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We investigate the dynamics of pore-driven polymer translocation by theoretical analysis and molec-
ular dynamics (MD) simulations. Using the tension propagation theory within the constant flux ap-
proximation we derive an explicit equation of motion for the tension front. From this we derive a
scaling relation for the average translocation time 7, which captures the asymptotic result T o< N(}J“”,
where N, is the chain length and v is the Flory exponent. In addition, we derive the leading correction-
to-scaling term to T and show that all terms of order Ng" exactly cancel out, leaving only a finite-
chain length correction term due to the effective pore friction, which is linearly proportional to N,.
We use the model to numerically include fluctuations in the initial configuration of the polymer
chain in addition to thermal noise. We show that when the cis side fluctuations are properly ac-
counted for, the model not only reproduces previously known results but also considerably improves
the estimates of the monomer waiting time distribution and the time evolution of the translocation
coordinate s(#), showing excellent agreement with MD simulations. © 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4903176]

. INTRODUCTION

Polymer translocation has in less that 20 years become
one of the most active research areas in soft matter biologi-
cal physics. Since the initial experimental work of Kasianow-
icz et al.' on RNA translocation through a-hemolysin chan-
nels, the interest in the potential technological applications
such as gene therapy, drug delivery and rapid DNA sequenc-
ing has motivated a steady flow of experimental and theo-
retical research.”? Of particular interest is the case of the
pore-driven polymer translocation, where the segment of the
polymer inside the pore is driven by an electric field. Unlike
the case of unbiased translocation, where the polymer sup-
posedly has enough time to equilibrate in some limits**3¢
the driven translocation problem is inherently a far-from-
equilibrium process.?*~3?

In the recent years, significant advance has been made in
the theoretical basis of driven polymer translocation. It is now
understood that the dynamics of driven translocation is dom-
inated by the drag of the cis side chain, with leading order
corrections stemming from the friction of the pore,?®® with
the trans side suspected to have only a minor effect on the
whole process.?”37-3% To evaluate the contribution from the
cis side drag, one must study the non-equilibrium time evo-
lution of the chain configurations. The basic picture is that of
two domains, with the chain divided into mobile and immo-
bile parts, where only the segments belonging into the mo-
bile part contribute to the drag. In the simplest description,
the process can be viewed as a sequential straightening of
loops, where the loops between a given segment and the pore
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need to be pulled straight before the segment can experience
the force and become mobile.!”?%3% Based on this picture,
the scaling form v o« N for the average translocation time
7 as a function of chain length N, can be derived with scal-
ing arguments,”® giving 7(Ny) = ¢, N, ™ + ¢y, No, where ¢,
and c, are constants. Here the first term is due to the cis side
drag and contains the Flory exponent v that characterizes the
initial shape of the chain, given by the end-to-end distance
R o Nyj. The latter term is due to the interaction of the pore
and the polymer, the strength of which is given by the effec-
tive pore friction 7 ,.

Thermal fluctuations from the solvent introduce both un-
dulations to the shape of the chain and randomness into
the effective driving force. Using blob theory, it is possi-
ble to describe the shape of the mobile part and the prop-
agation of the boundary between the mobile and immobile
parts self-consistently.'®=>” Asymptotic analysis of this ten-
sion propagation theory also gives the long chain limit of
the translocation time as 7 = C1N01+v, similar to the sim-
ple scaling arguments.?® Numerical analysis has shown that
the finite chain length effects due to the pore friction per-
sist for extremely long chains, and that they are respon-
sible for the scatter in the reported values of the scaling
exponent o 2628

With numerical methods, one may also consider the ef-
fect of thermal fluctuations to the driving force. Previous re-
sults indicate that the randomness of the effective force alone
is insufficient to explain the fluctuations observed in molecu-
lar dynamics simulations.?” Saito and Sakaue have proposed
that for large driving forces the uncertainty in the initial con-
figurations would determine the distribution of the transloca-
tion time.??

© 2014 AIP Publishing LLC
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In this paper, our main aim is to investigate the influ-
ence of the uncertainty in the initial chain configuration to
translocation dynamics by introducing stochasticity to the ini-
tial chain configuration at the cis side. This is based on using
the Brownian dynamics-tension propagation (BDTP) frame-
work introduced in Refs. 26 and 27. We modify this approach
by deriving the tension propagation (TP) equations by assum-
ing a constant monomer flux on the mobile part of the chain
in the cis side. This formalism leads to an explicit equation of
motion for the velocity of the tension front and eliminates the
need of the original BDTP model to include an approximate
initial velocity profile to ensure the conservation mass. In ad-
dition, the model allows us to derive a finite-size scaling form
for the average translocation time, which is in agreement with
ansatz of Ref. 28.

This paper is organized as follows: In Sec. II we demon-
strate how to model driven translocation based on the iso-
flux Brownian dynamics tension propagation (IFTP) formal-
ism. Section III is devoted to deriving the finite-size scaling
form for the translocation time. In Sec. IV it is shown how
the initial configurations can be incorporated into the theory.
Sections V A—V D present the results on the average of the
translocation time, waiting time distribution, distribution of
the translocation time and time evolution of the translocation
coordinate, respectively. Finally, the conclusions and discus-
sion are in Sec. VL.

