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Degree of polarization for optical near fields
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A. T. Friberg
Department of Microelectronics and Information Technology, Royal Institute of Technology, SE-164 40 Kista, Sweden

(Received 15 February 2002; published 30 July 2002

We investigate an extension to the concept of degree of polarization that applies to arbitrary electromagnetic
fields, i.e., fields whose wave fronts are not necessarily planar. The approach makes use of generalized spectral
Stokes parameters that appear as coefficients, when the 8l §pectral coherence matrix is expanded in
terms of the Gell-Mann matrices. By defining the degree of polarization in terms of these parameters in a
manner analogous to the conventional planar-field case, we are led to a formula that consists of scalar invari-
ants of the spectral coherence matrix only. We show that attractive physical insight is gained by expressing the
three-dimensional degree of polarization explicitly with the help of the correlations between the three orthogo-
nal spectral components of the electric field. Furthermore, we discuss the fundamental differences in charac-
terizing the polarization state of a field by employing either the two- or the three-dimensional coherence-matrix
formalism. The extension of the concept of the degree of polarization to include electromagnetic fields having
structures of arbitrary form is expected to be particularly useful, for example, in near-field optics.

DOI: 10.1103/PhysReVvE.66.016615 PACS nunierd2.25.Ja, 07.79.Fc, 05.40a

[. INTRODUCTION ants appear as coefficients in the characteristic equation of
the coherence matrix. Based on such a treatment, Barakat as
The degree of polarization is an important quantity ofa matter of fact, proposes in R¢B] two measures for the
electromagnetic fields, as it characterizes the correlations thgegree of polarization, of which one is the same as that sug-
prevail between the orthogonal components of the electri@ested by Samson. More recently, polarization of arbitrary
field. Conventionally, the polarization state of a fluctuating€lectromagnetic fields has been examined by Brosgkai
electromagnetic field is described in terms of the 2 co-  in terms of polarization entropy, and by Carozzi ef 0] in
herence matrix or the related four Stokes paramdters). terms of the generalized spectral-density Stokes parameters.
The two-dimensional2D) formalism applies, however, only As the authors in Refd.1,6,9 have explicitly noted, the 3
to fields having planar wave fronts, such as well-collimated< 3 coherence matrix cannot, in general, be decomposed into
and uniform optical beams or radiated wide-angle far fieldsthe sum of matrices describing fully polarized and fully un-
which can locally be considered as planar. Such fields can beolarized field as in the two-dimensional case. This fact
described by two orthogonal electric field components, bufnakes it more difficult to obtain simple physical insight into
an arbitrary field is generally composed of three componentghe proposed formulas for the degree of polarization of arbi-
In this paper, we focus on the genera"za’[ion of the Con.trary fields. In this WOfk, we point out some fundamental
cept of the degree of polarization to include also fields withdifferences between the two- and three-dimensional
wave fronts of arbitrary form. Such a generalization is usecoherence-matrix formalisms and give physical intuition into
ful, for example, for investigations of optical near fields, the formulation of the 3D degree of polarization.
which are characterized by evanescent waves. The problem We have arranged the paper as follows. In Sec. Il, the
at hand has already been studied in the seventies and eafignstruction of the degree of polarization for planar wave
eighties, seemingly independently, by Samson and cofields in terms of the X2 coherence matrix and the Stokes
workers[4—6] for low-frequency fields relevant to geophys- parameters is recalled to facilitate the subsequent treatment
ical investigations and by Barakf#,8] for optical fields. In  of the degree of polarization of arbitrary wave fields. In Sec.
Ref. [4] Samson approaches the problem by investigatind!l we formulate the 3D degree of polarization and compare
different expansions of the full’83 spectral coherence ma- the features of the 2D and 3D formalisms. Finally, in Sec. IV
trix. For one such expansion, he interprets the expansioWe summarize the main conclusions of the work.
coefficients as the nine spectral Stokes parameters and de-
fines Fhe de'gree of polarization in a manner analogous to thql' DEGREE OF POLARIZATION FOR PLANAR FIELDS
two-dimensional case. Much of the same has also been per-
formed by Barakat in Ref.7]. In congruence, the authors of  In this section, we examine a planar electromagnetic field
Refs.[5,6,8 formulate the degree of polarization in terms of propagating in the direction with the electric field oscillat-
scalar invariants, which are traces of different powers of théng in thexy plane. We consider a single frequency compo-
spectral coherence matrix and its determinant. These invarrent E(r,w) of a statistically stationary field and write the
corresponding coherence-matrix elements in the space-
frequency domairithe spectral-density tengaas(Sec. 4.7.2
*Fax: +358 9 451 3155. Email address: tsetala@focus.hut.fi  of Ref.[2])
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#i(r,0)=(E} (r,0)E;(r,»)), Lji=xy. (1) Moreover, since ti¢;oj) =24;; , one obtains,
Here the angle brackets denote averaging, at a poaver So= dxxt Dyy,
an ensemble of field realizations of frequeney and the S=d— b
superscript * stands for complex conjugation. The 2 co- Si=tr(o; D), or 17 Py (6)
herence matrix will be denoted by the symldo}, with the S2= dyyt Py
subscript 2 indicating that we are dealing with the two- Ss=i(pyx— dxy)-

