
Aalto University
School of Science
Degree Programme in Computer Science and Engineering

Paul Tötterman

Performance and Scalability of a Sensor
Data Storage Framework

Master’s Thesis
Helsinki, March 10, 2015

Supervisor: Associate Professor Keijo Heljanko
Advisor: Lasse Rasinen M.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80714485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Paul Tötterman
Title:
Performance and Scalability of a Sensor Data Storage Framework
Date: March 10, 2015 Pages: 67
Major: Software Technology Code: T-110
Supervisor: Associate Professor Keijo Heljanko
Advisor: Lasse Rasinen M.Sc. (Tech.)
Modern artificial intelligence and machine learning applications build on analysis
and training using large datasets. New research and development does not always
start with existing big datasets, but accumulate data over time. The same storage
solution does not necessarily cover the scale during the lifetime of the research,
especially if scaling up from using common workgroup storage technologies.
The storage infrastructure at ZenRobotics has grown using standard workgroup
technologies. The current approach is starting to show its limits, while the storage
growth is predicted to continue and accelerate. Successful capacity planning and
expansion requires a better understanding of the patterns of the use of storage
and its growth.
We have examined the current storage architecture and stored data from different
perspectives in order to gain a better understanding of the situation. By performing
a number of experiments we determine key properties of the employed technologies.
The combination of these factors allows us to make informed decisions about
future storage solutions.
Current usage patterns are in many ways inefficient and changes are needed in
order to be able to work with larger volumes of data. Some changes would allow
to scale the current architecture a bit further, but in order to scale horizontally
instead of just vertically, there is a need to start designing for scalability in the
future system architecture.

Keywords: storage, big data, performance, scalability
Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Paul Tötterman
Työn nimi:
Suorituskyky ja skaalautuvuus sensoridatan tallennuksessa
Päiväys: 10. maaliskuuta 2015 Sivumäärä: 67
Pääaine: Ohjelmistotekniikka Koodi: T-110
Valvoja: Professori Keijo Heljanko
Ohjaaja: Diplomi-insinööri Lasse Rasinen
Modernit tekoälyn ja koneoppimisen sovellukset perustuvat suurten tietomää-
rien analyysin ja käyttöön opetusdatana. Suuren aineiston olemassaolo ei aina
ole itsestäänselvää tutkimuksen tai tuotekehityksen alkaessa. Samat tallennus-
ratkaisut eivät välttämättä pysty kattamaan skaalautumistarpeita tutkimuksen
koko keston ajalta, varsinkaan jos lähtökohtana ovat laajassa käytössä olevat
työryhmätallennusratkaisut.
ZenRoboticsilla käytössä oleva tallennusinfrastruktuuri on kasvanut yleisiä työ-
ryhmätallennusteknologioita käyttäen. Nykyisen lähestymistavan rajat alkavat
tulla vastaan, kun taas tallennuskapasiteetin tarve näyttäisi kasvavan ja kasvun
tahti kiihtyvän. Tallennuskapasiteetin laajentamisen suunnittelu ja laajennuksen
toteuttaminen edellyttävät parempaa käyttötapojen ja kasvun ymmärrystä.
Tämä diplomityö tutkii nykyistä tallennusarkkitehtuuria ja tallennettua dataa eri
näkökulmista nykytilanteen parempaan hahmottamiseen tähdäten. Suoritetuilla
mittauksilla selvitimme käytössä olevien teknologioiden oleellisimmat ominaisuu-
det. Yhdessä näiden perusteella pystymme tekemään tietoisempia valintoja tulevia
tallennusratkaisuja koskien.
Nykyiset käyttötavat ovat monin tavoin tehottomia. Suurempien tietomäärien
käsittelemisen mahdollistamiseksi on tehtävä muutoksia. Työ esittelee muuto-
sehdotuksia, joilla olisi mahdollista skaalata nykyistä tallennusarkkitehtuuria
hieman suuremmalle kapasiteetille. Horisontaalisen skaalautumisen mahdollista-
miseksi vertikaalisen sijaan on kuitenkin otettava skaalautuminen huomioon koko
järjestelmän arkkitehtuurin suunnittelussa.

Asiasanat: tallennus, big data, suorituskyky, skaalautuvuus
Kieli: Englanti

3

Acknowledgements

I wish to thank everyone who helped and supported me through the decidedly
long process of writing my thesis.

Foremost, I would like to express my gratitude to my supervisor, Keijo
Heljanko, for the generous amount of time and effort devoted to guiding me.

I am indebted to my patient friend, Tatu Kairi, for proofreading and
liberally annotating my numerous drafts.

Warm thanks to Lasse Rasinen, for offering to be my advisor and for his
Zen attitude and sage advice.

Thanks to my employer, ZenRobotics, for making it possible to research
this topic so concretely and publishing my findings. Special thanks to my
colleagues, who have explained matters unfamiliar to me on several occasions.

Finally, I am truly grateful for the support and encouragement of my
family.

Helsinki, March 10, 2015

Paul Tötterman

4

Abbreviations and Acronyms

ARC ZFS Adaptive Replacement Cache
BTRFS B-TRee File System
CDDL Common Development and Distribution License
CIFS Common Internet File System, also known as Server

Message Block
COW Copy-On-Write
CPU Central Processing Unit
DMU ZFS Data Management Unit
ECC Error Checking and Correction
FIFO First In, First Out, a common queuing discipline
GB Gigabyte, 109 bytes
GiB Gibibyte, 230 bytes
GPL General Public License
HDD Hard-Disk Drive
IOPS Input/Output Operations per Second
kB Kilobyte, 103 bytes
KiB Kibibyte, 210 bytes
LVM Logical Volume Manager
L2ARC ZFS Level 2 Adaptive Replacement Cache
MB Megabyte, 106 bytes
MiB Mebibyte, 220 bytes
MTU Maximum Transmission Unit
NAS Network Attached Storage, file system -level remote

storage
NCQ Native Command Queuing
NFS Network File System
PB Petabyte, 1015 bytes
PiB Pebibyte, 250 bytes
PNG Portable Network Graphics
POSIX Portable Operating System Interface

5

RADOS (Ceph) Reliable Autonomic Distributed Object Store
RAID Redundant Array of Independent Disks
RAM Random Access Memory
RPC Remote Procedure Call
SAN Storage Area Network, block-level remote storage
SATA Serial Advanced Technology Attachment
SCSI Small Computer System Interface
SHA Secure Hash Algorithm
SLOG ZFS Synchronous Log device
SPA ZFS Storage Pool Allocator
SSD Solid State Drive
TB Terabyte, 1012 bytes
TCQ Tagged Command Queuing
TiB Tebibyte, 240 bytes
XFS Extent-based file system by SGI and later Red Hat
ZFS Zettabyte File System
ZIL ZFS Intent Log
ZRR ZenRobotics Recycler

6

Contents

Abbreviations and Acronyms 5

1 Introduction 9
1.1 Problem Statement . 10
1.2 Structure of the Thesis . 11

2 Background 12
2.1 Mass Storage . 12
2.2 Hard Disk Drives . 13

2.2.1 Performance Model . 14
2.3 Redundant Array of Independent Disks 16
2.4 Evolution of File Systems . 19
2.5 Zettabyte File System . 20

2.5.1 Storage Pool Allocator 21
2.5.2 Data Management Unit 22
2.5.3 ZFS Interface Layer . 22
2.5.4 Tradeoffs . 23

2.6 Hadoop Distributed File System 25
2.6.1 HDFS-RAID and Xorbas 27

2.7 Network File System . 29
2.8 Other Large Scale File Systems 30

3 Environment 33
3.1 High Level Data Processing 33
3.2 Architecture . 34

3.2.1 Sensors . 34
3.2.2 Recognition . 35

3.2.2.1 Vcache . 35
3.2.3 Adaptive Picking . 40
3.2.4 Manipulation . 40

3.3 ZenRobotics Dataset Storage 41

7

3.4 Amount of Data . 42
3.5 Storage Utilization by File Type 45

4 Experiments 47
4.1 I/O Read Operation Size Effect on HDD Throughput 48
4.2 ZFS Metadata Overhead . 49
4.3 NFS Latency Overhead . 51
4.4 Recompressing ZNG to PNG 53

5 Discussion 55
5.1 Proposed Storage Architecture 56

A Block Size Effect on Throughput 64

B ZFS Metadata Overhead 66

C NFS Latency Overhead 67

8

Chapter 1

Introduction

In my opinion this problem of making a large
memory available at reasonably short notice is
much more important than that of doing
operations such as multiplication at high speed.
Speed is necessary if the machine is to work fast
enough for the machine to be commercially
valuable, but a large storage capacity is necessary
if it is to be capable of anything more than rather
trivial operations. The storage capacity is
therefore the more fundamental requirement.

Alan M. Turing, 1947 Lecture to the London
Mathematical Society

Businesses have adopted information technology during the past half-
century so thoroughly that it plays a significant role in most companies,
and in virtually all technology companies. As Alan Turing predicted, the
central benefit from computers is not their ability to quickly perform complex
calculations, but rather to store and transfer information — computation
capabilities are largely only significant when there is data to process. Thanks
to growing storage capacities and declining costs, the industry is storing
ever-increasing amounts of data. This has led to the introduction of the term
big data; datasets with sizes that make standard and commonly available
tools, equipment and approaches to process them inadequate.

The ZenRobotics Recycler (ZRR) is a robotic waste recycling system. It
makes use of sensor fusion, computer vision, machine learning and artificial
intelligence in order to autonomously recognize objects from an unstructured
waste stream and sort them into recyclable fractions. The system combines
the inputs from a wide variety of sensors into a coherent real time analysis of

9

CHAPTER 1. INTRODUCTION 10

the waste stream from which it picks and sorts objects.
The various visible spectrum and near infrared cameras, 3D laser scanners

and wide spectrum sensors operate at a high resolution and frame rate and
constantly produce large data streams — the raw data from the sensors is
several gigabits per second. While not all of the data is stored, some of it is
stored and transferred to a central location for analysis.

1.1 Problem Statement
ZenRobotics currently stores a significant amount of data. Still, the data is
only collected from a handful of ZRRs in operation. Each installation differs
from the others, by variations in the waste stream, physical properties and
sensors, and thus needs a separate set of data for machine learning. With an
increase in the number of installations the amount of required storage also
grows.

The data accumulating has long since outgrown the capacity for storing
all of it. Recent data is therefore kept and old data removed. The removal of
datasets that have been subject to human annotation in addition to automated
processes would, however, make little sense. Since they are not removed, the
amount of retained data per installation constantly grows.

Merely archiving the annotated data would serve very little use. Changes
to the computer vision and artificial intelligence algorithms invalidate previous
machine learning results. Because of this, all of the annotated datasets have
to be reprocessed for updated machine learning outputs. In addition, other
kinds of analyses are being developed, some of which are run periodically,
some that change and have to be rerun for all existing data and some that are
just run occasionally. These place performance requirements on the storage
that are not satisfied by archival media such as tape.

So far, the infrastructure has grown mostly using standard off-the-shelf
components acquired at a moderate cost. The next expansion step is likely
going to be more expensive. From a capacity planning perspective a better
understanding of the need for growth is needed and which factors influence it.

The goal of this Thesis is to understand the current storage architecture
and stored data at a sufficiently fundamental level to make meaningful
deductions about its performance characteristics and scalability. We perform
experiments using relevant technologies and measure key properties. As
a result, we present problems with the current approach, suggest solutions,
and propose technologies to choose for scaling to meet future demand.

CHAPTER 1. INTRODUCTION 11

1.2 Structure of the Thesis
This Thesis is structured in five chapters, starting with this introduction.
We present a high-level background and the problem statement. Relevant
hardware and software technology is presented in the second chapter, starting
from lower layers with each section building on top of the previous ones.

The third chapter introduces the specific environment in which Zen-
Robotics operates. Next we present the methods for evaluating selected
key performance characteristics in chapter four. Finally, we present our
conclusions.

Chapter 2

Background

In this chapter, we will introduce relevant technologies and concepts that
are not specific to this case study, but have reached wide use in the past
and currently. The technologies are introduced in order from lowest level to
highest, as they build on top of each other.

2.1 Mass Storage
Valuable data that takes effort or time to produce needs to be stored on
non-volatile media. One important factor for choosing suitable storage in
a business setting is cost per capacity. Businesses are typically not only
interested in purchase price, but total cost of ownership, including e.g. cost
of electricity.

Performance is also a factor. Storage performance consists of two compo-
nents: bandwidth and input/output operations per second (IOPS). Bandwidth
is often the primary focus: how long will it take to store or retrieve a certain
amount of data. Unintuitively, IOPS can in many cases dominate performance.
This is evident when the storage is accessed concurrently or depending on the
algorithms employed, if the data consists of a large number of small items
of data. Patterson noted [35] that improving latency, and thus IOPS, often
helps bandwidth, while many other bandwidth improvements come at the
cost of latency.

Different data can have very varying access patterns. Researchers at
Facebook realized [54] that for their binary large objects, accesses to a given
object decreased significantly with time. They measured the IOPS per TB of
objects grouped by age and moved older objects to cheaper, less performant
storage. This is an excellent example of how one has to identify the relevant
dimension before comparing options. Even now, with SSDs having been on

12

CHAPTER 2. BACKGROUND 13

the consumer market for years, some reviews only measure bandwidth without
considering IOPS performance at all.

2.2 Hard Disk Drives
For storing comparatively large amounts of data that needs to be randomly
accessed, there are currently no economically superior alternatives to hard
disk drives (HDDs). Although tape storage can be over an order of magnitude
cheaper when factoring in power cost [38], tape is not suited for random
access.

