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Degree of polarization for optical near fields
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A. T. Friberg
Department of Microelectronics and Information Technology, Royal Institute of Technology, SE-164 40 Kista, Sweden

~Received 15 February 2002; published 30 July 2002!

We investigate an extension to the concept of degree of polarization that applies to arbitrary electromagnetic
fields, i.e., fields whose wave fronts are not necessarily planar. The approach makes use of generalized spectral
Stokes parameters that appear as coefficients, when the full 333 spectral coherence matrix is expanded in
terms of the Gell-Mann matrices. By defining the degree of polarization in terms of these parameters in a
manner analogous to the conventional planar-field case, we are led to a formula that consists of scalar invari-
ants of the spectral coherence matrix only. We show that attractive physical insight is gained by expressing the
three-dimensional degree of polarization explicitly with the help of the correlations between the three orthogo-
nal spectral components of the electric field. Furthermore, we discuss the fundamental differences in charac-
terizing the polarization state of a field by employing either the two- or the three-dimensional coherence-matrix
formalism. The extension of the concept of the degree of polarization to include electromagnetic fields having
structures of arbitrary form is expected to be particularly useful, for example, in near-field optics.

DOI: 10.1103/PhysRevE.66.016615 PACS number~s!: 42.25.Ja, 07.79.Fc, 05.40.2a

I. INTRODUCTION

The degree of polarization is an important quantity of
electromagnetic fields, as it characterizes the correlations that
prevail between the orthogonal components of the electric
field. Conventionally, the polarization state of a fluctuating
electromagnetic field is described in terms of the 232 co-
herence matrix or the related four Stokes parameters@1–3#.
The two-dimensional~2D! formalism applies, however, only
to fields having planar wave fronts, such as well-collimated
and uniform optical beams or radiated wide-angle far fields,
which can locally be considered as planar. Such fields can be
described by two orthogonal electric field components, but
an arbitrary field is generally composed of three components.

In this paper, we focus on the generalization of the con-
cept of the degree of polarization to include also fields with
wave fronts of arbitrary form. Such a generalization is use-
ful, for example, for investigations of optical near fields,
which are characterized by evanescent waves. The problem
at hand has already been studied in the seventies and early
eighties, seemingly independently, by Samson and co-
workers@4–6# for low-frequency fields relevant to geophys-
ical investigations and by Barakat@7,8# for optical fields. In
Ref. @4# Samson approaches the problem by investigating
different expansions of the full 333 spectral coherence ma-
trix. For one such expansion, he interprets the expansion
coefficients as the nine spectral Stokes parameters and de-
fines the degree of polarization in a manner analogous to the
two-dimensional case. Much of the same has also been per-
formed by Barakat in Ref.@7#. In congruence, the authors of
Refs.@5,6,8# formulate the degree of polarization in terms of
scalar invariants, which are traces of different powers of the
spectral coherence matrix and its determinant. These invari-

ants appear as coefficients in the characteristic equation of
the coherence matrix. Based on such a treatment, Barakat as
a matter of fact, proposes in Ref.@8# two measures for the
degree of polarization, of which one is the same as that sug-
gested by Samson. More recently, polarization of arbitrary
electromagnetic fields has been examined by Brosseau@1,9#
in terms of polarization entropy, and by Carozzi et al.@10# in
terms of the generalized spectral-density Stokes parameters.
As the authors in Refs.@1,6,9# have explicitly noted, the 3
33 coherence matrix cannot, in general, be decomposed into
the sum of matrices describing fully polarized and fully un-
polarized field as in the two-dimensional case. This fact
makes it more difficult to obtain simple physical insight into
the proposed formulas for the degree of polarization of arbi-
trary fields. In this work, we point out some fundamental
differences between the two- and three-dimensional
coherence-matrix formalisms and give physical intuition into
the formulation of the 3D degree of polarization.

We have arranged the paper as follows. In Sec. II, the
construction of the degree of polarization for planar wave
fields in terms of the 232 coherence matrix and the Stokes
parameters is recalled to facilitate the subsequent treatment
of the degree of polarization of arbitrary wave fields. In Sec.
III we formulate the 3D degree of polarization and compare
the features of the 2D and 3D formalisms. Finally, in Sec. IV
we summarize the main conclusions of the work.