dimensional formalism. Furthermore, we will implicitly as-
sume ¢,w) dependency for the coherence matrix, and em\We see that the first Stokes parameSgris proportional to
phasize that we consider spectral quantities. the spectral density of the field. The parame@gdescribes
The 2x2 coherence matrix is a non-negative definite andthe excess in spectral density of theomponent over that of
Hermitian matrix that entirely specifies the state of polariza-they component of the field. The parame®rrepresents the
tion of the planar field. It can be uniquely decomposed into a&xcess of+45° linearly polarized component over45°
sum of two matrices, one corresponding to fully polarizedjinearly polarized component, ar the excess in spectral
light and the other to fully unpolarized light. The degree of density of right-hand circularly polarized field component
polarization can then be expressed as the ratio of the interpver left-hand circularly polarized ori@]. Substituting the

sity (or tracg of the polarized part to the total intensity of the coherence matrix of Eq5) into Eq.(2), the degree of polar-
field [1-3]. The resulting expression for the degree of polar-jization takes the form

ization of the two-dimensional field?,, has the well-known

form (S%_’_ S%'F S:Z)))lIZ
ZZT- (")
, . Adetd,) , tr(d3) 1 @
2 tr2(d,) tr’(d,) 2 ' When the field is fully polarized, the polarization state can be

geometrically represented as a poiB} (S,,S3) on a sphere
This quantity is bounded to the intervakP,<1, with the  of radiusS,, the so-called Poincarsphere. The equator of
valuesP,=0 andP,=1 corresponding to a completely un- the spherdin the S;S, plane corresponds to linearly polar-
polarized and polarized field, respectively. It is invariant un-jzed light, and the north and south poles to right-hand and
der unitary transformations, since trace and determinant angft-hand circularly polarized light, respectively. Further-
scalar invariants under such operations. Due to Hermiticitymore, in the origin of the Poincargphere the field is fully
the coherence matrix can always be diagonalized by a unignpolarized and in every other inner point partially polar-
tary transformation, and we could readily express the degreged.
of pOlarization in terms of the eigenvalues of the matrix. The Sometimes it is useful to normalize the Oﬁ_diagona| ele-
Hermiticity and non-negative definite character of the maments of the coherence matrix by defining
trix, respectively, imply that the eigenvalues are real and
non-negative. "
For this work, particularly relevant is the presentation of Xy
the degree of polarization in terms of the four Stokes param-  (bx) A dyy) 2
eters. The 2D Stokes paramet&s (j=0, . ..,3) aremea-
surable quantities that appear as the expansion coefficientdie quantity|u,| is bounded between 0 and 1 and gives a
when the coherence matrix is expanded in terms of the measure for the degree of correlation between the two or-
X 2 unit matrix oy and the three Pauli matrices, or genera-thogonal components of the electric field. While the value of
tors of the SW2) symmetry groupg; (j=1, ...,3),i.e, the 2D degree of polarization does not depend on the orien-
tation of the orthogonal 2D coordinate system in the plane
13 perpendicular to the wave’s propagation direction, the degree
=5 Zo Sjoj, (3 of correlation does. One can show that|<P,, i.e., the
= maximum value of the degree of correlation is equal to the
where degree of polarization of the wave. The equality holds in a
coordinate system in which the intensities in theandy
10 1 0 0 1 directions are equald,,= ¢yy). This situation can always
Uoz(o 1>, 01=(0 _1), 022(1 O)’ be achieved by a suitable rotation of the coordinate system

[3].

