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Abstract: 

Modern microcontrollers provide a 32 bit core, a rich set of peripherals and on chip memories. 

However, due to the recent slowing down of the exponential increase in RAM performance, 

memory has become the main cost factor of low-end MCUs. For enabling the IoT evolution, 

and until a technological breakthrough improves memory performance, inexpensive sensing 

and actuation nodes will be heavily memory constrained.  

Ell-i Open Source Co-operative developed an Open Source Hardware prototype PoE enabled 

IoT node, which targets to use the smallest ARM Cortex-M0 MCU, with a maximum of 4kB 

of RAM. Although multiple Open Source Real-Time Operating Systems were available, none 

of them satisfied the requirements. These included fitting into the memory footprint without 

minimal configuration, properly handling of the hardware interrupt controller, or adequate 

alignment with the company’s business plan. 

This work provides a memory constrained scheduler that rivals in performance and memory 

footprint the evaluated Open Source RTOSs alternatives. Additionally, it provides safety 

features not present in other systems, while providing the necessary alignment to Ell-i Co-

Operative. A comprehensive evaluation of popular RTOSs for the Cortex-M0 architecture is 

included, as it allows the benchmarking of the developed system. 
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Chapter 1 - Introduction 

The advance in semiconductor technologies has allowed an exponential improvement of the 
processing power, memory capacity and other metrics of computing hardware during the last fifty 
years. This continuous evolution, predicted by Gordon Moore in 1965, is the reason why modern 
microcontrollers can fit a 32bit processor, a rich set of peripherals, and integrated memories in a very 
small and cheap package. Additionally, the widespread use of processing cores designed by ARM 
Holdings in mobile and embedded applications has led to a commoditisation of the low-end MCUs. 

This commoditisation process generates an extensive offer of cheap, yet powerful MCUs. Thus, it has 
been one of the main driving forces behind the Internet of Things (IoT) evolution or the Open Source 
Hardware movement. However, in recent years the pace of the Moore’s law progression has started 
to slow down. This trend is particularly affecting the memory component of computing systems, 
making it a bottleneck to the performance of comparatively faster processors, and the main cost factor 
of microcontrollers and mobile systems. 

In order to enable the IoT evolution, the development of inexpensive embedded systems capable of 
sensing, actuating and communicating in real time is essential. Therefore, as memory is the main 
pricing element, the software stack targeted for those devices should limit as much as possible the 
memory usage, while still providing comprehensive networking and sensing capabilities. 

Moreover, this thesis is based on the internship work at Ell-i Open Source Co-operative. Ell-i is an Open 
Source Hardware organisation which targets to provide Power over Ethernet (PoE) enabled nodes as 
part of the IoT ecosystem. This prototype nodes are planned to be relatively inexpensive by the 
inclusion of the smallest MCUs from the Cortex-M0 family, which are very limited in RAM memory. 

1.1 Problem 

Real Time Operating Systems (RTOSs) for microcontrollers are not new, neither are their Open Source 
implementations. In fact, Open Source RTOSs have widespread usage due to the performance they 
provide at zero cost. However, even if there exist a variety of options available for the ARM powered 
MCUs, this variety diminishes drastically towards the low-end devices. Consequently, none of them 
fulfilled the specific requirements for driving the Ell-i PoE node prototype, which targets to use the 
cheapest Cortex-M0 processors, with very limited RAM in the range of 2 - 4 KB. In particular there are 
three key aspects that none of the available Open Source RTOSs managed to fulfil. Two are technical 
and the third one is related to the Ell-i business strategy. 

The first technical problem is that the majority of systems available are targeted to more powerful 
processors, and require a ‘minimal’ configuration to fit on the low-end MCUs. Although some systems 
have ports to architectures part of the Cortex-M family, only a few are available for the Cortex-M0 
processor. Some of the issues with ‘minimal’ configurations include that the system still provides more 
functionality than needed, removing functionality is not efficient, or the reduced configuration does 
not translate into memory savings or performance increase. As a consequence, designers either select 
a device closer to the high-end, or prefer solutions which obviate threading requirements, if possible. 

The second problem is that most Open Source RTOSs are designed to be as generic and platform 
independent as possible. Although this is generally a benefit, it becomes a problem when some 
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architectures have peculiarities that challenge the soundness of the software design. In particular, the 
interrupt system of the ARM Cortex-M provides very low latency at the cost of possible complex 
hardware events interleaving. This complexity not entirely addressed by the available RTOSs, and 
generates a latent risk for systems used in hard real-time applications and other mission-critical 
situations. 

The third problem is closely related to the alignment between the scheduling software and the 
business model of Ell-i. In concrete, two specific requirements were not fulfilled by other Open Source 
RTOSs. The most critical is the necessity to collectively own the copyright of the software, in order to 
license it to companies as part of the business strategy. The second requirement is that, as an Open 
Source Hardware organisation, it is ideal to provide software specially tailored to the designed 
hardware. 

1.2 Contributions 

The main contributions of this thesis are related to the design and implementation of a memory 
constrained scheduler tailored for the Cortex-M0 architecture, with focus on its hardware interrupt 
controller. The objective is to enable basic threading applications on the low-end MCUs with a 
maximum 4KB of RAM and very limited Flash. There are three key benefits the developed system 
provides in comparison with available Open Source RTOS. 

First, the implementation provides a very small footprint for both, RAM and Flash. Moreover, it follows 
a similar strategy as the data-driven peripheral initialisation concept developed at Ell-i, generating a 
complete solution. Second, the system provides low latency for synchronisation primitives and context 
switches. This leads to fast performance for Real Time applications which require very limited 
interference from system interrupts. A key benefit is that there is no ‘minimal’ configuration, leading 
to the efficient usage of all the involved resources. The third benefit is the safety derived from the 
careful analysis of the hardware interrupt system of the Cortex-M0 architecture and the static 
allocation of all the system level resources at compile time. 

An additional contribution regards to the business side of Ell-i: the ownership of the copyright of the 
developed scheduler. This element is a key factor for the licencing business of Open Source material. 
Moreover, this thesis represents a detailed documentation of the implemented system, which serves 
as a reference for further development. It is also important for the strategy to provide Open Source 
Software as a bundle specifically crafted to highlight the possible use cases of Open Source Hardware. 

1.3 Thesis Structure 

The rest of this thesis is organised as follows. In the two following chapters, the background of the 
thesis is discussed. Chapter 2 deals with the business background, locating the current development 
in the framework of an Open Source Hardware ecosystem. Chapter 3 deepens into the technical 
details of Real Time Systems as a basis to analyse RTOSs implementations. 

Chapter 4 provides insight on the material that served as a basis for the development of this project. 
This includes a description of the hardware platform used as a target for the software stack, the 
previously developed peripheral initialisation system from Ell-i, and a discussion of various RTOSs 
which codebase is available (including Open Source and Proprietary systems). 
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Chapter 5 offers a detailed description of the implemented scheduler, as well as the design rationale 
behind the selection of particular data structures and interfaces. In particular, section 5.2 offers details 
of the core scheduling system and serves as a basis for the other sections of this chapter. 

Chapter 6 describes the evaluation methodology, provides the results, and offers a discussion based 
on them. Specifically, the resulting data is presented in section 6.4, while its discussion is located in 
section 6.5. Finally, Chapter 7 concludes the thesis by revising its contributions, attempts to relate 
them to a broader problem space, and describes possible directions of future developments. 
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Chapter 2 - An Open Source Hardware Ecosystem 

The purpose of this chapter is to review the literature regarding Open Source Software (OSS) and Open 
Source Hardware (OSHW). It begins by discussing the history and current state of Open Source 
projects, both OSS and OSHW. Then, a detailed description of business models for OSHW is presented. 
Finally, the specific business model of Ell-i is discussed, with particular focus on the ecosystem 
creation. 

2.1 Context of Open Source Projects 

Open Source Software 

The idea of free software is not new. During the beginning of the computer evolution, computers were 
regarded as research tools and only owned by universities and corporations. At that time, software 
was shared freely among educational institutions, as the act of programming was paid, not the 
program itself. When the costs of computers decreased and they became widespread available, 
programmers started to restrict the rights to their software and charging fees for each copy [1]. 

The origins of the current use of the “Free Software” can be tracked to 1984 when it was used as a 
political argument by Richard Stallman [1]. This movement was also the beginning of the Free Software 
Foundation, the GNU Project, and the GNU General Public License (GPL). Similarly, Eric Raymond 
popularized the idea of Open Source in his classic article “The Cathedral and the Bazaar” [2]. The 
importance of the “source code” is particularly relevant, as the openness of the source implies not 
only free distribution, but the possibility to modify and build upon the provided software. 

The Open Source Software (OSS) has proven to benefit multiple components of the IT ecosystems. For 
the developer group it reduces the costs of the development process and enables a virtually no cost 
distribution strategy. For business users, it enables the deployment of servers without the OS license 
fees. In addition, Ubuntu, a variation of the Linux Open Source OS, was regarded as the most secure 
end user operating system for end users by the UK government [3]. 

Nevertheless, the OSS trend has not only become politically important, but also has proven to be a 
profitable business by its own. Red Hat, one of the companies that sells support for their own Linux 
Open Source OS, reported a revenue of 1.33 billion USD for the 2013 fiscal year [4], and employs more 
than six thousand people worldwide [5]. 

Open Source Hardware 

The idea of Open Source Hardware (OSHW) can be historically related to the open interfaces in the 
computer industry. When IBM competed with Apple at the personal computer market, they decided 
to use off-the-shelf parts instead of internally designed components. The decision was necessary in 
order to reduce internal costs and handle the very short time to market. As a result, they enabled the 
first open interface computer platform [6]. In short time, other companies like Dell and Gateway 
started producing completely compatible IBM PC’s. 

The availability of the internal details of hardware was at some point necessary for enabling adequate 
support. An example is found in the Tektronix Oscilloscopes form the 1950’s. Some of the devices 
were very expensive, around half a year salary of an engineer, and had vacuum tubes with very short 
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lifespan [7]. The necessity for constant changing required the product to be sold together with very 
detailed service manuals. The documents not only described how to operate the device, but detailed 
the entire internal functionality, with a bill of materials and schematic diagrams, in order to allow the 
user to replace parts as needed. 

Although the OSHW is based on very similar philosophical roots as OSS, it was not until the reduction 
of prices of components and the widespread use of Internet services that the first practical projects 
started to materialize. Nevertheless, the differences with OSS have posed new challenges, some of 
which still require advances in technology and legislation. The main practical differences between 
OSHW and OSS have already been drafted by the academic literature. The differences and problems 
detailed below are based on the analysis of Locke [7], Acosta [8], and Rubow [9]. 

One practical difference regards distribution. Software is a non-tangible asset that can be distributed 
at practically no cost through Internet. In contrast, hardware has inherent costs of distribution and 
storage. Another problem is updatability. While software can be automatically updated and with no 
cost, hardware requires the substitution of sections, parts, or even the whole unit, which is not 
automatic and definitively not free. 

An additional constraint, which is projected to drop rapidly, is the cost of manufacturing and testing 
equipment. While software requires a relatively inexpensive personal computer, the infrastructure 
required to manufacturing and testing of electrical and electronic hardware can be very expensive. 
This factor limits certain processes to be solely available to large companies, excluding in practice the 
participation of amateur and semi-professional developers. Nevertheless, the prices of this kind of 
equipment are dropping very rapidly, partially as a consequence of the open hardware trend, which 
also affects manufacturing and testing hardware. 

An additional problem related to the physical existence of OSHW, which is also expected to decline at 
some point in the future, is the reliance on suppliers. Although many of the passive and simple 
components are available from multiple suppliers, the more advanced ones, like MCU’s and specific 
peripherals are only provided by one specific manufacturer. As the configuration of the hardware is 
designed to work with that particular component, substitution requires extensive modification of 
hardware designs and related software. However, the commoditization led by ARM Holdings has 
partially diminished the costs of changing MCU manufacturer, at least from the software side, as the 
common architecture allows partial reuse of existing code and related tools with changes only 
required on the proprietary peripherals. 

While software is essentially the output of text (source code) passed through a compiler, it was not 
until the maturation of the GCC compiler (first widespread Open Source compiler) that the Open 
Source trend growth rapidly. This compiler was one of the main enabling factors for the Open Source 
success. In the same way, hardware is designed used specialized Computer Aided Design (CAD) tools. 
Currently, the majority of these tools is proprietary and the open source options are not mature 
enough. Furthermore, the proprietary and most used ones are from competing companies, decreasing 
considerably compatibility. Although it is possible to “export” the design to open formats, it is not 
possible to modify the design and returning it to the proprietary format. 

