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Universality of electromagnetic-field correlations within homogeneous and isotropic sources
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Department of Engineering Physics and Mathematics, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT, Finland

A. T. Friberg
Department of Microelectronics and Information Technology, Royal Institute of Technology, SE-164 40 Kista, Sweden
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We investigate the structure of second-order correlations in electromagnetic fields produced by statistically
stationary, homogeneous, and isotropic current distributions. We show that the coherence properties of such
fields within a low-loss or nondissipative medium do not depend on the source characteristics, but are solely
determined by the propagation properties, and that the degree of coherence of the field is given by the sinc law.
Our analysis reproduces the known results for blackbody fields, but it applies to a wider class of sources, not
necessarily in thermal equilibrium. We discuss the physics behind the universal behavior of the correlations by
comparing the results with those obtained by an electromagnetic plane-wave model.

DOI: 10.1103/PhysRevE.67.026613 PACS number~s!: 03.50.De, 42.25.2p

I. INTRODUCTION

It has recently been shown that the correlations in scalar
wave fields generated by statistically stationary, homoge-
neous, and isotropic sources fluctuating within a medium of
vanishingly small absorption, exhibit spatially universal
structures@1,2#. More precisely, the spectral degree of coher-
ence of the field is proportional to the imaginary part of the
Green function of the system, indicating that the field corre-
lations are determined by propagation properties only, and
not by the source characteristics. This is true for the fields in
three and two dimensions@2#. In three-dimensional space,
the degree of coherence varies in space as the sinc function,
and a superposition of isotropically distributed and angularly
uncorrelated plane waves has been shown to produce this
functional form for the coherence function@3#. Furthermore,
the same coherence function is found for the low-frequency
part of statistically homogeneous planar Lambertian sources
@4#, and for the field within a larged-correlated primary
spherical source@5#.

Albeit various investigations on the subject matter have
been performed using scalar theory, less attention has been
paid to the coherence properties of electromagnetic fields. An
exception to this is blackbody radiation, for which the cross-
spectral density tensors are known@6#. In particular, the elec-
tric cross-spectral density tensor of the blackbody field is
proportional to the imaginary part of the Green tensor of the
system@6,7#, and thus, the normalized trace of the tensor, or
the field’s degree of coherence, obtains the form of a sinc
function. In this work, we show that when the losses in the
medium are negligible, this universal character of the field
correlations is shared by all electromagnetic fields generated
by statistically homogeneous and isotropic current distribu-
tions, not only by thermal sources in equilibrium.

The paper is organized as follows. In Sec. II, we derive an
expression for the electric cross-spectral density tensor of the
field in terms of the corresponding source tensor when the

source is statistically homogeneous. The approach is a full
electromagnetic analog to the method employed in Ref.@2#.
In Sec. III, the formula is applied to sources which are not
only homogeneous, but also isotropic. Finally, in Sec. IV, we
provide a physical explanation of the results, and summarize
the main conclusions of the work. Details of the mathemati-
cal calculations are relegated to Appendixes A–D.

II. ELECTRIC CROSS-SPECTRAL DENSITY TENSOR OF
THE FIELD GENERATED BY A STATISTICALLY

HOMOGENEOUS CURRENT DISTRIBUTION

The second-order spatial correlation properties of a sta-
tionary current density distribution and of the electromag-
netic field that it generates are described in the space-
frequency domain in terms of the cross-spectral density
tensors~Ref. @8#, Sec. 6.5!

WJ j j ~r1 ,r2 ,v!5^ j* ~r1 ,v!j ~r2 ,v!&, ~1!

WJ ee~r1 ,r2 ,v!5^E* ~r1 ,v!E~r2 ,v!&. ~2!

The vectorsj (r ,v) and E(r ,v) represent members of the
statistical ensembles of monochromatic current and electric-
field realizations at the frequencyv. The angle brackets and
the asterisk (* ) denote ensemble averaging and complex
conjugation, respectively, andr1,2 refer to two points in
space.

In a homogeneous, isotropic, and linear medium, the
monochromatic realizations obey the inhomogeneous vector
wave equation, which~in SI units! reads as

“3“3E~r ,v!2k2~v!E~r ,v!5 ivm~v!j ~r ,v!. ~3!