= Mxy= |Mxy| e'fxy, Myx= M:y' 8

0 i
‘73:( —i 0) . (4) I1l. DEGREE OF POLARIZATION FOR ARBITRARY
ELECTROMAGNETIC FIELDS

This allows us to write the coherence matrix as

SotS S+iS;
$—iS3 $-S5;

We now focus on the problem of how the treatment of the
planar(two-dimensionaglfields could be extended to include
_ (5) arbitrary electromagnetic fields. We proceed analogously to
the 2D case, and expand th& 3 spectral coherence matrix,

1
(1)225
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ih,j=Xx,Y,Z, 9 3

wheni=j=0
tr(\ i) = 25 otherwise.

(bij(r!w):(Ei*(rlw)Ej(rvw)>l

in the form[1]

(12

On multiplying both sides of Eq10) by A\, and taking the
trace, we may express the expansion coefficients, or the 3D

8
1
= , 10
®s=3 Z it (19 spectral Stokes parametekg in the form

where the subscript 3 refers to the 3D formalism. In @&4),
Ao is the 3xX3 unit matrix and the matrices\;, (j
=1,...,8) are th&ell-Mann matrices or the eight genera-
tors of the SUW3) symmetry group. The basis matrices are
Hermitian, trace orthogonal, and linearly independent. The

Aoztr(q)3)1

3
Akzitr()\k@g), when k=1, (13

Yor explicitly as,

are explicitly written ag11]

Ao= oyt ¢yy+ b2z As= %i((ﬁxz_ D25,

1 00 0 1 0
_ _ 3
No= 8 ; i) M= ; g g ’ A1:§(¢xy+ d’yx)a g(¢yz+ ¢zy)
3
0O —-i O AZZEi(¢xy_¢yx)i A7:%i(¢yz_¢zy)v
A= 1 O 0) , 3 V3
0O 0O O A3:§(¢xx_ (ﬁyy)a :7(¢xx+ d’yy_zd’zz)-
3
° 0 001 Aa= (bt D),
3= -1 0|, x=[0 0 0], (14
0 O 1 00
0 0 —i As in the 2D formalism, the first Stokes parameter is propor-
Ne=| 0 0 0 ) (11) tional to the total spectral density of the field. Moreover, we
5 ) ' may interpret the parameters; and A, as playing a role
i 0 0 analogous to paramete®s andS; in the 2D formalism. The
same interpretation also holds for the pairs,(As) and
00 o 00 0 (Ag,A7), but in thexz andyz planes, respectively. The pa-
rameterA 5 is obviously analogous t8;, and A g represents
Ae=[ 0 0 1|, A,=[0 0 —i], the sum of the excesses in spectral density inxtendy
0 1 0 0i o0 directions over that in the-direction. Furthermore, in anal-
ogy with the 3D Poincarsphere, it is possible to character-
10 0 ize the polarization state of a 3D electromagnetic field in
1 terms of a sphere in the eight-dimensional Stokes-parameter
)\8=T 01 0 space. However, owing to large number of dimensions, such
3 00 -2 a construction would not provide much geometrical intuition

For the basis matrices, the following trace-orthogonality

equation holds:

on the subject.
In terms of the Stokes parameters, thg 3 coherence
matrix takes the form

1 . .
AO+A3+ ﬁAS Al_IAZ A4_|A5
1 . 1 .
(1)3:§ Al+|A2 —A3+ EAS A6_|A7 . (15)
2
Astids As+idy  Ag— ——Ag
V3

