rate
theory. In Sec. III, the results are presented, followed by a
discussion in Sec. IV.

II. METHODOLOGY

A. Polymer models

The polymers were modeled as strings of beads coupled
with an interaction potential and subject to a two-dimensional
external potential. The Hamiltonian is

H({ri , vi}) =
N∑

i=1

m

2
|vi |2 + �({ri}), (1)

where m is the mass of a bead and N is the number of beads
in the polymer. The position of bead i is given by ri and the
velocity by vi . The interaction potential is

�({ri}) =
N∑

i=1

Vext(ri) + Uint({ri}), (2)

where the external potential is

Vext(x, y) =
{

1
2ω2

0(x2 + y2), x ≤ x0,

�V − 1
2ω2

b(x − xb)2 + 1
2ω2

0y
2, x > x0.

(3)

The quantities ω0 and ωb give the curvature of the well and
of the barrier, respectively, �V the height of the barrier lo-
cated at xb, and the x0 the cross-over point between the two
parabolas. The external potential is illustrated in Fig. 1(a).

A potential function with the same x-dependence but without
confinement in the y-direction was used in the work of Shin
et al.18

The interaction between the beads is given by

Uint({ri}) =
N−1∑

i

UFENE(|ri − ri+1|) +
∑
〈i,j〉

ULJ(|ri − rj |),

(4)

where

UFENE(r) = −1

2
kF R2

0 ln
(
1 − r2/R2

0

)
, (5)

and

ULJ(r) = 4ε[(σ/r)12 − (σ/r)6 + 1/4]. (6)

The repulsive interaction between the beads is a Lennard-
Jones (LJ) potential that is truncated and shifted so that
ULJ(r) = 0 if r > 21/6σ . The shift by ε ensures continuity
of the function. The interaction potential between adjacent
beads, which is illustrated in Fig. 1(b), also includes an attrac-
tive interaction, the so-called FENE interaction. Non-adjacent
beads only repel each other through the ULJ potential, the sec-
ond sum in Eq. (4) then including all pairs of beads. We will
refer to this full interaction model as the “self-avoiding” poly-
mer. For comparison, we have also carried out simulations
with a simpler model where non-adjacent beads do not inter-
act at all. The summation over ULJ in Eq. (4) then includes
only adjacent beads. We will refer to this simpler model as
the “ideal polymer.”

B. Dynamics

The dynamics of the polymer is given by the Langevin
equation

mr̈i(t) + γ ṙi(t) + ∇i�({ri}) = �i(t), (7)

where γ is the friction coefficient, �({ri}) is the total potential
energy given by Eq. (2), ∇ i is the gradient taken with respect
to (w.r.t.) the coordinates of the ith bead and ṙi is the velocity
of bead i. A Gaussian random force �(t) describes the effect
of collisions by solvent molecules and is defined in such a way
that 〈�(t)〉 = 0 and 〈�μ(t)�ν(t′)〉 = 2γ kBTδμ, νδ(t − t′). Here

(a) (b)

FIG. 1. (a) Illustration of the external potential Vext(x, y), see Eq. (3). (b) The interaction potential Uint between adjacent beads, see Eq. (4). The LJ potential
acts between all the beads in the self-avoiding chain model but only between consecutive beads in the ideal chain model. The UFENE component of the potential
diverges at R0 = 2.0, setting a maximum in the separation between consecutive beads.
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〈. . . 〉 denotes the ensemble average, μ and ν Cartesian coor-
dinate indices, kB the Boltzmann constant, T the temperature,
δ(t) the Dirac delta function, and δμ, ν Kronecker’s delta.

The escape rate is defined as the derivative of the escape
probability R = dPesc(t)/dt . For a single particle, the escape
probability can be written using the path integral formulation
as16, 20

Pesc(t) =
∫

xf ≥xb

dr

∫
x0≤xb

dr0P (r0)P (r0, t0|r, t), (8)

where xb is the position of the barrier top, P(r0) is the Boltz-
mann distribution of the initial configurations, and

P (r0, t0|r, t) = C

∫
[Dr] exp(−βI [r(t)]), (9)

is the probability that the particle has moved from r0 at time
t0 to r at time t.

∫
[Dr] refers to integration over all possible

paths between r0 and r, C being the normalization constant,
and I[r(t)] being the action of the path

I [r(t)] =
∫

dt[mr̈(t) + γ ṙ(t) + ∇i�(r(t))]2. (10)

For a polymer, an escape event is defined to have oc-
curred when the x-coordinate of the centroid (C) of the
polymer, xC = (1/N)

∑N
i=1 xi , has advanced well beyond

the location of the barrier maximum, beyond x = xb + 4.
Equation (8) can be evaluated numerically as

Pesc(t) = 1

Ntraj

Ntraj∑
i=1

�(t − ti), (11)

where �(. . . ) is the Heaviside function, ti is the escape time
of the ith trajectory, and Ntraj is the total number of simulated
trajectories.