HDDs have a long history in computing. While they started out relatively
simple, they have grown more complex and modern drives can be seen as I/O
specialized computers. Some modern features that can lead to unpredictable
HDD performance are remapped sectors, error recovery, command queuing,
buffering and caching. Krevat et. al [30] showed that modern HDDs exhibit
small differences in performance, even within a population of the exact same
model and revision.

With increasing HDD densities, the constraints for error-free operation
have also increased. Vibrations can affect the mechanical positioning of the
head. Variations in electro-magnetic interactions between the head and the
disk surface or platter can cause bits to be read differently than they were
written, a phenomenon commonly known as bitrot. Cosmic rays can cause
bits to flip in RAM buffers or in transmission, not to mention possible bugs
in the increasingly complex software [4].

To mitigate physical problems, HDDs store error checking and correction
information in addition to user data. A variety of codings have been used,
including Hamming [19], Reed-Solomon [42] and low-density parity-check
codes [16]. If the error checking code indicates an error in the read block,
the drive can retry reading in case the error was transient, or report the
error to the requestor. Consumer drives typically spend more time trying to
re-read blocks than enterprise drives, as enterprise setups often employ RAID,
covered in Section 2.3, which can be used to reconstruct missing data [15]. The
retries cause deviations to the seek and read patterns, incurring unpredictable
latencies.

If a block is determined to be a permanent cause of errors, the drive
firmware can mark it bad and remap it, using reserved space to store the
contents meant for the problematic block. This again can cause unpredictable
internal I/O operations and thus latency to the other operations.

Operating systems have long tried to schedule disk operations in intelligent
ways, but have less visibility into the actual effects than drive firmware. In

CHAPTER 2. BACKGROUND 14

order to remedy this, command reordering protocols called Tagged Command
Queuing (TCQ) and Native Command Queuing (NCQ) [14] have been intro-
duced. Both allow the operating system to schedule several requests to drives
and let the drive determine the optimal order for completing them.

Buffering and caching is also present on many levels, including drives
themselves. Due to limited operating system visibility into drive state and
firmware algorithms, the effect of buffers and cache internal to the drive is
hard to predict. Caching is also of limited effect for writes, as many software
systems that deliver consistency take great care to introduce write barriers
and flush data from cache to non-volatile media as a guarantee for durability.

One recent addition in the pursuit of ever-higher data densities for HDDs
is shingled magnetic recording (SMR) [2]. Traditionally drives have used
a read/write head with a magnetic field that is narrow enough to only affect
the desired track. In the case of SMR, the head no longer has to fit a single
track when writing, as long as the field is sharply defined on two edges forming
a corner. With SMR, tracks are written closer to each other than before and
the head is allowed to interfere with data on upcoming tracks, as long as data
on previous tracks is left intact. Practical use of drives with SMR presents
new problems: data can no longer be written to random positions, but instead
has to be appended. To gain some random write capability, platters can
be divided in zones separated by unused tracks, allowing writing to start
at the beginning of any desired zone. Selecting a suitable size for zones is
a compromise between capacity and random write capability [1]. If writes do
not align with zones, affected zones have to be read, modified in memory and
written in full, severely impacting performance.

2.2.1 Performance Model
The performance of a HDD is made of two main components. Sustained
transfer rate describes the rate at which a drive can keep transferring data
between the disk and the I/O interconnect port on the drive, assuming
the drive read head is in a suitable location and the drive can thus avoid
repositioning the read head. Drives usually cache data located near short
reads, improving performance of subsequent reads. Write performance can
also be improved by caching, as long as the write request does not have a strict
requirement of the data surviving a power-loss event. A higher rotational
speed can improve the sustained transfer rate of a disk, as long as the density
of data on the disk remains unaffected and the drive can keep up transferring
the data at the speed the disk is rotating.

Drives with high sustained transfer rate perform well with linear reads
or writes. However, if the drive needs to transfer data to or from different

CHAPTER 2. BACKGROUND 15

parts of the disk, e.g., to serve several programs concurrently, it needs to
position the read/write head on the right track for each block. This is called
the seek time. Despite finding the correct track, a transfer cannot start until
the correct sector is under the read/write head. On average, the disk has to
rotate half a turn for this to occur. This delay is called rotational latency.

In order to better understand the basic performance characteristics of
HDDs, we need a model of the performance. Essentially a drive is a spinning
disc combined with a read/write head. A simple model of a hard drive would
be one with a given sustained transfer rate Rsus and a given average seek time,
including average rotational latency, tseek. Requests arrive in a FIFO queue,
each consisting of a position and length. The drive removes the first request
from the queue, seeks to the correct position on disk and performs the transfer
at the maximum transfer rate. If there are tasks for the drive to perform it
should be either seeking or transferring. Assuming a randomly distributed
workload of fixed size blocks, we should observe average seek times.

The average throughput Ravg achieved over a sequence of operations of
length lblock is described in Equation 2.1.

Ravg(lblock) = lblock × 1
tseek + lblock

Rsus

(2.1)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

Th
ro

ug
hp

ut
 (k

B/
s)

 (l
in

)

I/O request size (kB) (log)

Figure 2.1: HDD throughput as a function of I/O operation size

CHAPTER 2. BACKGROUND 16

Plotting Equation 2.1 with tseek as 10 ms and Rsus as 200 MB/s we get
Figure 2.1. It is clear from the figure that small request sizes have a severe
impact on throughput. A request size of several megabytes has to be used in
order to reach half of the sustained throughput. To reach 90% performance,
the request size would have to be an order of magnitude larger.

2.3 Redundant Array of Independent Disks
Early hard drives were physically large, slow and expensive. Storage capacity
of a computer system could be increased either by replacing a drive with
a larger capacity drive, or adding a new drive and managing the location
of data between the drives. Larger hard drives were not always available
or economically feasible. At the same time hard drive performance did not
increase at the same pace as that of other components, such as the CPU.
Each additional component to a system increases the likelihood of a failure
in the combined system.

Redundant Array of Independent Disks (RAID) was introduced by Pat-
terson et al. [36] to combine the performance and capacity of several smaller
drives. In order to achieve this goal without sacrificing uptime it also needed
to solve the problem of larger probability of failure due to increased number
of components. There exist both hardware and software implementations of
RAID.

RAID combines several block devices, such as HDDs or SSDs, into one
logical device or array. Typically the underlying devices are identical or at
least have the same capacity but this is not strictly necessary; often the
capacity of the smallest drive is used as a limit for all drives. Operations
on the logical device are translated by the RAID layer into operations on
the individual underlying devices. There are several different schemes for
translating operations, called RAID levels. The most common currently used
RAID levels are 0, 1, 10, 5 and 6.

RAID level 0 was not introduced in the original paper by Patterson et al. [36],
but it plays a fundamental part in level 10. Level 0 or striping is not redundant
at all. Instead, data blocks are spread evenly on all drives. A specific block
of the logical drive is assigned to the drive block number modulo number of
drives. Reads and writes spanning several drives benefit from the combined
performance of the underlying drives. However, a failure in even one drive
will likely break the file system of the logical drive.

RAID level 1 or mirroring is the simplest redundant RAID level. It
provides the capacity of a single drive. The contents of the smallest underlying
drive are copied to all underlying drives. If one fails, the data is still available

CHAPTER 2. BACKGROUND 17

RAID 5RAID 1+0RAID 1RAID 0

0

2

4

1

3

5

… …

0

2

4

0

2

4

… …

1

3

5

…

1

3

5

…

0

1

2

0

1

2

… …

0a

1a

2p

0b

1p

2a

… …

0p

1b

2b

…

Figure 2.2: Different RAID levels

on the functioning drives. The faulty drive can be replaced and rebuilt by
copying data from the functioning drives. Write performance is limited by
the performance of the slowest underlying drive, as the same information has
to be written to all drives, but read requests can be satisfied in parallel from
all functioning drives.

RAID level 10, also known as 1+0, is a combination of RAID levels 1 and 0.
RAID mirrors become the underlying devices of a larger striped array. This
way the array can tolerate the malfunction of several drives as long as each
mirror still has at least one functioning drive. The write performance is
proportional to the sum of the write performance of all mirror sets. In the
best case, read performance can be proportional to the sum of the read
performance of all functioning drives in the array.

RAID level 5 is an improvement over no longer used RAID levels 2, 3 and 4.
RAID levels 1 and 10 can tolerate the failure of drives, but the cost is at
least 50% of the raw storage capacity. In RAID levels 2, 3, and 4 the drives
are grouped into those that contain the data and those that contain error
correction information that, in case of failure of a drive, can be combined with
the remaining data drives to rebuild the missing data. RAID 2 does bit-level
striping using Hamming codes, RAID 3 uses bit-level striping with XOR and
RAID 4 uses block-level striping using XOR. They all require at least 3 drives,
as does RAID 5. This improves usable capacity over RAID 1 and 10, but
puts more strain on the drives containing error correction information, as
those end up being rewritten whenever data on any data drive is modified.
RAID 5 solves this by spreading the parity blocks evenly over all drives. The
parity blocks of data stripes rotate, as shown in Figure 2.2. Read performance

CHAPTER 2. BACKGROUND 18

on RAID 5 can reach the sum of the read performance of all drives, but
even large sequential write performance is limited by the performance of the
slowest drive.

RAID 6 is quite simply RAID 5 with two drives worth of error correction
information and can thus tolerate the failure of two drives instead of one before
data is lost. The two blocks of error correction information are calculated
differently so that the data is still recoverable even if any two blocks are
lost. Typically one is XOR like in RAID 5, because it is very simple to
implement and performant while the other is more complex. Read and write
performance remains similar to RAID 5. RAID 5 and 6 can both be combined
with striping, like mirroring often is, and this is sometimes noted as RAID 50,
5+0, 60 or 6+0.

RAID 5 and 6 are widely used solutions when maximum performance is
not required because of the low overhead redundancy. The design results in
some complex behaviors that should be kept in mind called write amplification
and RAID write hole.

A stripe in RAID 5 or 6 is the logical unit, consisting of blocks on all
disks, for which the parity is calculated. If a write to the logical device covers
a whole stripe, the new data can simply be calculated and written to all
disks. However, if the write covers only part of a stripe, the old contents of
the stripe have to be read, part of it replaced with new data, and the parity
recalculated for the whole stripe. This procedure is called read-modify-write,
and causes write amplification for small writes. Even a small one-sector write
causes at least the sector itself and the parity to be written. The reads can
be omitted, if the modified blocks are already present in cache.

Since modern HDDs are all unique [30], any notion of the equivalent
command being performed identically on several drives must be discarded.
RAID 2 and 3 assumes synchronous operation of drives in an array, but this
has turned out to be impractical. Because of these individual differences,
a stripe may not be atomically written by the drives working as part of
an array. If a power failure were to occur during writing, the array has
no information of which drives successfully committed the data to the disk.
Because of this, the integrity of the stripe is left uncertain. This problem is
usually referred to as the RAID write hole. A typical solution in hardware
RAID implementations is to have a battery backed memory on the controller
that retains the data until the power failure is resolved. This increases system
complexity, as it cannot be implemented in software and batteries have to be
maintained.

In addition to RAID, many environments use a logical volume man-
ager (LVM) [21] to ease the administration of storage. Instead of partitioning
a drive or RAID array into partitions, the volume manager is used to combine

CHAPTER 2. BACKGROUND 19

drives (or partitions or logical drives) into volume groups from which space
can be allocated to logical volumes. The LVM manages space to fulfill the
administrator’s requests to resize, transfer, or snapshot logical volumes.

2.4 Evolution of File Systems
During the earliest years of computing storage capacities were small and
needs for storing various kinds of data were limited. The organization of data
stored was uncomplicated — data was kept on a specific stack of punch cards
or on a magnetic tape [57].

As capacities grew, the need to store more than one piece of data on
a device surfaced and the first file systems were created. These first generation
file systems can be characterized by the ability to name files contained on the
same device in a single file system.

Storage capacities continued to grow and simple naming proved insufficient
to organize the collection of files. Second generation file systems introduced
hierarchical directories (often called folders in user interfaces) that solved the
technical aspects of organizing files adequately for quite some time.

As the use of computing spread, computers themselves remained expensive
— this also made shared use more common. With organizations such as the
United States Department of Defense funding much of computing research, it
did not take long for access control in the file system to become a desirable
feature. Third generation file systems allowed for metadata such as file
ownership and permissions. In POSIX-compatible systems, this metadata is
stored in a data structure called an inode, which will be covered more closely
in later chapters.

With the explosive growth of personal computing and thus increase of
different failure modes during the final decades of the last millennium, file
systems were often left in an inconsistent state by crashes. Fourth generation
file systems improved the handling of such situations by introducing a journal,
where intended changes are recorded prior to being performed. This way
partial changes are much more reliably detected and properly handled after
a crash.

Usually the performance penalty of journaling is not acceptable for all
data and therefore only metadata is journaled. Because of this, files can still
end up with partial writes in a crash. In addition, journaling does not protect
against bitrot, described in Section 2.2.

One approach for solving these problems are log-structured file systems [44],
where the whole file system is logically append-only. This has the desirable
property of transforming random writes into sequential writes. In order to

CHAPTER 2. BACKGROUND 20

efficiently use disk space, modified or removed file blocks are reclaimed in
a process resembling garbage collection. Unfortunately, this resource intensive
process is often triggered by low free space during writes, causing significant
negative impact to performance.

Some recent file systems, like ZFS [8] and BTRFS [43], use copy-on-write
and checksumming to solve these problems. This Thesis considers them to
be fifth generation file systems.