Here k(v)5k0n(v), with k0 being the free-space wave
number, andn(v) is the complex refractive index of the
medium, which is expressed asn2(v)5e r(v)m r(v) in
terms of the relative permittivitye r(v)5e(v)/e0 and per-
meability m r(v)5m(v)/m0, given as ratios of the corre-
sponding value in the medium to that in vacuum. In order to*FAX: 1358 9 451 3155. Email address: tsetala@focus.hut.fi
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simplify the notation we shall, from now on, drop the fre-
quency dependence of the material parameters. In addition,
the real and imaginary parts of the parameters will be indi-
cated by primed and double-primed symbols, respectively.

Since the source fluctuations are assumed to be statisti-
cally homogeneous, it is advantageous to transfer into the
Fourier space by introducing the spatial Fourier transforms
of the current density and of the field as

j̃ ~k,v!5E d3Rj ~R,v!e2 ik•R, ~4!

Ẽ~k,v!5E d3rE~r ,v!e2 ik•r. ~5!

For later convenience, we have here adopted a notation in
which a capitalized spatial vector refers to a source point.
From the wave equation, Eq.~3!, we find that the Fourier
transforms satisfy the equation

k3@k3Ẽ~k,v!#1k2Ẽ~k,v!52 ivm j̃ ~k,v!, ~6!

or equivalently

@kk2~k22k2!UJ #•Ẽ~k,v!52 ivm j̃ ~k,v!, ~7!

wherek5uku andUJ is the unit tensor. Since Eq.~7! is linear,
it can straightforwardly be solved forẼ(k,v) and the result
is

Ẽ~k,v!52
ih0

k0e r~k22k2!
~kk2k2UJ !• j̃ ~k,v!, ~8!

whereh05Am0 /e0 is the impedance of vacuum. Equation
~8! is central in our analysis, as it expresses the Fourier com-
ponents of the field in terms of the corresponding compo-
nents of the source distribution that produces the field.

For a statistically homogeneous source, the cross-spectral
density tensor is of the form

WJ j j ~R1 ,R2 ,v![WJ j j ~R,v!, ~9!

whereR5R12R2. We can then directly write in the Fourier
space

^ j̃ * ~k1 ,v! j̃ ~k2 ,v!&5E d3R1E d3R2^ j* ~R1 ,v!j ~R2 ,v!&

3eik1•R12 ik2•R2 ~10!

5~2p!3d~k12k2!W̃J j j ~2k1 ,v!, ~11!

where

W̃J j j ~k,v!5E d3RWJ j j ~R,v!e2 ik•R. ~12!

Equation~11! states that the different Fourier components of
an infinite homogeneous source ared correlated.

We are now in a position to express the cross-spectral
density tensor of the field in terms of the corresponding
source tensor. On inserting the inverse transform of Eq.~5!
into Eq. ~2!, we obtain

WJ ee~r1 ,r2 ,v!5E d3k1

~2p!3E d3k2

~2p!3
^Ẽ* ~k1 ,v!Ẽ~k2 ,v!&

3e2 ik1•r11 ik2•r2. ~13!

Furthermore, using Eq.~8!, we get

^Ẽ* ~k1 ,v!Ẽ~k2 ,v!&5
h0

2

k0
2ue r u2~k1

22k2!* ~k2
22k2!

3@k1k12~k2!* UJ #•^ j̃ * ~k1 ,v!

3 j̃ ~k2 ,v!&•@k2k22~k2!UJ #,

~14!

which, when substituted together with Eqs.~11! and~12! into
Eq. ~13!, yields

WJ ee~r ,v!

5
h0

2

k0
2ue r u2

E d3RE d3k

~2p!3

1

uk22k2u2

3@kk2~k2!* UJ #•WJ j j ~R,v!•@kk2k2UJ #eik•(R2r ),

~15!

wherer5r12r2. Thus, we see that the field generated by a
homogeneous source distribution is also homogeneous, as
expected. Equation~15! can be developed further by noting
that

keik•(R2r )5 i¹re
ik•(R2r ), ~16!

where¹r operates on the vectorr . We use this to rewrite Eq.
~15! in the form

WJ ee~r ,v!5h0
2k0

2m r
2E d3RFUJ1

1

~k2!*
¹r¹rG•WJ j j ~R,v!

•FUJ1
1

k2
¹r¹rG E d3k

~2p!3

eik•(R2r )

uk22k2u2
. ~17!