In PIHD an artificial bias potential Vb(x) is added to the
external potential. The action can then be split into two parts
I [r(t)] = Ib[r(t)] + I�[r(t)], where Ib[r(t)] is the action for
the system in the presence of the bias potential and

I�[r(t)] = 1

4γ

∫ t

t0

dt ′∇Vb(r) · [∇Vb(r) − 2�(t ′)] (12)

is the PIHD correction factor for each trajectory. For the
biased system, Eq. (11) becomes

Pesc(t) = 1

N�

Ntraj∑
i=1

�(t − ti) exp(−βI�[ri(t)]), (13)

where ti is the escape time of trajectory i18 and Ntraj is the
total number of simulated trajectories [page 25 of Ref. 20].
Equation (13) gives the transition probability for an unbiased
system in terms of crossing probability obtained from trajec-
tories of the biased system. The normalization factor is

N� =
Ntraj∑
i=1

exp(−βI�[ri(t)]). (14)

The bias potential for each bead was chosen here to
be Vb(x) = 1

2bω2
0x

2 when x ≤ x0 and Vb(x) = −b�V

+ 1
2bω2

b(x − xb)2 when x > x0, where b is a parameter to be
chosen between 0 ≤ b < 1. Thus the bias potential flattens the

external potential along x-axis making the escape events more
frequent. We tried a few different choices of the bias potential,
including a constant force on all the beads as well as dragging
the chain from one end. The one chosen here worked best.

An equilibrium distribution for the initial state, P (r0),
was generated by letting the system thermally relax without
bias. Configurations were then drawn from this equilibrium
distribution and the bias potential turned on to generate escape
trajectories. Configurations were sampled at time intervals of
2τ where τ is the relaxation time.21

C. Rate theory

Kramers theory is frequently used to obtain estimates of
transition rates for molecules in solution.19, 22 It is based on
a Langevin description of the dynamics and different expres-
sions for the rate are obtained depending on the magnitude of
the friction coefficient. In the high friction limit, the Kramers
estimate of the crossing rate of a particle escaping from a
metastable potential is

RK = ω0ωb

2πγK

e−β�V , (15)

where �V is the height of the energy barrier, ω0 is the curva-
ture of the energy surface at the initial state minimum, and ωb

is the magnitude of the negative curvature at the barrier top.
In order to apply the Kramers formula in the present

case, the multiple degrees of freedom of the polymer need
to be reduced to a single reaction coordinate. One possibility
is to choose the x-coordinate of the centroid as the indepen-
dent variable. An effective potential energy curve for this one
degree of freedom is then obtained by thermally averaging
over all the other degrees of freedom. The thermal average of
a function f (r) for a fixed value of the x-coordinate of the
centroid is

〈f 〉C = 1

ZN (xC)

∫ N∏
i=1

dr′
if ({r′

i})δ
(
xC− 1

N

N∑
j=1

x ′
j︸ ︷︷ ︸

=x ′
C

)
e−β�({r′

i }),

(16)

where

ZN (xC) =
∫ N∏

i=1

dr′
iδ

⎛
⎝xC − 1

N

N∑
j=1

x ′
j

⎞
⎠ e−β�({r′

i }). (17)

By applying this averaging to the total potential, an ef-
fective energy curve �eff(xC, N) = 〈�〉C is obtained. The
friction coefficient for this reduced dimensionality system is
γ eff ≈ Nγ K. The effective friction coefficient in the Kramers
rate expression, γ K, was adjusted here to obtain a good esti-
mate of the simulated escape rate of a single bead and turned
out to be γ K = 0.82γ . A Kramers approximation for the
escape rate of a polymer with N beads is thus obtained as

RK(N ) = ω0,eff(N )ωB,eff(N )

2πγeff
e−β�Eeff(N). (18)

From the shape of the effective potential curves, the param-
eters ω0, eff(N), ωB, eff(N), and �Eeff(N) were estimated by
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FIG. 2. (a) Comparison of the escape rate of self-avoiding polymers from one- and two-dimensionally confining potentials. Red line: A potential well with
two-dimensional confinement by Eq. (3). Blue line: A potential well with the same x dependence but no confinement in the y-direction (taken from Ref. 18).
The added confinement in the two-dimensional well results in enhanced escape rates for the longer polymers. (b) Contribution of the external potential to the
energy barrier in the potential with confinement in y-direction (red lines) and without (blue lines). Circles present the effective external potential Veff(xC) in the
well bottom xC = 0 and triangles at the barrier top xC = xb.

fitting parabolas at the initial state minimum and at the
barrier maximum.