2.5 Zettabyte File System
The Zettabyte File System (ZFS) [8] was made available by Sun Microsystems
in 2005 following years of development that started in 2001. It has been called
the only production quality fifth generation file system.

ZFS was designed with the benefit of hindsight of how contemporary
file systems have scaled with the increase of storage capacity. Some limits
from older file systems were thus completely avoided. Instead of having to
specify the number of inodes at file system creation time, ZFS allocates inodes
dynamically. Other limits, such as file and file system size, were raised so
high that they are unlikely to be a problem for the foreseeable future.

Designing ZFS from a clean slate allowed not only for removing unnecessary
limitations and taking into account advances in storage devices, but also
for reconsidering the accumulated layers in the storage stack. While few
of the ideas and features of ZFS were novel or unique, the combination of
them, however, is. AdvFS [20] on Tru64 had storage pooling and NetApp
Write Anywhere File Layout [25] had snapshotting, but not checksumming.
LVM [21] provided storage pooling, but individual file systems still had to be
resized. Log-structured file systems use copy-on-write, but garbage collection
often makes them impractical.

ZFS has a layered architecture, but with different boundaries and interfaces
between layers compared to the conventional combination of RAID, LVM and
file system. An overview of the ZFS architecture is shown in Figure 2.3.

CHAPTER 2. BACKGROUND 21

Operating System Block Device Interface

Storage Pool Allocator

Data Management Unit

ZFS Posix Layer ZFS Volume Emulator

Local NFS CIFS Swap Ext4iSCSI Oracle

Software

Hardware

Figure 2.3: ZFS architecture

2.5.1 Storage Pool Allocator
Storage is organized into pools in ZFS. The Storage Pool Allocator (SPA)
manages storage pools and virtual devices, allocating blocks at the request
of upper layers. The designers wanted to provide simple block allocation,
analogous to allocating RAM from the operating system. Because of this,
ZFS uses a slab allocator [7], while many other file systems allocate blocks
for files using extents [56]. Copy-on-write was seen as problematic for an
extents-based allocator.

One system can have an arbitrary number of pools, but typically only one
is used. A virtual device, or vdev, corresponds either to a physical device (or
even a file) or a combination of physical devices [55]. These vdevs can be
combined by mirroring or via RAID-Z (with one, two (RAID-Z2) or three
(RAID-Z3) drives for parity). The hierarchy of vdevs forms a tree with the
pool as the root. I/O is striped over the top vdevs in the pool. The SPA also
handles compression and deduplication.

RAID-Z is similar to RAID 5 in that it uses parity for redundancy.
ZFS avoids the read-modify-write procedure as it uses copy-on-write, where
modified data is always written to an unused location in the pool. Unlike
RAID 5, RAID-Z uses dynamic stripe width [23], so a small write does not
have to be striped over all devices in the RAID-Z vdev. There is still some
write amplification, since the parity needs to be written in order to guarantee
redundancy. Similarly to standard RAID levels, mirroring delivers more IOPS

CHAPTER 2. BACKGROUND 22

than RAID-Z.

2.5.2 Data Management Unit
The Data Management Unit (DMU) provides a transactional object store
backed by the storage managed by the SPA. For organization, it is split into
hierarchically named datasets that can inherit attributes and be managed as
subtrees. Atomic transactions eliminate the write hole since a change is either
committed or lost. ZFS provides hierarchical checksumming for everything
that is written on disk, which ensures that not only is bitrot on disks detected,
but also bitflips during transfer or corruption by failing disk controllers. The
checksum for a block is stored in the block referencing that block, except for
the überblock at the root of the tree, which contains its own checksum and is
stored redundantly.

Rebuilding the data on a replaced device, or resilvering, can be faster
with ZFS than conventional layered RAID. Since ZFS integrates RAID and
file system roles, the information of which blocks are used is available when
resilvering. Because of this, ZFS only has to resilver the blocks that are
actually in use. The same applies to checking the consistency of the data
stored in ZFS, or scrubbing.

When conventional RAID is scrubbed, the RAID controller can only tell
which device is failing if the failure is noisy. If a device instead silently returns
invalid data, conventional RAID can only notice that the data returned from
devices does not match on a mirror or parity level. Thanks to checksumming,
ZFS knows which device returns invalid data and can try to rebuild the data
if sufficient copies or parity information is intact.

Since the checksum for a block is stored in the block referencing it, an
update to a block leads to an update to its parents all the way to the überblock.
Because ZFS uses copy-on-write, the transaction is not committed before the
überblock is rewritten. The old data is still present since the new data is
written in an unused location in the pool. When the überblock is rewritten,
the old data becomes garbage and its location can be used for a new write.
This makes it possible to implement atomic snapshots. Instead of letting
the old data be rewritten because nothing references it, the state of a DMU
dataset can be atomically snapshotted by storing a reference to it.

2.5.3 ZFS Interface Layer
The ZFS POSIX Layer (ZPL) implements a fully POSIX-compatible file
system as a DMU dataset. File systems can grow until the pool runs out
of free space. This can naturally be limited by quotas. Alternatively, a file

CHAPTER 2. BACKGROUND 23

system can have a reservation so that other file systems in the pool cannot
cause it to run out of space.

There are other layers implemented on top of the DMU, such as the ZFS
Volume Emulator, which allows for creation of block devices called zvols.
These zvols can be exported using iSCSI, used as block devices for other
file systems, for applications that require raw block devices, or used as swap
space. They offer some of the same features, like compression, checksums,
snapshots and deduplication, which are implemented by lower layers.

ZFS management is performed primarily with two tools: zfs(8) and
zpool(8). Pool management is handled by zpool: adding and removing
pools, adding or replacing devices from pools, scrubbing etc. File systems
are managed by zfs: adding, removing, snapshotting, sharing (via NFS or
CIFS), diffing etc. The tools provide a much simpler interface than many
contemporary file systems, which require changes to partitioning, RAID, LVM
and file system to get similar tasks done.

2.5.4 Tradeoffs
Some of the features of ZFS come at a price. Copy-on-write can lead to
similar fragmentation-related performance problems that log-structured file
systems suffer from. ZFS has several performance focused design decisions
that try to overcome these problems. Since writes are transactional, ZFS
works with drives with enabled write cache, as long as the write cache correctly
implements write barriers. This can provide much better performance than
constantly flushing the write cache.

The designers of ZFS concluded that write performance dominates overall
performance. Because of this, ZFS prioritizes writes. With a hardware setup
that is capable of delivering some target write performance, a given read
performance target may be achieved by adding caching. If the read patterns
make caching unsuitable, the hardware has to be scaled up to meet said
performance target.

ZFS uses a caching algorithm called Adaptive Replacement Cache (ARC).
It can have a significant positive impact on performance, but requires lots of
RAM to perform well. It is also possible to add a second-level cache (L2ARC),
by adding faster block devices, like faster HDDs or SSDs. Transactions
are only committed to disk periodically in order to limit the frequency of
überblock rewrites. To guarantee software using fsync(2) that the data
actually is committed to disk, the ZFS Intent Log (ZIL) is used. By default
the ZIL resides on the data disks of the pool, but is normally only written
to. A copy is kept in RAM and the ZIL on non-volatile media is only read
when recovering from a crash. To speed up synchronous writes, a separate

CHAPTER 2. BACKGROUND 24

synchronous log (SLOG) device can be added to the pool. In order to improve
redundancy, there can even be several mirrored SLOG devices. A fast SSD
works best for this purpose, as large capacity is not needed. This combined
with copy-on-write allows ZFS to convert small random writes into large
sequential writes.

There are several available compression algorithms in ZFS. LZ4 [12] is
often recommended, as it is very light on resources while being fast and
able to detect incompressible data. Often the I/O is the bottleneck and not
CPU [62], in which case compression improves performance, as there is less
I/O to perform.

While possible, it is not recommended to run ZFS on a 32-bit system.
Many ZFS features make it much more RAM-intensive than other file systems.
64-bit systems are thus recommended for stability and also for sufficient RAM.
The ARC can consume very large amounts of RAM. On Linux the effect is
amplified, as the ARC does not share the page cache of other file systems
and thus reacts differently to memory pressure. Deduplication, which saves
space by only storing one copy of duplicate data, is a double-edged sword. It
can improve performance much more than compression, by reducing I/O and
improving cache hit rate, but increases RAM use further. ZFS deduplication
is performed online, i.e. data is deduplicated while it is written, not by
a scheduled deduplication task. In order to perform deduplication, ZFS keeps
a table of hashes of deduplicated data blocks. The deduplication tables are
stored in the pool with the file data and cached by the ARC, but prioritized
in the cache as metadata. While the numbers are always dependent on the
specific use case, the recommendation is to reserve multiple GiBs of RAM
per TiB of deduplicated data.

The capacity of a ZFS pool can be increased by either replacing all
drives in a vdev with larger drives or by adding new vdevs to the pool.
Inconveniently, the capacity of a pool cannot be reduced. It would require
block-pointer-rewriting, a complicated feature that is still in its infancy.

Copy-on-write can cause actively changing objects to fragment heavily.
Fragmentation makes finding contiguous free space harder. This, in turn,
causes ZFS to suffer more from fragmentation than many other file sys-
tems [24]. It is not recommended to fill a ZFS pool over 80% to prevent this
fragmentation, but heavy fragmentation can cause significant performance
degradation even in pools with a lower usage level [59].

Scrubbing and rebuilding a replaced device can take longer than with
conventional RAID if the pool or device is very full, since ZFS has to traverse
the data structures in order to find the checksums and data. If ZFS fails in
an unpredicted way, there is no fsck(8)-like tool; there is only zdb(8), which
is not designed for the same task.

CHAPTER 2. BACKGROUND 25

2.6 Hadoop Distributed File System
Apache Hadoop is an open source software framework that was originally
created to distribute and scale the storage and computations for the Nutch
search engine [9]. The design is heavily influenced by the papers describing
Google File System [17] and MapReduce [13]. Hadoop Distributed File System
(HDFS) is, as the name implies, a distributed file system designed to scale
using commodity hardware. HDFS was designed to handle amounts of data
that previously required specialized and costly enterprise solutions by instead
employing thousands of commodity computers. A HDFS cluster is comprised
of nodes performing one of a handful of roles.

A namenode is responsible for the metadata of a namespace. Originally
HDFS only allowed a single namespace, but this limit has since been removed.
All of the metadata is kept in RAM in order to achieve desired performance.
Changes to metadata are written to a transaction log on a local file system and
periodically snapshotted into a file system image. A single active namenode
simplifies the design, but it must only perform essential duties in order to
scale and not become a bottleneck for the cluster. No writes or reads of data
go through the namenode, only metadata requests to locate data or update
information about it.

Datanodes are used to store the actual data blocks. They are usually
equipped with a larger number of hard disk drives and less RAM than
namenodes. Each drive typically has an individual operating system level file
system on it without RAID or LVM. However, RAID can be used to improve
performance via striping. Datanodes store blocks as files on the local file
system, named after a block identifier, without any information about which
file it belongs to in HDFS. Namenodes periodically receive heartbeats from
datanodes, containing a report of the blocks a datanode possesses.

Clients connect to the namenode for metadata operations such as file
lookup, creation, reading or appending. Mutual exclusion is handled per
file by a writing client having to acquire a lease from the namenode and
having to renew the lease in order to detect client failures. The namenode
informs the client which datanode to contact for each block. Block size in
conventional file systems is typically the size of a disk sector or a virtual
memory page. In HDFS, blocks are much larger than on local file systems, so
that the namenode can scale while keeping track of all blocks in RAM. The
default block size is 128 MiB and typical values range from 64 MiB to 1 GiB.

HDFS is designed to withstand failure of drives, computers or entire racks,
as a cluster with thousands of nodes is statistically going to experience very
frequent single component failures. Each block is accompanied by a checksum

CHAPTER 2. BACKGROUND 26

to detect silent data corruption. Data blocks can be replicated to several
datanodes to provide redundancy in case of drive or node failures. The default
replication factor is three copies for each block, with two going to nodes in
the same rack and one going to a node in a different rack in order to protect
against rack-wide failures such as network problems. The replication factor
can be managed per file.

As stated, HDFS scalability is limited by the namenode because it has
to keep track of all files and blocks in a namespace. The metadata per file
or block is kept as small as possible, but as a rule of thumb, the namenode
should have approximately 1 GiB of RAM per million blocks stored [53]. A file
requires at least two block structures to be held in RAM on the namenode:
one for the file entry and one for the first block of data. If the average file size
is less than the block size, the resources of the namenode are used inefficiently
compared to how much space it could handle.

With federation, HDFS made it possible for several namenodes to share
the same datanodes. A single namenode still manages a single namespace
and one application typically uses a single namespace. In addition to scaling
the total number of files in a cluster, multiple namenodes isolate applications
from each other, preventing one from congesting the namenode with metadata
requests.

The namenode remains a single point of failure for a HDFS namespace.
A hardware failure on the namenode affects the whole namespace, whereas
datanodes are not a problem with sufficient redundancy. Namenode restarts
may take a long time because the namenode has to rebuild the in-memory
image of the namespace. The namenode does this by replaying the transaction
log on top of the latest snapshotted file system image. A checkpoint node may
be added to a namespace that periodically downloads the file system image
and transaction log from the namenode, merges them locally and uploads the
new image back to the namenode. Alternatively backup nodes synchronously
maintain a copy of the namespace in memory. Both of these improve the
namenode restart performance, reducing unavailability. A high availability
namenode configuration is also possible by using an active and a standby
namenode, sharing the snapshotted file system image and transaction log,
and using a distributed decision making process to elect the active node in
case of automatic failover.