016615-3
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It should be noted that we could have chosen some other We next reduce the formula for the 3D degree of polar-
complete set of matrices for the basis, and then identified thization to correspond to the case of planar fields. For ex-
expansion coefficients as the Stokes parameters. For eample, by settinde,=0, we consider a field that oscillates in
ample, Romarj12] chooses a set of matrices satisfying thethe xy plane. We thus obtaig,,= ¢,= ¢y,= ¢,,= ¢,,=0,
Kemmer algebra. However, the choice of the Gell-Mann maand consequently from Eq14) that Ayj=As=Ag=A;=0
trices conveniently leads to the first spectral Stokes paramand A g= \/§/2A0_ The coherence matrig 5 then reduces to
eter being proportional to the total spectral density of the
field, as well as to the other parameters having physical

meanings analogous to those of the 2D Stokes parameters. §A0+A3 A=Ay 0
As in the 2D formalism, we can also define the degree of 1
correlation| uij| (0<|uij|<1) between any two of the three P3=3 Ag+iA, §A N (21)
orthogonal electric field components as 270 3
0 0 0
bij

U = = elBi
(¢“)1/2(¢“)1/2_M” | | €70, Comparing the expressions far;, (j=0, ...,3) with the
Stokes parameters of the 2D fields, K@), we find that the
Mji:Mﬁ . Li=xY,z. (16) 2X 2 matrix in the upper left corner ob; is exactly _the
same as the matrix of E@5). Let us denote that matrix by
Owing to the fact that the 8 3 coherence matrix cannot, &,. We may now rewrite Eq(18) for a field characterized
in general, be decomposed into the sum of a fully polarizecby the coherence matrix of EQR1) as
and fully unpolarized parfl1,6,9), other definitions for the

degree of polarization of 3D fields must be sought for. Let us 3 det®))
now investigate the possibility of expressing the 3D degree Péﬁzzl— — (22
of polarizationP3 in the form tro(®y)
8 Now a fundamental difference between the 2D and 3D for-
2 AJ-2 malisms emerges. The values for the degree of polarization
P2=£ =1 _ (17) of a 2D field calculated in terms of the 2D and 3D formal-
° 3 Aé isms are not, in general, equal which is indicated by the

_ _ _ _ factor 3 in EQ.(22) instead of the factor 4 that is present in
This form is analogous to E@7), and it has previously be_zen Eq. (2). Writing the factor 3 detp,)/tr?(®5) in terms of the
put forward by Samson4] and Barakaf7], although, in  eigenvalues ofp}, which are non-negative, and noting that

those works a different coefficient appears in front of theyhejr geometric mean value is smaller than or equal to the
expression owing to the slightly different basis matrices. Orgrithmetic mean value, we find that

substituting the Stokes parameters of Egf) into Eq. (17),

the 3D degree of polarization can be expressed in terms of 1
the coherence matrisb; as ESP%ZS 1. (23
2
z:§ ﬂ_ } _ (18) Thus, a planar field cannot be fully unpolarized in the 3D
2 tr’(dg) 3 formalism. This is as expected, since in such a field the os-

cillations are restricted to a single plane, and consequently,
We see that Eq(18) is invariant under unitary transforma- when treated as three-dimensional the field must have a non-
tions, and consequently, the value of the degree of polarizazero degree of polarization. Since the degree of polarization
tion is independent of the orientation of the orthogonal coorvetains its value under a rotation of the coordinate system,
dinate system. Furthermore, due to the Hermiticity, we mayEq. (23) is valid for any 2D field.

diagonalize the coherence matrix and write The most intuitive understanding of the differences be-
tween the 2D and 3D formalisms is, perhaps, obtained by
tr(d3) - aj+as+aj3 considering Fig. 1. In the upper row an unpolarized 2D field,