II. DEGREE OF POLARIZATION FOR PLANAR FIELDS

In this section, we examine a planar electromagnetic field
propagating in thez direction with the electric field oscillat-
ing in thexy plane. We consider a single frequency compo-
nent E(r ,v) of a statistically stationary field and write the
corresponding coherence-matrix elements in the space-
frequency domain~the spectral-density tensor! as~Sec. 4.7.2
of Ref. @2#!*Fax: 1358 9 451 3155. Email address: tsetala@focus.hut.fi
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f i j ~r ,v!5^Ei* ~r ,v!Ej~r ,v!&, i , j 5x,y. ~1!

Here the angle brackets denote averaging, at a pointr over
an ensemble of field realizations of frequencyv, and the
superscript * stands for complex conjugation. The 232 co-
herence matrix will be denoted by the symbolF2, with the
subscript 2 indicating that we are dealing with the two-
dimensional formalism. Furthermore, we will implicitly as-
sume (r ,v) dependency for the coherence matrix, and em-
phasize that we consider spectral quantities.

The 232 coherence matrix is a non-negative definite and
Hermitian matrix that entirely specifies the state of polariza-
tion of the planar field. It can be uniquely decomposed into a
sum of two matrices, one corresponding to fully polarized
light and the other to fully unpolarized light. The degree of
polarization can then be expressed as the ratio of the inten-
sity ~or trace! of the polarized part to the total intensity of the
field @1–3#. The resulting expression for the degree of polar-
ization of the two-dimensional field,P2, has the well-known
form

P2
2512

4 det~F2!

tr2~F2!
52F tr~F2

2!

tr2~F2!
2

1

2G . ~2!

This quantity is bounded to the interval 0<P2<1, with the
valuesP250 andP251 corresponding to a completely un-
polarized and polarized field, respectively. It is invariant un-
der unitary transformations, since trace and determinant are
scalar invariants under such operations. Due to Hermiticity,
the coherence matrix can always be diagonalized by a uni-
tary transformation, and we could readily express the degree
of polarization in terms of the eigenvalues of the matrix. The
Hermiticity and non-negative definite character of the ma-
trix, respectively, imply that the eigenvalues are real and
non-negative.

For this work, particularly relevant is the presentation of
the degree of polarization in terms of the four Stokes param-
eters. The 2D Stokes parametersSj , ( j 50, . . . ,3) aremea-
surable quantities that appear as the expansion coefficients
when the coherence matrix is expanded in terms of the 2
32 unit matrix s0 and the three Pauli matrices, or genera-
tors of the SU~2! symmetry group,s j ( j 51, . . . ,3),i.e.,

F25
1

2 (
j 50

3

Sjs j , ~3!

where

s05S 1 0

0 1D , s15S 1 0

0 21D , s25S 0 1

1 0D ,

s35S 0 i

2 i 0D . ~4!

This allows us to write the coherence matrix as

F25
1

2 S S01S1 S21 iS3

S22 iS3 S02S1
D . ~5!

Moreover, since tr(s is j )52d i j , one obtains,

Sj5tr~s jF2!, or

S05fxx1fyy ,

S15fxx2fyy ,

S25fxy1fyx ,

S35 i ~fyx2fxy!.

~6!

We see that the first Stokes parameterS0 is proportional to
the spectral density of the field. The parameterS1 describes
the excess in spectral density of thex component over that of
they component of the field. The parameterS2 represents the
excess of145° linearly polarized component over245°
linearly polarized component, andS3 the excess in spectral
density of right-hand circularly polarized field component
over left-hand circularly polarized one@3#. Substituting the
coherence matrix of Eq.~5! into Eq.~2!, the degree of polar-
ization takes the form

P25
~S1

21S2
21S3

2!1/2

S0
. ~7!

When the field is fully polarized, the polarization state can be
geometrically represented as a point (S1 ,S2 ,S3) on a sphere
of radiusS0, the so-called Poincare´ sphere. The equator of
the sphere~in the S1S2 plane! corresponds to linearly polar-
ized light, and the north and south poles to right-hand and
left-hand circularly polarized light, respectively. Further-
more, in the origin of the Poincare´ sphere the field is fully
unpolarized and in every other inner point partially polar-
ized.