The internal degrees of freedom of the polymer con-
tribute to the effective potential curve �eff. Alternatively,
an effective external potential curve without including the
interaction between beads can be calculated as Veff(xC, N)
= 〈Vext〉C. We compare below the two energy curves and the
Kramers rate estimates obtained from each one.

D. Simulation parameters

The values of the various parameters used in the sim-
ulations were m = m0 = 1870 amu, kBT = 1.2, and
σ = 1.02 nm, which corresponds roughly to three base pairs
of DNA. These parameters fix the mass, length, and energy
scales resulting in a time scale characteristic of the LJ poten-
tial as tLJ =

√
mσ 2/ε = 30.9 ps, where ε = 1 kBT. The ex-

ternal potential was defined by parameters ω0 = 0.0014, ωb

= 0.032, and �V = 0.3 kBT. The barrier was located at po-
sition xb = 16 and the crossover between the two parabolas
at x0 = 12. The parameter in the FENE spring constant was
kF = 15 and the maximum FENE separation R0 = 2.0. The
Langevin equation was integrated in time using a velocity
Verlet type algorithm23 which is particularly well suited for
PIHD. The effective potential curves �eff and Veff were sam-
pled during the escape simulations. The PIHD bias parameter
b was chosen between 0.7. . . 0.9.

The chosen friction in the Langevin dynamics, γ = 0.7
(= 3.8 × 10−6 kg/s), corresponds to the high friction range
of Kramers’ theory γ 	 πωb.19 With this choice of friction,
viscosity of the fluid surrounding polymer can be estimated to
be η ≈ 1.3 × 10−5 g (cm s)−1 (for water η = 1 g (cm s)−1).24

III. RESULTS

The escape probability was calculated for polymers with
up to N = 80 beads using PIHD and Eq. (13). A linear least

squares fit to the calculated Pesc(t) was then used to estimate
the escape rate R(N ). A comparison of the present simula-
tions using a two-dimensionally confined external potential
and previously reported simulations18 for an external poten-
tial without confinement in y-direction (similar as Eq. (3) but
with no terms depending on y) is shown in Fig. 2. The added
confinement in the two-dimensional well results in enhanced
escape rate for the longer polymers and compared to the one-
dimensional case. A pronounced minimum in the rate is ob-
served at around N = 30. This occurs because the repulsive
interactions between beads in the longer polymers raise the
free energy of the initial state with respect to the transition
state.

The total energy depends strongly on chain length with
lower bound �eff > 9(N − 1) but the values of Veff in
Fig. 2 reveal that when two-dimensional confinement is
present V0 = V ext

eff (x0) increases faster. This is due to “crowd-
ing” in the well; the longer self-avoiding chains cannot fit
into the initial state any more so they experience much higher
external potential. In the potential without confinement, the
energy barrier Veff(xb) starts to decrease after N = 32
corresponding the rate minimum which implicates that the
chain is more elongated over the barrier when y-directional
confinement is not present.

When the repulsive interaction between non-adjacent
beads is turned off (no excluded volume interactions), in the
ideal polymers, see Fig. 3, this minimum disappears. In this
case, the escape rate continues to drop past N = 30. This
shows that the reason for the minimum observed in the es-
cape rate of the self-avoiding polymers is due to the repulsive
interactions between non-adjacent beads. The simulations of
the ideal polymers were carried out up to N = 48, beyond
which the free energy barrier becomes so large that even with
PIHD the simulations become excessively long.

PIHD is, nevertheless, found to be efficient for the
ideal chains. MD simulations with 2 × 106 trajectories and
chain length N = 32 give a root mean square error of
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FIG. 3. Escape rate for (a) ideal polymers, and (b) self-avoiding polymers calculated using PIHD and estimated using Kramers theory, Eq. (18). The escape
rate of the ideal polymers is monotonically decreasing as a function of N up to the maximum length simulated, while the escape rate of self-avoiding polymers
exhibits a minimum around N = 30. The purple dot presents the rate computed using the energy barrier averaged over the tilted line in Fig. 7. It shows that
taking the shape of the polymer into account in reaction coordinate improves the rate given by Kramers theory.