While HDFS supports a wide variety of applications, it was originally
designed to be used with MapReduce. Even though HDFS superficially
resembles a POSIX file system by allowing hierarchical organization of files
with owner, group and permissions etc. in directories, it is not, however,
a POSIX-compatible file system. HDFS lacks, among others, truncate(2),
random writes, soft links, hard links and POSIX locks. Files in HDFS could

CHAPTER 2. BACKGROUND 27

originally not be appended, only written once and then read [9]. Both HDFS
and MapReduce were originally designed for non-real time batch processing
of large amounts of sequential data. MapReduce takes advantage of HDFS by
running computations on the same computers that store the data, benefiting
from local data transfer instead of sharing the available network bandwidth.
Small files, random reads and writes, and real time performance were left out
from the scope of the design of HDFS.

Both the original design and some of the limitations of HDFS mirror those
of its architectural model, GFS. Namenodes are called masters in GFS and
datanodes are referred to as chunkservers [17]. Some of the problems, like
namenode scalability, were initially solved in a similar manner: by having
several masters use the same chunkservers for storage while presenting different
namespaces to clients. GFS has scaled further by introducing distributed
masters, which allow for improved availability and solve the scalability limit
of a single master per namespace [31]. HDFS has yet to catch up to GFS in
this regard.

2.6.1 HDFS-RAID and Xorbas
One of the largest economical downsides of HDFS is the cost of redundancy.
Each block is by default stored with a replication factor of three in order to
protect against data loss and improve availability. In HDFS clusters storing
petabytes, even a modest improvement in the effective replication factor can
have a considerable financial impact. It should come as no surprise that this
area has been under active research.

Facebook reported [60] to have implemented HDFS-RAID in order to save
capacity in their HDFS clusters. Normal HDFS replication works similarly to
RAID 1, storing several copies of the same data for redundancy. HDFS-RAID
instead resembles RAID 5, as data plus parity are stored. Lost data can
therefore be recovered from remaining data and parity.

The parity in HDFS-RAID is computed over a stripe of blocks as shown in
Figure 2.4. There are two available encodings, XOR and Reed-Solomon [42].
XOR can only be used to compute a single parity block per stripe, protecting
against the loss of any single data block. Reed-Solomon can be used to
compute a given number of parity blocks, producing the desired level of
redundancy. Facebook selected XOR using a stripe width of 10 blocks, with
data blocks and parity blocks stored with a replication factor of 2. This
resulted in an effective replication factor of 2.2 instead of the default 3.
Another test was done with Reed-Solomon using the same stripe width, but
a replication factor of 1 and 4 blocks of parity, resulting in an effective
replication factor of 1.4. While XOR using these parameters would not result

CHAPTER 2. BACKGROUND 28

X1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 X

1 2 3 4 5 6 7 8 9 10 p1 p2

p3 p4

1 2 3 4 5 6 7 8 9 10

X X

p1 p2

p3 p4

HDFS with three replicas
Replication factor 3

HDFS-RAID with XOR
Both with two replicas
Replication factor 2.2

HDFS-RAID with four
block Reed-Solomon
Replication factor 1.4

Xorbas with four block
Reed-Solomon parity
and local XOR parities
Replication factor 1.6

Figure 2.4: HDFS redundancy schemes

in data loss from the loss of any two blocks, the Reed-Solomon configuration
would on the other hand be able to recover from the loss of up to four blocks.

HDFS-RAID is currently implemented asynchronously. Data is first writ-
ten using normal HDFS replication and when a file has remained unmodified
for a configurable period of time, parities are computed and stored, after
which the replication factor of the original file is lowered. Since the parity is
computed over a range of blocks per file, single block files cannot be parity
encoded and have to remain replicated. Files shorter than the stripe width
thus feature a higher than optimal replication factor.

In case of a corrupt or lost block, normal HDFS replication only has
to make a new copy of a valid block. HDFS-RAID needs to read all the
data blocks in the affected stripe, substituting parity blocks for the lost
blocks, in order to recompute the lost data. This can cause a large amount of
traffic in the cluster. Xorbas [45] is very similar to HDFS-RAID, but uses an
alternative encoding scheme. A stripe is split into subgroups, each of which
is used to compute a local parity block using XOR. Reed-Solomon parity is
computed over the whole stripe. In case of the much more common single
block failures, only the blocks of the subgroup have to be read to recompute
the contents of the lost block, thus significantly reducing traffic. Rarer failures
of several blocks can still be recovered within the limits of the redundancy of

CHAPTER 2. BACKGROUND 29

the Reed-Solomon encoding. A very similar approach [26] is used in Windows
Azure Storage.

2.7 Network File System
The Network File System (NFS) was originally developed by Sun Microsystems
in 1984. It allows computers to access file systems located on other computers
accessed via a network. NFS was designed to hide the fact that the file system
is remote and instead operate as similarly to a local file system as possible.
This allowed programs to take advantage of NFS with little or no changes
and is usually referred to as POSIX semantics or POSIX-compatibility. As
it gained in popularity, NFS was standardized as version 2 in 1989 [34] for
interoperability between several vendors.

NFS was designed for local area networks with small latency and few
transmission errors. The original translation of POSIX file access system calls
to NFS remote procedure calls is simple, but each call introduces round-trip
latency between the client and server. Often the program accessing NFS is
performing a higher-level operation that results in several RPC operations
and thus, additional latency. NFS version 3 was introduced in 1995 [10],
featuring several improvements focused on latency. Asynchronous writes
improved write performance while the addition of READDIRPLUS operation
and changes to some existing RPC operations removed the need for separate
calls in order to get file attributes.

Version 4 of NFS, originally published in 2000 [51], and revised in 2003 [52],
was a much larger redesign. The original statelessness of the NFS server was
abandoned and several auxiliary protocols were integrated into the main NFS
protocol. While this complicated both the server and client implementation,
it simplified deployment. Performance, specifically latency, was improved by
introducing a COMPOUND operation [37], allowing several operations to be
submitted in one request to limit cumulative latency.

While NFS is a very convenient solution for enabling network storage for
programs not originally written with network storage in mind, it is not free of
costs. Since NFS provides POSIX semantics, it has to support locks and other
POSIX features that complicate caching. If the system that needs network
storage does not need POSIX semantics, or can be redesigned to not need it,
much simpler and more performant alternatives become available. HDFS not
supporting POSIX simplifies its design tremendously. Facebook developed an
image store called Haystack [6], which has even simpler design than HDFS.

Table 2.1 presents a comparison of ZFS, HDFS and NFS with currently
common file systems such as ext4 and XFS. This presentation is far from

CHAPTER 2. BACKGROUND 30

exhaustive and is not suitable for picking the best option. Instead it is
provided to demonstrate the wildly different design choices in the different
file systems.

ext4/XFS ZFS HDFS NFS
Type local local distributed network
POSIX yes yes no yes
Checksums no yes yes depends1

Block size typically
4 KiB

sector size –
128 KiB

typically
64 MiB – 1 GiB

1 MiB (TCP)
or MTU (UDP)

Redundancy depends1 internal RAID replication
factor

depends1

Consistency journaling2 copy-on-write depends1 depends1

Block
allocator

extents slab
allocator

first local, then
replicated

depends1

Table 2.1: File system differences
1Depends on the underlying layer or file system
2Journaling is usually only used for metadata. The data is updated in-place

2.8 Other Large Scale File Systems
Large scale data storage and processing is a very active and still growing
field. It is not surprising that there are several alternative and competing
technologies. Comparing all of the alternatives in depth is not the main
focus of this Thesis. Some popular alternatives are covered briefly in order to
demonstrate how similar they are to those covered in previous sections and
to present some of the main differences.

BeeGFS is a distributed file system originally developed by Fraunhofer
Institute for Industrial Mathematics under the name FhGFS. The research
behind BeeGFS was spun off as a separate company called ThinkParQ [22].
The design is somewhat similar to HDFS in that it also has separate metadata
and storage servers, allowing clients to bypass the metadata servers once
the correct file has been located. In contrast to HDFS, BeeGFS has been
designed to scale incrementally to multiple metadata servers by assigning each
directory to a metadata server with available capacity. As a much younger
project, BeeGFS has a smaller user base and lacks features such as checksums
and parity-based redundancy.

CHAPTER 2. BACKGROUND 31

Ceph [61] is a group of related distributed storage components. At the core
is a distributed object storage system called Reliable Autonomic Distributed
Object Store (RADOS). Similarly to HDFS, clients bypass the metadata
servers and directly access the object storage servers once the required meta-
data has been retrieved. The namespace can be split between several metadata
servers for scalability. Block devices can be provided for e.g. virtualization
workloads by the RADOS Block Device service, which is implemented on top
of the object storage layer. A file system with POSIX semantics, the Ceph
File System [11], is also under development, but not currently considered
production ready.

Lustre [28] is a POSIX-compatible distributed file system. Like in several
other systems, storage is split into metadata servers and object storage servers.
Lustre can support multiple metadata servers, which clients use to locate the
correct objects and then proceed to access the objects directly on the object
storage server. Files are striped over many objects stored on several object
storage servers in order to improve performance. The POSIX-compatibility
leads to a more complicated architecture compared to HDFS.

Gluster [40] is a distributed file system without a centralized metadata
component. All Gluster nodes are aware of all peers, but instead of involving
all nodes in every operation, the target nodes for an operation are determined
by hashing the file or directory path and only the required nodes are engaged
in the operation. A single file is not split into chunks by default but instead
stored on specific file systems on the nodes, depending on the replication
setup. Striping can be used, but is only recommended when files are too large
to fit a single file system. The lack of global state in a cluster can lead to
cluster partitions, which are hard to detect and recover from.

Cluster file systems such as Red Hat Global File System 2 (GFS2) [41] or
Oracle Cluster File System 2 (OCFS2) [32] are designed to be used with
shared storage. Nodes with access to the file system are connected via iSCSI
or Fiber Channel to a Storage Area Network (SAN) hosting the actual storage
capacity. Read operations typically perform well, as all nodes have direct
access to the storage provided that the SAN does not limit performance.
Write operators need to be coordinated among the nodes, which introduces
latency and limits scalability. Both GFS2 and OCFS2 feature POSIX file
system semantics.

IBM General Parallel File System (GPFS) [47] was originally a cluster
file system that utilized shared storage. Version 3.5 added a feature called
File Placement Optimizer (FPO) [29], which enabled GPFS to store data
on the nodes accessing the data instead of in a SAN. The files are split into
chunks and replicated much like in HDFS. GPFS offers distributed metadata
and a POSIX-compliant file system in contrast to HDFS. GPFS with shared

CHAPTER 2. BACKGROUND 32

storage has the same limitations as GFS2 and OCFS2. FPO is similar to
HDFS, but less popular and not as proven.

Chapter 3

Environment

ZenRobotics was founded by Tuomas Lukka, Harri Valpola and Jufo Peltomaa
in 2007. The founders wanted to turn their interest in artificial intelligence and
robotics into commercial real world applications. After evaluating different
potential applications the focus was set on automating sorting in waste
recycling.

The ZenRobotics Recycler is an automated robotic waste sorting system
that employs sensor fusion, computer vision, machine learning and artificial
intelligence to identify and remove wood, metal and stone fractions from
construction and demolition waste. Traditionally industrial robotics has
focused on assembling or producing identical products from high-quality
raw materials using a repeatable and precise process. Efficient robotic waste
sorting requires reacting to sensor inputs in a chaotic environment and making
intelligent decisions in real time.

The company has its own, very distinctive, culture. Since the product
development requires significant amounts of expertise, employment is biased
towards lots of research and software development experience. Most research
and development personnel have years of experience, not just in their spe-
cific specialty, but also related technologies such as UNIX or differences of
programming languages. There is a strong culture of challenging industry
standard technology choices and solutions. After all, the current industry
standard solutions for sorting waste do not make use of robotics or artificial
intelligence.

3.1 High Level Data Processing
The ZenRobotics Recycler employs a wide range of sensors to measure prop-
erties of the incoming waste stream. All of the available sensory inputs are

33

CHAPTER 3. ENVIRONMENT 34

combined and fed to a machine vision-based recognition system that produces
a view of the objects in the waste stream. This information from one or more
sensor arrays gets passed to a central node that decides which manipulators
try to pick which objects.

The amount of raw sensor output is demanding. Each sensor is connected
to a dedicated network interface card. In case something particularly interest-
ing, such as an error, occurs, relevant data gets transferred to central storage
at the office, as the installations at customer sites lack the resources to do
thorough analysis. In case there is nothing of interest, a small amount gets
sent anyway as a sample of normal sensor inputs.

Humans examine the interesting datasets and annotate the combined
sensor outputs with object shapes and materials based on human vision and
domain knowledge. These annotated datasets form the ground truth used to
train the machine vision classifiers. Unannotated datasets are purged from
storage when they are deemed expired after a set period of time.

3.2 Architecture

Organizations which design systems are
constrained to produce designs which are copies
of the communication structures of these
organizations

M. Conway, 1968 National Symposium on
Modular Programming

Different teams have been responsible for each of the subsystems of the
ZenRobotics Recycler that produce data and analyze it. The teams continue
to consume the data mostly in isolation from each other. A dataset can be
defined, as per usage in the teams, as the data stored from a single run (from
start to finish, or often, error). Datasets are immutable. They are written
once, after which they do not change. Datasets are transferred and copied to
various locations and removed when they are no longer of any use. Each team
produces their own datasets in varying formats and quite different contents.