In this formula we have assumed, as we shall also do later
on, that the orders of integration and differentiation can be
interchanged. The integration overk in Eq. ~17! can be car-
ried out analytically by applying the residue theorem as is
shown in Appendix A. Making use of Eq.~A3!, we have

E d3k

~2p!3

eik•(R2r )

uk22k2u2
5

1

~k2!9
Im@G~R2r ,v!#, ~18!

where Im denotes the imaginary part, andG(R2r ,v) is the
~scalar! Green function of the system given by
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G~R2r ,v!5
eikuR2r u

4puR2r u
. ~19!

Applying Eq. ~18!, the cross-spectral density tensor in Eq.
~17! takes on the form

WJ ee~r ,v!5
h0

2m r

e r9
FUJ1

1

~k2!*
¹r¹rG•E d3RWJ j j ~R,v!•FUJ1

1

k2
¹r¹rG Im@G~R2r ,v!#. ~20!

We note that the integral in Eq.~20! contains a term that resembles the imaginary part of the Green tensor~see Appendix B!,
but strictly is not sincek, here, is a complex quantity. In the limit of small absorption, however,k will become~almost! purely
real, and to good approximation, the tensor in the brackets in the integrand of Eq.~20! becomes equal to the imaginary part of
the Green tensor, i.e.,

WJ ee~r ,v!5
h0

2m r

e r9
S UJ1

1

k2
¹r¹r D •E d3RWJ j j ~R,v!•Im@GJ ~R2r ,v!#. ~21!

We stress that in the limit of vanishing losses the imaginary
part e r9 approaches zero, and thus the elements of the cross-
spectral density tensor diverge. This divergence, however,
disappears for normalized quantities such as the degree of
coherence~or if the current source is restricted to a large but
finite volume!. Since we are also interested in the explicit
functional form of the cross-spectral density tensor, we do
not, at this stage, perform any normalization, but keep these
facts in mind.

III. ELECTRIC CROSS-SPECTRAL DENSITY TENSOR OF
THE FIELD GENERATED BY A STATISTICALLY

HOMOGENEOUS AND ISOTROPIC
CURRENT DISTRIBUTION

We next apply Eq.~21! to sources which are not only
homogeneous, but also statistically isotropic. The general
form for the cross-spectral density tensor of such a source is
explicitly given by @9,10#

WJ j j ~R,v!5A~R,v!UJ1B~R,v!R̂R̂, ~22!

where A(R,v) and B(R,v) are scalar functions, andR̂
5R/R with R5uRu. In fact, the functionsA(R,v) and
B(R,v) are not entirely independent, but are connected by a
continuity equation. Furthermore, Eq.~22! is symmetric and
its form is invariant under rotation of the coordinate system.
For convenience, we set

WJ j j
A ~R,v!5A~R,v!UJ , ~23!

WJ j j
B ~R,v!5B~R,v!R̂R̂, ~24!

and treat the tensorsWJ j j
A (R,v) andWJ j j

B (R,v) separately.

A. Field correlations generated by the tensorWI j j
A
„R,v…

On substituting Eq.~23! into Eq. ~21! we obtain

WJ ee
A ~r ,v!5

h0
2m r

e r9
S UJ1

1

k2
¹r¹r D •E d3RA~R,v!

3Im@GJ ~R2r ,v!#, ~25!

which can also be expressed as

WJ ee
A ~r ,v!5

h0
2m r

e r9
S UJ1

1

k2
¹r¹r D •S UJ1

1

k2
¹r¹r D

3E d3RA~R,v!Im@G~R2r ,v!#. ~26!

This equation can be simplified further by performing the
angular integrations as outlined in Appendix C. Making use
of Eq. ~C3! in the low-loss limit, we obtain

E d3RA~R,v!Im@G~R2r ,v!#5kCA~v! j 0~kr !

54pCA~v!Im@G~r ,v!#, ~27!

where

CA~v!5E
0

`

dRR2A~R,v! j 0~kR!, ~28!

and consequently Eq.~26! simplifies to

WJ ee
A ~r ,v!5

4ph0
2m r

e r9
CA~v!S UJ1

1

k2
¹r¹r D •Im@GJ ~r ,v!#.

~29!

As is demonstrated in Appendix B, in the low-loss limit we
have

¹r•Im@GJ ~r ,v!#50. ~30!