Another problem generated by the use of current proprietary CAD tools is the impossibility of 
automatic merging. While there exist extensive sets of tools for merging and version control for 
software (Source Code Management), they are all based upon the fact that source code is actually 



6 
 

plain text. However, that trend is also in decrease, and merging of hardware models is expected to be 
more automated, as the collaboration of teams through internet services is becoming the most 
frequently and cost efficient solution. Unfortunately, in the hardware design nowadays, merging 
requires human effort, making the process more costly. 

Furthermore, copyright is the legal framework that protects software. Concretely, it can be used to 
prevent deviations of the terms of the license that would fall into copyright infringement. 
Unfortunately, the majority of the components of OSHW, such as particular circuit designs or the 
selection of specific components, is not covered by the protection of copyright [7]. A possible 
alternative is to protect hardware designs by patent laws. However, it is not as simple as copyright: 
apart from being expensive and very time consuming, it requires the invention novelty. The problem 
is that patents were designed for protecting a different kind of intellectual output. In summary, the 
protection of OSHW is still an open discussion, with multiple prototype license types already present 
but with no general acceptance. 

Open Source Hardware Business Models 

The purpose of this section is to review the most prominent business models available for OSHW. 
Although some of the models described below were initially designed for the software, they are 
carefully selected as they can also provide channels of revenue for the hardware counterpart. 
Nevertheless, there are also models which origins and validity are closely related to the specific 
tangible characteristics of hardware.  

Support Sellers 

First, it is necessary to provide a brief reference to the usage of OSS. Although the Open Source 
characteristic implies that the software can be modified at will, the reality is that just a few individuals 
and organizations outside the main developer group actually touch the code and build upon it. In fact, 
the majority of users only “use” the code, as the technical skills and background required to 
successfully modify the source code to add functionalities are relatively unique and specific [10]. 

As a consequence, when an organization which requires a specific change or simply support for the 
OSS commonly seeks for assistance from the main developers. The main advantage of is a zero cost 
advertisement and distribution campaign, while support is the main revenue channel. This model has 
been widely referenced in literature related to Open Source [7, 11, 12], and is probably one of the first 
successful business strategies built around an open source ecosystem. 

The custom development and support for hardware also requires expertise on the fields that the 
project of the customer encompasses. In fact, the set of abilities required is even more unique, as the 
core development team should have proficiency in both, hardware and software. The two main kinds 
of support for open source projects [10] will be discussed in the sections below. 

Professional Support 

The first kind of strategy that proved profitable consisted of selling professional services, such as 
customer support and maintenance, for an open source codebase. However, as the workforce behind 
the service providing corporation is limited, only particular versions (revisions) of the software are 
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supported. Additionally, the software is only supported with the constraint that the user does not 
modify to source code. Such modifications commonly lead to violations of the service agreement [10]. 

Custom Development and Support 

One special case of the support business model is to provide support to the modifications that the 
client makes to the original code. As discussed earlier, support sellers only provide service to the 
unmodified and updated versions. However, it is also possible to provide services and support the 
modifications the client makes to the original codebase. Two notable examples for OSS are Gluecode, 
later acquired by IBM [13], and Specifix [10]. 

In the case of hardware, the same kind of personalization can be offered. Instead only supporting the 
reference designs, tailored services can be provided to generate hardware and software solutions that 
fit the particular needs of the client. The particularity that hardware requires software to run over it 
provides an additional layer of customization. Additionally to the proficiency in software and hardware 
(which is specific and unique), expertise on the field of the client’s project is also necessary. 

Brand Licensing 

The branding model is based on the ownership of a trademark, and the free distribution of the open 
source outcomes [11]. In particular, only the products, either software or hardware, generated by the 
development group can hold the brand name. This brand represents some added value to the 
customer, either in the form of additional testing phases to ensure quality, increased confidence in 
the support and extended periods of sustained maintenance, or simply by the expertise represented 
by the core developer team [12]. 

However, the revenue generation for an open source company following this strategy is not based 
solely on the possession of the trademark, but in the selling of this brand qualifier in a fashion similar 
to franchising. This strategy is particularly effective in the commercialization of OSHW, which 
manufacturing is relatively expensive and leads to a non-free distribution cost. A branded scheme 
benefits the manufacturer that buys the brand, as it can charge an additional price to the product, and 
compete on basis of quality and other attributes.  

Additionally, three benefits are presented to the core developer team. First, it obtains revenue for the 
trademark commercialization. Second, the quality and other attributes of the product can be ensured 
by the agreement. Third and finally, it is not necessary to produce large quantities of the hardware 
product in order to generate revenue for the manufacturer, which is particularly important when the 
company is at its start-up stage as the demand is very low compared to fully established products. 

Core Open (Loss Leaders) 

The loss leader business strategy is commonly used by established companies that release a piece of 
software as open source in order to increase their market share where they have low participation 
[11, 12]. The classic example of this strategy is the Android OS developed by Google. The target of the 
development was the revenues that an application market associated with the platform can generate. 
At the time of development, the market share was completely dominated by Apple and their iOS 
operating system for smartphones. Nevertheless, the open source distribution strategy proved 
extremely successful, as Android has more than 80% of the smartphone OS market share by the first 
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quarter of 2014 [14]. The application for hardware follows the same strategy. In particular, large MCU 
manufacturing companies could provide OSHW designs that use their own devices. 

Dual License Model 

This model is based on the fact that reciprocal licenses (which enforce any modification to be 
distributed with the same license) do not allow additional modifications to be released as closed 
products. This limitation reduces the possibilities of commercialization, as organizations usually prefer 
to keep their changes private. Nevertheless, the utilization of OSS and OSHW as a component of 
closed, private products is possible by the implementation of academic licenses, which allow the 
distribution of modifications in either open or closed approach [10, 15]. 

However, in order to enable the use of an Open Source project in a closed fashion, the development 
organization should own the copyright of the material. In order to achieve this, the organization either 
employs all the developers, or agrees the transfer of rights with the outside developers that modify 
to the core distribution. As this requires additional effort, it can directly be monetized. In other words, 
the client pays for the right to choose what license is more adequate for their purpose [10]. 

Bulk Discount Model 

The bulk discount model is based on the reduced costs that economies of scale provide when a 
manufacturing process is increased in numbers. As a consequence, this model only valid to OSHW. 
However, during the initial phase of most OSHW projects, the quantities required for the testing 
prototypes or initial demands are too small in comparison with the ones that benefit from economies 
of scale. Nevertheless, this effect can be reduced by the addition of an exclusivity or branding model. 
Consequently, manufacturers can afford some initial loss in exchange of possible future profits and 
lack of competition. This model is mainly used by the designers of the Raspberry Pi, which have an 
exclusive distribution agreement with RS and Farnell [16]. 

2.2 Ell-i business model 

The strategy from Ell-i focuses on designing inexpensive Power over Ethernet (PoE) development 
boards compatible with the Arduino ecosystem. The use of ARM 32 bit architecture in conjunction 
with simple Ethernet controllers and carefully crafted PoE components allows the use of only one 
MCU device per board. 

The computing power of the Cortex-M0 architecture allows the integration of the network stack into 
the main MCU, which reduces the additional cost of Ethernet controllers with integrated network 
stack, or the use of an additional MCU to handle the networking services. Additionally, the integration 
of PoE to the board eliminates the need of external components, such as the proprietary devices used 
for the PoE support in the Arduino platform [17, 18]. 

Ell-i proposes the co-operative organizational model and the egalitarian ownership as a form of 
innovation in the electronics industry and the OSHW community. The co-operative concept provides 
benefits from both, external and internal perspectives. From the external side, it is a strategy to cope 
with the negative forces that the world economic policies can exert over companies [19]. From the 
internal side, it is a channel to distribute responsibility more evenly across members, compared to 
other organizational models.  
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In particular, the application of egalitarian ownership increases further the uniformity of responsibility 
distribution, as employees own equal parts of the company. This leads to important benefits, such as 
decisions being taken in a democratic fashion, increase in the involvement on strategic planning, and 
a very flat hierarchical relationship among members [20]. This kind of ownership is also positive to the 
external ecosystem, as responsibility can extend beyond the boundaries of the organization and 
spread among the community, which is ideal for an open source project. 

Ecosystem creation 

As discussed earlier, the co-operative model with egalitarian ownership is also innovative for the Open 
Source ecosystem. The hierarchical structure among OSS teams can be quite challenging, in particular 
for new developers. Although the hierarchy is more dynamic when compared to proprietary projects 
[7], it still requires considerable effort. As an example, new developers for the Linux kernel are 
expected to work at least two years before receiving committer status [10]. As a consequence, Ell-i 
organizational structure is very attractive for new developers, which benefit from a less steep start 
and are able to participate in organizational decisions as soon as they become members. For the co-
operative point of view, a fast community growth in comparison to more hierarchical projects is a very 
important differentiator, mainly during the start-up phase.  

As in any other Open Source project, the identification of the reasons why developers participate 
without economic remuneration is of high importance. In general, the revised literature groups the 
motivating factors between internal and external. From the internal side, the most cited motivators 
are altruism and satisfaction of psychological needs. From the external ones, the most commonly 
referred are: reputation or prestige, access to the knowledge base and building of skills, and 
satisfaction of specific personal needs that the Open Source project solves. 

Altruism is regarded as the most obvious internal motivation [21, 22, 23]. It is simply translated in the 
gratification of sharing a solution for a complex problem to anyone who might need it. In addition, the 
satisfaction of diverse psychological needs (equivalent to the upper Maslow needs [24]), is referred in 
multiple forms, such as intellectual gratification and creativity [7], intrinsic motivation and community 
identification [22], or simply as psychological needs [23]. In particular, Open Source projects provide 
a level of liberty that is hardly available for developers working inside corporations with hard 
structures. 

Reputation is the most important external factor, as it provides present and future opportunities for 
personal career of the developers. It is referred as reputation [7, 21, 23], prestige [7], or peer 
recognition and self-marketing [22]. The access to the knowledge base and the acquisition of new skills 
are another important motivations for developers. It is referred as access to knowledge [21] or 
development of human capital [22]. In particular, Open Source projects give opportunities to students 
to participate in real life projects, which would be very complicated in a normal organization. Finally, 
the solution for a personal problem of the developer can be a strong motivation, mainly for the first 
movers of new projects [22]. 

The interaction between these motivating factors is also relevant for the general performance of the 
participating developers. In general, external motivations have more weight on the decision of 
participating or continuing in an open source project. However, students and hobbyists are a special 
case, mainly driven by internal motivations [22]. Regarding internal motivations, the effort intensity 
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of developers is commonly strengthened by the satisfaction of psychological needs, mainly autonomy, 
and decreased by the altruistic behaviour. Apparently, the enjoyment of sharing knowledge distracts 
the participant from reaching specific goals and providing significant results [23]. 
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Chapter 3 - Scheduling in Real Time Systems 

As the literature regarding real time systems scheduling is extensive, it would be out of the scope of 
this literature analysis to target all its extent. For this reason, this literature review will be limited to 
the fixed priority preemptive scheduling (FPPS) upon a single processor, its evolution and selected 
topics of current development. However, it is relevant to briefly describe the most important topics 
that real time scheduling covers nowadays. As multiple variables can be selected to divide and classify 
real time scheduling algorithms and applications, the most relevant ones are described below. 

First, the algorithms can be classified based on the stage at which calculations of the scheduling 
decisions are done. In that sense, algorithms can be classified as either static or dynamic. From one 
hand, static algorithms set the scheduling decisions in advance, require previous knowledge of the 
characteristics of the tasks, and result in little runtime overhead. Additionally, if the calculations of the 
scheduling sequence are done before the running the system, the static algorithm is also classified as 
offline [25]. From the other hand, dynamic algorithms take decisions during runtime, leading to more 
adaptable systems able to handle unexpected levels of activity. As a consequence, they are suitable 
for systems that include with soft deadlines, or situations where a processing upper bound cannot be 
calculated. 

Second, scheduling algorithms can be classified by the restrictions to preemption that they enforce. 
From one side, preepmtive algorithms allow tasks to be halted at any point in time, and continue at a 
later moment without affecting the behaviour and correctness of their operation. The only difference 
is that the total execution time is extended. From the other side, non-preemptive algorithms treat 
tasks as continuous processing sections that cannot be stopped once they are started. This kind of 
behaviour offers a solution to mutual exclusive operations in concurrency situations, and is closely 
related to blocking.  

An additional type of algorithms, referred as hybrid, or of limited preemption [25], present a behaviour 
between the fully preemptive and the non-preemptive schemes. This strategy allows tasks to execute 
for a short extra time before they are suspended. The systems that implement limited preemption use 
preemptive behaviour as a general policy, but treat special sections of execution as non-preemptable. 
In case a task is requested to be halted at this sections, the preemption is deferred until the atomic 
section is completed. For this reason, the algorithms are also called of deferred preemption. 