Il. MODEL

For brevity, we use dimensionless units denoted by tilde
as ¥ = Y/Y,, with the units of time #, = na’/(k,T), length s,
= a, velocity v, = a/t, = kzT /(na), force f,, = kyT/a, fric-
tion ', = 5, and monomer flux ¢, = kzT/(na*), where kj
is the Boltzmann constant, T is the temperature of the sys-
tem, a is the segment length, and 7 is the solvent friction per
monomer.

As a basic framework we use Brownian dynamics (BD)
in the overdamped limit, similar to Refs. 26 and 27. The BD
equation is written for the translocation coordinate § that gives
the length of the chain on the trans side. The equation reads
as

f(f)d—s: =1-y)
dt

1 s = ~
N J +7+ED = o D
where I'(7) is the effective friction, and Z (7) is Gaussian white
noise which satisfies (¢(¢)) = 0 and (£(6)¢ (1)) = 2T (kg T5(¢
— t), y' is the surface exponent (y’ = 0.5 for ideal chains,
and ~0.95, ~0.69 for self-avoiding chains in two and three
dimensions, respectively), N, is the total number of beads in
the chain (the contour length of the chain is L = aN,)), f is the
external driving force and f,, is the total force. The effective
friction I'(f) can be written as a sum of the cis side subchain
and the pore frictions, i.e., ['(f) = 7j,,,(F) + i, As the dynam-
ical trans side contribution to the dynamics has been shown to
be insignificant,’*?%37:38 we absorb it into the constant pore
friction 7j,,. The dynamics of the cis side is solved with the TP
equations.

To derive the TP equations, we use arguments similar to
Rowghanian et al.?* We assume that the flux ¢ = d5/df of
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monomers on the mobile domain of the cis side and through
the pore is constant in space, but evolves in time. The bound-
ary between the mobile and immobile domains, the tension
front, is located at distance ¥ = —R(f) from the pore. In-
side the mobile domain, the external driving force is medi-
ated by the chain backbone from the pore at ¥ = 0 all the way
to the last mobile monomer N located at the tension front.
The magnitude of the tension force at distance X can be cal-
culated by considering the force-balance relation for the dif-
ferential element dx that is located between ¥ and X + dx.
By integrating the force-balance relation over the distance
from the pore entrance to X, the tension force can be obtained
as f(%,7) = fy — @)% (see Appendix A for details). Here
fo= Ffior—1i pq’;(f) is the force at the pore entrance.

Closer to the tension front the mediated force is there-
fore smaller, as it is diminished by the drag of all the pre-
ceding monomers. According to blob theory, the chain then
assumes a trumpet-like shape with the narrow end closer to
the pore, such as shown in Figs. 1(a) and 1(b). For a moder-
ate external driving force, i.e., N Y& fo « 1, the monomer
density at the pore is greater than unity, and the shape of the
chain resembles a trumpet. This is classified as a trumpet (TR)
regime. For a stronger external driving force, 1 < fo < Ny,
the force is large enough to completely straighten a small
part of the chain. This part is called the stem, while the part
following it is called the flower, corresponding to the stem-
flower (SF) regime (see Fig. 1(c)). In both regimes the tension
front is located at the farthest blob from the pore as depicted
in Fig. 1.

Integration of the force balance equation over the mo-
bile domain gives an expression for the monomer flux as a
function of the force and the linear size of the mobile domain
as

2

Equation (1) and the definition of the flux, (;3 = d5/df, can be
then used to find the expression for the effective friction as

[@ = RO + 1, 3)

Equations (1)—(3) determine the time evolution of §, but
the full solution still requires the knowledge of R(7). The
derivation of the equation of motion of R(f) is done separately
for the propagation and post propagation stages. In the prop-
agation stage, the tension has not reached the final monomer
in Fig. 1(a). Here the propagation of the tension front into the
immobile domain is determined by the geometric shape of the
immobile domain. In practice, one uses the scaling relation of
the end-to-end distance of the self-avoiding chain to arrive at
the closure relation R = A, NV, where A, is a constant pref-
actor and N is the last monomer inside the tension front. As
shown in Appendix B, one can then derive an equation of mo-
tion for the tension front as

A REOT UL, + G % for® + D]

R = S
1+ vA; RDT L, x ¢(7)

“)

where £, and G, are functions of ¢, 7j p-and v, fioy 1s the time
derivative of f,,, and the subscript “a” in £, and G, stands
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(a ) i< ftp,T cis | trans
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trans trans

FIG. 1. (a) A schematic picture of the translocation process during propagation stage for the trumpet regime. The driving force f acts on polymer at the pore
towards the trans side. The length of polymer is N, and the number of beads that have already been translocated into the trans side is denoted by §. The number

of beads influenced by the tension in the cis side is [ + § which is less than the number of total beads in the polymer N, during propagation stage. The location of

the last blob is determined by R. (b) The translocation process when the tension front reaches the chain end and after it for the trumpet regime (post propagation
stage). (c) The same as (a) but for the stem-flower regime. T and 7, p.SF define the propagation times in the trumpet and stem-flower regimes, respectively, as

1]

in Eq. (6).

for the trumpet regime as T and T_ correspond to positive
and negative values of ¢ respectively, and for the stem-flower
regime as SF.