Making use of this relation, we end up with the expression
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WJ ee
A ~r ,v!5

4ph0
2m r

e r9
CA~v!Im@GJ ~r ,v!# ~31!

for the cross-spectral density tensor of the field, when the

source correlations are of the formWJ j j
A (R,v)5A(R,v)UJ .

We see thatWJ ee
A (r ,v) is proportional to the imaginary part

of the Green tensor with the proportionality factor depending
on the source characteristics and on the medium.

B. Field correlations generated by the tensorWI j j
B
„R,v…

The tensorWJ j j
B (R,v) defined in Eq.~24!, when inserted

into Eq. ~21!, yields

WJ ee
B ~r ,v!5

h0
2m r

e r9
S UJ1

1

k2
¹r¹r D •E d3RB~R,v!R̂R̂•Im@GJ ~R2r ,v!#. ~32!

Making use of the fact thatR̂R̂•¹r¹r5(¹r¹r•R̂R̂)T, where the superscriptT denotes the transpose, Eq.~32! can be expressed
as

WJ ee
B ~r ,v!5

h0
2m r

e r9
S UJ1

1

k2
¹r¹r D •H S UJ1

1

k2
¹r¹r D •E d3RB~R,v!R̂R̂ Im@G~R2r ,v!#J T

. ~33!

The angular integrations can again be performed analytically
as outlined in Appendix D. In the low-loss limit, Eq.~D10!
implies that

E d3RB~R,v!R̂R̂ Im@G~R2r ,v!#5
k

3
@CB1~v! j 0~kr !

2CB2~v! j 2~kr !#UJ1kCB2~v! j 2~kr ! r̂ r̂

54pCB2~v!Im@GJ ~r ,v!#1
4p

3
@CB1~v!

22CB2~v!#Im@G~r ,v!#UJ , ~34!

where

CB1~v!5E
0

`

dRR2B~R,v! j 0~kR!, ~35!

CB2~v!5E
0

`

dRR2B~R,v! j 2~kR!. ~36!

The last expression in Eq.~34! is obtained with the help of
the explicit form for the imaginary part of the Green tensor,
Eq. ~B5!. Substituting Eq.~34! into Eq.~33!, and making use
of Eq. ~30! and the symmetry of the Green tensor, i.e., the
fact thatGJ (r ,v)5GJ (r ,v)T, the cross-spectral density tensor
of the field reduces to

WJ ee
B ~r ,v!5

4ph0
2m r

3e r9
@CB1~v!1CB2~v!#Im@GJ ~r ,v!#.

~37!

This formula can further be simplified by combining the
spectral coefficientsCB1(v) and CB2(v) in terms of the

relation j 0(kR)1 j 2(kR)53 j 1(kR)/kR for the spherical
Bessel functions, and we find that

WJ ee
B ~r ,v!5

4ph0
2m r

e r9
CB~v!Im@GJ ~r ,v!#, ~38!

where

CB~v!5CB1~v!1CB2~v!5E
0

`

dRR2B~R,v!
j 1~kR!

kR
.

~39!

Thus, also for the source tensorWJ j j
B (R,v), the spatial corre-

lation properties of the field are described by the imaginary
part of the Green tensor.

C. Degree of coherence

When combining Eqs.~31! and ~38!, we find that

WJ ee~r ,v!5
4ph0

2m r

e r9
@CA~v!1CB~v!#Im@GJ ~r ,v!#.

~40!

Hence the spatial correlation properties of a fluctuating field,
generated by any statistically homogeneous and isotropic
current distribution within an infinite low-loss or nondissipa-
tive medium, are determined by the imaginary part of the
Green tensor of the system. In particular, the normalized
trace of the electric cross-spectral density tensor, commonly
regarded as the electromagnetic field’s degree of spatial co-
herence@4#, acquires the universal form
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mee~r ,v!5
trWJ ee~r ,v!

trWJ ee~0,v!
5

sinkr

kr
5

4p

k
Im@G~r ,v!#,

~41!

where tr denotes the trace operation. This equation shows
that when the conditions assumed for the random source cur-
rents and the medium hold, the degree of coherence of the
electromagnetic field does not depend on the source charac-
teristics, but only on the propagation properties of the me-
dium. We emphasize that owing to the small but nonzero
absorbtion by the medium, the result is valid even for fully
coherent current distributions.