Third, scheduling mechanisms are classified by the level of interaction between tasks they allow. The 
simplest case treats all tasks as independent entities, without precedence relationships or resource 
sharing constraints. Unfortunately, this case is greatly simplified to be useful for practical system. The 
opposite case, closer to reality, treats tasks as highly interrelated entities. The extended analysis of 
the interaction between tasks by synchronization primitives will be detailed on section 3.2 
Synchronization in Real Time Systems 

Fourth, the set of tasks can contain either only periodic processes, or a mixture of periodic and 
aperiodic requirements. In general, aperiodic or non-periodic are terms used to define any process 
that do not match with the fixed period, bounded computation time, hard deadline scheme. The 
analysis of the strictly periodic case was the seminal work of the fixed priority scheduling theory. 
However, it has been extended by subsequent work in to encompass more general cases like soft 
deadlines, sporadic task arrival, or highly variable execution time tasks. 



12 
 

Fifth, algorithms can be further classified by their ability to schedule tasks to more than one processor. 
In general, the extension of algorithms from the uniprocessor case to a multiprocessor architecture 
leads to counter intuitive, suboptimal results. In fact, the problem of optimally scheduling on multiple 
processor is NP-hard, as meeting low latencies and balanced utilization exceedingly challenging [25]. 
As a consequence, the multiprocessor case usually needs to be simplified in order to enable the use 
of uniprocessor techniques, which leads to suboptimal results. 

3.1 Beginnings and Development 

The seminal work for the evolution of FPPS 
theory was the 1973 article from Liu and 
Layland that elaborated a polynomial 
feasibility test for the rate-monotonic 
scheduling algorithm [26]. From that point 
onwards, the constraints posed by this work 
(listed in Table 1) were steadily removed by 
subsequent research. Consequently, new 
directions and applications emerged from 
the field of real time scheduling. The most 
relevant trends of evolution are described 
below. 

The first trend is related with the feasibility 
analysis. In general, new methods were devised to allow relaxation in the constraints imposed by the 
model of Liu and Layland [26]. Initial approaches, during the beginnings of the 80’s, were based on the 
calculation of the Least Common Multiple (LCM) of the periods of tasks. However, this approach 
became inefficient even for small sets, preventing extension and applicability [27]. As a result, 
response time analysis became the preferred tool for the analysis of rate-monotonic scheduling. 

One consequence of advancing the response time theory was that the priorities were no longer 
restricted to the rate-monotonic scheme to allow feasibility analysis. The only limitation was that the 
priorities of tasks should remain constant during runtime (static). Another consequence was the 
removal of the deadlines equal to period constraint, which resulted in a framework that included valid 
analysis for deadlines less than or greater than periods [26, 27]. This extension provided the 
foundations for the deadline-monotonic scheduling algorithm, which is closely related to the rate-
monotonic one. The third result was the partial relaxation of the critical instant requirement, allowing 
arbitrary phasing. In general, the critical instant analysis leads to pessimistic results when applied to a 
set with arbitrary offsets. 

Although the response time analysis is useful for the offline analysis of systems, computational 
efficient tests are still preferred for the evaluation during runtime. One of the recent advances is the 
Hyperbolic Bound test [28] for the rate-monotonic priority assignment. This test “improves” the 
feasibility of the original Liu and Layland test, while keeping polynomial complexity. However, both 
tests are necessary but not sufficient, as some task sets are still schedulable even if they fail to satisfy 
the schedulability bounds. 

1. All tasks are periodic  
2. All tasks have a deadline equal to their period 
3. All tasks are independent (no shared resources or 

precedence relationships) 
4. All tasks have fixed computation time, or at least, a 

fixed upper bound 
5. A task cannot suspend itself 
6. All tasks are released at the beginning of their period 
7. All overheads are ignored, and assumed to be zero 
8. A critical instant exists 
9. All tasks are fully preemptive 
10. Just one processor is available 
 

Table 1. Constraints of the Liu and Layland model 
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The second trend is related with the interaction between tasks and the subsequent relaxation of the 
independence constraint. However, these topics will be treated in detail in section 3.2 Synchronization 
in Real Time Systems 

The third trend deals with the extensions to the model to allow the inclusion of aperiodic tasks. As 
briefly discussed earlier, aperiodic tasks do not fit the classical periodic model, including cases with 
soft deadlines, significantly varying inter arrival time, or significantly varying computation time [29]. 
The initial and simplest approach is to allocate these tasks with lower priority with respect to the hard 
deadline set, effectively relying them to the background. However this strategy greatly increases 
latency. As a solution, more advanced approaches were devised to improve response time (quality of 
service) of soft deadline tasks without affecting the hard time constraints. 

One of the first approaches was to use a Polling server, which behaves like a periodic task and is usually 
located at the highest priority level. This design approach consisted on extending the capacity of this 
server to the maximum possible, such that the set is still schedulable. However, multiple drawbacks 
emerged, such as wasting high priority capacity (in the case that no soft processes were available at 
the time), and long response times when capacity was depleted previous to an aperiodic request. 

The drawbacks of the polling server were addressed by a set of algorithms known as “bandwidth 
preserving”, which include the Priority Exchange server, the Deferrable server, and the Sporadic 
server. They allow the conservation of processing time even when no aperiodic task workload is 
available. However, they easily degrade and provide the same performance as the Polling server. As a 
consequence, another family of algorithms was designed to recover the unused capacity left by the 
hard deadline tasks. 

The most prominent of this family is the Slack Stealing algorithm. It is optimal in the sense that it 
minimizes the response time of soft tasks amongst all algorithms that that meet the required hard 
deadlines [26, 27]. However, the limitations that preclude it widespread application include the 
calculation of the LCM of the task set. This only allows the use of periodic tasks without jitter, as well 
as only being feasible in practice for sets with small LCM. 

In general, an open question remains of finding ways of improving system utility by using the spare 
capacity released by multiple factors, which include: 

• Tasks completing in less than their worst case execution time 
• Sporadic tasks not arriving at their maximum rate 
• Periodic tasks not arriving at their worst case, critical instant, phasing 

The fourth trend is related to the handling of transient overloads and adaptability to unexpected 
conditions. The main reason for this situations is that, in some cases, the calculation of the worst case 
execution time might be inaccurate or simply impossible [29]. Just as an example, an overload of a 
system based on the rate-monotonic algorithm will cause tasks with longer periods to miss their 
deadlines. However, this behaviour might be problematic, as the importance of a tasks could be not 
directly related to its priority. In general, the feasibility analysis with pessimistic assumptions, or the 
assignment of high criticality to certain set of tasks are valid alternatives to handle transient overloads. 

The fifth trend discusses the simplifications and related considerations applied porting real time 
systems to either software or hardware. In general, the constraint of zero overhead is not valid on 
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implemented systems, as the kernel operations need to be accounted. These operations, such as time 
progress handling (in either event driven or tick driven systems) or context switch overheads impose 
additional delays which deviate from the ideal operation. Further details on strategies to reduce this 
overheads are presented in the Context Switch Improvement section. 

This section has briefly described the last decades of evolution of the fixed priority scheduling theory. 
As some of the topics are closely related to this dissertation, a more detailed and updated discussion 
will be presented in further sections. In concrete, two particular topics will be analysed in the next 
sections, as they are tightly linked to the software development of the main contribution of this 
dissertation. 

Limited Preemption 

As briefly explained earlier, limited preemption systems present a behaviour in the middle of the space 
stretched by fixed priority preemptive scheduling (FPPS) and fixed priority non-preemptive scheduling 
(FPNS). This kind of systems, and their analysis, are important as implementations of synchronization 
primitives and other resource sharing concepts rely on executing of procedures without the 
interference from other tasks. This behaviour is commonly referred as atomic. From multiple 
strategies available in the literature, this section focuses on two different approaches to the problem 
of providing a trade-off between FPPS and FPNS. 

The first related strategy is based on a dual priority system that schedules tasks based on their classic 
priority, and later elevates their priority to the “priority threshold” upon execution. This strategy for 
assigning priorities allows to control the “preemptability” of tasks, as only procedures with higher 
priority than the priority threshold are able to suspend the running task [30]. This model is equivalent 
to the normal FPPS when the priority threshold and the classic priority are the same. Equivalently, 
when the priority threshold is set to the highest priority level, this model behaves as a system based 
on FPNS. 

The schedulability analysis for this model is an extension of the framework available for FPPS and 
FPNS, which were briefly discussed in previous sections. This model is proven optimal in the sense 
that, if a set of tasks is schedulable by either FPPS or FPNS, it will also be schedulable by the priority 
threshold algorithm. In fact, it improves schedulability, as certain sets of tasks are only schedulable by 
this method [30]. Additionally, the model is fully extended to allow the integration of polling and 
sporadic servers to the analysis without constraints in the validity of the results. 

However, finding of the optimal “priority threshold” values based on a given set of fixed priorities is 
non-trivial. Additionally, the size of the search space for obtaining the optimal set of fixed priorities 
and preemption thresholds from a set of tasks requires heuristic approaches, which preclude the 
usage for online scheduling algorithms. Nevertheless, if the priorities are calculated offline, no runtime 
overhead is added to the system. Furthermore, this schedulability system leads to less than or equal 
number of context switches when compared to FPPS [30]. This property effectively improves 
performance and decreases temporal interference from the kernel to the user tasks. 

Another approach to the problem of limited preemption is to represent each task as a series of sub 
jobs that are non-preemptable. In other words, preemption for a particular task is only possible at 
certain well defined points. This kind of scheduling, formally known as fixed priority scheduling with 
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deferred preemption (FPDS), provides multiple advantages. Such benefits include the reduction of the 
cost associated with arbitrary preemption, or the obviation of resource access protocols [31]. 

Although this kind of algorithms were proposed since the 90’s, the maturity of the response time 
analysis was not sufficient to provide a correct worst case scheduling results. The correct solution 
arises from the use of a continuous scheduling model rather than a discrete one, as well as the 
distinction that the worst case response time is a supremum rather than a maximum for all tasks 
except the lowest priority one [31]. This novel analysis proves all precedent analysis to be either 
pessimistic or optimistic. In fact, the analysis for FPDS can be used for FPNS (which is considered a 
subcase), leading to situations where the worst caser response time is not present on the first instance 
of the task (which was a common assumption in the analysis of real time networks, such as CAN [32]). 

Returning briefly to the subject of costs related to preemption, is important to distinguish between 
arbitrary and voluntary preemption. The term voluntary preemption was first used during the 
beginnings of the 90’s to describe the points at which a program scheduled under FPDS is allowed to 
be halted [33]. In particular, this technique allows the reduction of the overhead cost related to 
context switching in comparison with arbitrary preemption. As preemption places can be selected by 
the user, they are chosen where the context to be saved is minimum. In practice, these points can be 
locations that avoid pipeline flushes, prevent the interruption of multicycle instructions, or reduce the 
number of registers that need to be saved (for example, obviating the necessity of saving the state of 
any coprocessor in architectures that include one). 

Context Switch Improvement 

As described on the previous section, the overhead generated by the context switch can be reduced 
by carefully selecting the processor conditions and memory elements that need to be saved. As cache 
memory is one of the main strategies to improve average latencies of modern processors, it is 
common that context switch improving techniques target it. In particular, they focus on strategies that 
prevent cache misses and their side effects, such as pipeline flushing [34]. However, as the target 
processor architecture for this work is not cache-enabled, these strategies are considered to be out of 
the scope of this review. 

One effective strategy is to reduce the set of registers that need to be saved by locating instructions 
where the registers that need to be saved is minimum. These places, called fast context switch points, 
emerge from an analysis of register properties such as liveness [35]. In general, registers in a processor 
can be distinguished between user allocable registers and system registers. The latter always need to 
be saved, as they contain data related to the internal processor state, such as the stack pointer, the 
program counter, or the link register. In turn, the user allocable registers only require to be saved in 
case they are live at the time of preemption. A register is considered to be live in case it contains data 
that will be used in the future, and is considered to be dead in any other case. 

The process of calling functions within the code provides additional insight about the liveness of 
registers. In general, the hybrid caller convention is used to distinguish the program section that has 
the responsibility of saving registers, either the caller function or the callee function. From one hand, 
caller-save registers are scratch registers that should be saved and restored if they are live across a 
function call. From the other hand, callee-save registers are non-scratch registers that are saved and 
restored if they are used within the function. As non-scratch registers not used within a function need 
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interprocedural analysis to determine if they are live, a fast context switch point is defined as a 
program section where no scratch registers are live [35]. Additionally, the ARM processor used in this 
work follows the same convention for caller / callee saved registers [36]. 