In the post propagation stage in Fig. 1(b), every monomer
on the cis side is affected by the tension. Therefore, we have
the condition N = N,. Since N is also equal to the num-
ber of monomers already translocated, §, plus the number of
monomers currently mobile on the cis side, 7, the correct clo-
sure relation for the post propagation stage is [ + § = N,. The
equation of motion for the tension front is then derived as

(Ly + G fia) + oD
o) x L,
which is demonstrated in Appendix B.

The self-consistent solution for the model in the propa-

gation stage can be obtained from Eqs. (1)—(4). Correspond-

ingly, in the post propagation one uses the set of Egs. (1), (2),
(3), and (5).

R =

, &)

lll. SCALING OF TRANSLOCATION TIME

To obtain some analytical results, it is useful to con-
sider the approximation of constant force, f,,, = f. Then
Eq. (2) reduces to ¢(f) = f/(R(?) + 7j,). In the stem-flower
and trumpet regimes, the number of mobile monomers
on the cis side is given by Iz =R+ C,¢~', and I;
= gD/ R@ =DV respectively, where C, = (1 —
v)/(2v — 1). This together with the conservation of mass,
N =35 +1, allows one to solve the propagation time T, by
integration of N from O to N;. The result is

1 Ny _
ftp,a = 7.|:/(; R(N)dN + ﬁpNO] — AT, 6)

where the subscript “a” denotes SF and T, and

1 1. ~
Aty = <—~ + 4) [ERZ(NO) + ﬁpR(NO)] ,

R(NU) s . .
+C, / dRR* (R + ﬁp)vl}. (7
0

In the post propagation stage, one sets the condition
dN/df = 0 and integrates R from R(N,) to 0. The result for

the post-propagation time %, is

pp
T o = AT, )

The time over the whole translocation process is then
given by

RN O _
- + Topa = ? |:/(; R(N)dN + npNO]

= LN&*” + "—BNO. )
I +v)f f

This is a remarkable result in the sense that although terms
proportional to Ng” appear in the intermediate steps, as pre-
dicted, for instance, in Refs. 22 and 25, the terms are canceled
out in the expression for the total translocation time. This re-
sult is in agreement with the previously proposed scaling anal-
ysis and MD simulations in Ref. 28.

IV. DISTRIBUTION OF INITIAL CONFIGURATIONS

In previous works with the BDTP model, an average end-
to-end distance R = A NV was used with a constant coef-
ficient A, = 1.15 in 3D.**?" To study the influence of ini-
tial configurations on the translocation process we employ a
new probability distribution function to sample the end-to-
end distance of the chain. To obtain the distribution, we have
done Langevin-thermostated molecular dynamics simulations
of self-avoiding chains tethered onto an impenetrable wall
and calculated the end-to-end distance of chain. We simulated
several chain lengths up to N, = 321, with standard Kremer-
Grest bead-spring model of the chain and other parameters
typically used in the MD simulations. For detailed account of
the simulation method and the parameters, see, e.g., Refs. 26
and 27.

The distribution of the end-to-end distances for N, = 321
is shown in Fig. 2. An analytical function was fitted to the
cumulative distribution function constructed from the data by
minimizing the squared error with the conditions that the total
probability and the second moment are equal to unity. The ob-
tained analytical probability distribution function can be writ-
ten as

P(y) = Ay%exp[Cy”], (10)

where A = 0.4252, B = 1.0310, C = —1.4417, D = 2.6203,
and y is the normalized end-to-end distance y = R/+/{R?).
The fitted function was also compared to MD data of shorter
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FIG. 2. MD data for the probability distribution function multiplied by 47ry?
(yellow bars), with fitting to the MD data shown as a black line. The fitting
curve is 4wy P(y) where P(y) = AyPexp[CyP] and A = 0.4252, B = 1.0310,
C = —14417, D =2.6203. Here y = R/\/(R2).

chains (N, = 81 and N, = 161) with a Kolmogorov-
Smirnov test, showing that within 99% statistical confidence
the shorter chains follow the same distribution for the normal-
ized end-to-end distance.

Using Eq. (10) one can sample over many different initial
configurations. By choosing y from the probability distribu-
tion function in Eq. (10) and redefining R as R = A, (y)Nyg,
one can incorporate an approximate distribution of R into the
TP theory through A, (y) = yA,. For numerical reasons we
have covered the range y_ ;. <y < Ynax» Where y .. = 0.356
and y, . = 1.718. This is justified because 97% of the area
below the curve in Fig. 2 is still covered by choosing these
cutoffs.

V. RESULTS
A. Average translocation time

The most fundamental property related to the transloca-
tion process is the average translocation time 7. According to

J. Chem. Phys. 141, 214907 (2014)

the analysis of Sec. III, the translocation time ¥ depends on
the chain length N, as

T =c,(f.v. AN + ¢, ()i, No. (11

Written in the conventional scaling form, T o< N, itis evident
that the effective exponent « is a function of chain length due
to the correction-to-asymptotic-scaling term in Eq. (11).