Sometimes it is useful to normalize the off-diagonal ele-
ments of the coherence matrix by defining

fxy

~fxx!
1/2~fyy!

1/2
[mxy5umxyueibxy, myx5mxy* . ~8!

The quantityumxyu is bounded between 0 and 1 and gives a
measure for the degree of correlation between the two or-
thogonal components of the electric field. While the value of
the 2D degree of polarization does not depend on the orien-
tation of the orthogonal 2D coordinate system in the plane
perpendicular to the wave’s propagation direction, the degree
of correlation does. One can show thatumxyu<P2, i.e., the
maximum value of the degree of correlation is equal to the
degree of polarization of the wave. The equality holds in a
coordinate system in which the intensities in thex and y
directions are equal (fxx5fyy). This situation can always
be achieved by a suitable rotation of the coordinate system
@3#.

III. DEGREE OF POLARIZATION FOR ARBITRARY
ELECTROMAGNETIC FIELDS

We now focus on the problem of how the treatment of the
planar~two-dimensional! fields could be extended to include
arbitrary electromagnetic fields. We proceed analogously to
the 2D case, and expand the 333 spectral coherence matrix,
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f i j ~r ,v!5^Ei* ~r ,v!Ej~r ,v!&, i , j 5x,y,z, ~9!

in the form @1#

F35
1

3 (
j 50

8

L jl j , ~10!

where the subscript 3 refers to the 3D formalism. In Eq.~10!,
l0 is the 333 unit matrix and the matricesl j , ( j
51, . . . ,8) are theGell-Mann matrices or the eight genera-
tors of the SU~3! symmetry group. The basis matrices are
Hermitian, trace orthogonal, and linearly independent. They
are explicitly written as@11#

l05S 1 0 0

0 1 0

0 0 1
D , l15S 0 1 0

1 0 0

0 0 0
D ,

l25S 0 2 i 0

i 0 0

0 0 0
D ,

l35S 1 0 0

0 21 0

0 0 0
D , l45S 0 0 1

0 0 0

1 0 0
D ,

l55S 0 0 2 i

0 0 0

i 0 0
D , ~11!

l65S 0 0 0

0 0 1

0 1 0
D , l75S 0 0 0

0 0 2 i

0 i 0
D ,

l85
1

A3 S 1 0 0

0 1 0

0 0 22
D .

For the basis matrices, the following trace-orthogonality
equation holds:

tr~l il j !5H 3 wheni 5 j 50

2d i j otherwise.
~12!

On multiplying both sides of Eq.~10! by lk , and taking the
trace, we may express the expansion coefficients, or the 3D
spectral Stokes parametersLk in the form

L05tr~F3!,

Lk5
3

2
tr~lkF3!, when k>1, ~13!

or explicitly as,

L05fxx1fyy1fzz, L55 3
2 i ~fxz2fzx!,

L15
3

2
~fxy1fyx!, L65 3

2 ~fyz1fzy!,

L25
3

2
i ~fxy2fyx!, L75 3

2 i ~fyz2fzy!,

L35
3

2
~fxx2fyy!, L85

A3

2
~fxx1fyy22fzz!.

L45
3

2
~fxz1fzx!,

~14!

As in the 2D formalism, the first Stokes parameter is propor-
tional to the total spectral density of the field. Moreover, we
may interpret the parametersL1 and L2 as playing a role
analogous to parametersS2 andS3 in the 2D formalism. The
same interpretation also holds for the pairs (L4 ,L5) and
(L6 ,L7), but in thexz andyz planes, respectively. The pa-
rameterL3 is obviously analogous toS1, andL8 represents
the sum of the excesses in spectral density in thex and y
directions over that in thez-direction. Furthermore, in anal-
ogy with the 3D Poincare´ sphere, it is possible to character-
ize the polarization state of a 3D electromagnetic field in
terms of a sphere in the eight-dimensional Stokes-parameter
space. However, owing to large number of dimensions, such
a construction would not provide much geometrical intuition
on the subject.

