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Phosphorus and boron diffusion gettering of iron in monocrystalline silicon

H. Talvitie,a) V. Vähänissi, A. Haarahiltunen, M. Yli-Koski, and H. Savin
Department of Micro and Nanosciences, Aalto University, P.O. Box 13500, FI-00076 Aalto, Espoo, Finland

(Received 1 December 2010; accepted 10 March 2011; published online 3 May 2011)

We have studied experimentally the phosphorus diffusion gettering (PDG) of iron in

monocrystalline silicon at the temperature range of 650–800 �C. Our results fill the lack of data at

low temperatures so that we can obtain a reliable segregation coefficient for iron between a

phosphorus diffused layer and bulk silicon. The improved segregation coefficient is verified by

time dependent PDG simulations. Comparison of the PDG to boron diffusion gettering (BDG) in

the same temperature range shows PDG to be only slightly more effective than BDG. In general,

we found that BDG requires more carefully designed processing conditions than PDG to reach a

high gettering efficiency. VC 2011 American Institute of Physics. [doi:10.1063/1.3582086]

I. INTRODUCTION

Phosphorus diffusion gettering (PDG) has been known

for a long time as an effective technique to relocate transition

metals, such as iron, in silicon wafers. It has been utilized

especially in p-type silicon solar cells while diffusing the

emitter. Emitter formation by phosphorus diffusion collects

iron from the bulk to the phosphorus doped layer, making

iron less harmful for the cell operation.

Nadahara et al.1 observed already in 1991 that when the

phosphorus content of the emitter is kept constant, lower

phosphorus diffusion temperature increases the PDG effi-

ciency of iron in monocrystalline silicon. Later, similar

results of temperature playing a major role in PDG efficiency

have been published. The emphasis has been on improve-

ment of PDG when the diffusion treatment is extended by an

anneal step at a lower temperature or slow cooling, both in

monocrystalline2–4 and multicrystalline silicon.2,5–8 The

improvement of the performance of a multicrystalline silicon

solar cell with a low temperature anneal has been attributed

also to iron precipitation to bulk defects.9 However, Rinio

et al.10 found that the improvement of multicrystalline cells

by low temperature annealing is primarily due to PDG and to

a lesser extent due to internal gettering to the bulk defects,

which was also our conclusion from a theoretical study.11

It is well known that iron solubility in silicon increases

with phosphorus concentration, which results in iron segrega-

tion to a heavily phosphorus doped layer. However, the segre-

gation coefficient of iron between a phosphorus doped layer

and bulk silicon and the physical mechanism behind the

increased iron solubility have remained unclear, despite the

extensive studies. In the absence of proper segregation coeffi-

cient, either the segregation coefficient of iron into boron doped

silicon12 or the properties of cobalt13 were used in the past.

Recently, a step forward was taken, when a general method to

determine the segregation coefficient of iron from the phospho-

rus diffusion gettering experiments was proposed.14 At that

time, only limited experimental data was available,1,2 which

resulted in only a rough estimate of the segregation coefficient.

Besides the limited data at low temperatures, the experi-

mental PDG results published previously are not necessarily

steady state values, which is critical when determining the

segregation coefficient. In this paper, we present a systematic

study of phosphorus diffusion gettering in the temperature

range of 650–800 �C with controlled iron contamination

level and phosphorus profiles. We confirm by simulations

and time dependent experiments that we are measuring the

steady state values. We use the obtained results to improve

the accuracy of the segregation coefficient of iron in phos-

phorus diffused silicon. As the increasing interest toward

n-type silicon solar cells has drawn attention to the gettering

effect of boron diffusion, we also compare the PDG results

to boron diffusion gettering (BDG) experiments carried out

with similar temperature profiles.

II. EXPERIMENTAL

The idea behind the PDG experiments is to have two wa-

fer series with different phosphorous content. This is realized

by different phosphorous in-diffusion times (30 min and

60 min) with constant in-diffusion temperature (870 �C). The

in-diffusion is directly followed by various low temperature

anneals. Phosphorus in-diffusion at 870 �C was chosen to

avoid (1) too high gettering efficiency (measurement results

below the detection limit of 1� 1010 cm�3) and (2) the change

of the phosphorus profile during the low temperature anneals.