To illustrate this behavior, we have solved the model nu-
merically. For parameter values f = 5.0, kz7T = 1.2, n = 0.7,
and pore frictions N, = 1.0, 2.0, 5.0, and 10.0, the transloca-
tion time as a function of chain length is shown in Fig. 3(a).
Here we have used a fixed value A, = 1.15 and we have set
the stochastic term ¢ in the force to zero in order to be able to
simulate chain lengths up to N, ~ 10%. For short chains, there
is a clear dependence in the slope on the pore friction. For the
long chains, this dependence dies off as the asymptotic limit
of « = 1 + v is reached.

To compare the values of the parameters here with those
in real physical systems, we first note that in MD we use the
reduced Lennard-Jones units. We fix the scale for mass, time
and energy by using the LJ parameters o, M, and € which are
diameter and mass of each bead, and the interaction strength,
respectively. The time is scaled by #; ; = (mo*/e)"?, and kT
= 1.2 which is dimensionless. In our model the size of each
bead corresponds to the Kuhn length of a single-strand DNA,
which is ¢ ~ 1.5 nm. The mass of each bead is about 936
amu, and the interaction strength is 3.39 x 1072! J at room
temperature (7' = 295 K). Therefore, the LJ time scale is 32.1
ps. Here the thickness of the pore is 1o. By assuming three
unit charges per bead and the effective charge of 0.094e for
each unit charge,***! and with the force scale of 2.3 pN, an
external driving force of f = 5 corresponds to a voltage of
375 mV across the pore.*?

The dependence on the pore friction is even more clear
in Fig. 3(b), where we have plotted the effective translo-
cation exponent defined as a(N,) = dlnz/(dln NO)28 for

~
~

- rescaled data 1+v=]1.588 | [ o—° ﬂ“of?&) f=5.0 ]
] 1.6 - . / = i 0'_—_—0 NO; 56 ]
Feomsime s-rpp AR A]  S0[ 2T RN ]
X D/D’_, 2w ] [ q— —qN=10° ]
./o_/,,’ N T]p=1.0 4 N v_”_VNO=5><10:3 ]
E 15F /-0/_.‘ v m--@ N =20 7] 2.5 r No f .
1= o_&/A / .o np: 35 ] ?Q : 510
1Z o od.t b4 A T]p=50 ] l-’: 3 * Ng=5x10
> - ,=50 1 g
3 14 -oo‘}"A v vo--y M= 1000~ 2.0
AA‘ / n=10 1 e ;
L “ vy u] T]p= 2.0 ] 15L
13  rescaled data ——¢ ©  Mp=3-5 4 -
- A np:5.0 ] [
-f=50 v ﬂp=10.0- 1.0F
1-2-““"“."'“‘“' NPT EEPEUT RN [ TP TR SRR R
102 103 104 105 0 2 8 10
N0 n,

FIG. 3. (a) The translocation time as a function of the chain length, Ny for fixed values of the force, f = 5.0, and A, = 1.15 for various values of n_. The
effective exponent for the shortest chain, N, = 40, and pore friction 7 b= 1.0is 1.516, while for highest value of pore friction n, = 10.0itis 1.260. The effgective

exponent for the longest chain, N, = 5 x 10° is 1.588. (b) The effective exponent a(N,) as a function of the chain length for various values of pore friction 1,
and the rescaled exponent that is also plotted as a function of chain length for various U As can be seen, the rescaled exponent curves for different values of

Us collapse on a single master curve, i.e., oﬁ(NO) =1 4 v, as denoted by rescaled data in the figure. (c) The normalized translocation time, r/tn =0, plotted
P

as a function of pore friction, Mps for various chain lengths.
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different values of pore friction. We have checked the chain
length dependence of the translocation exponent for the spe-
cific case of fixed pore friction Ny, = 3.5, when the thermal
fluctuations as well as distribution of the initial configurations
of the chain are taken into account. For both cases the translo-
cation exponents are the same as of the deterministic case
within a quite good accuracy. The translocation exponent has
been studied also in Ref. 43, but in this work no distinction
was made between different sources of noise.

As mentioned, the dependence of the translocation expo-
nents on the pore friction is more pronounced for short chain
lengths. To show that the difference from the asymptotic value
is indeed caused by the pore friction term, and not some other
finite size effects, we define a rescaled translocation time as

th =1 — i, Ny = ¢, Ny ™" ~ N (12)

where af = 1 + v is the rescaled translocation exponent
which does not depend on the chain length. As explained in
Ref. 28, ¢, and ¢, can be obtained by calculating the inter-
cept and slope of the curve t/ N(;J“’ as a function of 7j, Ny Y

respectively. Calculating the rescaled exponent as af(N,)
= dln rT/(dlnNO) it is found that it is indeed equal to 1 +
v for all chain lengths, independent of pore friction which is
demonstrated in Fig. 3(b). This result is in excellent agree-
ment with the molecular dynamics simulation results dis-
cussed in Ref. 28.

To further illustrate the influence of the pore friction on
the translocation time, in Fig. 3(c) the normalized transloca-
tion time, 7/ Ty =00 has been plotted as a function of the pore
friction, Mp» for various values of chain length, Ny =40 — 5
x 10°. As it can be seen the normalized translocation time
is influenced strongly by the pore friction for shorter chains
while for longest chain the translocation time is constant for
different values of the pore friction.