D. Polarization of the far field radiated by finite, statistically
homogeneous, and isotropic spherical source

We next show that the far field radiated by a finite, statis-
tically homogeneous, and isotropic spherical source is fully
unpolarized in all directions. This result will be useful in the
following section where we discuss the universal behavior of
the correlations. Consider the field generated by a source
occupying a spherical volume denoted by the symbolS ~see
Fig. 1!. The far-field realization of the electric field at dis-
tancer in the direction specified by unit vectorû is given by
~Ref. @11#, Sec. 2.8; see also Ref.@10#!

E~rû,v!;
ikh0m re

ikr

4pr
~UJ2ûû!• j̃ ~k,v!, ~42!

where k5kû. Using Eq. ~42!, the 333 coherence tensor
FJ 3(rû,v), which contains all information about the polar-
ization state of the field~at the pointrû), takes the form

FJ 3~rû,v!5WJ ee~rû,rû,v!5S kh0m r

4pr D 2

3~UJ2ûû!•^ j̃ * ~k,v! j̃ ~k,v!&•~UJ2ûû!.

~43!

Making use of Eq.~10!, we obtain

^ j̃ * ~k,v! j̃ ~k,v!&5E d3R1E d3R2WJ j j ~R,v!ei k•R,

~44!

where, as before,R5R12R2. Since the source is confined
to a finite volume, its cross-spectral density tensor is of the
form

WJ j j ~R,v!5@A~R,v!UJ1B~R,v!R̂R̂#B~R1!B~R2!,
~45!

whereB(Ri) is a blocking function defined such thatB(Ri)
51 if RiPS, andB(Ri)50 otherwise (i 51,2). By setting
B8(R,v)5B(R,v)/R2, transforming into the variablesR
5R12R2 andRc5(R11R2)/2, and making use of the fact
that Rei k•R52 i¹kei k•R, Eq. ~44! assumes the form

^ j̃ * ~k,v! j̃ ~k,v!&5ÃB~k,v!UJ2¹k¹kB̃B8~k,v!. ~46!

In this formula

ÃB~k,v!5E d3RA~R,v!I B~R!e2 i k•R, ~47!

B̃B8~k,v!5E d3RB8~R,v!I B~R!e2 i k•R ~48!

are the Fourier transforms ofA(R,v)I B(R) and
B8(R,v)I B(R), respectively, and

I B~R!5E d3RcB~Rc1R/2!B~Rc2R/2!, ~49!

which depends only on the magnitudeR for a spherical
source region. In Eqs.~47! and ~48! we also have made use
of the spherical symmetry of the integrands in order to get, in
accordance with Eq.~12!, a negative sign in the exponent.
By performing the derivations in Eq.~46!, we find that

^ j̃ * ~k,v! j̃ ~k,v!&5F ÃB~k,v!2
1

k

dB̃B8~k,v!

dk
GUJ

1F 1

k

dB̃B8~k,v!

dk
2

d2B̃B8~k,v!

dk2 G ûû,

~50!

which, when substituted into Eq.~43! gives

FJ 3~rû,v!5S kh0m r

4pr D 2F ÃB~k,v!2
1

k

dB̃B8~k,v!

dk
G ~UJ2ûû!.

~51!

We see thatû•FJ 3(rû,v)5FJ 3(rû,v)•û50, i.e., the field in
the far zone is transverse with respect to the directionû.
This, of course, is as expected since the far field in the di-
rection of û behaves locally as a plane wave propagating in
that direction. Hence, we may describe the polarization prop-
erties of the far field locally in terms of the 232 coherence
tensor associated with the two orthogonal transverse compo-

FIG. 1. Illustration of notations for analyzing the far-field polar-
ization. The field emitted by a spherical source occupying the vol-
umeS is studied at the distancer from the originO in the direction

specified by the unit vectorû. The vectorsûa , ûb , andû constitute
an orthonormal set of vectors.
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nents ûa and ûb ~see Fig. 1!. The elements of this 232
coherence tensor, denoted byFJ 2(rû,v), are explicitly given
by

F2,i j ~rû,v!5ûi•FJ 3~rû,v!•û j5S kh0m r

4pr D 2

3F ÃB~k,v!2
1

k

dB̃B8~k,v!

dk
Gd i j , ~52!

where (i , j )5(a,b). Hence the diagonal elementsF2,aa and
F2,bb are equal, i.e., the spectral densities of the transverse
components are the same. Furthermore, the transverse com-
ponents are mutually uncorrelated sinceF2,ab5F2,ba50.
These two facts indicate that the far field radiated by a finite
statistically homogeneous and isotropic spherical source~of
any radius! is fully unpolarized in every direction. Math-
ematically, the degree of polarization of plane waves, defined
by ~Ref. @8#, Sec. 6.3!