BDG experiments were designed so that the boron in-

diffusion resulted in a sheet resistance comparable to the

lower phosphorus content samples. The low temperature

anneals following the boron in-diffusion were identical to

the ones used in the PDG experiments.

Two types of boron doped (100) oriented Czochralski-

grown silicon wafers with a diameter of 100 mm were used

as starting material. The first type had a thickness of 525 lm

and a resistivity of around 17 Xcm. The other type had a

thickness of 400 lm and a resistivity of 2.7–3.0 Xcm. At first

the wafers were intentionally contaminated with iron by

immersing them in a SC1 solution containing 30 ppb added

iron impurities. Iron was diffused into the wafers with a 55

min anneal at 850 �C. The remaining surface iron contamina-

tion was removed in a HF:H2O2:H2O solution. Wafers werea)Electronic mail: heli.talvitie@aalto.fi.
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cleaned in the sequence of standard wafer cleaning solutions

SC1 and SC2 including dip in diluted HF as the last step. A

dry oxide of about 26 nm thickness was grown on the wafers

by a 20 min oxidation at 1000 �C. The oxide was removed

from the wafer front sides with BHF before phosphorus or

boron diffusion, excluding the wafer which was used to

determine the initial iron contamination level. Phosphorus

spin-on dopant (Filmtronics P509) was used as phosphorus

source and boron spin-on dopant (Filmtronics B154) as bo-

ron source in dopant diffusions.

For the low P content wafer series, the 525 lm thick

wafers were used. One of the wafers received 30 min phos-

phorus in-diffusion at 870 �C followed by ramp down to

800 �C and unloading there. The other wafers received simi-

lar phosphorus in-diffusion but instead of unloading at

800 �C, they received an additional low temperature anneal,

i.e., low temperature tail, between 600 and 800 �C. The ramp

down rate was 4 �C/min from 870 �C down to 800 �C and

2 �C/min below 800 �C. The annealing times at low tempera-

tures were chosen based on simulations14 to ensure a steady

state iron concentration through the 525 lm thick wafers.

These wafers are later denoted as “P, high Rs”.

For the high P content wafer series, the 400 lm thick

wafers were used. They were subjected to phosphorus in-dif-

fusion at 870 �C for 60 min and are later denoted as “P, low

Rs”. BDG experiments were carried out on both wafer types,

but in both wafer series boron in-diffusion anneal was cho-

sen to be 60 min at 930 �C. The wafer series with 525 lm

thickness is denoted as “B, high Rs” and the wafer series

with 400 lm thickness as “B, high Rs, 400 lm”, respectively.

In all these samples, the low temperature anneals and ramp

rates were identical with the ones applied to the “P, high Rs”

wafer series described earlier.

All the PDG anneals were carried out in N2 atmosphere

and the BDG anneals in a mixture of N2 and O2. After the

low temperature anneal, the wafers were air cooled to room

temperature. Table I presents a summary of the PDG samples

and Table II of the BDG samples, respectively.

Sheet resistances measured with four-point probe mea-

surement are shown in Tables I and II. Iron concentrations in

the wafer bulk were measured using surface photovoltage

(SPV) method. By SPV, the initial iron contamination level

was determined to be 1.7� 1013 cm�3. In addition, the

phosphorus diffusion profile and iron profile were measured

by secondary ion mass spectrometry (SIMS).

III. RESULTS

A. Experimental results

Figure 1 presents iron concentrations in the wafer bulk af-

ter the PDG anneals with different low temperature tails. As

expected, the bulk iron concentration decreases with the tail

temperature. Low temperature anneal at 600 �C decreases the

bulk iron concentration below the detection limit. After each

anneal, the iron concentration remains below the iron solubil-

ity, which indicates that the gettering is caused by a segrega-

tion type equilibrium effect, not by relaxation. It is well known

that the longer phosphorus in-diffusion time (higher phospho-

rus content) and smaller wafer thickness both decrease the

bulk iron concentration reached in steady state. Indeed, we see

this phenomenon in our samples by comparing the two wafer

series. In our case, the difference in wafer thickness should

shift the final bulk iron concentration only by a factor of about

1.3. Thus, the difference between the two data series can be

largely explained by the difference in phosphorus content.