The back-end of a compiler can be optimized to generate more locations for fast context switch in a 
method called register remapping. This technique reorganizes the use of registers without decreasing 
the overall performance, by mapping scratch registers to non-scratch registers that are not used 
within the live range of the scratch register [35]. A similar approach optimizes a compiler to minimize 
the context size, and then propagates this information back to a statically generated OS. This OS then 
generates special code that is able to context switch these sets of variable number of registers [37]. 

3.2 Synchronization in Real Time Systems 

The roots of the synchronization theory can be attributed to Edsger W. Dijkstra. During the 60’s, he 
conceived the idea of the semaphore and made the special distinction for the mutex, which is a special 
binary semaphore targeted to solve the mutual exclusion problem [38]. Since then, the semaphore 
concept has found extended applicability in the design of OS and the implementation of real time 
systems. However, the usage of semaphores without special cautions frequently leads to problematic 
situations, such as deadlocks when accessing multiple resources, or cases of priority inversion which 
violate the basic premises of any priority based system. 

As a consequence, synchronization protocols have been designed to prevent the catastrophic 
consequences that hard real time systems failures can lead to. These protocols are a set of 
implementation guidelines as well as extensions to the schedulability analyses. Three of the most 
widely used protocols will be described in the text below. 

Priority Inheritance 

The Priority Inheritance Protocol (PIP) consist of dynamically adjusting the priority of a task holding a 
resource to the highest priority of any other task waiting for that resource, as long as this priority is 
higher than the original one. Upon release of the resource, the priority of the task is restored to its 
original value [39]. As a consequence, this protocol solves the problem of the priority inversion. 
Additionally, it is important to highlight that the priority elevation occurs when the resource is 
accessed by the higher priority thread. 

The Priority Inheritance scheme is widely used in RTOS’s, as its implementation is transparent and 
straightforward. However, this protocol has multiple drawbacks. First, it does not prevents deadlock. 
Second, chained blocking is still possible, although it is limited. Third, the calculation of the maximum 
blocking time for schedulability analysis is relatively complex, which prevents its usage for online 
scheduling decisions. 

Due to the transparency of this protocol, it can be extended to decrease the occurrences of context 
switches and their related cost. In particular, embedded applications can be analysed during compile 
time to find the specific order locks will be acquired. This is possible as real time embedded systems 
are commonly constituted of cyclic threads that acquire resources always in the same order. With that 
information, the scheduler can prevent the activation (and related context switches) of threads that 
will block on resources which are not available [40]. This extension does not decrease the original 



17 
 

schedulability or response time of the threads compared with simple PIP. However, in case the locking 
order is decided at runtime, this extension is not implementable. 

Priority Ceiling and Stack Resource Policy 

The Priority Ceiling Protocol (PCP) was designed to overcome the problems of the PIP. In particular, it 
addresses the problems of deadlock formation and chained blocking [39]. This strategy ensures that a 
task can only execute its critical section when its priority is higher than all the other preempted critical 
sections. If this is not the case, the task is blocked and inherits its priority to the task that caused the 
blocking. In order to achieve this behaviour, each resource (mutex) has a value referred as priority 
ceiling, which is the highest priority of all the tasks that could possibly lock that resource. 

A runtime system designed to implement this protocol is aware all the time of the allocated resource 
(𝑟𝑟∗) that has with the highest priority ceiling on the system (𝑝𝑝∗). A task is only allowed to enter its 
critical section in case its priority is higher than the priority 𝑝𝑝∗. In any other case, the task is blocked 
and inherits the priority of the task that holds 𝑟𝑟∗ (not the priority 𝑝𝑝∗). In case a task generates blocking 
to multiple tasks without releasing the resource, the priority of those tasks is transitively inherited. 

Apart from avoiding deadlock and chained blocking, PCP ensures that a task can be blocked at most 
by one critical section of a lower priority task. However, this protocol has some disadvantages, such 
as the necessity of calculating the priority ceiling for each resource (mutex) beforehand, or the 
generation of ceiling blocking [39]. From one hand, the priority ceiling calculation is frequently done 
during the design phase, which requires constant maintenance and analysis of system schedulability, 
which prevents its online, dynamic calculation. From the other hand, ceiling blocking is a kind of 
blocking not present on other schemes. However, the usage of the protocol reduces dramatically the 
worst case blocking time of tasks. 

In the same way PIP can be extended for reducing the number context switches, a strategy known as 
priority ceiling preemption protocol extends PCP for the same purpose [41]. In general, the threads 
need to be analysed, either at compile time or at runtime, for detecting the next resource to be 
acquired. The scheduler activates tasks not only based on the global ceiling priority, but also on the 
parameters of the resource that will be immediately locked by the new thread. Additionally, the 
schedulability is not only maintained, but improved. In particular, the worst case response time of 
certain tasks can be improved. However, the analysis required at runtime decreases slightly the overall 
improvement of this protocol extension. 

The Stack Resource Policy (SRP) scheme is almost identical to PCP, with the only difference that the 
blocking is enforced at the time the task is activated and selected to execute (preemption), in 
comparison with blocking on resource access. As such, this property makes SRP adequate not only for 
FPPS, but also for algorithms with non-preemptable sections, such as FPDS or FPNP. In general, offers 
the same advantages of. An additional advantage of SRP is that tasks can share the same stack, as it 
was designed to enable reduction and control of RAM for constrained automotive applications [42]. 
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Chapter 4 – Ell-i Development Environment 

This part of the thesis discusses the material that served as a basis for the development of the 
scheduling system. First, a brief summary of the Arduino ecosystem is provided, as it was the basis for 
the development of the Ell-i prototype PoE node. The next part focuses on this node, the Ell-duino 
development board. The following sections discuss the software basis, which includes the Arduino 
compatible Ell-i Runtime, and the publicly available code from Open Source and proprietary RTOSs. 

4.1 Arduino Ecosystem 

Background 

The Arduino project focuses on providing to users without technical expertise related to electronics 
(mainly hobbyists, students, designers and artists) a platform of inexpensive devices capable of 
interacting with their surroundings [43]. It started as a project for providing students with cheap and 
accessible developing boards at the Interaction Design Institute Ivrea, in Italy [44]. Although it was 
originally based on 8 bit AVR architecture MCU’s, the steady decrease in price of 32 bit ARM MCU’s 
leaded to new versions based on the Atmel implementation of the ARM Cortex-M core. 

The Arduino boards are supported by an Opens Source, cross-platform, Integrated Development 
Environment (IDE) written in Java [45]. This IDE is based on the one used by the Processing project 
[46], which was also targeted to hobbyists and artists. The Arduino IDE also integrates a special library 
targeted to simplify the access and control of input / output peripherals. This library is based on the 
Wiring project [47], which was also initiated at the Ivrea Institute, and is also partially based on the 
Processing project. It is important to highlight the idea behind Processing, which was to allow artists 
to “sketch” ideas through code [46] (Actually, the idea behind Wiring is just slightly changed to 
“sketching with hardware” [47]) 

The Arduino project uses a reciprocal license for the OSHW boards, the Creative Commons Attribution-
ShareAlike [48], which enforces that every modification is released with the same license, and gives 
credit to the original developer. From the IDE and OSS side that interacts with the hardware, the GPL 
reciprocal license is used for the Java environment and a slightly different LGPL reciprocal license for 
the MCU libraries [49]. The LGPL library is special as it only enforces reciprocity (release with the same 
license) on changes made to the open part. Any other component can be licensed according to the 
requirements of the developer, as long as there is a clear distinction between the open modules and 
the modules with different license attributes [50]. 

However, the main revenue channel for this company is based on the commercialization of their 
trademark. This is the most prominent example of the application of the branding model discussed in 
the Open Source Hardware Business Models section. Apart from ensuring the quality of the produced 
boards, which has been a strategic advantage against competition [51], the business model has been 
very profitable, generating a revenue of more than one million USD by 2010 [52, 53]. In detail, they 
charge to manufacturers a general license fee, and an additional royalty charge of 10% over the 
wholesale price [54]. 

Unfortunately, the evolution of the electronics industry has posed transition problems for the Arduino 
team. Apart from the fact that ARM owns the largest share in the embedded 32 bit market since the 
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2000’s [55], the general trend points toward the eventual adoption of energy efficient 32 bit 
processors in the place of 8bit and 16 bit counterparts [56]. In fact, ARM launched the Cortex-M0+ 
architecture targeting the 8 bit market, commonly driven by low cost and very low power consumption 
[57]. 

This trend is particularly problematic for the Arduino project lifetime, since the majority of their sold 
products and professional expertise is based on the 8 bit AVR architecture. Although they produced 
the first board based on ARM 32bit architecture (Arduino Due, Cortex-M3) in 2012 [58, 59], and their 
second (Arduino Zero, Cortex-M0+) in 2014 [60], the transition is far from being complete. Apart from 
maximum voltage differences that rendered the majority of external shields incompatible with newer 
boards, the software adaptation is still a work in progress, for both, the Arduino team, and all the third 
party providers. 

The requirements for internet connectivity for IoT applications has generated additional pressure for 
the Arduino project. Although they have provided extensions (in the form of shields) to their boards 
to enable wired [17] or wireless [61] Internet connectivity, the overall cost of a board plus a shield is 
far from optimal. They proposed a board with integrated wired Internet access [18], although the price 
of this board is almost equivalent to price of the board plus shield packet as of 2014 1 [62, 63]. 

As discussed earlier, the lack of expertise on 32 bit architectures is forcing the Arduino team to take 
design decisions which optimize the time to market, at the cost of a steep increase in the prices for 
32bit based devices. Such devices include boards based on newer MCU’s, network enabled systems, 
and Power over Ethernet (PoE) applications. In particular, the choice of Ethernet controllers [17, 18] 
and WiFi modules [61, 64] with integrated network stacks, or the integration of closed source 
components for PoE support [17, 18], make evident that the market trends are moving the team out 
of their locus of expertise.  

Programming Model 

The Arduino project uses a simplified program template called “sketch”. In its most basic form, a 
sketch is composed of two C-like functions with no arguments or return values: the “setup” function, 
which is run only once when the board is powered up (or after a reset), and the “loop” function, which 
is cyclically run until the board is powered off (or until a reset is generated). Additional functions from 
the Arduino libraries, standard C libraries, libraries provided by 3rd parties and user defined functions, 
can be used to generate the desired behaviour. As the program defined as “sketch” is not fully C or 
C++ compliant, it requires additional steps before being provided to a standard C/C++ build system. 

This modification target mainly three objectives. The first is to generate prototypes for the user 
defined functions. However this process is not perfect, as it is unable to generate declarations for 
functions defined within particular namespaces or classes, or with default argument values [65]. The 

1 For a fair comparison, the Uno and the Ethernet board use the same AVR Atmega328 MCU at 16Mh. 
Without PoE support:  
     - Arduino Uno Board (€20) + Ethernet Shield (€30) =   €50 
     - Arduino Ethernet Board (€40) =     €40 
With PoE support: 
     - Arduino Uno Board (€20) + Ethernet Shield with PoE (€45) =  €65 
     - Arduino Ethernet Board with PoE (€55) =    €55 
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second objective is to add all the necessary library references. This step adds a reference for the 
“Arduino.h” library (or to the “WProgram.h” library for legacy code based on the original Wiring 
project). The third and last step consists on appending a “main” function that matches the target 
board. The specific options that this code transformation requires are defined in the XML files included 
with the Arduino IDE distribution. For clarity, Snippet 1 describes a simplified output of the code 
transformation for a sample sketch. 

Original “Sketch” Transformed “Sketch” (correct C code) 

 
 
 
 
 
 
 
 
 
1. int led = 13;    
2.    
3. // the setup routine runs once when you press reset:    
4. void setup() {                    
5.   // initialize the digital pin as an output.    
6.   pinMode(led, OUTPUT);        
7. }    
8.    
9. // the loop routine runs over and over again forever:    
10. void loop() {    
11.   digitalWrite(led, HIGH);   // turn the LED on    
12.   delay(1000);               // wait for a second    
13.   digitalWrite(led, LOW);    // turn the LED off    
14.   delay(1000);               // wait for a second    
15. }    
16.    
17. // user defined function    
18. void my_function() {    
19.   //do something    
20. }   
 
 
 
 
 
 
 

 

1. #include "Arduino.h"    
2.    
3. int main(void);    
4.    
5. void setup(void);    
6. void loop(void);    
7.    
8. void my_function(void);    
9.    
10. int led = 13;    
11.    
 
12. void setup() {    
 
13.   pinMode(led, OUTPUT);    
14. }    
15.    
 