P~rû,v!5A12
4detFJ 2~rû,v!

tr2FJ 2~rû,v!
, ~53!

where tr and det stand for the trace and the determinant,
respectively, assumes the valueP(rû)50 for all û.

If the source is finite but nonspherical, the functionI B(R)
characterizing the source domain in Eq.~49! will, in general,
depend not only on the magnitude but also on the direction
of the vector R. In such a case the Fourier transforms
ÃB(k,v) and B̃B8(k,v) in Eqs.~47! and ~48! are not neces-
sarily spherically symmetric ink space, and consequently
the 232 coherence tensorFJ 2(rû,v) need not be propor-
tional to a unit tensor, i.e., the field in the directionû is not
unpolarized. However, if the source domain is sufficiently
large ~in relation to important values ofR), the quantity
I B(R) is approximately equal to the volume of the source
and the field is unpolarized. Hence, for large statistically ho-
mogeneous and isotropic current distributions~spherical or
otherwise!, the far field is fully unpolarized in every direc-
tion.

IV. DISCUSSION AND CONCLUSIONS

The universal behavior of correlations in electromagnetic
fields that we found above can physically be justified by
arguments which are parallel to those presented in Ref.@3#
for the scalar case, but which go somewhat beyond it. In
analogy with the field that consists of angularly uncorrelated
and isotropically distributed scalar plane waves, i.e., a scalar
field whose spatial correlations obey the sinc law@3#, we
may construct a full vectorial counterpart in terms of
electromagnetic-plane waves within a nonabsorbing medium
@12#. In addition to directional isotropy and angular noncor-
relation, the vectorial plane waves in the electromagnetic en-
semble are taken to be fully unpolarized. For this particular
~free! field, the electric cross-spectral density tensor is pro-
portional to the imaginary part of the Green tensor@12#, and

thus the field shares its coherence properties with that pro-
duced by a statistically homogeneous and isotropic current
distribution in a low-loss or nondissipative medium.

Since the medium has a small but nonzero absorbtion, in
the neighborhood of a given source point the field correla-
tions extend effectively over a finite region. Therefore, we
may think of the whole infinite source as being divided into
finite, uniformly distributed, and mutually uncorrelated do-
mains whose dimensions depend on the correlation length.
As in Ref. @3#, we may refer to these domains as source
correlation regions. Each source correlation region produces
an electromagnetic field, which at large distances behaves
approximately as a plane wave. Thus, in any observation
region, the contributions from the~very! distant parts of the
source can be viewed as consisting of a superposition of
isotropically distributed and angularly uncorrelated plane
waves. For source regions containing statistically homoge-
neous and isotropic current distributions, these plane waves
are also fully unpolarized as was shown in Sec. III D.

Hence, the model and calculations show that the field cor-
relations in any observation region, given by the imaginary
part of the infinite-domain Green tensor in Eq.~40!, are de-
termined by the distant contributions. Although the local cur-
rents at every point also generate a near field, with the asso-
ciated correlation tensor having both real and imaginary
parts~see, for example, Ref.@13#!, this contribution from a
statistically homogeneous and isotropic current in an infinite
low-loss or nonabsorbing medium is negligible as compared
to the propagating far-zone contributions. Thus, despite local
current sources, the field at any point behaves effectively as
a free electromagnetic field. We note that these remarks are
consistent with the earlier result that a homogeneous free
field can be expressed in terms of angularly uncorrelated
plane waves@14#. Besides unbounded current sources, our
analysis and arguments should, to a good approximation,
hold also for an electromagnetic field well inside a finite, but
large, source region.