(19 i.e., a field for which the spectral density in tlxeand y
directions is the samed(,= ¢,,), and for which no corre-
where @, ,a,,a;) are the eigenvalues of the coherence maJation exist; between the two eleqtric field components
trix. On expanding the denominator, and noting that all the(| #x,/ =0). is passed through a polarizer. The 2D formalism
eigenvalues are non-negative, we see thabdj(tri(®;)  9ives the value,;=0 andP,=1 for the field before and
<1. Moreover, by applying the Cauchy-Schwarz inequality"’,‘fter the polarizer, respectively. Let us now consider 3D

tr2(®g)  (a;+a,+ag)?

we see that t2)/tr2(d.)=1/3. It then follows that fields in a similar way. Assume a fully unpolarized 3D field
b3)/tr () (lower row in Fig. 2, which is polarized by two devices each
0<P,<1, (20) cutting off one of the orthogonal field components. For a

fully unpolarized 3D field the spectral density in all three
as is required for a measure of the degree of polarization. orthogonal directions is the sameé{;= ¢,,= ¢33 and no

016615-4
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is cut off by the first device the field becomes partially po-
larized. Indeed, nowp,=0, ¢y = b,, with |u,,|=0, and
consequentfP;=1/2. The second device then cuts off the
component and the field becomes fully polarizé®s€1),
since the oscillations now take place only in a single direc-
tion. We may conclude that the fundamental difference be-
tween the 2D and 3D formalism is due to the fact that in the
latter, the third direction is included albeit the intensity in
this direction may be zero. In the 2D formalism the third
direction is not even considered, and therefore, that formal-
ism cannot be applied to characterize polarization of an ar-
bitrary field.

Let us consider the 3D counterpart of the statement in 2D,
P,=|uy| [see the discussion below E(R)]. Samson has
investigated the subject by extending the analysis from the
real coordinate space to the complex unitary sgédeHe
showed that in the unitary space, the maximum value of the
o ] ) degree of correlation between the field components in two

FIG. 1. A geometric illustration of the differences between theorthogonal(comple)a directions is, unlike in the 2D case,
2D and 3D coherence-maFrix_formaIisms in treating the polarizatiortJreater than the 3D degree of polarization. However, since
state of an electromagnetic field. the analysis is performed in the unitary space, the result lacks

a direct physical explanation. Here we perform the analysis
correlations exist between any of the electric field compo-n the real coordinate space, which allows a physically intui-
nents iy =|uy, =|uy,=0). For this field, which cannot tive connection to be made between the field correlations and
be described in terms of the 2D formalism, the 3D formalismthe 3D degree of polarization. We proceed by applying Eqg.
gives the value oP;=0. When thex component of the field (16), and rewrite Eq(18) in the form

(1- |Mxy| 2) ¢xx¢yy+ (1- |sz| 2) Dyx Pz (1— |:U“yz| 2) ¢yy¢zz

1-P5=3 (24)
° (bxt byy+ hs0)?
or as
|/~"x |2d’xx¢ + |sz|2¢xx¢zz+ |M z|2¢ d’zz) / ( ¢>2<x+ ¢2 + d’iz
_p2_ . y vy y vy yy
1-Ps=3|1 Syt brbrrt byyas byt Sxbrrt boydan 2 @9

Then, by noting that for any set of three real numbersthe right-hand side of Eq27) depends on the orientation of
(a,b,c) the coordinate system, but the left-hand side does not. The
2 2 2 right-hand side reaches the value Bf if the coordinate
(a=b)"+(a=c)"+(b-c)">0 system is oriented in such a way tha,= ¢,,= ¢,,. In this

= a?+Db%+c?=ab+ac+bc, case, the equality sign holds, and we obtain
(26)
we find that p2_ |ﬂxy|2+ |/“xz|2+ |/~Lyz|2 29)
3 1
p2= |/-ny|2¢xx¢yy+ |sz| 2¢xx¢zz+ |/U'yz|2¢yy¢zz 3
¢’xx¢yy+ Dxxbzzt ¢yy¢zz .