In terms of the Stokes parameters, the 333 coherence
matrix takes the form

F35
1

3S L01L31
1

A3
L8 L12 iL2 L42 iL5

L11 iL2 L02L31
1

A3
L8 L62 iL7

L41 iL5 L61 iL7 L02
2

A3
L8

D . ~15!
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It should be noted that we could have chosen some other
complete set of matrices for the basis, and then identified the
expansion coefficients as the Stokes parameters. For ex-
ample, Roman@12# chooses a set of matrices satisfying the
Kemmer algebra. However, the choice of the Gell-Mann ma-
trices conveniently leads to the first spectral Stokes param-
eter being proportional to the total spectral density of the
field, as well as to the other parameters having physical
meanings analogous to those of the 2D Stokes parameters.
As in the 2D formalism, we can also define the degree of
correlationum i j u (0<um i j u<1) between any two of the three
orthogonal electric field components as

f i j

~f i i !
1/2~f j j !

1/2
[m i j 5um i j ueib i j ,

m j i 5m i j* , i , j 5x,y,z. ~16!

Owing to the fact that the 333 coherence matrix cannot,
in general, be decomposed into the sum of a fully polarized
and fully unpolarized part@1,6,9#, other definitions for the
degree of polarization of 3D fields must be sought for. Let us
now investigate the possibility of expressing the 3D degree
of polarizationP3 in the form

P3
25

1

3

(
j 51

8

L j
2

L0
2

. ~17!

This form is analogous to Eq.~7!, and it has previously been
put forward by Samson@4# and Barakat@7#, although, in
those works a different coefficient appears in front of the
expression owing to the slightly different basis matrices. On
substituting the Stokes parameters of Eq.~14! into Eq. ~17!,
the 3D degree of polarization can be expressed in terms of
the coherence matrixF3 as

P3
25

3

2 F tr~F3
2!

tr2~F3!
2

1

3G . ~18!

We see that Eq.~18! is invariant under unitary transforma-
tions, and consequently, the value of the degree of polariza-
tion is independent of the orientation of the orthogonal coor-
dinate system. Furthermore, due to the Hermiticity, we may
diagonalize the coherence matrix and write

tr~F3
2!

tr2~F3!
5

a1
21a2

21a3
2

~a11a21a3!2
, ~19!

where (a1 ,a2 ,a3) are the eigenvalues of the coherence ma-
trix. On expanding the denominator, and noting that all the
eigenvalues are non-negative, we see that tr(F3

2)/tr2(F3)
<1. Moreover, by applying the Cauchy-Schwarz inequality
we see that tr(F3

2)/tr2(F3)>1/3. It then follows that

0<P3<1, ~20!

as is required for a measure of the degree of polarization.

We next reduce the formula for the 3D degree of polar-
ization to correspond to the case of planar fields. For ex-
ample, by settingEz50, we consider a field that oscillates in
thexy plane. We thus obtainfxz5fzx5fyz5fzy5fzz50,
and consequently from Eq.~14! that L45L55L65L750
andL85A3/2L0. The coherence matrixF3 then reduces to

F35
1

3 S 3

2
L01L3 L12 iL2 0

L11 iL2
3

2
L02L3 0

0 0 0

D . ~21!

Comparing the expressions forL j , ( j 50, . . . ,3) with the
Stokes parameters of the 2D fields, Eq.~6!, we find that the
232 matrix in the upper left corner ofF3 is exactly the
same as the matrix of Eq.~5!. Let us denote that matrix by
F28 . We may now rewrite Eq.~18! for a field characterized
by the coherence matrix of Eq.~21! as

P3→2
2 512

3 det~F28!

tr2~F28!
. ~22!

Now a fundamental difference between the 2D and 3D for-
malisms emerges. The values for the degree of polarization
of a 2D field calculated in terms of the 2D and 3D formal-
isms are not, in general, equal which is indicated by the
factor 3 in Eq.~22! instead of the factor 4 that is present in
Eq. ~2!. Writing the factor 3 det(F28)/tr

2(F28) in terms of the
eigenvalues ofF28 , which are non-negative, and noting that
their geometric mean value is smaller than or equal to the
arithmetic mean value, we find that

1

2
<P3→2<1. ~23!