B. Waiting time distribution

An important quantity in examining the dynamics of the
translocation process is the monomer waiting time, which is
defined as the time that each monomer or segment spends at
the pore during the translocation process. The waiting time
is calculated for each monomer, and averaged over the dif-
ferent simulation trajectories. Here we have calculated the
waiting time as a function of the translocation coordinate §
and present it in Fig. 4 for a fixed chain length N, = 128,
external driving force f = 5.0 and 5, = 3.5. It can be seen
that the translocation process is a far-from-equilibrium pro-
cess and has two different stages. First one is the propagation
stage where as the time passes more monomers are moved and
involved in the drag friction force. Therefore, the friction in-
creases monotonically until it gets its maximum value which
happens when the tension reaches the chain end. The second
stage of the translocation process is called the post propaga-
tion stage that starts when the tension reaches the chain end.
During this stage the remaining part of the chain in the cis
side is sucked through the pore and at the end the transloca-
tion process ends when the whole chain passes through the
pore to the trans side.
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FIG. 4. Waiting time, w(5), as a function of the translocation coordinate, §.
Here, we present waiting time for different cases when both of the force and
A, = 1.15 are deterministic (black curve), force is chosen randomly but A
= 1.15 is deterministic (green circles), both the force and A | are stochastic
(red squares), and finally MD simulation data (blue triangles).

We can now use the IFTP model to separately examine
the influence of thermal fluctuations in the noise and the dis-
tribution of the initial configuration of the chain. The results
are shown in Fig. 4. The black curve corresponds to the de-
terministic case, where both the force f = 5.0 and the ampli-
tude A, = 1.15 are fixed. The green circles show the wait-
ing time when the force includes the stochastic component
(noise) ¢ and A, = 1.15 is fixed. As can be seen, the mean
values are almost identical to the first deterministic case. The
red squares exhibit the waiting time when both the force and
A, are stochastic, i.e., the force includes noise and the ini-
tial distribution of A is sampled from Eq. (10). The main
effect of the stochastic sampling of the initial configurations
is to smoothen the transition from the propagation to the post-
propagation stage. This is a feature that is also seen in molec-
ular dynamics simulations (blue triangles), where the initial
configuration is sampled by thermalizing the polymer before
each simulation trajectory. All in all, there is now a very good
agreement between the theory and the MD simulations.
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FIG. 5. The translocation time histogram as a function of translocation time
7. The green bars present the normalized histogram when A | = 1.15 is deter-
ministic while the external driving force is f = 5.0 and the total force includes
the stochastic contribution. The red bars correspond to solutions where A, (y)
is also chosen from Eq. (10). The histogram of the translocation time based
on MD simulation is illustrated by blue bars.
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FIG. 6. (a) The translocation coordinate, §(), as a function of time, 7, when both the force and A, are deterministic (black solid line), force includes noise
but A is deterministic (green dashed line), both force and A are stochastic (red dashed-dotted line), and the MD data (blue line). (b) The fluctuations of the
translocation coordinate, (852(r)) = (52(r)) — (5(t))2, as a function of time for the cases when the force includes noise while A, is deterministic (green), both
force and A, are stochastic (red), and for MD simulations (blue). Here, we have chosen fixed chain length N, = 128, external driving force f = 5.0 and the pore

friction as n, = 3.5.

C. Distribution of translocation time

Another quantity which is of fundamental interest is the
translocation time distribution which is depicted in Fig. 5.
The green bars present the histogram of the translocation time
for fixed A, = 1.15 (noise included). Here the distribution is
solely due to the randomness of the driving force. The red
bars show the histogram where A, (y) has been sampled using
Eq. (10) as A,(y) = yA, where A, = 1.15 (noise and initial
distribution of A ). To compare the results of the theoreti-
cal model with MD data, the histogram of the translocation
times based on MD simulations is also shown as blue bars.
As it can be seen, the distribution with fixed A, is much nar-
rower than the MD result. This is in agreement with the ob-
servations of Ref. 26. However, there is a much better agree-
ment with MD when the initial configurations are randomly
sampled. Here the distribution gets wider and agrees quite
well with the MD data, in particular for long translocation
times. However, the model predicts slightly faster transloca-
tion events than the MD. The reason for this is easy to under-
stand. In choosing the prefactor A, as the parameter describ-
ing the variance in the initial configurations, we ensure that
the end-to-end distance distribution is well reproduced. How-
ever, the shape of the chain remains unchanged. Specifically,
the form R o N excludes configurations where the chain ex-
tends far away from the pore but loops back so that the end-
to-end distance becomes small. Thus the drag due to the long
loops is not entirely accounted for, and the effective friction
and consequently the translocation time are underestimated.
This result also indicates that it may be necessary to express
the equilibrium shape of the chain with more than just one
parameter to capture the variation in the translocation time in
detail.

D. Evolution of the translocation coordinate
§ as a function of time

Finally, we examine how the translocation coordinate and
its fluctuations evolve in time. These quantities could not be
explained with the previous BDTP theory of Refs. 26 and

27. Here we have again chosen the chain length N, = 128,
driving force f = 5.0 and the pore friction as 5, = 3.5. The
results for §(¢) can be seen in Fig. 6(a), and for the vari-
ance (852(t)) = (5%(t)) — (§(t))* in Fig. 6(b). We have again
solved the model with the stochastic force term first off and
with fixed initial configuration (black curve), then with ther-
mal noise included in the force (green curves), and both ther-
mal noise and randomly sampled initial configurations (red
curves). We also compare the results with MD, shown with
blue curves.