3.2.1 Sensors
The ZenRobotics Recycler relies on a wide variety of sensors to produce an
accurate model of the incoming waste stream. The sensors include height
map sensors, visible light sensors, near infrared sensors and metal detectors.
Each sensor output is timestamped and stored as a separate data stream

CHAPTER 3. ENVIRONMENT 35

called channel. The channels are preprocessed and compressed in various
ways. Compression needs to be quick in order to keep up with the incoming
data stream and to incur minimum latency on the processing pipeline. Most
of the employed compression methods are lossy and the preprocessing also
smoothes the data in order to reduce noise.

Compressed channels are sent to the recognition subsystem for further
processing. In addition the channels are stored as zensorserv datasets in
a ring buffer to be retrieved if needed. A small sample is sent to central
storage for statistical analysis.

3.2.2 Recognition
The recognition subsystem does not produce any original data. A model
representing the incoming waste stream is built in real time using the sensor
data as input. Data from the height map sensors is used to construct shapes
for the waste on the conveyor belt, while the metal detectors, visual spectrum-,
and near infrared sensors are used to recognize different materials. The model
is also segmented or split into separate waste objects in order to determine
what can be picked up separately.

The machine learning-based system is trained with sensor data combined
with annotations made by humans. Compressed inputs, even lossy, are used
instead of raw sensor data in order to keep the process deterministic. The
same result can always be reproduced using the same inputs and the same
version of the code.

3.2.2.1 Vcache

Vcache is very simple persistent cache of costly computations. Many of the
uses of Vcache are not really caching. In several cases the computation takes
such a long time, that if the cached result is not available, the process fails
in practice; a human annotator decides not to wait for the computation to
finish.

Initially Vcache was backed by HBase [3], a distributed scalable data store
built on top of Hadoop. As the amount of data grew, HBase was deemed
unsuitable for storing the cache. Vcache was modified to use a file-based back-
end called Vcfs. Vcfs stores the cache as files in two main directory hierarchies,
as seen in Figure 3.1. One is called the index, where path components are
analogous to function parameters. At the leaves of the index tree are small,
40 byte files that contain the hexadecimal representation of the SHA1 hash of
the function result. The other directory tree is where the results are stored.

CHAPTER 3. ENVIRONMENT 36

vcfs/
dat/

01/
28f581459ba6ff81776b5e7b3a9fe3df818cb5
9dd3bf246069d9997d2b3e5b00ff4e6c68e239
...

02/
8d8965641a89c55070f24261d9b184e44c22c3
57cf99acde6742ba552abf3784c9e275d37c01
...

...
ff/

idx/
function-1/

param-1/
param-2/
...

param-n/
@

...
...

...
...

SHA1 in file
points to object

Figure 3.1: Vcfs second version structure

It is split up in 256 directories in the range 00–ff, corresponding to the first
byte of the hash.

This layout allows for deduplication. Even if several computations produce
the same result, it will only be stored once since the data is stored in a file
named after the hash of the content. Unfortunately it uses a lot of inodes
and it is very hard to perform reverse queries. Because of this, it is hard to
selectively purge the cache.

In practice Vcfs is sharded on two Network Attached Storage (NAS)
appliances (specification shown in Table 3.1) accessed over NFS. Performance

CHAPTER 3. ENVIRONMENT 37

Manufacturer Netgear
Model ReadyNAS Pro 6
CPU Intel Pentium E5300
RAM 4 GiB
HDDs 6x Seagate ST33000651AS [48] (4+2 RAID 6)
Connectivity 2x1Gbps Ethernet

Table 3.1: NAS specifications

is suboptimal for historical reasons. Vcfs shares the storage space with other,
older data. The original requirements were for capacity over performance,
causing RAID 6 to be used on the NAS appliances. Vcache causes mostly
random reads while RAID 6 effectively limits the performance to single HDD
IOPS levels.

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

0B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B

32
Ki

B

64
Ki

B

12
8K

iB

25
6K

iB

51
2K

iB

1M
iB

2M
iB

4M
iB

8M
iB

 0

 1x107

 2x107

 3x107

 4x107

 5x107

 6x107

 7x107

nu
m

be
r o

f f
ile

s
(lo

g)

cu
m

ul
at

iv
e

nu
m

be
r o

f f
ile

s
(li

n)

file size buckets (log)

files
cumulative

Figure 3.2: File counts in Vcfs

However, the number of used inodes is a bigger problem. The appliances
use ext4 as the file system, which statically allocates the number of available
inodes, and thus maximum number of files, during file system initialization.
The default configuration of ext4 is to allocate one inode per 16384 bytes. If
the average file is smaller than the space allocated per inode, the file system
can end up not being able to create more files even though there is free space

CHAPTER 3. ENVIRONMENT 38

to grow already existing files. Figure 3.2 shows the large number of small
files, especially in the size range of 32 to 63 bytes, where the files in the index
hierarchy storing 40 byte SHA1 sums fall.

 1x106

 1x107

 1x108

 1x109

 1x1010

 1x1011

 1x1012

 1x1013

0B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B

32
Ki

B

64
Ki

B

12
8K

iB

25
6K

iB

51
2K

iB

1M
iB

2M
iB

4M
iB

8M
iB

 0

 2x1012

 4x1012

 6x1012

 8x1012

 1x1013

 1.2x1013

 1.4x1013

 1.6x1013

sp
ac

e
us

ed
 b

y
fil

es
 (b

yt
es

) (
lo

g)

cu
m

ul
at

iv
e

sp
ac

e
us

ag
e

(b
yt

es
) (

lin
)

file size buckets (log)

files
inodes

cumulative used space

Figure 3.3: File sizes in Vcfs

The large amount of index files, each representing a key pointing to a value,
does not necessarily translate to a large amount of raw data. In fact, as
Figure 3.3 shows, the contents of the index files only take up a few gigabytes.
However, storing such small files is wasteful and with the space allocation per
inode overhead, the index allocates three orders of magnitude more storage
capacity.

The impact of these problems can be mitigated to some degree. If re-
initialization of the file system is a possibility, the inode allocation can be
increased to one inode per 4096 bytes. This would maximize the amount of
inodes, since ext4 allocates space in 4 KiB blocks. The file system would not
run out of inodes before all blocks are also in use.

Performance of Vcfs would also improve by increasing the number of IOPS
the NAS appliances can perform. Again, if re-initialization of the file system
is possible, the RAID level could be changed from RAID 6 to RAID 10. The
available storage capacity would decrease a bit, but increasing the number of
inodes would help, as inodes are scarcer than space. The IOPS performance
could be up to three times that of the current, significantly improving the

CHAPTER 3. ENVIRONMENT 39

latency of looking up an index file or corresponding object file in the file
system hierarchy.

Some Vcfs problems are directly attributable to the design. While the
desire to deduplicate identical results is understandable, it doubles the inode
usage. Another way to achieve the same result would have been to hard link
the index file to the file in the dat hierarchy, instead of storing the SHA1
hash in the index file. A file in the dat hierarchy with a link count of only
one could be determined to have no keys pointing to it and thus be garbage
collected. While ext4 does have a limit for the number of hard links, the limit
is quite high at 65000. Other software, e.g. BackupPC [5] that uses hard links
for deduplication, have found solutions for working around the limitation.

While using hard links would decrease the number of inodes, it still would
not help with the large number of disk seeks needed to traverse the directory
hierarchy in order to find a specific file. Using NFS also increases the latency
of directory traversal and file lookup. The file system layout of Vcfs also does
not allow for efficient reverse lookups in order to determine if an object is
no longer referenced and can be garbage collected. Any removal of objects
based on age would require walking through the complete file hierarchy.
While age is far from a perfect cache invalidation policy, it is better than
nothing. Implementing a LRU policy for Vcfs would require storing access
times. Storing the access time metadata in the NFS inodes would transform
every read to a write, further impacting performance.

Implementing a simple key-value store using only a POSIX file system
and its metadata as the data structures imposes certain tradeoffs. The desire
of simplicity, familiarity and easy debugging using standard UNIX tools is
understandable, but actual databases have real advantages over file systems
and should be seriously considered.

While migrating all 16 TB of Vcache promptly to a database is infeasible,
most of the advantages can be claimed by migrating the index. The index
contains above 44 million entries pointing to over 23 million objects. Dedupli-
cation is clearly effective. The hexadecimal representations of SHA1 hashes
occupy 40 bytes each, totaling under 2 GB. However, that number does not
account for the cost of storing the key, the file name, and directory metadata
used to locate the hash. The average path length under the index directory
is 457 characters. The keys and hashes can all fit in under 22 GB, a very
manageable size for a database.

A database could be used to improve more than performance. If the
database were to store the age of a cached object in addition to its location,
that information could be used for cache invalidation instead of traversing
the file system for file creation or modification times. Additionally, the key
and hash would not have to be stored serialized as something that is safe

CHAPTER 3. ENVIRONMENT 40

for a file system, but could be stored more compactly and efficiently, further
improving resource requirements and performance.

3.2.3 Adaptive Picking
The adaptive picking subsystem is closely related to manipulation subsystem.
Different grippers, object shapes and sizes require different alignments and
positioning in order to succeed. Starting from very simple heuristics, the
system to a large extent has taught itself to pick. The system has attempted
different variations, storing the specific parameters, and sensors or human
annotators going through the information have noted which attempts have
been successful. Machine learning has been used to improve the adaptive
picking performance until it was sufficiently good.

3.2.4 Manipulation
The manipulation subsystem is responsible for controlling the gripper and
servos in order to pick objects up from the waste stream. While running,
it produces a large amount of diagnostic information that is stored. Some
of the stored data are inputs to the manipulation subsystem produced by
other parts of the recycler, but stored by the manipulation system for easier
correlation.

Previously the manipulation subsystem produced datasets that consisted
of a very large amount of files in a directory. Some stored data streams resulted
in several files per second, e.g. video where each frame was saved in a separate
file. A lot of data was stored in human-readable formats such as JSON or
Clojure symbolic expressions, which are not very compact representations.

Currently the system utilizes Robot Operating System (ROS) [39], which
provides a far superior file format called ROS bags. Datasets stored as
ROS bags multiplex several channels, or topics, to a single file. This way
temporally related data is stored spatially colocated in the single byte stream
and thus read-ahead caching performs well. ROS bags also support optional
compression.

Some data streams are stored inefficiently due to legacy reasons. A bitmap
representation of the work area of the conveyor belt is stored frequently, even
though the conveyor belt advances slowly and each bitmap is mostly made
up of an offset copy of the last bitmap.

The manipulation datasets also contain some of the most refined informa-
tion, as the manipulation subsystem is the consumer of most of the information
produced by the rest of the system. Many of the inputs are also combined
and correlated by the manipulation subsystem. Therefore it makes sense to

CHAPTER 3. ENVIRONMENT 41

store a wide variety of data in the manipulation datasets instead of elsewhere
in the system.

3.3 ZenRobotics Dataset Storage
The current iteration (spring 2013) of dataset storage at ZenRobotics is mostly
based on scaling up the previous solution. Our developers were accessing
a Linux-based NAS, as specified in Table 3.1 over NFS, which was backed
up to a second identical NAS. It was decided to keep the dual setup for
redundancy and NFS since it had served well so far, thus not complicating
the basic setup. Naturally, financial cost was also a factor.

There were already problems with backing up the several terabytes of
content from the primary NAS to the secondary using rsync [58], since the
number of files was quite high. ZFS was selected as the file system as it
provided strong integrity guarantees, easy administration and was designed
for large amounts of data.

The 10−14 non-recoverable bit read error rate of the Seagate ST3000NC002
HDD [50] suggested that reading once through the 30 drives (30∗3∗8∗1012 =
7.2 ∗ 1014 bits) had a large chance of returning bad data without ZFS. Ext4
would have required us to split the storage on one server into several volumes
or increase the space used by small files from the default 4 KiB. LVM would
have meant tedious resizing of file system to shift around capacity. Traditional
RAID would have meant that resilvering when replacing a failed drive would
write the whole device even if it was not fully used. ZFS send and receive
solved the problem of rsync slowing with the number of files. Compression
was also enabled in ZFS once it was realized that is was essentially free, as
the file servers were not constrained by CPU, but rather by I/O.

Having decided on ZFS, the hardware (Table 3.2) for it was selected. A
relatively powerful CPUs for a file server was chosen, since ZFS calculates
checksums for everything it reads and writes; large amounts of ECC RAM
to benefit the ARC without compromising integrity; 1 TB of SSD capacity
split over 4 drives for L2ARC; a small, but fast SSD SLOG to accelerate
synchronous writes; 30 large capacity HDDs configured in three RAID-Z2
vdevs plus a spare. The secondary file server has identical hardware, to be
used as spare parts if needed.

The decision was not without its drawbacks. ZFS on Linux was selected due
to more comprehensive hardware compatibility compared to illumos [27], the
Open Source Solaris descendant. ZFS on Linux has had some problems, but
never risked the data. Using RAID-Z, even with three vdevs and a large cache,
has a clear performance impact in concurrent use. ZFS performance degrades

CHAPTER 3. ENVIRONMENT 42

significantly as the pool fills up and is fragmented. A scrub operation on the
file server usually completes in under 24 hours, but with heavy concurrent
access or a full and fragmented pool it has taken over a week.