Thus, a planar field cannot be fully unpolarized in the 3D
formalism. This is as expected, since in such a field the os-
cillations are restricted to a single plane, and consequently,
when treated as three-dimensional the field must have a non-
zero degree of polarization. Since the degree of polarization
retains its value under a rotation of the coordinate system,
Eq. ~23! is valid for any 2D field.

The most intuitive understanding of the differences be-
tween the 2D and 3D formalisms is, perhaps, obtained by
considering Fig. 1. In the upper row an unpolarized 2D field,
i.e., a field for which the spectral density in thex and y
directions is the same (fxx5fyy), and for which no corre-
lation exists between the two electric field components
(umxyu50), is passed through a polarizer. The 2D formalism
gives the valuesP250 andP251 for the field before and
after the polarizer, respectively. Let us now consider 3D
fields in a similar way. Assume a fully unpolarized 3D field
~lower row in Fig. 1!, which is polarized by two devices each
cutting off one of the orthogonal field components. For a
fully unpolarized 3D field the spectral density in all three
orthogonal directions is the same (f115f225f33) and no
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correlations exist between any of the electric field compo-
nents (umxyu5umxzu5umyzu50). For this field, which cannot
be described in terms of the 2D formalism, the 3D formalism
gives the value ofP350. When thex component of the field

is cut off by the first device the field becomes partially po-
larized. Indeed, nowfxx50, fyy5fzz with umyzu50, and
consequentlyP351/2. The second device then cuts off thez
component and the field becomes fully polarized (P351),
since the oscillations now take place only in a single direc-
tion. We may conclude that the fundamental difference be-
tween the 2D and 3D formalism is due to the fact that in the
latter, the third direction is included albeit the intensity in
this direction may be zero. In the 2D formalism the third
direction is not even considered, and therefore, that formal-
ism cannot be applied to characterize polarization of an ar-
bitrary field.

Let us consider the 3D counterpart of the statement in 2D,
P2>umxyu @see the discussion below Eq.~8!#. Samson has
investigated the subject by extending the analysis from the
real coordinate space to the complex unitary space@6#. He
showed that in the unitary space, the maximum value of the
degree of correlation between the field components in two
orthogonal~complex! directions is, unlike in the 2D case,
greater than the 3D degree of polarization. However, since
the analysis is performed in the unitary space, the result lacks
a direct physical explanation. Here we perform the analysis
in the real coordinate space, which allows a physically intui-
tive connection to be made between the field correlations and
the 3D degree of polarization. We proceed by applying Eq.
~16!, and rewrite Eq.~18! in the form

12P3
253

~12umxyu2!fxxfyy1~12umxzu2!fxxfzz1~12umyzu2!fyyfzz

~fxx1fyy1fzz!
2

, ~24!

or as

12P3
253S 12

umxyu2fxxfyy1umxzu2fxxfzz1umyzu2fyyfzz

fxxfyy1fxxfzz1fyyfzz
D Y S fxx

2 1fyy
2 1fzz

2

fxxfyy1fxxfzz1fyyfzz
12D . ~25!

Then, by noting that for any set of three real numbers
(a,b,c)

~a2b!21~a2c!21~b2c!2>0

⇔a21b21c2>ab1ac1bc,
~26!

we find that

P3
2>

umxyu2fxxfyy1umxzu2fxxfzz1umyzu2fyyfzz

fxxfyy1fxxfzz1fyyfzz
.

~27!

Equation~27! has a simple physical interpretation. It states
that the square of the 3D degree of polarization represents
the upper limit of the average of the squared correlations
weighted by the corresponding spectral densities. In fact, this
is intuitively reasonable, since the degree of polarization is
determined by the correlations between the three orthogonal
electric field components and their intensities. The value of

the right-hand side of Eq.~27! depends on the orientation of
the coordinate system, but the left-hand side does not. The
right-hand side reaches the value ofP3

2 if the coordinate
system is oriented in such a way thatfxx5fyy5fzz. In this
case, the equality sign holds, and we obtain

P3
25

umxyu21umxzu21umyzu2

3
, ~28!

indicating that the square of the 3D degree of polarization is
equal to the pure average of the squared correlations prevail-
ing between the three orthogonal electric field components in
this specific coordinate system. This result agrees well with
intuitive physical meaning of the degree of polarization.