16. void loop() {    
17.   digitalWrite(led, HIGH);    
18.   delay(1000);    
19.   digitalWrite(led, LOW);     
20.   delay(1000);    
21. }    
22.    
 
23. void my_function() {    
 
24. }    
25.    
26. int main() {    
27.   setup();    
28.   for (;;)    
29.     loop();    
30.   return 0;    
31. }   

 

Snippet 1. Arduino Sketch Pre-Processing 

After the transformation, the sketch code is a fully compliant C/C++ program. Then, it is compiled and 
linked by a standard build process. As the Arduino project initiated with boards based on the 8 bit AVR 
architectures, the code has been always compiled and linked with the latest AVR GCC toolchain 
distribution. As new 32 bit board models also use the ARM core processors manufactured by AVR, the 
same toolchain is used for both, the 8 bit boards and the new 32 bit boards. As a consequence, 
additional functions supported by the AVR GCC libraries can be used within the Arduino IDE. 

The main advantage of the Arduino software system is the availability of function libraries that 
effectively simplify the interaction with the underlying hardware. This property enables its use by any 
person without knowledge of the electronics field. In other words, the Arduino system provides a layer 
of abstraction that reduce complex operations to single statements. As a generality, the libraries are 
focused on some kind of input / output process, such as network or serial communication, display 
handling or motor control. 

A useful example of this simplification is the abstraction of the configuration of a PWM output. 
Depending on the architecture, a pin which outputs a PWM pattern usually reflects the interaction of 
at least two peripherals: a GPIO controller and a Timer. If the MCU supports some sort of clock gate 
control, the initial step is to enable the gate to the required peripherals. Then, the timer is configured 



21 
 

for PWM operation, which commonly involves frequency, counting thresholds, and output settings. 
Finally, the GPIO is configured to be controlled by the Timer and output the desired pattern. 

In contrast, the Arduino system silently enables and configures the desired peripherals before the 
code from the programmer is executed. Then, only two actions are required from the user: one that 
redirects the output from the Timer to the desired GPIO, and another that selects the desired 
threshold for controlling the PWM duty cycle. This operations are elegantly wrapped by functions that 
only request from the user the relevant parameters, and realize all the calculations and register 
accesses on behalf of the programmer. 

As an important reference, the summary of the functions provided by the Arduino IDE is presented in 
the tables below (Table 2 and Table 3). It is important to note that there is a subset of relatively 
advanced features only available for the more powerful, ARM 32 bit based boards (and some boards 
with USB support). 

Only Core Distribution, Available on all Boards 
Functions (Based on [66]) Libraries (Based on [67]) 

I/O 
• Digital I/O (3) 
• Analog I/O (3) 
• Advanced I/O (5) 

 
Time 

• Time (4) 
 
Data 

• Conversion (6) 
• Bits and Bytes (7) 

 
Math 

• Math (7) 
• Trigonometry (3) 
• Random Numbers (2) 

 
Interrupts 

• External Interrupts (2) 
• Interrupt Control (2) 

 

Base Classes (1) 
• Stream 

 
Communication (5) 

• Firmata 
• Serial 
• SPI 
• SoftwareSerial 
• Wire 

 
Networking (3) 

• Ethernet 
• GSM 
• WiFi 

 
Memory (2) 

• EEPPROM 
• SD 

 
Display (2) 

• LiquidCrystal 
• TFT 

 
Motor (2) 

• Servo 
• Stepper 

 
Table 2. Arduino Functions, All Boards 

Only Core Distribution, Available for Due 
Functions (Based on [66]) Libraries (Based on [67]) 

I/O 
• Analog I/O (1) 

 

Available for Due (and other 
selected boards) 

• Audio 
• Keyboard 
• Mouse 
• USBHost 
• Scheduler 

 
Table 3. Arduino Functions, Available for Due 
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4.2 Ell-duino Development Board 

The first starting point for the development of the scheduler presented on this document was the Ell-
duino board. It is a development board pin compatible with the Arduino Due and with off-the-shelf 
support for Power over Ethernet, and Ethernet communication in general. It features a Cortex-M0 
based MCU from STMicroelectronics, the STM32F051R8T6. This MCU is targeted to low cost 
applications, and features a limited amount of Flash and SRAM memory as the principal cost reduction 
constraint. 

ARM Cortex-M0 Processor 

The ARM Cortex-M0 is the low end core from the ARM Cortex-M family (which is oriented to be used 
in the fabrication of microcontrollers). It is targeted to be implemented in a small die area, in order to 
enable low price and low power MCUs and SoC applications. It features a 3 stage pipeline, without any 
kind of cache memory or branch prediction. This core implements the Von Neumann ARMv6-M 
Architecture [68], which is a subset of the more powerful Modified Harvard ARMv7-M Architecture 
[69] used for the Cortex-M3 and Cortex-M4 counterparts (the architecture implemented in the M4 
core sometimes called ARMv7E-M, which only denotes small extensions from the ARMv7-M). 

Among the differences between the v6-M and the v7-M architectures, the most relevant for the 
implementation of an RTOS are the limit of priority levels of the interrupt controller (NVIC in ARM 
terms), and the lack of instructions for counting leading or trailing zeroes. From the NVIC side, only 2 
MSB bits are used for the priority register bytes, which leads to only 4 priority levels for the v6M 
architecture in comparison with the 256 available for the of the v7-M architecture (apart from the 
system interrupt priority levels). Additionally, the absence of hardware support for counting leading 
zeroes, CLZ instruction, is a direct consequence of the very limited support for the Thumb-2 Instruction 
set (in contrast, the Thumb instruction set is almost completely covered). 

For other kind of OS applications, which require memory or privilege management, the Cortex-M0 
core might pose certain limitations. From the memory management side, the M0 core does not 
support the Memory Protection Unit (MPU), which is an optional component for the M3 and M4 cores. 
The underlying reason is that the v6-M architecture does not implement any kind of privileged 
operations, or different execution privilege states. As a consequence, any privilege management or 
protection would require a software implementation. However, the Cortex-M0 core does have the 
possibility of having a Bit Banding system, which enables atomic operations for setting and clearing 
specific bits of words in that region, instead of the standard read-modify-write operation, which can 
be problematic for concurrency. 

In particular, the Ell-duino board uses the STM32F051, one of the STMicroelectronics implementations 
of the Cortex-M0 core. The specific MCU is the STM32F051R8T6, which operates at the range of 2.0 
to 3.6 V and has 8 Kbytes of RAM and 64 Kbytes of FLASH [70], apart from a wide range of peripherals. 
However, as this board is for prototyping and not for final production, the memory available in the 
production MCU would be more limited, as well as the set of available peripherals. The maximum 
operating frequency of the system is 48 MHz, what leads to an instruction cycle time of 20.833 ns 
when operating at maximum speed. However, some peripherals are clocked at subdivisions of the 
main frequency. 
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In particular, the STM32F0 family has a Von Neumann architecture, as the same system bus is used to 
access both program memory (Flash) and data memory (SRAM). A general scheme of the architecture 
is shown in Figure 1 (based on Figure 1 (MS32128V2) from [71]). It is important to highlight that the 
bus network of the chip is administered by the Busmatrix, which has two masters: the Cortex-M0 core 
and the DMA Controller. Four slaves buses are connected, one for each memory (Flash and SRAM), 
and two AHB Buses. The fact that the AHB2 bus directly connects the GPIO modules with the Busmatrix 
effectively decreases I/O latency. In comparison, all the other peripherals are connected through the 
APB bus to the AHB1 by a bridge controller. 

One important advantage of the Von Neumann architecture implemented on the Cortex-M0 core is 
that program memory can be accessed as only readable data memory. This characteristic enables the 
possibility of storing constant values in the Flash, and access them during runtime without the 
necessity of copying them to RAM beforehand. This particular property is used by the initialization 
routines further described in section Peripheral Initialisation. Another important property is that all 
the peripheral registers are memory mapped, so they can be accessed by normal read and write 
operations from the standard C language. 

 

Figure 1. General STM32F0 Architecture 

PoE and CoAP Support 

The main differentiating characteristic of the Ell-duino board is the off-the-shelf support for Power 
over Ethernet and normal Ethernet communication. In particular, the board includes all the power 
electronics and passive components for extracting energy from the PoE link to power itself and the 
devices connected to it. Additionally, the board can be powered from an external DC power source or 
take power from the serial connection. Internally, there is a power management circuit that enables 
multiple power sources concurrently without interference (known as Power Domains). 

An intrinsic advantage for a system within a PoE network is that it is not energy constrained [72]. In 
fact, the latest standard for regulating the PoE operation [73] specifically requires that a Powered 
Device (PD) provides a Maintain Power Signature (MPS) for the power supplier in order to prevent 
disconnection. The MPS is defined as the drawing of at least 10 mA of current for a period of at least 
75 ms followed by an optional cease of current demand of maximum of 250 ms (effectively meaning 

Other
Peripherals
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drawing current for 75 ms every 325 ms). Additionally the device should keep an impedance within 
the range of maximum 26.3 kΩ and minimum 50 nF. 

As a consequence, if a PD keeps constantly the MPS minimal state (without intermittent 250 ms 
dropout) would consume a minimum of 425 mW for a type 2 PD (minimum 42.5 V), or 370 mW for a 
type 1 PD (minimum 37.0 V). As a comparison, the MCU that composes the Ell-duino board has a 
typical power consumption at its maximum frequency of (48Mhz) of 79 mW. For comparison, the 
maximum power dissipation for the STM32F051R8T6 is of 444 mW (when operated at its maximum 
temperature limit of 85 °C) [70]. In conclusion, the Ell-duino board software and hardware design is 
not power constrained, as the minimal power provided by the PoE link is one order of magnitude 
higher than the average consumption of the main components. 

Regardless of the connection to a PoE link or to normal Ethernet, the board filters the data signals to 
an ENC28J60 Ethernet Controller directly connected through SPI to the STM32F0 MCU. As an strategy 
for enabling ample network applications and keeping the cost of the board at a low level, the Ethernet 
Controller does not contain an integrated IP stack (in contrast to the more costly controllers with IP 
stack included present on all Arduino network enabled boards). This controller is manufactured by 
Microchip and supports up to the 10 Mbit/s speeds [74]. It implements a 10BASE-T physical layer and 
a MAC layer, which features a programmable packet filtering system. 

As the Ell-duino board is intended for Machine to Machine applications (M2M), the integrated 
software stack is planned to support the Constrained Application Protocol (CoAP). The CoAP is an 
application layer protocol primary targeted to enable the REST architectural style on constrained 
networks and constrained nodes (with limited program and data memory) [75]. In concrete, it was 
designed with the primary objective of having very small packet overheads and specifically to work on 
top of UDP for preventing packet fragmentation as much as possible (due to the intended use in slow 
and lossy networks like low power WPANs). 

CoAP implements a 16 bit Message ID for packet identification and four kinds of message types: 
Confirmable (CON), Non-confirmable (NON), Acknowledgement (ACK), and Reset (RST). The general 
idea is that CON messages are sent and resent with an exponential back-off delay until an ACK message 
with the same Message ID is received. On the contrary, NON messages are sent without expecting any 
response, except when the receiver sends an RST message with the same Message ID that indicates 
no more messages should be sent until further notice. 

For overhead reduction, a binary 32 bits header is used. This header contains five fields, being the 
Message Type and Message ID the most relevant for the communication handling. In particular, the 
Message ID is not only used for tracking message responses but also to prevent any duplication. As a 
consequence, the minimum size of a CoAP message is 4 bytes, and the maximum is directly related to 
the maximum payload size of the UDP frame. As fragmentation is a primary concern, in the cases 
where it is not possible to confirm the maximum payload size, the standard defines some default 
maximum sizes that should be enforced. 

Arduino Compatibility 

The Ell-duino board is targeted to be hardware and software compatible with the Arduino project. In 
concrete, it is pin and voltage compatible with the Arduino Due (which features an AVR manufactured 



25 
 

Cortex-M3 based MCU). In general, the only limiting characteristic for the hardware compatibility is 
that the selected pin can be connected to a peripheral that provides the same functionality, such as 
timers PWM output or ADC analog input. This characteristic provides ample liberty on processors that 
can internally multiplex different functions for a particular external pin. For the STM32 family, the 
GPIO module can connect some pins of Port A to a maximum of 8 different functions, or some of Port 
B to a maximum of 4 functions [70]. 