In contrast to the final gettering efficiency, the tempera-

ture dependence does not seem to be affected by the phos-

phorous content: when we compare the activation energies,

TABLE I. PDG anneals applied to the wafers.

Wafer

series

notation

Wafer

thickness In-diffusion

Sheet

resistance

LT anneal

temperature

(anneal time)

P, high Rs 525 lm 30 min

at 870 �C
45 X/sq 800 �C (2 h)

750 �C (3.5 h)

700 �C (5.5 h)

650 �C (8 h, 5 h and 1.5 h)

600 �C (15 h)

P, low Rs 400 lm 60 min

at 870 �C
25 X/sq 800 �C (2 h)

750 �C (3.5 h)

700 �C (5.5 h)

650 �C (8 h)

TABLE II. BDG anneals applied to the wafers.

Wafer

series

notation

Wafer

thickness In-diffusion

Sheet

resistance

LT anneal

temperature

(anneal time)

B, high Rs 525 lm 60 min

at 930 �C
40 X/sq 800 �C (2 h)

750 �C (3.5 h)

700 �C (5.5 h)

650 �C (8 h)

B, high Rs, 400 lm 400 lm 60 min

at 930 �C
40 X/sq 800 �C (2 h)

750 �C (3.5 h)

700 �C (5.5 h)

650 �C (8 h)

600 �C (15 h)

FIG. 1. (Color online) Measured bulk iron concentrations after PDG as a

function of the low temperature anneal. Wafer series with 30 min phospho-

rus in-diffusion (P, high Rs) and 60 min phosphorus in-diffusion (P, low Rs)

are shown, as well as the solid solubility of iron.

093505-2 Talvitie et al. J. Appl. Phys. 109, 093505 (2011)
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we see almost no difference between the two phosphorus

profiles. The activation energies are about 2.6 eV and 2.5 eV

in the wafer series diffused for 30 min and 60 min, respec-

tively. These values are close to the value of 2.4 eV, which

was determined previously from experiments made at tem-

peratures above 800 �C.1

Next, we compare the PDG to the BDG experiments

carried out with identical low temperature anneals. The BDG

results have been reported earlier.15 The comparison is quite

straightforward as the wafers used in the BDG experiments

and the PDG experiments presented above were taken from

the same ingots and thus the material parameters in BDG

and PDG samples are identical. In addition, the sheet resist-

ance in BDG samples matches with the PDG samples dif-

fused for 30 min (P, high Rs).

BDG is usually reported to be less effective in iron get-

tering compared to PDG.4,12 However, in our experiments

PDG removes iron only slightly more effectively than the

corresponding BDG, as shown by the results in Fig. 2. With

identically processed but thinner wafers, the gettering effi-

ciency is even better in BDG than in PDG. We have con-

cluded earlier, based on the obtained activation energies that

the unexpectedly high BDG efficiency is due to gettering by

B-Si precipitates.15

As the last experiment, the PDG samples were measured

by SIMS. SIMS can provide a depth profile of phosphorus

concentration which is needed for the determination of the

segregation coefficient. Figure 3 presents the SIMS results of

the phosphorus and iron concentrations after 30 min and 60

min diffusion at 870 �C followed by 2 h anneal at 800 �C.

The phosphorus concentrations follow the typical kink-and-

tail profile, 60 min in-diffusion resulting naturally in a

deeper junction than the 30 min in-diffusion. In both cases,

iron has been collected to a shallow surface layer. However,

iron gettering efficiency cannot be reliably concluded from

the SIMS results. Figure 3 shows also the phosphorus pro-

files simulated according to the model proposed by Bentzen

et al.16 The surface concentration was fitted to obtain the

best fit of the total phosphorus content. The simulated phos-

phorus profiles will be used in the simulation chapter for the

determination of the segregation coefficient.