CPU 2x 6-core Intel Xeon E5-2630
Motherboard SuperMicro X9DRH-ITF
RAM 128 GiB (8x 16 GiB ECC)
HDDs 31x Seagate ST3000NC002 [50] (3x(8+2 RAID-Z2) + spare)
L2ARC 4x 256 GB Samsung 840 Pro SSD
SLOG 100 GB Seagate Pulsar.2 SSD
Connectivity 2x10Gbps Ethernet

Table 3.2: File server configuration

3.4 Amount of Data
So far ZenRobotics has managed to avoid completely filling up the current file
server. Unfortunately, ZFS starts to fragment heavily as the pool grows near
full, impacting performance. More aggressive data removal was required and
storage quotas were enabled to prevent filling up storage. It is an unfortunate
situation as more data is usually beneficial for data analysis. Additionally,
spending human resources on deciding what can be removed and what must
be kept has a negative impact on other work.

Conditions vary from installation to installation. Each installation needs
the machine learning algorithms to be trained with data from that particular
installation in order to perform well. Depending on various factors, an
installation may produce 1–60 GiB of data per hour. Practically speaking,
the amount of data being transferred from one installation to central storage
is limited by Internet connection speeds.

It is difficult to predict future storage capacity needs. Less aggressive
removal would already cause the file server to fill up. More aggressive removal
may be feasible. It would be preferable to keep data for an extended period
of time in order to have data produced under different seasonal weather
conditions. The number of annotated datasets continues to grow. It is
very unlikely that annotated datasets would be removed. The current data
corpus has been produced from only a few installations. These installations
provide an incomplete foresight, as they are routinely affected by research
and development activities. Overall, storage use per installation will keep
growing and each new installation will require a significant addition to storage
capacity.

CHAPTER 3. ENVIRONMENT 43

The storage usage varies constantly, as new data arrives and old data gets
purged. Here is represented a point-in-time summary of the space usage by
data from each subsystem:

• 23 TiB, Compressed sensor data, moderate number of files

• 9.8 TiB, New manipulation data (ROS bags), low number of files

• 5.1 TiB, Old format manipulation data, large number of small files

• 3.1 TiB, Miscellaneous research files, large number of small files

• 1.1 TiB, Adaptive picking data, moderate number of files

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

0B 1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B
32

Ki
B

64
Ki

B
12

8K
iB

25
6K

iB
51

2K
iB

1M
iB

2M
iB

4M
iB

8M
iB

16
M

iB
32

M
iB

64
M

iB
12

8M
iB

25
6M

iB
51

2M
iB

1G
iB

2G
iB

4G
iB

8G
iB

16
G

iB
32

G
iB

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 1.6x107

 1.8x107

nu
m

be
r o

f f
ile

s
(lo

g)

cu
m

ul
at

iv
e

nu
m

be
r o

f f
ile

s
(li

n)

file size buckets (log)

files
cumulative

Figure 3.4: File counts

The old manipulation and zensorserv datasets use the presence of zero-
length flag-files to indicate status of the datasets. Figure 3.4 shows how this
contributes to the large number of zero sized files. The distribution also shows
the large number of files in size ranges from 8 KiB to 1 MiB. As said, these
largely correspond to single frame captures from video streams and similar
uses.

Storage capacity is still dominated by large files, as shown in Figure 3.5.
The largest files are mostly ROS bag files. Zensorserv dataset channels are

CHAPTER 3. ENVIRONMENT 44

 1

 100

 10000

 1x106

 1x108

 1x1010

 1x1012

 1x1014

0B 1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B
32

Ki
B

64
Ki

B
12

8K
iB

25
6K

iB
51

2K
iB

1M
iB

2M
iB

4M
iB

8M
iB

16
M

iB
32

M
iB

64
M

iB
12

8M
iB

25
6M

iB
51

2M
iB

1G
iB

2G
iB

4G
iB

8G
iB

16
G

iB
32

G
iB

 0

 1x1013

 2x1013

 3x1013

 4x1013

 5x1013

 6x1013

sp
ac

e
us

ed
 b

y
fil

es
 (b

yt
es

) (
lo

g)

cu
m

ul
at

iv
e

us
ed

 s
pa

ce
 (b

yt
es

) (
lin

)

file size buckets (log)

files
cumulative

Figure 3.5: File sizes

split into files ranging from tens to hundreds of megabytes in size. The smaller
files that overwhelm others in numbers in Figure 3.4 do not really contribute
much to overall space usage.

The distribution of files per directory in Figure 3.6 features a few notable
things. First, there are a large number of empty directories and directories
with only one file. These can easily be eliminated. There are also a significant
number of directories with large numbers of files. Such directories are mostly
made up of video streams stored as single frame images.

CHAPTER 3. ENVIRONMENT 45

 1

 10

 100

 1000

 10000

 100000

 1x106

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

nu
m

be
r o

f d
ire

ct
or

ie
s

(lo
g)

cu
m

ul
at

iv
e

nu
m

be
r o

f d
ire

ct
or

ie
s

(li
n)

number of files per directory (log)

files
cumulative

Figure 3.6: Directory sizes

3.5 Storage Utilization by File Type
As Figure 3.7 shows, the largest space savings would have to target .blob files
in zensorserv datasets. The files are already preprocessed and compressed
with specialized algorithms that have lot of domain knowledge about the
data. Significant improvement in compression ratio seems unlikely. ZFS LZ4
compression shows a compression factor of 1.14 for zensorserv datasets, most
of the savings coming from the non-.blob files in the datasets.

The old manipulation dataset format compresses quite well, even with
a quick compression algorithm such as LZ4. ZFS reports a compression ratio
of 1.62. This is mostly due to the well compressing human-readable files, like
JSON logs, in the datasets. Unfortunately no single file type used by the old
dataset format makes up a significant portion of the allocated storage.

ZFS also reports a compression factor of 1.47 for the new format manipu-
lation datasets, stored as ROS bags. These .bags also make up a large portion
of the storage allocation by file type. As mentioned earlier, ROS bags feature
optional compression using gzip or bzip2. While these algorithms use more
CPU cycles per byte than LZ4, they also usually result in better compression.
Compressing a bag of several tens of gigabytes offline can introduce significant
unwanted latency in the processing pipeline. It would be best to compress

CHAPTER 3. ENVIRONMENT 46

the stream when the bag is originally produced. Compression is rarely used,
as it slows down interactive exploration of the dataset. This issue may be
improvable in the tools. Alternatively the tools could be modified to support
faster compression algorithms, such as LZ4.

 0

 1e+13

 2e+13

 3e+13

 4e+13

 5e+13

 6e+13

.a
vi

.js
on

.ra
w .tp
i

.z
ip

.z
ng .d
at

.b
ag

.b
lo

b

to
ta

l

storage allocation by file type

Figure 3.7: Top 10 File Types by Storage Utilization

Chapter 4

Experiments

While statistics were gathered from production systems to gain an understand-
ing of the real world situation, tests were not performed in the production
environment to prevent any effect to the daily usage and to isolate the tests.
The tests were performed on surplus hardware with specification shown in
Table 4.1, which could be dedicated to the task and configured much more
freely according to the requirements.

CPU 4-core Intel Xeon X3430
Motherboard SuperMicro X8SIA
RAM 8GB (2x 4GB ECC)
HDDs 2x Seagate Constellation ES ST1000NM0011 [49]
L2ARC 80GB Intel X25-M G2 SSD
Connectivity 2x1Gbps Ethernet

Table 4.1: Test server configuration

Not running tests on production hardware or hardware with the same
exact configuration limits the options for testing. The tests were selected in
order to understand fundamental properties of the technologies in use in the
production system. Since the production storage system is based on HDDs
that are used to store lots of small files, it is valuable to understand how
HDD performance is affected by read/write operation size. Large scale file
systems are carefully designed to keep the metadata per file to a minimum.
ZFS is currently used at ZenRobotics, which leads to questions about the
amount of metadata per file in ZFS. As datasets are accessed over NFS,
we are interested in how NFS performance is affected by small file sizes.
In Section 3.5 we looked briefly into how effective compression can be for
dataset storage. All the compression algorithms were generic, with no domain-
specific tuning. Therefore it needs to be determined, how much improvement

47

CHAPTER 4. EXPERIMENTS 48

a domain-specific algorithm would provide.

4.1 I/O Read Operation Size Effect on HDD
Throughput

In order to verify the simple HDD performance model presented in Equa-
tion 2.1, we performed a test on real hardware. A sufficiently large number of
read requests were performed using each of the various request sizes to find
out the effect on performance. Each read was issued to a random location on
the HDD to minimize the effect of read-ahead and caching. Locations were
sector-aligned to eliminate possible alignment overhead. The total time for
a sequence of read requests using a single request size was measured. Given
the amount and size of the requests and the time elapsed, we can calculate
the throughput of the HDD.

To measure performance, one must try to isolate the test subject from
everything unrelated. Since we wanted to measure the performance of the
HDD and not the file system, we read from the raw block device instead of
a file. Also caches had to be disabled or emptied to minimize their effect on
the test.

The source code for the short test program written in Python can be found
in Appendix A. It is organized in two phases. First all global initialization is
done, including opening the HDD block device for reading. Then different
block sizes are used to perform the test. Before each test, caches are dropped
to minimize the impact of previous tests. Then the given size of block is
read from a sufficiently large number of random locations on the HDD. The
time taken to perform the reads is recorded. Based on this information, the
throughput can be calculated for each block size.

Preliminary test results formed a curve shaped according to the model’s
prediction, but did not match it exactly, as can be seen in Figure 4.1. Firstly,
the model predicted much higher maximum throughput. The parameter
used for the model’s sustained transfer rate was taken from the technical
specifications of the HDD that was used for the test. We initially overlooked
the fact that the specifications listed the maximum sustained transfer rate
only on the outer diameter of the platter. The test reads from random offsets
on the HDD, which span all of the tracks instead of the best performing
outer track. We then measured the average sustained transfer rate of the
whole disk by executing dd(1) with a block size of 1GiB for the whole block
device. That gave us the average sustained transfer rate of 115MiB/s instead
of the maximum sustained transfer rate of 147MiB/s. This average sustained

CHAPTER 4. EXPERIMENTS 49

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000
1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B

32
Ki

B

64
Ki

B

12
8K

iB

25
6K

iB

51
2K

iB

1M
iB

2M
iB

4M
iB

8M
iB

16
M

iB

32
M

iB

64
M

iB

12
8M

iB

25
6M

iB

51
2M

iB

Th
ro

ug
hp

ut
 (k

B/
s)

I/O request size (log)

original model using maximum sustained transfer rate
original model using average sustained transfer rate

adjusted model with 512 byte sectors
adjusted model 1024 byte sectors

observed results

Figure 4.1: Throughput as a function of I/O operation size

transfer rate is almost perfectly in line with the maximum throughput of our
test results.

Ravg(lblock) = max
(

1,
lblock

lsector

)
× 1

tseek +
max

(
1,

lblock
lsector

)
Rsus

(4.1)

Secondly, we found that the model predicted performance to improve with
a much smaller block size than what we observed. The sector size for this
particular HDD model is 512 bytes. All reads smaller than a sector will still
result in reading the whole sector. The model originally failed to account
for this. The adjusted model in Equation 4.1 using a sector size lsector of 512
bytes comes very close to predicting the results. The ability of the model to
predict the results is even better with 1024 byte sectors, which leads us to
believe that the HDD always does a one sector read-ahead for single sector
reads.

4.2 ZFS Metadata Overhead
In order to examine the metadata overhead per file in ZFS, we performed an
experiment in which we measured the amount of free space on a file system

CHAPTER 4. EXPERIMENTS 50

before and after creating a number of files of a certain size. The test was
repeated with different sizes and file counts. Given the size and number
of files, we were able to subtract what was allocated by the files from the
reported disk usage. The remaining difference in free space accounts for
metadata.

ZFS has many features that make measuring the used space tricky. Free
space counters only update periodically when transaction groups are commit-
ted, so that they can properly reflect space savings from deduplication and
compression. Deduplication and compression must be disabled in order for
them not to affect the reported usage. To force a transaction group commit,
we exported the entire pool that held our test file system.

During initial prototyping, we noticed that a newly created file system did
have more than zero bytes in use. After removing all files from the file system
in preparation for the next run, used space differed from that of a newly
created file system. Because of this we created a new file system before each
run and destroyed it after collecting data.

A newly created file system also had varying amounts of used space
depending on the pool configuration. Because of this, we ran the test both
with a two disk striped pool and a 4 disk RAID-Z pool. The source code
listing for the experiment can be found in Appendix B.

For each number of files of a certain size our test procedure produced
a number of bytes used. We also measured the number of bytes used on an
empty file system; 30720 bytes in case of the two disk striped pool and 42896
bytes in case of the four-disk RAID-Z pool. We subtracted the usage of the
empty file system from the results. In the case of the 10 zero-length files,
this led to zero space usage. We assume that an empty directory occupies
a DMU record that can accommodate a number of file entries before allocating
a larger record. In addition to subtracting the empty space, we subtracted
the space needed to store the file names, as those were dictated by the test
procedure and not the file system.