However, software compatibility is more complex in case the MCU is used to support concurrently any 
additional processing load apart from the Arduino sketch flow of execution. The main problem is that, 
historically, the Arduino sketches have had full control of the processor. However, that constraint can 
be relaxed owing to two reasons. First, only a few Arduino APIs have real time constrains, or 
equivalently, can be used to provide real time behaviour. As a matter of fact, only a limited subset of 
activities effectively require precise timings: mainly communication with other devices connected 
through protocols with strict timings, like SPI. Second, traditionally the MCUs for the Arduino boards 
are low cost 8 bit AVR with frequencies in the range of 16 MHz (with the exception of the Arduino 
Due) [76]. This processors have effective processing power of only a fraction of what the Cortex-M0 
can deliver, as a result of higher frequencies and the 32 bit architecture. 

As a consequence, software compatibility is defined as the ability to run a fair number of real-time 
Arduino sketches, with the Internet connectivity in the background. In practice, a limited number of 
functions (mainly the time functions with microsecond precision [66]) and sample sketches will require 
modification in order to function properly on a multithreading environment. Additionally, other 
activities, such as motor control, can be executed concurrently, as the Ell-I Runtime multithreading 
support will be mandatory for handling the network connectivity and the Arduino sketches at the 
same time. In practice, the maximum number of threads defined by the Ell-i Cooperative for the Ell-
duino board is eight. 

4.3 Provided Runtime 

The second starting point for the present work was the Runtime code targeted for the Ell-duino board. 
In concrete, the code is targeted to the Cortex-M0 core and the peripherals present on the STM32F0 
family of MCUs. The main differentiation point of this runtime, which inspired part of the scheduler 
implementation, is the strategy for initializing peripherals based on constant data structures stored in 
the program memory. Additionally, the code for realizing a context switch assisted by hardware was 
also present in the given runtime as part of a work-in-progress round robin scheduler. 

Peripheral Initialisation 

As memory is among the most important pricing factors for MCUs (due to the slowing of Moore’s law), 
the Ell-I Runtime presents a novel strategy for initializing peripherals with a static approach, inspired 
on the previous work realized by Nikander et. al. [77]. This strategy represents the final desired state 
of peripheral registers as data, instead of steps of changes instructed by the program. It saves 30% to 
40% of program memory compared to the classic imperative approach [78]. 

The concrete implementation takes advantage of the features of the GNU linker that enable locating 
program objects in specific sections of memory. Then, due to the Von Neumann architecture, this 
sections of the program memory are treated as only-readable data, and iterated to obtain the desired 
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final peripheral register states without first copying to RAM. To assist the iteration, the limits of this 
memory location are transferred from the linker back to the C code as part of the linking process. The 
details are shown in Snippet 2 and Snippet 3. 

1. typedef struct {    
2.     const enum system_init_r_type   init_record_type;    // Type of SystemInitRecords in the union    
3.     const uint8_t                   init_record_number;  // Number of SystemInitRecords    
4.     const union {    
5.         const int32_t               init_record_offset;  // Offset to be added to the addresses    
6.                                                          // in the SystemInitRecords    
7.         volatile preg16_t *const    init_record_address16; // Base register address for 16_only    
8.                                                            // or 16_with_offset    
9.         volatile preg32_t *const    init_record_address32; // Base register address for 32_no_address    
10.     };    
11.     const union {    
12.         const SystemInitRecordAddrAndOnes *        init_records_addr_and_ones;    
13.         const SystemInitRecordAddrOnesAndZeroes *  init_records_addr_ones_and_zeroes;    
14.         const SystemInitRecordData16Only *         init_records_data16_only;    
15.         const SystemInitRecordData32Only *         init_records_data32_only;    
16.     };    
17.     const union {    
18.         const SystemInitRecordRegisterOffset *     init_records_register_offsets;    
19.     };    
20. } SystemInitRecordArray;   

Snippet 2. Peripheral Initialisation Data Structures 

C Initialisation Code Linker Script 
1. extern const SystemInitRecordArray __peripheral_start[]; 
2. extern const SystemInitRecordArray __peripheral_end[]; 
3.  
4. void SystemInitPeripherals(void) { 
5.     for (register const SystemInitRecordArray *ir =      

__peripheral_start; 
6.          ir < __peripheral_end;    
7.          ir++) {    
8.         SystemInitFunctions[ir->init_record_type](ir); 
9.     }    
10. }   

1. . = ALIGN(4);    
2. __peripheral_start = .;    
3. KEEP (*(.peripheral.RCC*))      /* Read-

only RCC initialisation data */   
4. KEEP (*(SORT(.peripheral.*)))  /* Read-

only peripheral initialisation data */   
5. __peripheral_end = .;   

Snippet 3. Peripheral Initialisation Code and Linker Script 

Context Switch Prototype 

The ARM Cortex-M cores save part of the stack frame on exception entry and restore it in exception 
return. In particular, the processor saves the scratch registers together with the processor state 
related registers. The previous strategy partly allows the usage of standard C functions as exception 
handlers [36]. The hardware partial context save process is more efficient than its software equivalent, 
taking only 15 cycles for the exception entry and 16 for the exception return in the Cortex-M0 
STM32F0 processor (for more details on interrupt handling latencies, please consult Appendix A - 
Measurement of Hardware Exception Handling Times). Consequently, it is advisable to assist the 
context switch by taking advantage of the hardware saved registers and simply complete the missing 
registers for the full stack frame. 

The Cortex-M processor implements the ARMv6-M architecture, which has a relatively advanced 
interrupt controller (NVIC) [68]. It allows multiple interrupt priorities, pre-emption and nesting. 
Therefore, there are multiple possibilities to arrange the priorities of the system interrupts. The 
scheme suggested by ARM [79] for assisting context switch consists of leaving the system 
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asynchronous interrupt, PendSV, at the lowest possible priority level. As a result, it can execute after 
all the other interrupts and exceptions have been served. The advantage is threefold: it does not 
generate interference to higher priority interrupts, it can assist the context switch after a higher 
priority interrupt has generated some synchronization mechanism that requires the change of current 
running thread, and it benefits from the tail-chaining mechanism. 

The initial prototype of context switch provided by the Ell-i Co-Operative used the suggested approach 
of setting PendSV at the lowest interrupt priority. Three steps are required in order to execute the 
context switch from the PendSV context. First, the part of the context not saved by hardware is pushed 
to the stack. Second, the stack pointer of the switched out thread is saved and the one from the new 
thread is loaded. The third step consist of popping the software saved registers. Finally, the exception 
return is requested, loading the rest of the saved context efficiently by hardware. 

The context switch prototype also takes advantage of the two stack pointers available for the ARMv6-
M architecture. The two stack pointers, main stack pointer (MSP) and process stack pointer (PSP), are 
banked and only one is visible at a time [68]. Although there is no restriction for using either MSP or 
PSP on Thread mode, the system will automatically switch to MSP when it enters Handler mode. 
Therefore, selecting the PSP to be used only by Thread mode and reserving MSP only for exceptions 
provides two advantages. First, the stack space can be isolated for each thread and the exceptions, 
allowing more detailed control and analysis of the usage and reducing considerably the stack space 
required by each individual thread. Second, when realizing the context switch from Handler mode, the 
PSP will remain intact and it will be possible to realize operations on it without affecting the current 
execution that depends on the MSP. 

 

Figure 2. Context Switch Prototype Context Frame 
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4.4 Other (Open Source) RTOS 

The third starting point was the existing implementations of RTOSes available for the Cortex-M0. Both, 
Open Source and Proprietary systems were considered. From the Open Source side, ChibiOS/RT [80] 
was suggested by the Ell-i Co-Operative as the preferred candidate for its coding style, reduced 
memory footprint, and speed. FreeRTOS [81] was also briefly analysed for implementation details. 
From the previous experience of the author, the proprietary Micrium uC/OS-II [82] and uC/OS-III [83] 
were also considered as a starting point as their source code is available for academic purposes, and 
it is accompanied by very detailed documentation in the form of books. 

The first significant difference that was found among the implementations was the computational 
complexity of the scheduling operation. While the RTOSs from Micrium perform the scheduling in 
constant time2, the analysed open source counterparts, ChibiOS/RT and FreeRTOS provide linear 
complexity. Nevertheless, although the constant scheduling time provides scalability, the specific 
implementation for the Cortex-M0 is not efficient for a small number of tasks when compared to the 
linear alternatives. The main problem lies in the lack of the Count Leading Zeroes (CLZ) instruction in 
the ARMv6-M architecture. As a result, the look-up tables used for providing equivalent functionality 
increase the memory footprint and related execution time. 

The second relevant distinction between the reviewed implementations was the execution space 
where the context switch is performed. FreeRTOS and the systems from Micrium execute the context 
switch from the PendSV exception at the lowest priority level. In contrast, ChibiOS/RT performs the 
context switch in the program space that is actually executing (either thread mode or in handler 
mode), and only calls for the Non Maskable Interrupt (or PendSV as an alternative) for completing a 
small part of the context switch when executing from handler mode. As the provided context switch 
prototype was optimized for using the PendSV handler, that alternative was selected for the scheduler 
implementation. 

 ChibiOS/RT FreeRTOS uC/OS-II uC/OS-III 

Scheduling 
Complexity 

O(n) O(n) O(1) O(1)* 
 
*Case with limited threads 
shown for fair comparison. 
With unlimited threads, 
O(n). 

Data 
Structure Queue Queue Bitmap Bitmap 

Context 
Switch 
Space 

From Thread mode: 
-Thread Mode 

From Handler Mode: 
-Handler + NMI 
-Handler + PendSV* 

 
*optional, preferred NMI 

PendSV PendSV PendSV 

Table 4. Scheduler Details for the Initial Surveyed Implementations 

2 In practice, Micrium uC/OS-III implements a two-step search process (first step with linear complexity, second 
with constant) because of its ability for handling unlimited priorities. For an equivalent comparison, if the 
number of priorities was fixed, the two-step search process could be optimized for constant complexity, in the 
same way it is done in Micrium uC/OS-II. 
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Previously Published Benchmarks 

In order to have a general overview of the performance of Open Source RTOSs, previously published 
benchmarks are also analysed for related results. The study realized by Otava [84] selects three 
systems: CooCox CoOS [85], uc/OS-III and FreeRTOS. The selection was made with the basis if 
comparable set of features. The main analysis is for OS time overhead and was performed on a Stellaris 
LM3S8962 from Texas Instruments that feature a Cortex-M3 core at 40 MHz. The code from each 
system was compiled with GCC 4.6.2 for Thumb 2 and each RTOS was scaled to its minimal 
configuration. In concrete, two tests were performed: one for measuring context switch overhead and 
other to analyse the software timer jitter. 

From the overhead side, the particular measurement comprises the context switch together with an 
object synchronization primitive. The author considers that this kind of operation is the most often 
executed for the implementation of systems on top of RTOSs. In particular, two synchronization 
objects are tested, mutexes and queues. They were measured by a hardware timer in the MCU clocked 
by an external source. However, as in this thesis there is no use of queues, the results for that primitive 
are considered out of the scope. 

Two tasks were used for the testing, one with higher priority than the other. The measurement 
encompasses the overhead of the higher priority task blocking on an object owned by the lower 
priority task, and the subsequent context switch to that task. It is important to note that the authors 
do not measure the opposite event, when the lower priority thread switches back to the higher priority 
thread. Nevertheless, the results are considered valid and serve as a base for future comparison. They 
are presented in Table 5. 

For the software timer jitter, the period is measured via a hardware timer clocked by an external 
reference generator. It is concluded that the implementation of the software timer is identical in the 
three implementations, and the deviation is caused by inaccuracies of the crystal oscillator. 

 FreeRTOS CoOS uC/OS-III 

Mutex Waiting (us) 11.59±0.001 15.51±0.010 14.13±0.005 

Code Size (Bytes) 6928 7236 9864 

Table 5. Previously published benchmarks for RTOSs performance 

Another performance analysis for RTOSs is presented in the work from Ugurel and Bazlamacci [86]. 
They compare between the Xilkernel and uC/OS-II RTOSs sing a Xilinx Spartan 3AN FPGA with 
MicroBlaze v8 soft core running on top. Unfortunately, they are unable of measure precise timings for 
each processor. Instead, they measure number of switches during a fixed period of 30 seconds. 
Although the results are not comparable (as the system runs on top of a soft processor instead of a 
silicon MCU), the thread model strategy for comparison is the same as [84]. 

In detail, two tasks are present, one with higher priority than the other. Cyclically, the higher priority 
thread blocks on a semaphore owned by the lower priority, which immediately releases the 
semaphore for the higher priority thread. The results from this study conclude that Xilkernel is almost 
ten times faster than uC/OS-II. For completeness of results, they give detailed footprint information, 
divided by sections (text, data, bss, etc.). They also disable all non-related features (to bring the RTOSs 
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to their minimal configuration), and consider that the loop that generates the context switches has 
negligible overhead. 
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Chapter 5 - Memory Constrained Scheduler 

The chapter that follows moves on to describe the design and implementation details of the scheduler. 
First, the overall architecture of the system is presented. Then, the next three sections present the 
respective implementation details of the scheduler, semaphore, and time management subsystems. 
In particular, the scheduler section deepens on the context switch state space, which deeply depends 
on the hardware interrupt controller. The last section of the chapter deals with the memory 
management policies of the system, with focus on the integration to the existing runtime. 