On the other hand, in the special case when the intensity
in one direction is zero, say in thez direction, Eq.~24! re-
duces to

FIG. 1. A geometric illustration of the differences between the
2D and 3D coherence-matrix formalisms in treating the polarization
state of an electromagnetic field.
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12P3
253~12umxyu2!

fxxfyy

~fxx1fyy!
2

. ~29!

Sincefxxfyy /(fxx1fyy)
2<1/4, we obtain

P3
2>

1

4
1

3

4
umxyu2. ~30!

This is consistent with Eq.~23!, which states that the 3D
degree of polarization of a planar field cannot be lower than
P351/2. As previously, the equality holds whenfxx5fyy ,
and we see that for a planar field the 3D degree of polariza-
tion is directly related to the correlation that exists between
the two nonzero electric field components.

We have enclosed in the Appendix a proof that there al-
ways exist three mutually orthogonal directions for which
the spectral intensities are equal. In this system, the square of
the degree of polarization is equal to the pure average of the
squared correlations, as stated by Eq.~28!. Based on these
arguments, we propose that Eq.~27! together with Eq.~28!
justifies Eq.~18!, or alternatively Eq.~17!, to be considered a
sensible measure for the 3D degree of polarization, as they
relate the degree of polarization to the correlations that exist
between the three electric field components of an arbitrary
field.

IV. CONCLUSION

We have formulated an extension to the concept of degree
of polarization that is applicable for arbitrary electromag-
netic fields. Our formula for the 3D degree of polarization is
consistent with the results that have been put forward in the
literature already some time ago. However, our way of for-
mulating the concept in a manner that is analogous to that of
the well-established 2D coherence-matrix formalism brings
along a different physical insight into the subject matter. We
demonstrated that the dimensionality~2D vs 3D! is a crucial
issue for the quantitative value and interpretation of the re-
sults. We also showed how the 3D degree of polarization
may be interpreted as a quantity that characterizes the corre-
lations between all three orthogonal electric field compo-
nents. The presented form for the 3D degree of polarization
is expected to be a useful tool in assessing the partial polar-
ization of non-planar electromagnetic fields such as optical
near fields. Reference@13# provides an example of the use of
this formalism to analyze the degree of polarization of ther-
mal near fields under the influence of resonant surface
waves.
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APPENDIX

We show that for every coherence matrix, we can rotate
the coordinate system in such a way that the diagonal ele-
ments become equal. Let us perform two successive rotations
of which the first is chosen to be about thez-axis counter-
clockwise through an anglea, and the second about the
y8-axis counterclockwise through an angleb. The corre-
sponding rotation matrices and the elements of the coherence
matrix after each rotation are listed as follows:

S Ex8

Ey8

Ez8
D 5S cosa sina 0

2sina cosa 0

0 0 1
D S Ex

Ey

Ez

D , ~A1!

fxx8 5cos2afxx1sin2afyy11/2 sin 2a~fxy1fyx!,

fyy8 5sin2afxx1cos2afyy21/2 sin 2a~fxy1fyx!,

fzz8 5fzz,

fxy8 51/2 sin 2a~fyy2fxx!1cos2afxy2sin2afyx ,

fxz8 5cosafxz1sinafyz ,

fyz8 52sinafxz1cosafyz ,

f i j8 5f j i8* , iÞ j , ~A2!

S Ex9

Ey9

Ez9
D 5S cosb 0 2sinb

0 1 0

sinb 0 cosb
D S Ex8

Ey8

Ez8
D , ~A3!

fxx9 5cos2bfxx8 1sin2bfzz8 21/2sin 2b~fxz8 1fzx8 !,

fyy9 5fyy8 ,

fzz9 5sin2bfxx8 1cos2bfzz8 11/2sin 2b~fxz8 1fzx8 !,

fxy9 5cosbfxy8 2sinbfzy8 ,

fxz9 51/2sin 2b~fxx8 2fzz8 !1cos2bfxz8 2sin2bfzx8 ,

fyz9 5sinbfyx8 1cosbfyz8 ,

f i j9 5f j i9* , iÞ j . ~A4!