Figure 4.2 presents the test results. The X-axis shows the different
test cases performed. The zero-length files can be seen to have very similar
metadata overhead regardless of the pool configuration. This is to be expected
as the only storage need is for the directory entries. The 1 KiB files have
wildly different overhead on the 2-disk and 4-disk pool. The reason is the
behavior of RAID-Z. For each written block, RAID-Z must write a parity
block for redundancy. We are in fact observing RAID-Z overhead instead
of metadata overhead. This is a situation where RAID-Z is less efficient
than traditional RAID 5, but it is the cost of avoiding the read-modify-write
procedure and the RAID write hole problem. The overhead should not be
flatly dismissed as being caused by RAID-Z. It should be kept in mind and

CHAPTER 4. EXPERIMENTS 51

 0

 500

 1000

 1500

 2000

 2500

 3000
10

 0
kB

 fi
le

s

10
0

0k
B

fil
es

10
00

 0
kB

 fi
le

s

10
00

0
0k

B
fil

es

10
00

00
 0

kB
 fi

le
s

10
 1

kB
 fi

le
s

10
0

1k
B

fil
es

10
00

 1
kB

 fi
le

s

10
00

0
1k

B
fil

es

10
00

00
 1

kB
 fi

le
s

10
 1

28
kB

 fi
le

s

10
0

12
8k

B
fil

es

10
00

 1
28

kB
 fi

le
s

10
00

0
12

8k
B

fil
es

10
00

00
 1

28
kB

 fi
le

s

10
 1

02
4k

B
fil

es

10
0

10
24

kB
 fi

le
s

10
00

 1
02

4k
B

fil
es

10
00

0
10

24
kB

 fi
le

s

10
00

00
 1

02
4k

B
fil

es

M
et

ad
at

a
(B

)

metadata per file, 2 disk RAID0
metadata per block, 2 disk RAID0

metadata per file, 4 disk RAID-Z
metadata per block, 4 disk RAID-Z

Figure 4.2: ZFS Metadata Overhead

noted that it is caused by the size of the write operations, instead of the size
of the file, as one could be lead to believe.

At the size of 128 KiB we again observe the overhead in both the 2-disk
and 4-disk pools to be very similar, as is the average of test cases up to this
size. A larger file size averages out the differences in sector allocation between
striping and RAID-Z. The 1MiB files break the pattern by showing much
higher overhead compared to all other test cases. The DMU uses blocks,
called records, of up to 128KiB. The content of all the smaller files fits in one
DMU record. Since the larger files comprise several records, the overhead
is the sum of the overheads of the records. If we divide the total amount
of metadata with the number of records instead of number of files, we get
results that are in line with the rest.

4.3 NFS Latency Overhead
To gain visibility into the impact of latency on performance, we performed
a test on actual hardware. The intention was specifically not to compare
bandwidth, but rather NFS RPC operation latency overhead. We measured
the time taken for certain operations on a local file system and over NFS.
Some of the operations only inspect the file metadata, while others also read

CHAPTER 4. EXPERIMENTS 52

 0

 1

 2

 3

 4

 5

 6

find file cat

du
ra

tio
n

re
la

tiv
e

to
 lo

ca
l f

ile
 s

ys
te

m

local file system
NFS

NFS cat 100MiB

Figure 4.3: NFS vs. local file system, normalized relative to local performance

file contents. This will show if there is a difference in performance overhead
for metadata vs. data operations.

A directory tree consisting of over 9000 directories, 2.2 million files and
consuming 1.7 TiB of storage capacity was used for the test. The directories
contained varying numbers of files of varying sizes and contents. One computer
stores the files locally and exports them to another via NFS over a 1Gbps
Ethernet LAN. Tests were run both locally on the machine storing the files
and on the other accessing the files over NFS to compare the results. The
commands used are listed in Appendix C.

First we measured the time elapsed for the directories to be iterated
through by find -ls with output directed to /dev/null. This had the effect
of reading all directory entries and also accessing each file’s metadata stored
in its inode.

The second measurement was for the time taken to iterate through the
same files with find -exec file with output again directed to /dev/null.
In addition to reading the metadata of each file, file(1) reads the first 96KiB
of each file’s contents in order to try to determine the format of the file.

Finally, we tested file reading performance. A list of files between 900kB
and 1000kB was first prepared, in order to avoid spending time reading
metadata. Then we measured the time taken to read the listed files using

CHAPTER 4. EXPERIMENTS 53

cat(1). The total amount of data was 7.5GiB in 8407 files. Additionally, we
wanted to demonstrate the effect of larger files. Since large reads would cause
the local HDD bandwidth to dominate the 1Gbps Ethernet connection, it
makes little sense to compare local and NFS performance. Instead we split
the 7.5GiB contents of the files into 100MiB files and measured the time to
read them over NFS.

The results shown in Figure 4.3 are scaled relative to the time taken by the
test on the local file system. The find test, which consists purely of metadata
reads, is comparatively slower over NFS than the file test. The cat test is, in
turn, a small improvement compared to the file test, as 900-1000KiB are read
per file, instead of up to 96KiB. The test of reading the same total data split
into a smaller number of larger files is illuminating. It executes in half the
time compared to reading from the smaller files, doubling throughput. All of
these results point to the latency caused by metadata operations degrading
overall performance.

4.4 Recompressing ZNG to PNG

 10

 100

 1000

 10000

 100000

 1e+06

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B

32
Ki

B

64
Ki

B

12
8K

iB

25
6K

iB

51
2K

iB

1M
iB

nu
m

be
r o

f f
ile

s

file size bucket

ZNG compressed files
PNG compressed files

Figure 4.4: ZNG and PNG file size distribution

In Section 3.5 we studied storage utilization by file type. It is clear
that the largest file types can be compressed more effectively than they are

CHAPTER 4. EXPERIMENTS 54

now. But the fourth largest file type in Figure 3.7, the .zng. The files are
compressed with snappy [18], without any domain specific knowledge. These
.zng files are bitmap images for which there exist widely available, lossless and
optimized compression methods and file formats, such as Portable Network
Graphics (PNG). Snappy was originally chosen over PNG because it is less
resource-intensive and CPU resources were constrained.

Conversion to PNG using the reference PNG implementation libpng [46]
results in quite impressively improved compression ratio, as can be seen in
Figure 4.4. 40 GiB of .zng files were converted to 6 GiB of PNGs. The files
are quite small, average size being 37KiB for .zng and 5.6KiB for PNG. Often
the files are smaller than the file system block size and thus take unnecessarily
much space. Unfortunately they also make up only a small part of the total
space used, limiting the impact of this improvement in compression has on
the total amount of data.

Chapter 5

Discussion

The growing need for storage capacity at ZenRobotics will run into the limits
of the current storage architecture. While the current architecture can still be
grown, costs per TiB will rise. RAID 10 is needed for performance, leading to
less usable storage per disk. Additional hardware is needed for housing more
disks. At some point a single server will no longer scale. Instead of building
logic for accessing multiple NFS servers, a different approach should be taken.

Current dataset storage usage patterns include a large number of small
files, immutable datasets, random access, and bulk analysis operations. For
large amounts of bulk data that has to be randomly accessible, hard disk
drives are still the most economic option. The data is spread into many small
files — sometimes, even zero length files that are used to indicate a one-bit
status. Our experiments show that HDDs perform poorly with small read and
write operations. Merely archiving the small files making up a dataset into
a large file will not help if the usage pattern still consists of small read/write
operations.

Using NFS for accessing the files also presents problems. The results of our
experiments indicate that NFS operations incur latency that has a significant
impact on throughput. NFS performance benefits from larger files much in
the same way as HDD performance does.

Vcache performance impacts interactive use by annotators. The design
magnifies the problems with small files, NFS latency and limited IOPS
performance of RAID 6. Maintenance is also seriously hindered by the
performance of iterating through cache contents. The Vcache index would
benefit significantly from using a database instead of file system hierarchy
over NFS. The use of NFS for Vcache objects should also be reconsidered.
A non-POSIX object store would cover the requirements equivalently.

IO is often the bottleneck. CPU performance can be traded for IO
performance by using compression; especially as CPUs have more and more

55

CHAPTER 5. DISCUSSION 56

cores. ZFS LZ4 compression is currently used when storing datasets, which
results in some space savings with negligible costs. However, file contents
are not compressed when transferred over NFS. According to Nielsen [33],
processing power increases faster then consumer Internet bandwidth. The
product installations are often in locations where Internet bandwidth increases
at an even slower rate comparatively. It makes sense to compress the data
before transferring over the obvious bottleneck between the sites and central
storage: the public Internet.

Another reason for increasing the file size is metadata overhead. Metadata
can account for the majority of space used by a small file, as shown by our
experiments with ZFS. The one thing all distributed file systems have in
common is that metadata limits their scalability. Metadata needs to scale in
order for the file system to scale. In some cases there is no difference in the
amount of metadata needed to store a 1 KiB and 1 TiB file; offset and length.

Current usage patterns have no requirement of locking or other POSIX
semantics of NFS that have a cost. The datasets are immutable. Batch
processing is used to analyze datasets and latency-sensitive real time access
is not present. The use cases can be covered with HDFS or an object store
combined with a database for metadata. MapReduce would also make it
possible to process datasets on the hardware they are stored instead of having
to fetch them from HDFS for processing. HDFS-RAID and Xorbas make it
possible to have similar low levels of overhead for redundancy that parity-based
RAID offers.

5.1 Proposed Storage Architecture
Based on the findings in this Thesis we propose the following system archi-
tecture changes to be made in the future. All datasets should be stored as
a single file per dataset, preferably several GiB in size. A single file dataset
should not simply be an archive of concatenated separate files. The design
of ROS bags should be used as guidance. Datasets should be compressed as
they are initially produced, and all the tools operate on compressed datasets.

The central storage for datasets should reside in scalable distributed
storage. Hadoop and HDFS would be the preferred option, as the combination
also enables distributed computations. If MapReduce or HDFS are deemed
unsuitable, another distributed file system or object store can be substituted.
Dataset metadata should be stored in a database to enable efficient queries.

Vcache should store its index in a database. A better cache invalidation
policy should be implemented using the database. Objects stored in Vcache
should be moved to an object store or distributed file system. The changes

CHAPTER 5. DISCUSSION 57

to Vcache can be implemented in stages.
The proposed changes do limit the ability to use any tools that work in

a UNIX environment. Changes would be required not only in the storage
architecture, but software producing datasets and processing them. Staying
with the current architecture on the other hand limits performance and
scalability.

Bibliography

[1] Aghayev, A., and Desnoyers, P. Skylight - A Window on Shingled
Disk Operation. In Proceedings of the 13th USENIX Conference on
File and Storage Technologies, FAST 2015, Santa Clara, CA, USA,
February 16-19, 2015 (2015), J. Schindler and E. Zadok, Eds., USENIX
Association, pp. 135–149.

[2] Amer, A., Holliday, J., Long, D., Miller, E., Paris, J., and
Schwarz, T. Data Management and Layout for Shingled Magnetic
Recording. IEEE Transactions on Magnetics 47, 10 (Oct. 2011), 3691–
3697.

[3] Apache HBase Reference Guide. Webpage, 2015. https://hbase.apache.
org/book.html. Accessed 2015-03-06.

[4] Bairavasundaram, L. N., Goodson, G. R., Schroeder, B.,
Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. An Analysis
of Data Corruption in the Storage Stack. In 6th USENIX Conference
on File and Storage Technologies, FAST 2008, February 26-29, 2008,
San Jose, CA, USA (2008), M. Baker and E. Riedel, Eds., USENIX,
pp. 223–238.

[5] Barratt, C. BackupcPC. Webpage. http://backuppc.sourceforge.
net/, Accessed 2015-03-02.

[6] Beaver, D., Kumar, S., Li, H. C., Sobel, J., Vajgel, P., et al.
Finding a Needle in Haystack: Facebook’s Photo Storage. In 9th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2010, October 4-6, 2010, Vancouver, BC, Canada, Proceedings (2010),
R. H. Arpaci-Dusseau and B. Chen, Eds., USENIX Association, pp. 47–
60.

[7] Bonwick, J. The Slab Allocator: An Object-Caching Kernel Memory
Allocator. In USENIX Summer 1994 Technical Conference, Boston,

58

https://hbase.apache.org/book.html
https://hbase.apache.org/book.html
http://backuppc.sourceforge.net/
http://backuppc.sourceforge.net/

BIBLIOGRAPHY 59

Massachusetts, USA, June 6-10, 1994, Conference Proceeding (1994),
USENIX Association, pp. 87–98.

[8] Bonwick, J., Ahrens, M., Henson, V., Maybee, M., and Shel-
lenbaum, M. The Zettabyte File System. 2003.

[9] Borthakur, D. HDFS Architecture Guide. Webpage, 2014.
https://hadoop.apache.org/docs/current/hadoop-project-dist/
hadoop-hdfs/HdfsDesign.html. Accessed 2015-01-18.

[10] Callaghan, B., Pawlowski, B., and Staubach, P. NFS Version 3
Protocol Specification. RFC 1813 (Informational), June 1995.

[11] Ceph Filesystem. Webpage. http://ceph.com/docs/master/cephfs/.
Accessed 2015-02-02.

[12] Collet, Y. LZ4: Extremely Fast Compression algorithm. Webpage,
2011. https://code.google.com/p/lz4/. Accessed 2015-03-06.

[13] Dean, J., and Ghemawat, S. MapReduce: Simplified Data Processing
on Large Clusters. In 6th Symposium on Operating System Design and
Implementation (OSDI 2004), San Francisco, California, USA, December
6-8, 2004 (2004), E. A. Brewer and P. Chen, Eds., USENIX Association,
pp. 137–150.

[14] Dees, B. Native command queuing - advanced performance in desktop
storage. IEEE Potentials 24, 4 (Oct. 2005), 4–7.

[15] Elerath, J. G. Hard Disk Drives: The Good, the Bad and the Ugly.
Commun. ACM 52, 6 (2009), 38–45.

[16] Gallager, R. G. Low-Density Parity-Check Codes. IRE Transactions
on Information Theory 8, 1 (Jan. 1962), 21–28.