σ MD = 1.4 × 10−7 for the rate, while PIHD with same pa-
rameters gives σ PIHD = 0.9 × 10−7. Knowing that root mean
square error scales as σ ∼ N

−1/2
traj we can estimate that using

MD solely would need approximately 2.5 times more trajec-
tories for same accuracy. For chain length N = 40 this ratio
is approximately 3 while for N = 24 it is approximately unity
illustrating that PIHD is more beneficial for the longer chains.
Typical data for P(t) are shown in Fig. 4 for straight MD and
PIHD simulations for an ideal chain with N = 32.

The effective potential curves obtained by fixing the
x-coordinate of the centroid of the polymer and thermally
averaging over the positions of beads according to Eq. (16)
are shown in Fig. 5. The barrier to the escape of the self-
avoiding polymer in the �eff effective potential first increases

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8
x 10

−4

P
(t

)

t

 

 

MD data
MD fit
PIHD data
PIHD fit

FIG. 4. Probability that an ideal polymer of length N = 32 has escaped,
P(t), calculated using either MD or PIHD simulations with 2 × 106 trajec-
tories. A linear least squares fit to the MD simulation data gives the rate
R = (6.5 ± 1.4) × 10−7, and a fit to the PIHD simulation the rate
R = (6.5 ± 0.9) × 10−7.

with length and then decreases while the location of the max-
imum monotonically shifts towards the initial state minimum.
This shift is also seen in the barrier of the average external
potential Veff. The statistical sampling is easier for the self-
avoiding polymer since the effective energy barrier is lower
and the direct dynamics sample the saddle point region better.
For N = 80, the effective barrier for the self-avoiding polymer
was too small to obtain good statistics.

An estimate of the escape rate using Kramers rate the-
ory is obtained by fitting the effective potential curves with
parabolas to extract estimates of the parameters ω0, eff(N),
ωB, eff(N), and �Veff(N ) in the rate expression.

The rate estimates obtained using Kramers theory,
Eq. (18), applied to the effective potential curves are com-
pared with the PIHD simulated results in Fig. 3. The rate the-
ory gives behavior qualitatively similar to the simulations for
both polymer models but severely overestimates the escape
rate of the longer polymers, especially the self-avoiding ones.
The reason for this is an underestimate of the energy bar-
rier to escape in the effective potential curves. The use of the
centroid coordinate as a reaction coordinate does not confine
the polymers to the transition state region which then leads
to an underestimate of the energy barrier. This can be seen
by evaluating an effective potential function of two variables,
the radius of gyration, Rg, as well as the centroid. Such two-
dimensional effective potential surfaces are shown in Fig. 6
for self-avoiding polymer with N = 8 and in Fig. 7 for N = 40.
While the energy ridge for the shorter polymer is aligned with
the xC = 16 vertical line, showing that a constraint based
on the centroid coordinate alone can confine the system at
the barrier, the ridge for the longer polymer is significantly
tilted with respect to the vertical axis. This means that a con-
straint based only on a fixed value of the x-coordinate of the
centroid cannot constrain the system in the high barrier re-
gion. When the thermal averaging of the other degrees of
freedom is carried out for the longer polymer and xC = 8, the
polymer either has rather compact configurations with a small
value of the radius of gyration, or a significantly larger value.
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FIG. 5. Effective potential energy curves for self-avoiding polymer escape from a two-dimensional well, using the x-coordinate of the centroid as a reaction
coordinate and thermally integrating over all other degrees of freedom, see Eq. (16). (a) Effective external potential Veff(xC, N ). (b) Effective full potential
energy �eff(xC, N) − �eff(0, N). Second degree polynomial fits are shown in red and green for well minima and maxima, respectively. The �eff(xC, N) curves
shift upward with N so �(0, N) is subtracted for better illustration.

The intermediate values that correspond to the energy ridge
are rarely sampled, as shown in the inset of Fig. 7. When,
however, the effective energy curve is defined by averaging
along a line that is tilted in the (Rg, xC) plane, so as to lie along
the energy ridge, the system cannot escape the high energy re-
gion and the vicinity of the first order saddle point is sampled,
giving a larger average energy barrier to escape.

If the energy is averaged over the tilted line in Fig. 7 it
is ��′ = 4.7 being higher than �� = 3.7 in Fig. 5 where
the average is taken over the straight line. Using Eq. (18)
we can obtain the corrected estimate for the rate over such
barrier by R′(40) = e(��−��′)/kbTR(40) = 2.2 × 10−5 < R
= 5.1 × 10−5 which is plotted as a purple dot in Fig. 3.
This rate is closer to the rate by direct simulations RMD(40)
= 1.42 × 10−5.