The fully deterministic solution (the black §(¢) curve) is
quite different from the MD solution towards the end, and ap-
proaches the final value of § = 128 much more sharply. The
shape is very similar to that shown in, e.g., Refs. 20 and 38.
Adding the fluctuations to the driving force makes the ap-
proach to the terminal value a bit smoother. However, the
larger difference comes again from the initial configurations.
With the random selection of the end-to-end distance, the re-
sults match very well with MD data.

For the fluctuations of §, the results are similar. With
just the thermal fluctuations in the driving force, the variance
increases much slower than the MD results. This is consis-
tent with the earlier study of Ref. 27. When the initial con-
figuration is randomized, the results are much improved and
are again in good agreement with MD. However, similar to
the distribution of the translocation time discussed above, the
magnitude of the fluctuations is slightly overestimated.

VL. CONCLUSIONS

In this paper we have derived a model of driven poly-
mer translocation based on combined Brownian dynamics-
tension propagation theory in the constant flux approxima-
tion. The model gives an explicit equation of motion for the
position of the tension front and allows a full characterization
of the translocation process. In particular, it can be used to
derive a finite-size formula for the scaling of the transloca-
tion time as a function of the chain length, revealing that the
main correction-to-scaling term comes from the pore friction
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and is linearly proportional to N,. The model reproduces the
chain length dependence of the effective scaling exponents
from the previous BDTP theory.?®?® Moreover, it allows a
detailed study of the interplay between thermal noise in the
force and initial distribution of the chain configurations. The
analysis presented here shows that by including the latter ef-
fect, quantities such as the waiting time, the distribution of
translocation time, and the dynamics and fluctuations in the
translocation coordinate are in good agreement with the MD
data. This reveals the important role of the cis side of the chain
to driven translocation and justifies the approximation to ne-
glect the trans side degrees of freedom from the model.
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APPENDIX A: FORCE AT DISTANCE x TO THE PORE

The value of the force as a function of the distance to the
pore, X, on the cis side can be obtained for the trumpet regime
by integrating the force balance relation, d f(%') = —¢(f)dx’,
for a differential element dx’ over the distance between 0 and
X as

J@&® = fo— D5, (AD)
where f~0 is the force at the entrance of the pore. Note that here
we have used the iso-flux assumption which means that the
value of the monomer flux, ¢3, is constant over the integration
range [0, X].

In the stem-flower regime, the region of mobile beads is
separated into two sub-regions. In the stem region the chain
is straightened because the tension force is stronger and in
the flower region as the tension force is weaker, blobs are
formed. The border between the stem and the flower regions
is at ¥ = 7(f) where the tension force has the value of unity.
Writing the force balance equation for a differential element
and integrating over the stem region, 7(f) can be found as

fo—1
o(7)
Then by integrating the force balance equation over the dis-

tance between 7 and %, that f(7) = 1, in the flower regime
one can write the following relation:

fE&=1-¢@ F—7).

Combining Eqgs. (A2) and (A3) the same relation similar to the
trumpet regime can be obtained for the stem-flower regime as

f@® = fy — dDx.

() = (A2)

(A3)

APPENDIX B: EQUATION OF MOTION
FOR THE TENSION FRONT

To find an equation for the time evolution of the tension
front location, R, for the propagation stage one must calculate
and then substitute /, the number of mobile beads in the cis
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side, and § into the closure relation
= Al +37, (B

and then perform the time derivative of R that can be read as
a function of I(7) and §(7) as

R() = vAY" R(D)T [I(F) + 5P, (B2)
where by definition,

ity .. .
= =50 = $(D. (B3)

The number of mobile monomers in the cis side, i.e.,
I(7), is obtained by integrating the linear monomer number
density, &(7), over the distance between 0 and R. There-
fore, first the monomer number density must be obtained. To
this end the blob theory can be used. When a blob is con-
structed by applying the tension force on the backbone of the
chain, the blob size, £(¥), can be obtained as £(%) = 1/| f(%)|
where f(¥) = f, — ¢(P)X is the force at the distance ¥ to the
pore in the cis side which has been obtained in Appendix A.
On length scales shorter than the Pincus blob size, £(X), the
chain behaves as if undisturbed by the external driving force
and the blob size scales as € = g”, where g is the number
of monomers inside the blob. Finally, the monomer number
density is given by 6(%,7) = £ = “g‘”l |f()c)|1 v. Using
the above monomer number dens1ty the number of mobile
monomers in the cis side can be derived as

. R(T)
1@:/ & (%, Ddx. (B4)
0
Therefore, for the trumpet regime
- R@ R(P)
lT(f) = / 6(%,)dx = / |f(x)|(" D/vaz
0 0

R =D/,
= /0 | fo — d(Dx|

R(7)
=f IPORD) — pDF|" PV dx. (B5)
0
Consequently,
lT (H = -0 (f) RO 4@ >0, (B6a)
()—( S [ —d@O17 RE* (B6b)

where the subscript T denotes the trumpet regime, and + and
— stand for the positive and negative values of @(7), respec-
tively.