When the losses are significant, the correlations do not
show universal behavior as noted in Ref.@2#. This can be
physically explained using the plane-wave model discussed
above. In the presence of losses, the contribution to the field
from the distant source correlation regions weakens in rela-
tion with that from the nearby regions. Consequently, the
plane-wave model no longer describes the physical situation,
and no universality is found. Finally, we also note that when
the losses in an infinite source region decrease, the intensity
of the field at a certain observation point increases, since
more waves can reach that point, i.e., waves from distant
source regions start to dominate. This explains physically the
divergent behavior of the cross-spectral density tensor of Eq.
~20!, in the limit e r9→0.

To summarize, we have investigated the structure of spa-
tial ~spectral! correlations in the electromagnetic fields pro-
duced by stationary, statistically homogeneous and isotropic
current distributions. We showed that for any such field,
within a medium of vanishingly small losses, the coherence
properties are determined by the imaginary part of the Green
tensor of the system, i.e., solely by the propagation proper-
ties of waves in the medium. This demonstrates that the
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field’s correlation properties are independent of the source
characteristics, and that the degree of coherence is of a uni-
versal form. Our analysis covers the known results of black-
body radiation fields, but it applies to a wider class of
sources, without requiring thermal equilibrium. We also dis-
cussed the physics behind the universal behavior of the cor-
relations by comparing the results with those obtained by an
electromagnetic plane-wave model. Our results generalize
the scalar analysis of Refs.@1,2# to homogeneous and isotro-
pic electromagnetic fields.
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APPENDIX A: CALCULATION OF THE INTEGRAL
IN EQ. „17…

Consider the integral

I ~x!5E d3k

~2p!3

eik•x

uk22k2u2
. ~A1!

By performing the angular integrations we obtain~as in the
Appendix of Ref.@2#!

I ~x!5
1

2p2uxu
E

0

`

dk
k sin~kuxu!

uk22k2u2

5
1

~2p!2uxu i
E

2`

`

dk
keikuxu

uk22k2u2
. ~A2!

Since the integrand in Eq.~A2! is an analytic function ev-
erywhere in the upper half of the complexk plane, except for
the two poles atk5k0(6n81 in9), and it decays more rap-
idly than 1/k2 for uku→` ~with 0<argk<p), we may apply
the residue theorem to evaluate it. Since the medium is as-
sumed to be lossy, the poles are not on the real axis, and we
may choose the contour of integration to be a semicircle in
the upper half of the complexk plane. By performing the
integration find that

I ~x!5
1

~k2!9
Im@G~x,v!#, ~A3!

where (k2)9 is the imaginary part ofk2, and

G~x,v!5
eikuxu

4puxu
. ~A4!

Thus, we see thatI (x) is proportional to the imaginary part
of the diverging spherical wave, or the scalar Green function
of the system.

APPENDIX B: SOME PROPERTIES
OF THE GREEN TENSOR

The Green tensor, denoted byGJ (x,v), is explicitly writ-
ten as~Ref. @11#, Sec. 4!

GJ ~x,v!5S UJ1
1

k2
““ D G~x,v!, ~B1!

whereG(x,v) is the scalar Green function presented in Eq.
~A4!. The Green tensor satisfies the wave equation

“3“3GJ ~x,v!2k2GJ ~x,v!5UJ d~x!, ~B2!

whered(x) is the Dirac delta function. By taking the diver-
gence of Eq.~B2!, we obtain

“•GJ ~x,v!52
1

k2
“@d~x!#. ~B3!

Thus, when the losses are negligible, we have

“•Im@GJ ~x,v!#50. ~B4!

Furthermore, in this low-loss case, the imaginary part of the
Green tensor is explicitly written as

Im@GJ ~x,v!#5
k

4p H F j 0~kx!2
j 1~kx!

kx GUJ1 j 2~kx!x̂x̂J ,

~B5!

where x̂5x/x. It is straightforward to verify that this form
satisfies Eq.~B4!.

APPENDIX C: ANGULAR INTEGRATIONS IN EQ. „26…

The angular integrations in the expression

I A~r !5E d3RA~R,v!Im@G~R2r ,v!#

5E d3RA~R,v!ImS eikuR2r u

4puR2r u D , ~C1!

wherek may, in general, be complex, can be performed by
making use of the expansion@cf. Eq. 8.533~1! of Ref. @15##

eikur2r8u

4pur2r 8u
5 ik(

l 50

`

j l~kr ,!hl
(1)~kr .! (

m52 l

l

3Yl
m* ~u8,w8!Yl

m~u,w!, ~C2!

where r ,5min$ur u,ur 8u%, r .5max$ur u,ur 8u%, j l(x) and
hl

(1)(x) are spherical Bessel and spherical Hankel functions
of the first kind and of orderl, and Yl

m(u,w) are spherical
harmonics. The angular integration in Eq.~C2! leads to the
Kronecker deltad l ,0 , and consequently
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I A~r !5E
0

`

dRR2A~R,v!Im@ ik j 0~kr ,!h0
(1)~kr .!#.