(27 indicating that the square of the 3D degree of polarization is
Equation(27) has a simple physical interpretation. It statesequal to the pure average of the squared correlations prevail-
that the square of the 3D degree of polarization represenisg between the three orthogonal electric field components in
the upper limit of the average of the squared correlationghis specific coordinate system. This result agrees well with
weighted by the corresponding spectral densities. In fact, thigtuitive physical meaning of the degree of polarization.
is intuitively reasonable, since the degree of polarization is On the other hand, in the special case when the intensity
determined by the correlations between the three orthogonah one direction is zero, say in thedirection, Eq.(24) re-
electric field components and their intensities. The value ofluces to

016615-5
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¢xx¢yy
1-P3=3(1=|my)— . (29
P (ot dyy)?
Since gyxpyy ! (dxxt dyy)?<1/4, we obtain
1 3
2
P BZ+Z|Mxy|2- (30)

PHYSICAL REVIEW E66, 016615 (2002

APPENDIX

We show that for every coherence matrix, we can rotate
the coordinate system in such a way that the diagonal ele-
ments become equal. Let us perform two successive rotations
of which the first is chosen to be about th@xis counter-
clockwise through an angle, and the second about the
y'-axis counterclockwise through an angB The corre-
sponding rotation matrices and the elements of the coherence
matrix after each rotation are listed as follows:

This is consistent with Eq(23), which states that the 3D
degree of polarization of a planar field cannot be lower than
P3=1/2. As previously, the equality holds whe®,= ¢,

and we see that for a planar field the 3D degree of polariza-
tion is directly related to the correlation that exists between
the two nonzero electric field components.

We have enclosed in the Appendix a proof that there al-
ways exist three mutually orthogonal directions for which
the spectral intensities are equal. In this system, the square of
the degree of polarization is equal to the pure average of the
squared correlations, as stated by E2f). Based on these
arguments, we propose that Eg7) together with Eq(28)
justifies Eq.(18), or alternatively Eq(17), to be considered a
sensible measure for the 3D degree of polarization, as they

E, cosa
Ey|=| —sina cosa O||E,]|,
E, 0 0 1/\E

sina 0O E,
(A1)

brx=COS A yytSinfacpyy+ 112 Sin 20( yyt+ by,
byy=SINPa pyy+ COS @ byy— 112 SIN 20 ( by + by,
b1~ b2z,

bry=1/2SIN 20y — ) + COS by — SiP by,
$y;=COSady,+sinag,,,

by,= —Sina,,+cosady,,

A : H
relate the degree of polarization to the correlations that exist =i 1#) (A2)
between the three electric field components of an arbitrary
field.
= cosB 0 -—sing\ [ Ex
E) | = 0 1 0 E,
IV. CONCLUSION y _ v, A
E) sinB 0 cosB E,
We have formulated an extension to the concept of degree
of polarization that is applicable for arbitrary electromag- ,, , . , . , ,
netic fields. Our formula for the 3D degree of polarization is $x— COSBb)+ SIS~ 1/2sin 28( s+ bl
consistent with the results that have been put forward in they{, = ¢, ,
literature already some time ago. However, our way of for- " . , , . , ,
mulating the concept in a manner that is analogous to that o‘PZZ_ SIFB ot COS B b1 1125iN 2B( i+ b,
tr;e Welléafftablishehd 2D lcoherﬁnce-mﬁtrix fgrmalism bringsp}, = cosB ¢, —sinBé,,,
along a different physical insight into the subject matter. We ,,, . b b ,
demonstrated that the dimensionaliD vs 3D is a crucial Pz=1/2SIN 25( ¢U)+CO§'B¢XZ sz'gd)zx’
issue for the quantitative value and interpretation of the red:;jzz sin ﬁ¢;x+ cosﬂqs)’,z,
sults. We also showed how the 3D degree of polarization "= i (Ad)
may be interpreted as a quantity that characterizes the corrtg,\b-IJ e I

lations between all three orthogonal electric field compo- . ) i )

nents. The presented form for the 3D degree of polarization We”prOCt/e/ed b},/ requiring th_at in the final coordlna_lt_e Sys-
is expected to be a useful tool in assessing the partial polafé™M ®xx= yy= bz, ON applying Eq.(A4), the condition
ization of non-planar electromagnetic fields such as opticafxx= ¢z 9ives

near fields. Referendd 3] provides an example of the use of

this formalism to analyze the degree of polarization of ther- br— by
mal near fields under the influence of resonant surface tan2=———-. (AS)
waves. Dxzt azx

If the angleg is as in Eq(A5), we obtain from Eq(A4) that
b= by~ (Pt &d3)12. Furthermore, since the element
¢;y does not change under tiferotation, we have
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TABLE I. Rotations that lead to equal diagonal elements for the coherence masix ¢b,,= ¢,,), and

the sufficient conditions for the rotation angles to be real. The chosen rotations are determined solely by the

relative values of the diagonal elements. Every coherence matrix belongs at least to one of these categories.