To obtain fSF(f), which is the number of mobile
monomers in the cis side in the stem-flower regime, similar
to the procedure for the trumpet regime, one has to integrate
the linear monomer number density, & (7), over the distance
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from 0 to R, i.e.,

. R()
Ip(@) = / 6 (%, )dx
0

F(f) R()
/ (%, )dx —i—/ 6 (%, )dx
0 ()

R(f) .
R + / | F@I D
F(T)

_dDORD -1
o(P)
]?(f') ~ » 5
+ / |pOR@) — $(D)x|" " dx.  (BT)
(1)
Performing the integral yields /gx(7) as
@) = R+ 2L (BS)
T v — D@’

where the index SF denotes the stem-flower regime. Then the
time derivative of the number of mobile beads, /(7) can be cast
into

L) =L, X [fo) = pORD+ G, x o, (BY)
wherea=T_, T_, and SF, and
1 v OS5
L = _ — — R v
R R(f){ v P OFO)
My 17 - '} L AF
- R s : 0
70 [#(DRD)] () >
(B10a)

1 % - |
E — - - _ 7 R v
T ﬁp+R<f>{<2v— DL~ PORO]

- %[ —ORD] } :§() <0 (BI0b)

v=1
v

: (@) >0, (Bl0c)

~ 1 - .~ .
Ur, = %[¢(5)R(f)]

v=1
v

~ 1 o~ -
Gr = (5—~[ —dHORD)] :$(F) <0, (B10d)

6
Lfom vl (B10e)
e @v— D[, + RO
Gop = —— (B10f)
R IG)

Combining Eqs. (B2), (B3), and (B9) the equation for the
time evolution of the tension front can be written as

VAL RD UL, + G) X ful® + §]

R = a7,
1+ vAL RS L, x (F)

(B11)
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In the post propagation stage, the closure relation is given
by the sum over the number of mobile beads in the cis side, /,
and the number of translocated beads, §, as [ +§ = N,. The
time derivative of this closure relation is

[+i=0. (B12)

Combining Eqs. (B3), (BY9), and (B12) the equation of
motion for the tension front in the post propagation stage can
be cast into

i (L, + ga)flm(f) + (ﬂ(f).

R() DXL (B13)

13. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Proc. Natl.
Acad. Sci. U. S. A. 93, 13770 (1996).

2A. Meller, J. Phys. Condens. Matter 15, R581 (2003).

3M. Muthukumar, Polymer Translocation (Taylor & Francis, 2011).

4A. Milchev, J. Phys.: Condens. Matter 23, 103101 (2011).

SV. V. Palyulin, T. Ala-Nissila, and R. Metzler, Soft Matter 10, 9016

(2014).

E. E. Schadt, S. Turner, and A. Kasarskis, Hum. Mol. Genet. 19, R227
(2010).

7D. Branton and D. W. Deamer, A. Marziali et al. Nat. Biotechnol. 26, 1146
(2008).

8A.J. Storm et al., Nano Lett. 5, 1193 (2005).

W. Sung and P. J. Park, Phys. Rev. Lett. 77, 783 (1996).

10V, Muthukumar, J. Chem. Phys. 111, 10371 (1999).

Hy, Chuang, Y. Kantor, and M. Kardar, Phys. Rev. E 65, 011802 (2001).

12R. Metzler and J. Klafter, Biophys. J. 85, 2776 (2003).

13Y. Kantor and M. Kardar, Phys. Rev. E 69, 021806 (2004).

14K Luo, S. T. T. Ollila, L Huopaniemi, T. Ala-Nissila, P. Pomorski, M.
Karttunen, S.-C. Ying, and A. Bhattacharya, Phys. Rev. E 78, 050901(R)
(2008).

15K Luo, T. Ala-Nissila, S.-C. Ying, and R. Metzler, Europhys. Lett. 88,
68006 (2009).

16y L. A. Dubbeldam, A. Milchev, V. G. Rostiashvili, and T. A. Vilgis, Eu-
rophys. Lett. 79, 18002 (2007).

17A. Yu. Grosberg, S. Nechaev, M. Tamm, and O. Vasilyev, Phys. Rev. Lett.
96, 228105 (2006).

18T, Sakaue, Phys. Rev. E 76, 021803 (2007).

19T, Sakaue, AIP Conf. Proc. 982, 508 (2008).

20T, Sakaue, Phys. Rev. E 81, 041808 (2010).

21T, Saito and T. Sakaue, Eur. Phys. J. E 34, 135 (2012).

22T. Saito and T. Sakaue, Phys. Rev. E 85, 061803 (2012).

23T, Saito and T. Sakaue, “Two phase picture in driven polymer transloca-
tion,” preprint arXiv:1205.3861 (2012).

24P, Rowghanian and A. Y. Grosberg, J. Phys. Chem. B 115, 14127
(2011).

25]. L. A. Dubbeldam, V. G. Rostiashvili, A. Milchev, and T. A. Vilgis, Phys.
Rev. E 85, 041801 (2012).

26T, Ikonen, A. Bhattacharya, T. Ala-Nissila, and W. Sung, Phys. Rev. E 85,
051803 (2012).

27T, Ikonen, A. Bhattacharya, T. Ala-Nissila, and W. Sung, J. Chem. Phys.
137, 085101 (2012).

