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Spin-degenerate two-level atoms in on-resonance partially polarized light

A. Shevchenko™® and M. Kaivola
Department of Engineering Physics and Mathematics, Helsinki University of Technology, P. O. Box 3500, FI-02015 HUT, Finland

J. Javanainen
Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046, USA
(Received 26 August 2005; revised manuscript received 2 December 2005; published 23 March 2006)

We present a theoretical model describing the magnetic-state population dynamics of spin-degenerate two-
level atoms interacting with a narrowband, on-resonance, partially polarized electromagnetic field. The field is
allowed to have three uncorrelated orthogonal vector components. The model is applied to a four-magnetic-
state atom system with a single excited and three ground states. Even if the field is narrowband, the population
dynamics may be completely predicated by the fluctuating polarization of light. In our examples, the fluctua-
tion effects are mainly governed by a single parameter, the degree of polarization of the field.
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When treating the interaction of atomic systems with elec-
tromagnetic fields, the fields are typically assumed to be pla-
nar. The fluctuations of the phase and amplitude are usually
ignored, and if not, then the magnetic degeneracy of the
atomic energy levels is not considered. In general, however,
the atomic transitions take place between magnetic substates,
and in order to obtain a complete picture of the atom-field
interaction, one should note the general correspondence be-
tween the three basic orthogonal components of the transi-
tion dipole moment and the three possible orthogonal vector
components of the field. These vector components can, and
will, undergo fluctuations in a realistic situation. The result-
ing fluctuations of the field polarization will obviously affect
the evolution of the magnetic-state populations and influence
processes caused by quantum interference, such as popula-
tion trapping in dark states [1-6].

We present a description of the interaction of spin-
degenerate two-level atoms with a narrowband on-resonance
field which is allowed to have all three orthogonal vector
components with fluctuating phases. The phase fluctuations
are described by applying the Ornstein-Uhlenbeck phase-
diffusion model. The bandwidth of the field, B, is assumed to
be smaller than the spontaneous emission rate I". Such fields,

PACS number(s): 42.50.Ct, 32.80.Bx, 32.80.Qk, 42.25.Ja

the quantization axis for the atoms, the field is expressed as
E=E,e +Eyey+E_ie,, [1], with the components E_;,E,,
and E,, driving the o7, 7, and ¢ transitions, respectively
(the asterisk stands for complex conjugate). While analyzing
the response of an atom to an electromagnetic field, the con-
vention is to use spherical-basis representation of the vector
quantities. We consider an atom with two energy levels
which are angular-momentum degenerate. The magnetic

states of the ground (excited) level are defined as |¢;) ()
with the subindices running through the magnetic quantum
numbers mg (mp); total angular momenta for the levels are F

and F. The vector components of the field, each driving tran-
sitions between states j and k, are written as Ey;
=&_{(F,0)cos[w,1+@,_;(r,1)], where ¢;_(r,1) is the fluctuat-
ing phase. We split up the density operator into ground-state
and excited-state parts with the Zeeman components pf-!k and
p]‘i’k describing populations when j=k and coherences when
J#k, and into a part p;, that conveys coherences between
Zeeman states in the upper and lower levels. A conventional
calculation then gives the equations of motion for the
density-matrix elements in the rotating frame as

produced by realistic amplitude-stabilized lasers [7-10], are ; ;
frequently qsed, e.g., in .laser coqling and trapping exper.i— P;,k= 5 2 pm’ka’jeiqo,-fm_5 2 5j!nQ”’k€—i<Pk—n_ pr,k’
ments. Solving the evolution equations for the density-matrix m=j-1 n=k-1
elements, we study the dynamics of the magnetic-state popu- (1)
lations. The main findings are two. First, no matter how nar-
rowband the fluctuations are, they may determine the quali- '
tative character of the dynamics of the populations. Second, o il _ I o ;
in our examples a single parameter, the degree of polariza- Pj,k=5 E P Y e Fri D) 2 PjnS i e 1
tion of the field, appears to suffice for the characterization of m=j-1 n=k=1
the fluctuating light—no detailed statistics is needed. JHLk+l
An arbitrary electromagnetic field can be described +T 2 \"Uj,lok,,,p,e’p, (2)
in terms of its three orthogonal vector components as Lp=j-1.k-1
E=E. +Ee,+Ee¢,. In a spherical-basis representation,
{e_1=(e,—ie,)IN2,ep=¢,,e, =—(e,+ie,)/\2}, with 7 being ‘ ;o . o 1 . y
Pjk= E E P g me ™ = 5 2 pj,nQn,ke “n—T'pjil2,
m=j—1 n=k—1
*Email address: andrej @focus.hut.fi (3)
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FIG. 1. A phase function obtained by sinusoidal fitting of the
results of application of Eq. (6) (gray curve). The parameter values
are Ar=0.01/T",1/B=2/T", and 1/B=10/T".
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(4)

where p; = p;'; ;» and I" stands for the common spontaneous
decay rate. The spontaneous-emission terms follow as usual
[4,11]. The Rabi frequencies are defined as