[17] Ghemawat, S., Gobioff, H., and Leung, S. The Google File
System. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October
19-22, 2003 (2003), M. L. Scott and L. L. Peterson, Eds., ACM, pp. 29–
43.

[18] Google Snappy: A Fast Compressor/Decompressor. Webpage, 2011.
https://code.google.com/p/snappy/. Accessed 2014-10-27.

[19] Hamming, R. W. Error Detecting and Error Correcting Codes. Bell
System Technical Journal 29, 2 (1950), 147–160.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://ceph.com/docs/master/cephfs/
https://code.google.com/p/lz4/
https://code.google.com/p/snappy/

BIBLIOGRAPHY 60

[20] Hancock, S. M. Tru64 UNIX File System Administration Handbook.
Digital Press, 2001.

[21] Hasenstein, M. The Logical Volume Manager (LVM), 2001.

[22] Heichler, J. Introduction to BeeGFS, Nov. 2014.

[23] Henson, V., Ahrens, M., and Bonwick, J. Automatic Performance
Tuning in the Zettabyte File System. File and Storage Technologies
(FAST), work in progress report (2003).

[24] Hickmann, B., and Shook, K. ZFS and RAID-Z: The Über-FS?,
2007.

[25] Hitz, D., Lau, J., and Malcolm, M. A. File System Design for
an NFS File Server Appliance. In USENIX Winter 1994 Technical
Conference, San Francisco, California, January 17-21, 1994, Conference
Proceedings (1994), USENIX Association, pp. 235–246.

[26] Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan,
P., Li, J., and Yekhanin, S. Erasure Coding in Windows Azure
Storage. In 2012 USENIX Annual Technical Conference, Boston, MA,
USA, June 13-15, 2012 (2012), G. Heiser and W. C. Hsieh, Eds., USENIX
Association, pp. 15–26.

[27] illumos. Webpage. http://wiki.illumos.org/display/illumos/
illumos+Home. Accessed 2015-03-06.

[28] Intel. Lustre Software Release 2.x: Operations Manual, Jan. 2015.

[29] Kraemer, F. What’s New with GPFS v3.5. Presentation Slides, Apr.
2013.

[30] Krevat, E., Tucek, J., and Ganger, G. R. Disks Are Like
Snowflakes: No Two Are Alike. In 13th Workshop on Hot Topics in
Operating Systems, HotOS XIII, Napa, California, USA, May 9-11, 2011
(2011), M. Welsh, Ed., USENIX Association.

[31] McKusick, K., and Quinlan, S. GFS: Evolution on Fast-forward.
Commun. ACM 53, 3 (Mar. 2010), 42–49.

[32] Mushran, S. OCFS2: A Cluster File System for Linux. Oracle, July
2008.

http://wiki.illumos.org/display/illumos/illumos+Home
http://wiki.illumos.org/display/illumos/illumos+Home

BIBLIOGRAPHY 61

[33] Nielsen, J. Nielsen’s Law of Internet Bandwidth. Webpage, 2014. http:
//www.nngroup.com/articles/law-of-bandwidth/. Originally published
in 1998, but updated with 2014 data. Accessed 2015-01-18.

[34] Nowicki, B. NFS: Network File System Protocol specification. RFC
1094 (Informational), Mar. 1989.

[35] Patterson, D. A. Latency lags bandwith. In 23rd International
Conference on Computer Design (ICCD 2005), 2-5 October 2005, San
Jose, CA, USA (2005), IEEE Computer Society, pp. 3–6.

[36] Patterson, D. A., Gibson, G. A., and Katz, R. H. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In Proceedings of the
1988 ACM SIGMOD International Conference on Management of Data,
Chicago, Illinois, June 1-3, 1988. (1988), H. Boral and P. Larson, Eds.,
ACM Press, pp. 109–116.

[37] Pawlowski, B., Shepler, S., Beame, C., Callaghan, B., Eisler,
M., Noveck, D., Robinson, D., and Thurlow, R. The NFS version
4 protocol. In Proceedings of the 2nd International System Administration
and Networking Conference (SANE 2000) (2000), vol. 2, p. 50.

[38] Prakash, V., Wen, Y., and Shi, W. Tape Cloud: Scalable and Cost
Efficient Big Data Infrastructure for Cloud Computing. In 2013 IEEE
Sixth International Conference on Cloud Computing, Santa Clara, CA,
USA, June 28 - July 3, 2013 (June 2013), IEEE, pp. 541–548.

[39] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. Y. ROS: an Open-Source
Robot Operating System. In ICRA workshop on open source software
(2009), vol. 3, p. 5.

[40] Gluster File System. Webpage. http://www.gluster.org. Accessed 2015-
02-02.

[41] Red Hat Global File System 2. Webpage, 2014. https:
//access.redhat.com/documentation/en-US/Red_Hat_Enterprise_
Linux/7/html/Global_File_System_2/. Accessed 2015-02-02.

[42] Reed, I. S., and Solomon, G. Polynomial Codes over Certain Finite
Fields. Journal of the Society for Industrial & Applied Mathematics 8, 2
(1960), 300–304.

http://www.nngroup.com/articles/law-of-bandwidth/
http://www.nngroup.com/articles/law-of-bandwidth/
http://www.gluster.org
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Global_File_System_2/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Global_File_System_2/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Global_File_System_2/

BIBLIOGRAPHY 62

[43] Rodeh, O., Bacik, J., and Mason, C. BTRFS: The Linux B-Tree
Filesystem. Trans. Storage 9, 3 (Aug. 2013), 9:1–9:32.

[44] Rosenblum, M., and Ousterhout, J. K. The Design and Imple-
mentation of a Log-structured File System. ACM Trans. Comput. Syst.
10, 1 (Feb. 1992), 26–52.

[45] Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., Dimakis,
A. G., Vadali, R., Chen, S., and Borthakur, D. XORing Ele-
phants: Novel Erasure Codes for Big Data. In Proceedings of the VLDB
Endowment (Mar. 2013), vol. 6, VLDB Endowment, pp. 325–336.

[46] Schalnat, G. E., Dilger, A., Bowler, J., Randers-Pehrson,
G., et al. libpng - The Official Portable Network Graphics Reference
Library. Webpage. http://libpng.org/pub/png/libpng.html. Accessed
2015-03-02.

[47] Schmuck, F. B., and Haskin, R. L. GPFS: A Shared-Disk File
System for Large Computing Clusters. In FAST (2002), vol. 2, p. 19.

[48] Seagate Technology LLC. Barracuda R© XT Product Manual, Sept.
2010. Revision D.

[49] Seagate Technology LLC. Constellation R© ES Serial ATA Product
Manual, Feb. 2012. Revision D.

[50] Seagate Technology LLC. Constellation R© CS Serial ATA Product
Manual, May 2013. Revision D.

[51] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
Beame, C., Eisler, M., and Noveck, D. NFS version 4 Pro-
tocol. RFC 3010 (Proposed Standard), Dec. 2000. Obsoleted by RFC
3530.

[52] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
Beame, C., Eisler, M., and Noveck, D. Network File System
(NFS) version 4 Protocol. RFC 3530 (Proposed Standard), Apr. 2003.

[53] Shvachko, K. V. HDFS Scalability: The limits to growth. login 35, 2
(2010), 6–16.

[54] Subramanian, M., Lloyd, W., Roy, S., Hill, C., Lin, E., Liu,
W., Pan, S., Shankar, S., Viswanathan, S., Tang, L., and
Kumar, S. f4: Facebook’s Warm BLOB Storage System. In 11th

http://libpng.org/pub/png/libpng.html

BIBLIOGRAPHY 63

USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’14, Broomfield, CO, USA, October 6-8, 2014. (2014), J. Flinn
and H. Levy, Eds., USENIX Association, pp. 383–398.

[55] Sun Microsystems, Inc. ZFS On-Disk Specification, 2006. Draft.

[56] Sweeney, A., Doucette, D., Hu, W., Anderson, C., Nishimoto,
M., and Peck, G. Scalability in the XFS File System. In Proceedings
of the USENIX Annual Technical Conference, San Diego, California,
USA, January 22-26, 1996 (1996), USENIX Association, pp. 1–14.

[57] Tanenbaum, A. S. Modern Operating Systems, 3rd ed. Prentice Hall
Press, Upper Saddle River, NJ, USA, 2007.

[58] Tridgell, A., and Mackerras, P. The rsync algorithm. Tech. rep.,
Australian National University, June 1996.

[59] Vallamsetty, U. ZFS Write Performance (Impact of fragmentation).
Webpage, Feb. 2013. http://blog.delphix.com/uday/2013/02/19/78/.
Accessed 2015-03-06.

[60] Wang, W., and Hairong, K. Saving Capacity with HDFS RAID. Web-
page, June 2014. https://code.facebook.com/posts/536638663113101/
saving-capacity-with-hdfs-raid/. Accessed 2014-10-27.

[61] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., and
Maltzahn, C. Ceph: A Scalable, High-Performance Distributed File
System. In 7th Symposium on Operating Systems Design and Imple-
mentation (OSDI ’06), November 6-8, Seattle, WA, USA (2006), B. N.
Bershad and J. C. Mogul, Eds., USENIX Association, pp. 307–320.

[62] Zou, H., Yu, Y., Tang, W., and Chen, H. M. Improving I/O
Performance with Adaptive Data Compression for Big Data Applications.
In 2014 IEEE International Parallel & Distributed Processing Symposium
Workshops, Phoenix, AZ, USA, May 19-23, 2014 (2014), IEEE, pp. 1228–
1237.

http://blog.delphix.com/uday/2013/02/19/78/
https://code.facebook.com/posts/536638663113101/saving-capacity-with-hdfs-raid/
https://code.facebook.com/posts/536638663113101/saving-capacity-with-hdfs-raid/

Appendix A

Block Size Effect on Throughput

vim: set si ai et sw=4 sts =4 ts=4 ft= python :
import ctypes
import os
import random
import sys
import time

LIBC = ctypes.CDLL(’libc.so.6’)
SECTOR = 512

def drop_caches ():
LIBC.sync()
with open(’/proc/sys/vm/drop_caches ’, ’w’) as drop:

drop.write(’3\n’) # drop pagecache , dentries and inodes

def main ():
drive = open(’/dev/sda’, ’rb+’)
drive.seek(0, os.SEEK_END)
length = drive.tell()

def randread(block , count):
read = 0
maxsector = int((length -block)/ SECTOR)
for i in range(count):

drive.seek(random.randint(0, maxsector)* SECTOR)
read += len(drive.read(block))

return read

for i in range (30):

64

APPENDIX A. BLOCK SIZE EFFECT ON THROUGHPUT 65

block = 2**i
drop_caches ()
start = time.time()
read = randread(block , 1000)
delta = time.time() - start
print ’block:’, block , ’secs:’, delta , ’read:’, read

if __name__ == ’__main__ ’:
main()

Appendix B

ZFS Metadata Overhead

#!/ bin/sh -e
vim: set si ai et ts=4 sts =4 sw=4 ft=sh:
for size in 0 1 128 1024; do # kB

for count in 10 100 1000 10000 100000; do
create pristine file system
zfs create tank/test
for i in $(seq -w 0 $(($count -1))); do

dd if=/dev/urandom of=/tank/test/$i \
bs=1k count=$size > /dev/null 2>&1

done
force changes to disk by exporting and importing
zpool export tank
zpool import tank
echo "$size␣$count"
zfs list -p tank/test
cleanup
zfs destroy tank/test

done
done

66

Appendix C

NFS Latency Overhead

A collection of commands used to measure NFS latency

Used to drop the caches
dropcache () {

echo 3 > /proc/sys/vm/drop_caches
}

Use external time (1) to be able to redirect stderr
alias time=’command time ’

The path where the files are located
DIR="$1"

Measure time taken to ‘find -ls ‘ the directory
time -f ’%e’ find "$DIR" -ls >/dev/null 2>find.time

Measure time taken to ‘find -exec file ‘ the directory
time -f ’%e’ find "$DIR" -exec file ’{}’ \; >/dev/null 2>file.time

List full path of files with selected size to cat.files
find "$DIR" -type f -size +900k -size -1000k >cat.files

Count the number of bytes read from files listed in cat.files
time -f ’%e’ xargs cat 2>cat.time <cat.files|wc -c

Split file contents into 100 MiB files
xargs cat <cat.files |split -b100M

67

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Structure of the Thesis

	2 Background
	2.1 Mass Storage
	2.2 Hard Disk Drives
	2.2.1 Performance Model

	2.3 Redundant Array of Independent Disks
	2.4 Evolution of File Systems
	2.5 Zettabyte File System
	2.5.1 Storage Pool Allocator
	2.5.2 Data Management Unit
	2.5.3 ZFS Interface Layer
	2.5.4 Tradeoffs

	2.6 Hadoop Distributed File System
	2.6.1 HDFS-RAID and Xorbas

	2.7 Network File System
	2.8 Other Large Scale File Systems

	3 Environment
	3.1 High Level Data Processing
	3.2 Architecture
	3.2.1 Sensors
	3.2.2 Recognition
	3.2.2.1 Vcache

	3.2.3 Adaptive Picking
	3.2.4 Manipulation

	3.3 ZenRobotics Dataset Storage
	3.4 Amount of Data
	3.5 Storage Utilization by File Type

	4 Experiments
	4.1 I/O Read Operation Size Effect on HDD Throughput
	4.2 ZFS Metadata Overhead
	4.3 NFS Latency Overhead
	4.4 Recompressing ZNG to PNG

	5 Discussion
	5.1 Proposed Storage Architecture

	A Block Size Effect on Throughput
	B ZFS Metadata Overhead
	C NFS Latency Overhead