~C3!

In the low-loss limit, the imaginary part in the integrand of
Eq. ~C3! is obtained directly by noting thathl

(1)(x)5 j l(x)
1 inl(x), wherenl(x) is spherical Neumann function of or-
der l.

APPENDIX D: ANGULAR INTEGRATIONS IN EQ. „33…

The integration over the angular coordinates in the inte-
gral

IJB~r !5E d3RB~R,v!R̂R̂ Im@G~R2r ,v!#

5E d3RB~R,v!R̂R̂ ImS eikuR2r u

4puR2r u D ~D1!

can be carried out analogously to that in Appendix C. Mak-
ing use of Eq.~C2!, and expressing the components ofR̂ in
a spherical polar coordinate system, we obtain

IJB~r !5E
0

`

dRR2B~R,v!MJ ~R,r !, ~D2!

where

MJ ~R,r !5ImF ik(
l 50

`

j l~kr ,!hl
(1)~kr .! (

m52 l

l

Yl
m* ~u8,w8!

3~21!mA~2l 11!

4p

~ l 2m!!

~ l 1m!!
NJ G , ~D3!

with

NJ5E
0

2p

dwE
0

p

dueimwPl
m~cosu!VJ ~u,w!sinu. ~D4!

In Eq. ~D4!, Pl
m(cosu) are associated Legendre functions,

and the angular tensorVJ (u,w) has the form

VJ ~u,w!5S sin2u cos2w sin2u sinw cosw sinu cosu cosw

sin2u sinw cosw sin2u sin2w sinu cosu sinw

sinu cosu cosw sinu cosu sinw cos2u.
D . ~D5!

The angular integrations in Eq.~D4! are performed by mak-
ing use of the orthogonality properties of Legendre func-
tions, and we find that the elements ofNJ are of the form

Nxx5
4p

3
dm,0d l ,02

4p

15
dm,0d l ,21

8p

5
dm,2d l ,21

p

15
dm,22d l ,2 ,

Nyy5
4p

3
dm,0d l ,02

4p

15
dm,0d l ,22

8p

5
dm,2d l ,22

p

15
dm,22d l ,2 ,

Nzz5
4p

3
dm,0d l ,01

8p

15
dm,0d l ,2 , ~D6!

Nxy5Nyx5
8p i

5
dm,2d l ,22

p i

15
dm,22d l ,2 ,

Nyz5Nzy5
4p i

5
dm,1d l ,21

2p i

15
dm,21d l ,2 ,

Nxz5Nzx5
4p

5
dm,1d l ,22

2p

15
dm,21d l ,2 .

Substituting these into Eq.~D3!, we get

Mpp~R,r !5ImH ik

3
@ j 0~kr ,!h0

(1)~kr .!2 j 2~kr ,!h2
(1)~kr .!

3~123r̂ pr̂ p!#J , ~D7!

Mpq~R,r !5Im$ ik j 2~kr ,!h2
(1)~kr .! r̂ pr̂ q%, when pÞq.

~D8!

Here, r̂ p (p5x,y,z) are the components of the unit vector
r̂5r /r . The elements in Eqs.~D7! and~D8! can be expressed
compactly in a tensorial form

MJ ~R,r !5ImH ik

3
@ j 0~kr ,!h0

(1)~kr .!

2 j 2~kr ,!h2
(1)~kr .!#UJ

1 ik j 2~kr ,!h2
(1)~kr .! r̂ r̂ J . ~D9!

Substituting this into Eq.~D2!, we obtain

SETÄLÄ et al. PHYSICAL REVIEW E 67, 026613 ~2003!

026613-8



IJB~r !5E
0

`

dRR2B~R,v!ImH ik

3
@ j 0~kr ,!h0

(1)~kr .!2 j 2~kr ,!h2
(1)~kr .!#UJ1 ik j 2~kr ,!h2

(1)~kr .! r̂ r̂ J . ~D10!
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