O = Noy TELPN2,, 5)

where I,=2m?#%cI'/3\* is the saturation intensity and the
parameter oy ; denotes the branching ratio of the atomic tran-
sitions from state j to state k. The amplitudes &;_4(r) are
taken to be constants, and the Rabi frequencies real and non-
negative [1]. In Egs. (1)-(4), those Rabi frequencies and
branching ratios are zero in which the first subindex is not in
the range of my’s or the second subindex is not in the range
of %F’SL If the behavior of the complex amplitudes
Sj(?)ei‘ﬁf(”’) of the field components is known or properly
modeled, one can solve Egs. (1)—(4) and find the evolution of
any of the magnetic-state populations.

In the following we apply the model to several examples.
Let the field be composed of three phase-fluctuating laser
beams which behave in the interaction region as plane
waves, i.e., the field amplitude for each of the beams can be
written as E j=3 ie‘”‘ff +4i(0  where Ej is the wave vector and
¢;(1) the fluctuating phase. Each of the beams is assumed to
originate from a single-mode laser with a constant amplitude
and the phase evolving in accordance with the Ornstein-
Uhlenbeck phase-diffusion model [7-10,12-14]. We take no
net drift for the phase, so that the light is on resonance be-
tween the two energy levels except for the frequency fluc-
tuations originating from the phase fluctuations. Specifically,
starting with a given phase at time 7, ¢(f), the phase at
t+At is to the first order given by [12-14]

A1+ At) = p(1)e PA + g\ b(1 — e 2PA) 128, (6)

The parameter 1/ characterizes the mean time of phase
deviations and b conveys the bandwidth of the frequency
fluctuations; with the choice b=(B+VB>+168B1In2)?*/
(3281n 2) the bandwidth equals B [8,12]. Finally, g is a ran-
dom number from a normal distribution with zero mean and
variance equal to 1. In the calculations we set the time step to
Ar=0.01/T", while the parameters 1/8 and 1/B have values
greater than 1/1". Each step is associated with an abrupt jump
of ¢. Solving Egs. (1)—(4) numerically is substantially expe-
dited by making the phase a smooth function of . For this,
we fitted the calculated data with a set of sinusoidal func-
tions, excluding high frequencies, as shown in Fig. 1; small
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and fast deviations of ¢, like those caused by the finite-step
discretization in Eq. (6), have a negligible influence on the
populations. The correspondence between the average abso-
lute value of the derivative d¢(r)/dt and the field bandwidth
B was carefully checked in each particular calculation.

As an example of application of the model we consider a
four-state, two-level system with a single excited and three

ground magnetic states, F =1— F=0. This is the simplest
possible system that can respond to all three polarization
components of light, and at the same time supports dark
states. In fact, in this system, there is one-to-one correspon-
dence between the components of the field and the magnetic
states of the lower level. For instance, the E,; circular com-
ponent couples only to the mp=—1 state. Moreover, this sys-
tem can be realized in practice, e.g., by subjecting atoms of
87Rb in the lower hyperfine ground state |5 2Sl n F=1) to
on-resonance radiation that drives atomic transitions to the
state |5 2P3,2, F=0). Equations (1)—(4) in this case contain
only summations over the ground magnetic states. The
branching ratios o7 are all equal to 1/3. Equation (1), e.g.,
takes the form

.o+l

) i . .
£o.0= > > Qe o(pr e+ = poxe™**) = I'pg g (7)
f=—1

and Eq. (2) with k=j is

i . . 1
o= EQj,O(ﬁO,je_“P_J = pjoe'?) + EFPS,O’ (8)
where j runs from —1 to +1. Initially the ground states are
assumed to be equally populated. Then, the atoms are
illuminated with laser beams which have orthogonal polar-
izations along either the Cartesian or spherical basis
vectors. For each beam j, the phase is written as ¢,(r,1)
=—l€j-7+ ¢;(t), where we assume that the fluctuating term
¢(t) is common for all three beams, as it would be if they
were derived from a single laser. Then we allow for
certain time delays 7, between the beams such that ¢(1)
=¢(t+s;T;), where s; is equal to O for one beam and 1 for
the other two beams. This scheme allows setting an arbitrary
mutual correlation between the orthogonal vector compo-
nents of the field. At 7, ;=0 the fluctuations of the field com-
ponents are fully synchronized, and at large enough 7, the
fluctuations become independent.