FIG. 6. Contour graph of the effective potential energy surface, �eff(xC, Rg,
8), for the self-avoiding polymer where xC is the x-coordinate of the centroid
and Rg is the radius of gyration of a polymer with 8 beads. In this case the en-
ergy barrier lies close to vertical line corresponding to a fixed xC (see dashed
line). A constraint based on the centroid alone can then be used to define a
good reaction coordinate.

IV. DISCUSSION

The results presented here show how increased con-
finement of the external potential, going from the one-
dimensionally to a two-dimensionally confining potential, af-
fects the escape rate of the polymers, as shown in Fig. 2.

FIG. 7. Contour graph of the effective potential energy surface, �eff(xC, Rg,
40), for the self-avoiding polymer where xC is the x-coordinate of the cen-
troid and Rg is the radius of gyration of a polymer with 40 beads. In this case
the energy barrier is titled with respect to a line of a fixed xC (dashed line)
and a constraint based on the centroid alone does not give a good reaction
coordinate. Thermal sampling along the dashed red line is dominated by con-
figurations that either have larger or smaller Rg than the value at the energy
barrier (dashed red line in the inset), resulting in an underestimate of the en-
ergy barrier. Sampling within the tilted, dashed black line, however, confines
the system within the barrier region and has maximum density at the first or-
der saddle point (dotted black line in the inset) and gives a larger value of the
activation energy. This shows that a reaction coordinate using the centroid
alone will give an underestimate of the activation energy for polymers of this
length and that a good reaction coordinate needs to be defined both in terms
of the location and shape of the polymer.
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The added confinement lowers the number of possible config-
urations that a self-avoiding chain can take when it is sitting
in the minimum, increasing the free energy of the initial state
with respect to the transition state. The curvature of the ex-
ternal potential in the added dimension, the y-direction, is the
same at the barrier and at the initial state minimum, and thus
this effect is relatively more important in the initial state since
the polymer tends to be elongated at the barrier.

A clear minimum in the escape rate of self-avoiding poly-
mers is obtained for intermediate length, about N = 30, and
this becomes even more pronounced in the two-dimensional
case. The escape rate of ideal polymers, where repulsive in-
teraction between the non-adjacent beads has been turned off,
does not show such a minimum for the range studied here.
This is consistent with the interpretation that the crowding
of the beads in the self-avoiding polymers in the initial state
well is responsible for lowering the free energy barrier for
escape. In the case of ideal polymers, such crowding effects
are largely absent since only adjacent beads are subject to a
repulsive interaction.

Qualitatively correct trends are obtained by applying
Kramers rate theory to a one-dimensional reaction coordi-
nate defined as the x-component of the centroid coordinate.
However, the escape rate is overestimated for the longer poly-
mers. For the ideal polymers, Kramers rate theory gives closer
agreement with the PIHD simulations. This overestimate of
the rate for the self-avoiding polymers can also be somewhat
reduced by defining the effective potential curve as a thermal
average of the external potential only, Veff(xC, N) = 〈Vext〉C.
The results are shown in Fig. 3. This has almost no effect on
the rate estimated for the ideal polymers, but significantly re-
duces that of the longer self-avoiding polymers, essentially
through cancellation of errors.

The results presented here illustrate that a centroid coor-
dinate cannot give a good reaction coordinate for the longer
polymers, as also concluded by Debnath and co-workers.14 A
similar problem in defining a one dimensional reaction co-
ordinate has been discussed in the context of the polymer
reversal problem.25, 26 A good reaction coordinate needs to
include information about the shape as well as the location
of the polymer at the transition state. This result is similar
to what has been concluded in quantum mechanical rate the-
ory where Feynman path integrals are used to represent quan-
tum delocalization. Here, more beads need to be introduced
in the path integrals the lower the temperature becomes, so
an analogy exists between reduced temperature in the tunnel-
ing problems and length of polymers in the classical poly-
mer escape problems. Calculations of tunneling rates using
the centroid as reaction coordinate have, indeed, shown an
unphysical increase in tunneling rate as temperature is low-
ered, see, for example, Ref. 27 and a good quantum transi-
tion state needs to be defined in terms of both location and
shape of the Feynman paths.28 In the present case, a linear
combination of the centroid coordinate and radius of gyration
could be used as a good reaction coordinate, but the proper

combination of the two will depend on the length of the poly-
mer. A systematic optimization of the location and orienta-
tion of a hyper-planar dividing surface so as to maximize the
transition state free energy could possibly be used for the
polymer escape problem, analogous to what has been done
for diffusion problems,29, 30 It may also turn out that a hyper-
planar dividing surface does not provide sufficient flexibility
to confine the longer polymers to the bottleneck region for the
escape. This will be studied in future work.
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