We proceed by requiring that in the final coordinate sys-
tem fxx9 5fyy9 5fzz9 . On applying Eq.~A4!, the condition
fxx9 5fzz9 gives

tan 2b5
fxx8 2fzz8

fxz8 1fzx8
. ~A5!

If the angleb is as in Eq.~A5!, we obtain from Eq.~A4! that
fxx9 5fzz9 5(fxx8 1fzz8 )/2. Furthermore, since the element
fyy8 does not change under theb rotation, we have

fyy8 5
fxx8 1fzz8

2
, ~A6!
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which fixes the anglea. By substituting the primed diagonal
elements from Eq.~A2! into Eq. ~A6! we are led to the
condition

cos 2a~fyy2fxx!2sin 2a~fxy1fyx!5
2fzz2fxx2fyy

3
,

~A7!

for a. Equivalently, Eq.~A7! may be expressed in the form

sin~2a1w!5
2fzz2fxx2fyy

3A~fxy1fyx!
21~fyy2fxx!

2
, ~A8!

where

tanw5
fxx2fyy

fxy1fyx
, ~A9!

and where the quadrant ofw is chosen such that2fxy
2fyx and cosw, as well asfyy2fxx and sinw, have the
same sign. It is of interest to note that both anglesa andb
can be expressed solely in terms of the Stokes parameters of
Eq. ~14!.

Since the coherence matrix is Hermitian, the anglew is
always real as is seen from Eq.~A9!. Therefore, the condi-
tion for a to be real, which according to Eqs.~A5! and~A2!
implies that alsob is real, is that the right-hand side of Eq.
~A8! is bounded between -1 and 1. This is trueat leastwhen

21<
2fzz2fxx2fyy

3ufyy2fxxu
<1. ~A10!

This equation is satisfied, iffxx<tr(F3)/3, and fyy
>tr(F3)/3 or if fxx>tr(F3)/3 andfyy<tr(F3)/3. For both
cases we also require thatfyy andfxx are not both equal to
tr(F3)/3. In other words, if the spectral intensity of the field
in the x direction is smaller than or equal to, and in they
direction greater than or equal to one third of the total spec-
tral intensity, or vice versa, the anglesa andb are both real.

When the above conditions for the anglesa andb are not
met, we choose a different pair of rotation axes. For ex-
ample, we first rotate about thex-axis counterclockwise
through an anglea, and then about thez8-axis counterclock-
wise through an angleb. The angles associated with these
rotations are obtained simply by performing a cyclic permu-
tation for the labels of the coordinate axes, i.e., we replacex
with y, y with z, andz with x, in Eqs.~A5!, ~A8!, and~A9!.
We then have that the anglesa andb for this pair of rota-
tions are real at least when fyy<tr(F3)/3 and fzz
>tr(F3)/3, or when fyy>tr(F3)/3 and fzz<tr(F3)/3.
Again, bothfyy andfzz cannot be equal to tr(F3)/3 at the
same time. In Table I, we have summarized the rotations and
the corresponding conditions for the rotation angles to be
real. We see that the diagonal elements of every coherence
matrix, except the one withfxx5fyy5fzz for which no
rotations are needed, fulfill the conditions at least in one
category. For example, iffxx.tr(F3)/3 andfzz.tr(F3)/3,
then necessarilyfyy,tr(F3)/3, and we may apply either
rotation 2 or 3 of Table I.
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TABLE I. Rotations that lead to equal diagonal elements for the coherence matrix (fxx5fyy5fzz), and
the sufficient conditions for the rotation angles to be real. The chosen rotations are determined solely by the
relative values of the diagonal elements. Every coherence matrix belongs at least to one of these categories.

Rotations~angle, axis! Conditions for the anglesa andb to be real

1 (a,z) and (b,y8) fxx<tr(F3)/3 andfyy>tr(F3)/3, fxxÞfyy

2 (a,z) and (b,y8) fxx>tr(F3)/3 andfyy<tr(F3)/3, fxxÞfyy

3 (a,x) and (b,z8) fyy<tr(F3)/3 andfzz>tr(F3)/3, fyyÞfzz

4 (a,x) and (b,z8) fyy>tr(F3)/3 andfzz<tr(F3)/3, fyyÞfzz
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