5.1 System Architecture 

There are three relatively independent functional modules that compose the kernel: scheduler, 
semaphores and time management. The scheduler is the base component that enables the operation 
of the two other modules. There is also initialization code that configures the hardware and prepares 
the data structures for the rest of the modules, although it is not considered a functional module as 
such. The code for the modules is distributed among the various layers of the kernel. The kernel is 
structured as a three layered system: with the exception handlers at the bottom, the internal functions 
in the middle and the API for the user at the top (See Figure 3 and Figure 4). The API functions are the 
only ones supposed to be used by the application. 

System Exceptions and Priorities 

For the selection of priorities of the system interrupts, is important to highlight that The Cortex-M0 
system only implements the two most significant bits of the priority registers. As a consequence, there 
are only four priority levels available for the interrupts and configurable priority system exceptions. 
Another relevant characteristic is that multiple exceptions can be registered at the same priority, 
although preemption is only possible between different priority levels. In other words, an exception 
is unable preempt another one in the same priority level [68]. 

As a result of the previous behaviour, the exceptions located at the highest priority level, band [0, 63] 
in Table 6, execute their code without interference of other exceptions. The effect is equivalent of 
disabling and enabling interrupts in thread mode or handler mode of lower priority exceptions. 
Although Reset, NMI and Hard Fault have higher priority that the band [0, 63], it is also not possible 
to disable them. Consequently, the behaviour is equivalent and the closest to an atomic operation 
available in the Cortex-M0 processor. 

As the SysTick and SVCall Handlers modify sensitive data structures from the scheduler, locating them 
at the highest priority level makes the code executed from them inherently atomic. There is no 
problem of locating both of them at the same level, as it is not possible that they preempt each other. 
Altogether with the PendSV at the lowest priority band, the system effectively provide two priority 
levels completely available for user handlers. 

Initialization 

The initialization procedure, although not a functional block, is vital for the operation of the kernel. In 
particular, the initialization procedure not only configures hardware as in other RTOSs. In order to 
keep the Flash memory footprint as low as possible, the core data structures and stack spaces are 
created and initialized at runtime. Table 7 provides a concise summary of the executed operations  
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Figure 3. General Architecture 

 

Figure 4. Kernel Detailed Architecture 

* function callable from handler mode. 
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during initialization. In particular, the decompression procedure of initialization records is different 
from all the other RTOSs analysed. Further details of this procedure are presented in Decompression 
Process. 

Priority Exception 

-3 Reset (1) [async] 

-2 NMI (2) [async] 

-1 Hard Fault (3) [sync] 

[0, 63] SVCall (11) [sync], SysTick (15) [async] 

[64, 127]  

[128, 191]  

[191, 255] PendSV (14) [async] 

Table 6. System Exceptions Priorities Arrangement 

   

SP  - switch SP to PSP 
- point MSP to the interrupt stack 

   

Thread 

 - decompress TCBs from initialization records 
- prepare stack space: 

- calculate limits 
- write sentinel values 
-  prepare initial contexts 

- prepare pointers and flags 
   

SysTick 
Admin 

 - prepare timeout queue 

   
NVIC  - set exception priorities (SVCall, PendSV, SysTick) 

   

SysTick  - configure frequency and enable 
- enable interrupt 

   
Table 7. Summary of initialization operations 

API 

From the set of API functions, the functions that register threads and semaphores (th_register, 
th_register_main and sem_register) to the system are actually function-like preprocessor macros. The 
reason behind is the requirement of declaring and defining multiple variables in specially defined 
program sections at once. For example, for registering a thread it is necessary to declare and define 
with specific values the thread initialization register in the special “thread_init” section. Furthermore, 
it is also required to declare the placeholders for stack, TCB and timeout, each one in a particularly 
defined section (more details of the specific details can be found in the “Memory Management 
section”. The semaphore case is relatively similar: it is necessary to create a variable with specific 
values and a pointer to that variable at once. 

Another important characteristic of the API, in particular of the semaphore waiting and signalling 
functions, is the ability to recognize if they are being called from thread or from handler context. This 
feature is added to prevent potential problems in the case the user mistakenly tries to wait for a 
semaphore from interrupt context. In that particular case, the request is simply discarded by the 
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system. However, if the user tries to signal from interrupt context, what is purposely allowed for 
synchronization, the system handles the request accordingly. In particular, signalling a semaphore 
from handler mode leads to a complex set of alternative actions (analysed in section “state space”), 
when compared to the thread mode counterpart. 

5.2 Scheduler 

The scheduler provides the core functionality of the kernel, and is the base for the other modules 
(semaphore and time management). It is designed to provide the necessary functionality with simple 
data structures and reduced memory (RAM) footprint. The system provides a linear scheduler in the 
sense that calculating the highest priority ready thread has a worst case execution time proportional 
to the number of registered threads at the system. Although the implementation would not scale 
adequately with large number of threads, for the target of 8 threads, the worst case execution time is 
still comparable to other alternatives, with the advantage of reduced footprint. 

In summary, the scheduler locates the highest priority ready thread by iterating through the TCB array 
and checking for the first thread that is not blocked by either a semaphore or a timeout. In particular, 
the NIL pointer is used as the value of the semaphore pointer that represents no blocking. The iteration 
starts with the highest priority thread, and continues with decreasing priority until the lowest priority 
thread is reached. For each step, the semaphore pointer of the TCB structure is tested against the NIL 
pointer. In case all the threads specified by the user (including main thread) are blocked, the idle 
thread is selected to execute. The idle thread is a special thread with the lowest priority (lower than 
the lowest priority user thread) that is never blocked, and works as a fail-safe in case of special 
situations. The current implementation of the idle thread has no functionality, although debugging 
and security features can be implemented in the future.  

It is also important to highlight that for the kernel there are only two possible states for a thread, 
either ready or blocked. There is no practical distinction between a thread blocked by a semaphore 
and one blocked by a delay. In other implementations [ref], it is usual to analyse differently threads 
which are waiting in a “suspended” or “sleep” state. The distinction is important when different data 
structures handle threads depending on their status, which is commonly chosen for efficiency 
purposes. Nevertheless, as the scheduler implementation is designed to handle a small number of 
threads and reduced memory footprint, it is only important if a thread is ready for execution or not. 

An example of the operation is depicted in Figure 5. In that case, there are three user threads (which 
one of them is the main thread). The highest priority thread is blocked by a semaphore. The lowest 
priority thread is blocked waiting for a delay to timeout. In that case, the iteration will start with the 
highest priority thread, continue because it is blocked by a semaphore, and stop in the next thread 
(middle priority in this case), as it has a NIL pointer. In case the second thread was also blocked (all 
user threads blocked), the iteration will stop at the idle thread, which is always in a ready state. 

Data Structures 

The main data structure of the scheduler is an array of priority ordered TCBs. In turn, the TCB data 
structure provides the basic functionality and is prepared for future enhancements of the scheduler 
that require extra fields. In particular, the dynamic_priority field is intended for future use when the 
priority of threads can be modified dynamically by some resource access protocols like priority 
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inheritance of priority ceiling. The stack_top field is intended for stack overflow checking and 
protection. Together with the sentinel value written at the top of each thread stack (cross reference 
with lower section), it is possible in a future extension to detect and take some particular action in 
case of stack overflow. 

 

Figure 5. TCB array example for 3 user threads + idle thread 

1. /* 4 words */   
2. typedef struct {    
3.     volatile uint32_t * volatile current_top; // Top of current stack    
4.     uint32_t *stack_top;                    // Low memory address    
5.     volatile semaphore_t * volatile semaphore; // Semaphore stopped at    
6.     uint16_t  stack_size;                   // Stack Size in 64 bit words    
7.     uint8_t   base_priority;                // Static base priority         
8.     volatile uint8_t   dynamic_priority;    // Dynamically assigned priority 
9. } thread_t;   

Figure 6. TCB data structure 

(notice the use of volatile qualifier to prevent caching) 

Context Switch State Space 

Since the context switch is effectively executed at the lowest priority available, it is possible that a 
higher priority interrupt (either SysTick system exception or any user defined interrupt) requests 
scheduling services and consequently modifies the target thread that is supposed to be switched in. 
In particular, switching a task with itself is a forbidden operation. The reason is that the current state 
of the thread is discarded and switched to a previous state that is corrupted and no longer valid. 

The ARM-v6M architecture only provides information about the pending status of the PendSV 
exception, but is unable to accurately report if the PendSV exception is inactive, active or preempted. 
Nevertheless, with an extra software flag to know if the critical section of the context switch has been 
executed or not, the necessity to know the status of the PendSV exception is obviated. Furthermore, 
it is possible to have full control of the context switch outcome at any moment regardless of the stage 
at what the context switch process is interrupted. 

The “switch pending” flag is enabled from the very moment the context switch is requested and the 
PendSV exception is set to pending. It will only be disable when either: the context switch is cancelled 
before the PendSV activates for the first time (the status is still pending), or the context switch critical 
section has been executed. That determinism provides consistency to the state space and allows to  
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Figure 7. Context Switch State Space 
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decide what actions can be performed if the newly required switch in task is different form the one 
intended at the initial context switch request. 

As long as the context switch critical section has been passed, the PendSV can be set again 
independently if the exception has already completed, or it is still in progress of being completed. That 
is possible because the PendSV exception can have actually four possible states: inactive and not 
pending, inactive and pending, active and not pending, and active and pending. For the analysis 
purposes, being pending, regardless of being active or inactive, is the same effect for the program 
execution and the state space analysis. 

In case the PendSV has already started executing and an interrupt that preempted it during the first 
part requests that the thread that is being switched out is switched in again, a state known as “abort” 
is reached. In that state, it is necessary to cancel the context switch, but it is not possible as the PendSV 
exception is already running and some registers have already been pushed to the stack. In that 
particular case, an extra flag, the “abort_flag” is used to indicate during the critical section that the SP 
should not be changed. Consequently, when the critical section has passed, the rest of the PendSV 
simply pops the registers that pushed previously, leading to a system state identical to the one when 
the exception started, effectively cancelling the context switch. 

 

Figure 8. PendSV normal progress, with status of flags 

5.3 Semaphores 

The semaphore block enables the functionality of resource sharing, mutual exclusion and 
synchronization. Although it is not a base component, it is one of the two mechanisms made available 
by the kernel to block and switch thread execution (the other being the time management block). The 
semaphores are declared statically, with the initial value being the only creation parameter. There is 
no distinction between counting semaphores, binary semaphores and mutexes. 

For the purpose of the present analysis, a mutex is distinguished from a binary semaphore with two 
characteristics: it handles the concept of ownership and it is initialized as “not taken”. The ownership 
represent the awareness of the system of what thread currently has the mutex “taken”. The 
ownership, together with the property of being initialized as “not taken”, leads to the possibility of 
resource access protocols like priority inheritance or priority ceiling. 
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However, the use of resource access protocols leads to dynamic priority assignment. With the current 
scheduler implementation, the change of priority was not possible, as they are statically designed. 
Nevertheless, the data structure for the semaphore was prepared with the “ceil_priority” parameter 
for the future implementation of the priority ceiling protocol. The priority ceiling protocol was chosen 
because it prevents deadlocks, in contrast with the priority inheritance counterpart. 

Data Structures 

The data structure is designed to be compact and enable future extensions at the same time. As 
previously described, the “ceil_priority” is designed to future implementation of the priority ceiling 
protocol. If the concept of ownership is required in the future, a pointer to the TCB of the owner 
thread can be appended at the end, changing the size from one to two words. As long as the number 
of bytes in the structure is kept a power of two, the generated code for handling the data is relatively 
efficient. 

1. /* 1 word */   
2. typedef struct {    
3.     volatile uint16_t value;    
4.     const    uint16_t ceil_priority; 
5. } semaphore_t;   

Snippet 4. Semaphore Data Structure 

Blocking Pre-Check 

In order to decrease the execution time of the wait operation, a test is made before the actual atomic 
operation is executed. In case the wait operation will most probably block, the atomic operation is 
realized through the SVCall handler. The underlying reason is that a switch to handler mode will most 
probably be necessary, as a context switch will eventually be required. As the tail-chaining mechanism 
allows fast entry from the SVCall handler to the lower priority PendSV handler, the execution time is 
only slightly increased in comparison with only executing the PendSV handler. However, the main 
advantage is that the PendSV will always be called from tail-chaining a higher priority interrupt, what 
simplifies the analysis of the context switch state space. 