Rotations(angle, axi$

Conditions for the anglea and 3 to be real

(@,z) and (B,y’)
(@,2) and (B.y’)
(a,x) and (B,2")
(a,x) and (B,2")

A WN PR

Dux=tr(P3)/3 and oy =tr(D3)/3, dyu# dyy
D= tr(P3)/3 and y <tr(D3)/3, by dyy
dyy=<tr(®3)/3 and ¢, =tr(P3)/3, dyy# b,
Dy =tr(P3)/3 and ¢, <tr(P3)/3, dyy# by,

which fixes the anglex. By substituting the primed diagonal
elements from Eq(A2) into Eqg. (A6) we are led to the
condition

2 ¢zz_ d’xx_ d’yy

cos 2( ¢yy_ Pyx) — SN 2a( ¢xy+ ¢yx) = 3

(A7)

for «. Equivalently, Eq(A7) may be expressed in the form

20, Pxx— ¢’yy

Sin(2a+ @)= , (A8)
nEate 3 \/( ¢xy+ ¢yx)2+ (d’yy_ d’xx)z
where
N ¢xx_ d’yy
tang= Dot by’ (A9)

and where the quadrant af is chosen such that- ¢,,
— ¢yx and cosp, as well as¢,,— ¢y, and sinp, have the
same sign. It is of interest to note that both angleand 8

1= 2¢zz_ (;bxx_ d’yy
3| d’yy_ ¢xx|

This equation is satisfied, ifp,,<tr(®3)/3, and ¢y,
=tr(d3)/3 or if gy =tr(P3)/3 and ey <tr(P3)/3. For both
cases we also require that,, and ¢,, are not both equal to
tr(dP3)/3. In other words, if the spectral intensity of the field
in the x direction is smaller than or equal to, and in the
direction greater than or equal to one third of the total spec-
tral intensity, or vice versa, the anglesand 8 are both real.
When the above conditions for the angtesnd 38 are not
met, we choose a different pair of rotation axes. For ex-
ample, we first rotate about the-axis counterclockwise
through an angler, and then about th# -axis counterclock-
wise through an angl@. The angles associated with these
rotations are obtained simply by performing a cyclic permu-
tation for the labels of the coordinate axes, i.e., we repkace
with y, y with z, andz with x, in Egs.(A5), (A8), and(A9).
We then have that the angleasand B for this pair of rota-
tions are realat least when ¢, <tr(®3)/3 and ¢,,
=tr(d3)/3, or when ¢y =tr(®3)/3 and ¢, <tr(d3)/3.
Again, both¢,, and ¢,, cannot be equal to t3)/3 at the
same time. In Table I, we have summarized the rotations and

<1.

(A10)

can be expressed solely in terms of the Stokes parameters tfe corresponding conditions for the rotation angles to be

Eq. (14).

Since the coherence matrix is Hermitian, the anglés
always real as is seen from E@\9). Therefore, the condi-
tion for « to be real, which according to Eq#\5) and(A2)
implies that alsg3 is real, is that the right-hand side of Eq.
(A8) is bounded between -1 and 1. This is tatdeastwhen

real. We see that the diagonal elements of every coherence
matrix, except the one withp,,= ¢,,= ¢,, for which no
rotations are needed, fulfill the conditions at least in one
category. For example, ib,,>tr(®3)/3 and ¢, ,>tr(P3)/3,

then necessarilyp,,<tr(®3)/3, and we may apply either
rotation 2 or 3 of Table I.
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