Let first only two laser beams with their electric-field vec-
tors directed along any two of the spherical basis vectors
illuminate the atoms. This case has been considered in terms
of incoherent depopulation pumping, e.g., in [15]. The mag-
netic state whose dipole moment of excitation is parallel to
the third basis vector is not coupled to the field and, there-
fore, it will be permanently dark. Since the branching ratios
g; are equal, Egs. (1)—(4) are symmetric with respect to the
ground magnetic states |i_,), |)), and |4, ,). Therefore, no
matter along which two of the spherical basis vectors the
beams are polarized, we can define the stable dark state as
|14 Figure 2(a) shows the dynamics of the populations p,
and pf)yo of this dark state and the excited state, respectively,
when the field bandwidth B is equal to I'/2, B=I'/10, and
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FIG. 2. Population dynamics in a four-state atom system. The
total intensity of the beams, I,,,, is equal to 0.3.4 for the figures on
the left and 30.A on the right. pf ; and p{ , denote the populations of
a stable dark state and the excited state, respectively. The degree of
polarization of the field is 1 (gray curves), 0.8 (dotted curves), and
0.1 (solid black curves). The vector components of the field are
directed in (a), (b), (€)—(h) along the spherical basis vectors and in
(c) and (d) along Cartesian axes. The field has two orthogonal com-
ponents in (a)-(d) and three components in (e)—(h). In (g) and (h),
the intensity of one of the components is 0 (solid lines), 0.051,,,
(dashed lines), and 0.21,,, (dash-dotted lines).

both intensities 1., =E&7,=A(Q+, o/T)? are equal to 0.154
[see Eq. (5) with 2/;/0+, (=.A]. For comparison, the satu-
ration intensity /;=0=+0.A4/2 is equal to 0.17A. The figure
illustrates three cases marked with gray, dotted, and solid
black lines for which the two-dimensional (2D) degree of
polarization [16] of the total field is P,p=1,0.8, and 0.1.
Here, the degree of polarization P,p, is equal to the absolute
value of the normalized correlation function of the beams,
[(e~#é(0-¢=D})| The angular brackets denote time averag-
ing, which was performed numerically with ¢ running from 0
to 40/T". The delay time T was adjusted until the degree of
polarization attained a predetermined value. Given the de-
gree of polarization, the corresponding pair of curves in Figs.
2(a)-2(h) was then obtained from a single run of the pro-
gram. While the behavior of ¢(r) is different in each run, the
averaging over many runs essentially only washes out the
fast-term fluctuations of the populations.

If the beams are fully correlated, the atoms are pumped
into two dark states [4], of which one is |1} and the other a
superposition of [¢_;) and |¢,,). Hence, the population p .
shown by the upper gray curve of Fig. 2(a), saturates to the
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value of 0.5, and the excited-state population p, (the lower
gray curve) decays to zero within a time of several 1/I". If
the beams are not fully correlated, the excited-state popula-
tion shows an oscillating behavior, due to the polarization
fluctuations, and gradually all the atoms are pumped into the
single state |¢). A small decrease of the mutual correlation
of the beams destroys the competing dark state. When P,p
decreases further, the pumping rate to |¢,) increases. This
rate, on the other hand, is not sensitive to the bandwidth B at
a fixed P,p. Since in this particular level scheme one can
always transform away any constant phases in the interaction
matrix elements by redefining the phases of the state vectors
spanning the ground level, the phases —Ej- 7 do not influence
the population dynamics. The pumping rate will therefore be
spatially uniform even if the field is created by two laser
beams which propagate in perpendicular directions.

Next, we increase the intensities /,.; by two orders of
magnitude and obtain the curves in Fig. 2(b). Within a short
time << 10/T’, the population of |¢) rises quickly, but then it
evolves essentially in the same manner as in the previous
example. This insensitivity of the pumping rate to the field
intensity is partially explained by the constant rate of spon-
taneous emission. On the other hand, at each time moment
the atoms are pumped not only into |¢) but also into a
superposition dark state in which, independently of the inten-
sity, the atoms stay decoupled from the field until the polar-
ization changes. Then the dark state is destroyed, and the
stronger the field is the more rapid can be the increase of
Po.o- However, simultaneously, depopulation pumping to the
new dark state takes place. As a result, pg , shows spikes, but
the continuous increase of pf, remains similar to that taking
place at lower intensity levels and equal P,p.