28T, Tkonen, A. Bhattacharya, T. Ala-Nissila, and W. Sung, Europhys. Lett
103, 38001 (2013).

V. Lehtola, R. P. Linna, and K. Kaski, Europhys. Lett. 85, 58006
(2009).

304, Bhattacharya, W. H. Morrison, K. Luo, T. Ala-Nissila, S.-C. Ying, A.
Milchev, and K. Binder, Eur. Phys. J. E 29, 423 (2009).

31y, V. Lehtola, K. Kaski, and R. P. Linna, Phys. Rev. E 82, 031908
(2010).

32 A. Bhattacharya and K. Binder, Phys. Rev. E 81, 041804 (2010).

33H. W. de Haan and G. W. Slater, Phys. Rev. E 81, 051802 (2010).

3*H. W. de Haan and G. W. Slater, J. Chem. Phys. 136, 204902 (2012).

3M. G. Gauthier and G. W. Slater, Phys. Rev. E 79, 021802 (2009).

36, M. Polson and A. C. M. McCaffrey, J. Chem. Phys. 138, 174902
(2013).

37P. M. Suhonen, K. Kaski, and R. Linna, Phys. Rev. E 90, 042702 (2014).


http://dx.doi.org/10.1073/pnas.93.24.13770
http://dx.doi.org/10.1073/pnas.93.24.13770
http://dx.doi.org/10.1088/0953-8984/15/17/202
http://dx.doi.org/10.1088/0953-8984/23/10/103101
http://dx.doi.org/10.1039/C4SM01819B
http://dx.doi.org/10.1093/hmg/ddq416
http://dx.doi.org/10.1038/nbt.1495
http://dx.doi.org/10.1021/nl048030d
http://dx.doi.org/10.1103/PhysRevLett.77.783
http://dx.doi.org/10.1063/1.480386
http://dx.doi.org/10.1103/PhysRevE.65.011802
http://dx.doi.org/10.1016/S0006-3495(03)74699-2
http://dx.doi.org/10.1103/PhysRevE.69.021806
http://dx.doi.org/10.1103/PhysRevE.78.050901
http://dx.doi.org/10.1209/0295-5075/88/68006
http://dx.doi.org/10.1209/0295-5075/79/18002
http://dx.doi.org/10.1209/0295-5075/79/18002
http://dx.doi.org/10.1103/PhysRevLett.96.228105
http://dx.doi.org/10.1103/PhysRevE.76.021803
http://dx.doi.org/10.1063/1.2897847
http://dx.doi.org/10.1103/PhysRevE.81.041808
http://dx.doi.org/10.1140/epje/i2011-11135-3
http://dx.doi.org/10.1103/PhysRevE.85.061803
http://arxiv.org/abs/1205.3861
http://dx.doi.org/10.1021/jp204014r
http://dx.doi.org/10.1103/PhysRevE.85.041801
http://dx.doi.org/10.1103/PhysRevE.85.041801
http://dx.doi.org/10.1103/PhysRevE.85.051803
http://dx.doi.org/10.1063/1.4742188
http://dx.doi.org/10.1209/0295-5075/103/38001
http://dx.doi.org/10.1209/0295-5075/85/58006
http://dx.doi.org/10.1140/epje/i2009-10495-5
http://dx.doi.org/10.1103/PhysRevE.82.031908
http://dx.doi.org/10.1103/PhysRevE.81.041804
http://dx.doi.org/10.1103/PhysRevE.81.051802
http://dx.doi.org/10.1063/1.4711865
http://dx.doi.org/10.1103/PhysRevE.79.021802
http://dx.doi.org/10.1063/1.4803022
http://dx.doi.org/10.1103/PhysRevE.90.042702

214907-9 Sarabadani, lkonen, and Ala-Nissila

35 L. A Dubbeldam, V. G. Rostiashvili, and T. A. Vilgis, J. Chem. Phys.
141, 124112 (2014).

3E. A. DiMarzio, C. M. Guttman, and J. D. Hoffman, Faraday Discuss.
Chem. Soc. 68, 210 (1979).

40A. F. Sauer-Budge, J. A. Nyamwanda, D. K. Lubensky, and D. Branton,
Phys. Rev. Lett. 90, 238101 (2003).

J. Chem. Phys. 141, 214907 (2014)

417, Mathe, H. Visram, V. Viasnoff, Y. Rabin, and A. Meller, Biophys. J. 87,
3205 (2004).

42T, Ikonen, . Shin, W. Sung, and T. Ala-Nissila, J. Chem. Phys. 136, 205104
(2012).

43J. L. A. Dubbeldam, V. G. Rostiashvili, A. Milchev, and T. A. Vilgis, Phys.
Rev. E 87, 032147 (2013).


http://dx.doi.org/10.1063/1.4896153
http://dx.doi.org/10.1039/dc9796800210
http://dx.doi.org/10.1039/dc9796800210
http://dx.doi.org/10.1103/PhysRevLett.90.238101
http://dx.doi.org/10.1529/biophysj.104.047274
http://dx.doi.org/10.1063/1.4722080
http://dx.doi.org/10.1103/PhysRevE.87.032147
http://dx.doi.org/10.1103/PhysRevE.87.032147