B. Simulation results

As mentioned in the introduction, we have previously

proposed a general method to determine the segregation

coefficient of iron from the PDG experiments.14 We have

defined the segregation coefficient of iron, kseg, as the ratio

of iron solubility in the phosphorus doped layer to the solu-

bility in the boron doped substrate. As the phosphorus con-

centration is not constant but decreases toward the wafer

bulk, also the segregation coefficient depends on the distance

from the wafer surface. By using assumptions of (1) constant

supersaturation, i.e., the relation between dissolved iron con-

centration and solid solubility of iron, and (2) the conserva-

tion of mass, we get the following equation14

ðxd

0

ksegðxÞdx ¼ xd þ
Feinit

Febulk
� 1

� �
Tw (1)

Here Feinit is the initial iron concentration, Febulk is the iron

concentration in the bulk after gettering anneal, Tw is the wa-

fer thickness, and xd is the depth of the diffused phosphorus

layer. With Eq. (1) we can fit the segregation coefficient to

experimental data since all the other parameters are known.

We have also presented a possible mechanism for iron

segregation into highly phosphorus doped silicon.14 We pro-

posed that iron solubility increases in the phosphorus doped

layer due to the increase in vacancy concentration, which

leads to the formation of negatively charged substitutional

FIG. 2. (Color online) Measured bulk iron concentrations after PDG (P,

high Rs) and corresponding BDG in 525 lm thick wafers (B, high Rs) as a

function of the low temperature anneal. BDG results of 400 lm thick wafers

(B, high Rs, 400 lm) are also shown (open circles, dashed line).

FIG. 3. (Color online) Phosphorus and iron profiles near the wafer surface

measured by SIMS after phosphorus in-diffusion (a) 30 min at 870 �C and

(b) 60 min at 870 �C, followed by 2 h anneal at 800 �C. The simulated phos-

phorus profiles fitted to SIMS data are also shown.

093505-3 Talvitie et al. J. Appl. Phys. 109, 093505 (2011)
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iron and substitutional iron-phosphorus pairs, FesP. From the

reaction equations we can derive a relation between the reac-

tion equilibrium constants and the segregation coefficient.

However, in fitting the data we can use the following simpli-

fied approximation

ksegðxÞ � 1þ K n PðxÞ½ �f g2

ni
(2)

where n is electron concentration, P is phosphorus concen-

tration, ni is the intrinsic carrier concentration, and K is a fit-

ting parameter related to the equilibrium constants. In the

analysis presented in this work, n as a function of phosphorus

concentration (measured phosphorus profile in Fig. 3), and ni

were calculated as presented in Ref. 16.

In our earlier work, we used the experimental data of

Nadahara et al.1 and Shabani et al.2 to obtain an estimate for

kseg.14 However, in that study, the number of experimental

data points at temperatures below 800 �C was rather limited.

The experimental results presented in Fig. 1 in this paper pro-

vide us with the missing low temperature data and thus allow a

more reliable determination of kseg. Figure 4 shows the K val-

ues which have been fitted to the experimental results and least

squares fit as an Arrhenius plot. For comparison, K data fitted

to the previously published experimental results1,2 is also pre-

sented. The fitting to our low temperature data results in a

binding energy of the FesP pairs of 1.9 eV, which should be

more reliable than our previously published value of 1.4 eV.14

Finally, we study the time dependence of the gettering

in order to check that we have used sufficient anneal times at

low temperatures to reach the steady state and to verify the

validity of the simulations. Figure 5 shows the time depend-

ence of the gettering at 650 �C, i.e., how the bulk iron con-

centration decreases as the anneal time increases. As seen

from the figure, quite long anneal times are indeed necessary

to reach the steady state iron concentration. PDG simulations

with the revised segregation coefficient match reasonably

well to the experiments.