Another example is illustrated in Figs. 2(c) and 2(d). This
time the beams are polarized along the two Cartesian basis
vectors x and y. The quantization axis is the z axis, and the
permanently dark state |¢) is the state with mz=0. In the
previous example, this state was pumped with atoms by the
action of two equal-amplitude phase-fluctuating waves with
opposite circular polarizations. Therefore, for narrowband
fluctuations, the total field could be considered as linearly
polarized with a randomly oscillating plane of polarization.
In the present case, the total field can have an arbitrary el-
liptical polarization, and the phase fluctuations lead to ran-

dom changes of the ellipticity. Setting the field amplitudes &,

and Ey to the same values as the amplitudes Ej in the previ-
ous calculations and solving Egs. (1)-(4), with &,; being

written in terms of &, and Ey, we obtain the curves in Figs.
2(c) and 2(d). The behavior of pf, is practically indistin-
guishable from that illustrated in Figs. 2(a) and 2(b), includ-
ing the insensitivity of the results to the propagation-gained
phases and to the bandwidth. Thus, in an on-resonance two-
vector-component field, the long-term dynamics of the dark
ground state and of the excited state, e.g., the time scale over
which the populations approach their final values, is mainly
governed by the degree of polarization rather than by the
mean polarization state, the bandwidth, or the intensity of the
light.

We proceed by adding a third vector component to the
field. Let the three beams be polarized along the spherical
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basis vectors (linear polarizations yield similar results) and
their intensities be equal to 0.1.4 each. If the T;s are zero,
the fields are fully correlated. The resulting two dark states
are pumped with atoms and the population of the excited
state drops to zero [see the gray line in Fig. 2(e)]. The dotted
and black solid lines show what happens if the 3D degree of
polarization of the total field decreases to 0.8 and 0.1,
respectively. The degree of polarization is calculated from
Pip=+(ph,+pii+piy)/3, where pi; denotes the degree of
correlation of the beams i and j, and, therefore, p;; is equiva-
lent to the two-dimensional degree of polarization P,y [16].
As seen in Fig. 2(e), the excited-state population of the at-
oms oscillates around a level determined by P;p. A similar
behavior of pf , is obtained for atoms interacting with a field
of 100 times higher intensity [see Fig. 2(f)]. The strong spik-
ing of p{ is caused by the high values of the Rabi frequen-
cies. Such Rabi oscillations of the populations reflect an in-
terplay between the field intensity and polarization
fluctuations. The oscillations are not damped out by sponta-
neous emission, as they would if the field was fully polar-
ized.

As an intermediate case between the two cases already
discussed, we finally show how an additional weak orthogo-
nal field component can destroy the population trapping by a
2D field. The black solid curves in Figs. 2(g) and 2(h) are
calculated under the same conditions as the ones in Figs. 2(a)
and 2(b). We then move 5% and, afterward, 20% of the field
intensity into the third orthogonal component. The results are
shown by the dashed and dash-dotted lines, respectively. Ob-
viously the state |#,) can no longer be considered as a stable
dark state. The magnetic-state populations remain close to
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their initial values if the intensity of the third component
exceeds 20% of the total field intensity.

For a fully polarized radiation, our system gets pumped
into two dark states at a time scale that depends on light
intensity and spontaneous emission rate. When the polariza-
tion fluctuates slowly (narrow band) in a plane, one of the
dark states changes with the fluctuations and releases its
population. Eventually the system gets pumped into the re-
maining dark state at a rate that depends mainly on the de-
gree of polarization of light. If the polarization fluctuates in
all directions, there is no permanent dark state. Once more,
after the initial transient, the population dynamics is gov-
erned by the fluctuations, here mainly by the three-
dimensional degree of polarization. From a more formal
point of view that could also serve as a starting point for
mathematical analysis, there are three distinct time scales in
the problem: infinity for the dark states, inverse linewidth of
the radiation, and the usual time scales of a two-level system.
No matter how narrowband the field is, polarization fluctua-
tions remove the infinite time scale. After an initial transient,
populations then evolve governed by the fluctuations.

In general terms, we have studied light-driven transitions
between energy levels that exhibit angular momentum de-
generacy. We have shown that in the presence of dark states
even narrowband phase fluctuations may dramatically influ-
ence the dynamics of magnetic-state populations; one of the
quantities characterizing this influence is the degree of polar-
ization of the field. The knowledge of the interaction features
described in this work can be useful for experimentalists
dealing with on-resonance optical pumping.

We acknowledge financial support from the Academy of
Finland, NSF, and NASA.
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