IV. DISCUSSION

In PDG the gettering mechanism seems to be segrega-

tion: (1) iron concentration decreases below the solubility

limit and (2) ratio is the same at different contamination

levels2 and (3) the gettering can be quantitatively modeled

using the lumped electrical segregation coefficient. Consid-

ering the physical mechanism behind the segregation, the

equilibrium constant K in our model is in the simplest case

the pairing constant of an FesP pair. We have proposed that

vacancies contribute to the iron solubility.14 This is similar

to the injection of silicon self-interstitials, which changes the

metal population in lattice sites in so called injection getter-

ing.17,18 In injection gettering, silicon self-interstitials affect

the solubility of metals that are mainly substitutional in sili-

con. Self-interstitials replace the substitutional metal atoms

and thereby move them to interstitial sites. Thus, the concen-

tration of fast diffusing interstitial metal atoms in the bulk

increases leading to faster gettering than predicted from sub-

stitutional diffusivity. Likewise, we have suggested that a

reaction between a doubly negatively charged vacancy and

an interstitial iron atom produces negatively charged substi-

tutional iron, which, for one, can react with positively

charged phosphorus.14 This naturally occurs in the phospho-

rus doped layer, which means that the time dependence of

the gettering (Fig. 5) is well described by interstitial diffu-

sion from the bulk. However, other effects such as a reaction

of iron with other phosphorus clusters, which may contain

also vacancies, and possible segregation or chemisorption to

phosphorus precipitates might also influence the gettering.

When we compare PDG and BDG results, we see that

PDG removed iron more effectively than BDG for equal

sheet resistance and wafer thickness. These results are in

agreement with the earlier results by Istratov et al. which

suggested that to produce the same iron segregation gettering

effect, a higher boron doping level than phosphorus doping

level was needed.12 Nevertheless, the gettering efficiency of

boron diffusion was surprisingly high compared to the PDG

efficiency presented in this work and to the BDG results

FIG. 4. (Color online) The K values fitted to our experimental data (blue

symbols) and earlier literature data1,2 (red symbols). Least squares fits to K
values determined from our data (blue line) and earlier data (red line) are

also shown.

FIG. 5. (Color online) The bulk iron concentrations after phosphorus in-dif-

fusion at 870 �C for 30 min followed by a ramp down to 800 �C (data point

at 0.8 h) and followed by anneal at 650 �C for various times. Note that the

time to ramp down the temperature is included in the gettering time. The

inserted figure shows the temperature profile of the gettering.
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presented in Ref. 4. The high BDG efficiency was explained

by the chemisorption of iron by B-Si precipitates.15

Simulations of concurrent PDG and BDG without boron

precipitates, so called co-gettering, imply that at long getter-

ing times PDG alone is more favorable than co-gettering

or BDG alone.19 However, at short gettering times the

co-gettering was shown to be beneficial as the bulk iron con-

centration reduces faster due to iron precipitation in the bo-

ron layer. Iron precipitation in the boron layer during BDG

forms an advantage over PDG also in the case of high initial

iron concentration or low phosphorus doping. On the other

hand, in a recent study BDG induced only a slight gettering

effect even with a low temperature tail,4 which apparently is

due to the fact that neither boron nor iron was precipitated.

Generally, achieving an effective PDG is fairly easy

with a low temperature anneal. In contrast, effective BDG

necessitates either boron precipitation or iron precipitation

during low temperature anneal. Therefore, BDG conditions

must be more accurately optimized. Iron gettering by B-Si

precipitates requires high boron concentration and a long

anneal time, which may also create a practical disadvantage

of BDG in comparison to PDG.

V. CONCLUSIONS

We have conducted experiments on phosphorus diffu-

sion gettering in monocrystalline silicon with low tempera-

ture anneals. The experiments provide steady state iron

concentration data at the low temperature range, which has

not previously been available. The results show that the

phosphorous content has a clear effect on the final gettering

efficiency but not much effect on the temperature depend-

ence. From the obtained data, we were able to improve the

estimate for the iron segregation coefficient between a phos-

phorus diffused layer and bulk silicon.

As the assessment of the advantages of n-type silicon so-

lar cells involves PDG and BDG, it was interesting to com-

pare PDG samples to BDG samples with equal sheet

resistance. In our experiments, PDG was shown to be more

effective than the corresponding BDG but gettering by B-Si

precipitates can raise the BDG gettering efficiency to a

surprisingly high level. However, it should be kept in mind

that achieving effective gettering with BDG requires more

accurately controlled gettering conditions, whereas achiev-

ing effective PDG is relatively straightforward.
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