Nevertheless, there is a slight chance that the semaphore does not actually block the current thread, 
even if the previous test suggested it, because an interleaving event made the semaphore available 
between the non-atomic test and the actual execution of the atomic SVCall taking operation. In that 
case, the SVCall handler simply returns to the calling thread, without requesting any context switch. 
The described behaviour is depicted in Figure 8 

In the case that the pre-check test outputs that the semaphore is available, the system call creates an 
atomic operation in handler mode by disabling the interrupts. Immediately after, the semaphore wait 
operation is executed. In case it was successful, the interrupts are enabled again and the function call 
simply returns. However, there is the slight chance that the semaphore was taken between the pre-
check and the start of the atomic section. In that case, the interrupts are enabled again and the SVCall 
handler is requested in the same way as if the test output the semaphore would probably block the 
current thread. 

The situation just depicted leads to the worst case execution time of the wait operation: the test 
outputs that the semaphore is available, then it is unsuccessfully acquired it in thread mode and the 
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SVCall handler is required to block the current thread. Nevertheless, the pre-test code was carefully 
crafted to only increase the worst case execution time slightly compared to the whole wait operation. 

In contrast, when the test accurately predicts that the wait operation will not block, the execution 
time is reduced considerably, as there are no exception entry, tail-chaining or exception-return 
latencies added to the semaphore wait operation. In summary, the pre-check system is implemented 
to reduce dramatically the execution time in the case the semaphore is available, while slightly 
increasing latency of the operation when a context switch is required. 

 

Figure 9. Semaphore Wait Operation 

 

Figure 10. Semaphore Signal Operation 
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5.4 Time Management 

The time management module allows to pause the execution of threads for the requested amount of 
time. As in other RTOSs, the module can be enabled or disabled at compile time, depending on the 
needs of the user (in contrast with the semaphore system which is always enabled). The choice of the 
time granularity for the system is highly relevant, as it is a tradeoff between functionality and kernel 
performance: high granularity allows high precision but generates temporal interference to executing 
threads as they are constantly preempted by a kernel exception that effectively consumes processor 
time. 

In general, there are two possible implementations for a time management module. The most 
common is to interrupt the normal flow of execution at regular intervals. The system code executed 
at periodic intervals handles events that depend on the pass of time, like updating the system time, 
or accounting for processor usage in systems which schedule based on time slices or round-robin 
strategies. The described interrupt is commonly known system tick, and is standard feature in both, 
OSs and RTOSs. 

The other approach relies on the fact that usually it is known beforehand when the next system event 
will occur. In that case, it is possible to program a hardware timer to interrupt the system when the 
next system event will be executed. The previous approach is regarded as “tickless” operation, as it 
lacks of a periodic interrupt that measures the pass of time. In fact, although the system tick code of 
regular OS executes periodically, only a few of those interrupts execute useful code. In general, the 
system tick simply modifies counters, and only performs relevant actions when those timers reach a 
particular value. 

The “tickless” implementation is particularly useful in energy constrained systems, as it allows to 
enable the deep power-saving modes of modern processors during long periods. In contrast, systems 
based on periodical interrupts need to reactivate the system on regular intervals, what is generally 
inefficient, as “waking up” the system is particularly energy consuming. Another advantage is the 
absence of periodic system code interrupting the user code flow of execution (particularly important 
for processors with cache memories). Consequently, the tradeoff between temporal precision and 
interference to thread execution is removed, and the granularity can be set as high as the hardware 
timer is able to provide. 

For the present implementation, the system tick approach was chosen because of two reasons. First, 
the STM32F0 Cortex-M0 implements the SysTick module, which is a tightly integrated timer 
specifically designed to provide system tick functionality. The two main benefits of the SysTick module 
are the implementation independency (compared to peripheral timers provided by each 
manufacturer) and the specialized interface that reduces configuration code. Furthermore, even when 
the SysTick module is an optional feature in the ARMv6-M architecture, it is a standard component 
for the ARMv7-M architecture. As the future plans of the Ell-i Co-Operative target also the Cortex-M4 
processor (which implements the ARMv7-M architecture), the design choice provides scalability and 
manufacturer independence. 

The other reason for selecting the system tick approach is that the target system is not energy 
constrained. In fact, the target platform requires a minimal power consumption in order to comply 
with the PoE node standard behavior [73]. Furthermore, from the energy perspective, the “tickless” 
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operation is only beneficial when the system is in the idle state. If the system is intended to rarely 
reach the idle state, as is the case of the projected target system, the periods that allow power-saving 
modes are scarce, and the difference in energy consumption between a tick and a “tickless” system is 
negligible. 

As the kernel is designed with the system tick interrupt approach, the selection of the interrupt period 
is of high importance. The selected tick frequency is 1000 Hz, which provides a time granularity of 
1ms. The decision is backed by the fact that the Arduino environment has a delay function with 
milliseconds as argument and the average interference to the user threads with the current 
implementation is below 0.125%3. Although a higher granularity decreases the error between the 
requested and real elapsed time, it is not considered necessary, as the projected application has no 
stringent timing requirements, and the jitter generated is acceptable. 

As a result of the selection of 1ms interrupt period, the delay difference between the requested value 
and the real delay is in the range of [-1ms, 0ms] non-inclusive. The maximum difference occurs when 
the delay is registered just before the next system tick interrupt. In contrast, the minimum difference 
is present when the delay is registered just after the previous system tick. In summary, the delay will 
always be less than the expected value, with the limit of slightly less than 1ms. The described 
behaviour is depicted in Figure 10. 

 

Figure 11. Worst and Best Case Timing Errors 

Data Structures 

In the case of using a periodic system interrupt, the minimization of the execution time is of vital 
importance, as it directly affects the time performance of any kernel implementation. In the particular 
case of the implemented scheduler, the function of the SysTick exception is limited to handle the 

3 Considering an exception entry of 15 cycles, an exception return of approximately 15 cycles (real value 16 
cycles), and an interrupt execution of 30 cycles (the current implementation is faster) leads to 60 effective cycles 
lost per interrupt. With the target operating frequency set to 48.000.000 cycles per second, using 60.000 cycles 
for the SysTick exception (1000 interrupts per seconds) leads to 0.125% of processor time used for handling the 
system tick interrupt. 
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timeout of blocked threads. For an efficient implementation, the time complexity should be preferably 
constant, and with a constant as small as possible. As a result, the queue is the data structure is 
selected because of its constant access time to the initial node. 

If the timeout events are ordered by incremental delay and only the difference from the previous 
event is stored, it is only necessary to decrease the time counter of the head of the queue to represent 
the pass of time. Because accessing the head of the queue and decreasing a variable within it do not 
depend on the number of events, the time complexity remains constant. Furthermore, al the selected 
open source RTOSs revised initially utilize the same “queue of incremental delays” concept. 

From the possible implementations, the single linked list alternative is preferred as it offers constant 
time complexity for the head insertion (leading to constant time for the access of the head element) 
as well as linear time for the insertion of an ordered element. Although the doubly linked list was also 
considered, the property of having constant insertion time at the tail of the queue brings no effective 
improvement for the application. As the queue is not required to be traversed backwards, neither to 
have elements added at the end directly, the increased memory (RAM) footprint and execution 
overhead of a doubly linked list are not desirable. 

Nevertheless, the possibility of constant complexity for the ordered insertion could improve the 
execution time and scalability of the new timeout registration operation. The use of search enabled 
structures like binary search trees or self-balancing binary search trees in conjunction with the queue 
was contemplated, as they provide constant insertion time for ordered elements. However, the 
memory and execution time overhead related to a search tree implementation is not an acceptable 
tradeoff, as the number of threads is relatively small and the linear time option outperforms the 
scalable alternative. 

1. /* 4 words */   
2. typedef struct timeout_struct timeout_t; 
3. struct timeout_struct {    
4.     volatile uint32_t count;    
5.     volatile semaphore_t *volatile *sem; 
6.     uint32_t flags;    
7.     timeout_t *next;    
8. };   

Snippet 5. Timer Data Structure 

Interaction with Scheduler 

The interaction with the scheduler uses the same scheme of the semaphore module. In order to block 
a thread during the desired delay time, the TCB blocking pointer is set to a predefined value different 
from the NIL pointer. As described in the previous sections, for the scheduler there is no difference 
between a thread blocked by a semaphore and one blocked by a timeout when searching for the 
highest priority ready thread. The value set in the blocking pointer is fixed, and designed to never 
collide with a semaphore or any other relevant data. As a future extension, an alternative is to store 
the pointer to the timeout event in the queue, which could allow to “wake up” threads before the 
completion of the desired delay (functionality not present in the current implementation).  

When the head of the queue reaches the end of its timeout delay, the blocking pointer of the blocked 
thread TCB is set to NIL, what changes the state to ready and enables possible scheduling. In case 
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more than one timeout event reaches the end of their delay at the same time (the time difference of 
the nodes with the current head is zero), all the threads blocked by those timeout events are 
unblocked at once. Nevertheless, the operation of the scheduler is not affected and the ready thread 
with the highest priority is selected to continue. In other words, there is no special ordering for threads 
that are waken up simultaneously than the predefined priority. 

5.5 Memory Management 

Although the designed scheduler does not have a memory management system in the traditional 
sense, the allocation of static memory and relevant data structures for the correct operation follows 
a methodically defined process. The design is based on the peripheral initialisation implemented for 
the Ell-I Runtime [78] (for details, refer to section Peripheral Initialisation). The overall strategy is 
focused on compile-time calculation of required space, with particular focus on RAM availability and 
compactness of Flash stored data structures. 

Linker Interaction 

Following the idea of having control of the linking process from the original Ell-i Runtime, a tailored 
linker script is used to provide a very particular ordering of objects among the RAM and Flash memory. 
In concrete, the “section” attribute extension for the C language by GNU GCC is used to pass 
arguments to the linker, which optimizes the process of collecting objects from multiple source files. 
Additionally, the ability of using variables provided by the linker in the C files is extensively used to 
offload the calculation of addresses and space requirements to the compile time. 

In particular, two special kind of objects were specified for this scheduler: placeholders and thread 
initialisers. The placeholders are objects used for the calculation of RAM availability. They are finally 
discarded by the linker, as they do not contain useful data and are only used for setting the address 
limits of their particular sections. The initialisers are data structures on the program memory (Flash) 
that completely describe the abstraction of a thread for the scheduler. They follow the same idea of 
the peripheral initialization records already implemented in the provided Ell-i Runtime. 

There are three kinds of placeholders for the scheduler: Stack, TCB and Timeout. Each time a thread 
is registered to the scheduler (at compile time), a placeholder of each kind is created. The Stack 
placeholders have the additional requirement of being 8 bytes aligned, which is a consequence of the 
architectural requirement for the stack pointer to always be 8 bytes aligned [36, 68]. At link time, the 
objects are grouped in their respective categories to enable the calculation of the start and end 
addresses of each section. After that step is completed, the objects are discarded, as the only 
important information is the limits of each section. Those variables will be propagated by the linker to 
their respective C variables. 

Thread Initialisation Records 

The Thread Initialisation Records contain all the information necessary for initializing the TCB, as well 
as parameters regarding the stack space and the data necessary for initializing the stack space for the 
correct initialisation during the first context switch to that particular thread. The corresponding data 
structure is presented in Snippet 6. Apart from the “stack_size” and “priority” fields, the rest of the 
parameters are used to provide the initial context to the stack space of each thread. 
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Each initialisation record is created as part of the thread registration at compile time (the other objects 
created are the three placeholders: Stack, TCB and Timeout). A very important step is to name the 
section the objects are assign based on the provided priority, as the linker orders the collected 
initialisation records objects based on this property. This characteristic provides two advantages. First, 
it offloads the processing load from ordering the TCBs and stacks by priority at runtime. Second, it 
allows the registration of non-consecutive priorities without any consequence on the linking process 
or runtime execution. 

1. /* 8 words */   
2. typedef struct {    
3.     const uint16_t stack_size;    // In 64 bit words  
4.     const uint16_t priority;      // Base priority  
5.     const void (*function)( uint32_t arg0,    
6.                             uint32_t arg1,     
7.                             uint32_t arg2,    
8.                             uint32_t arg3);    
9.     const void (*exit_function)();    
10.     const uint32_t arg0;    
11.     const uint32_t arg1;    
12.     const uint32_t arg2;    
13.     const uint32_t arg3;    
14.     const uint32_t flags;    
15. } thread_init_t;   

Snippet 6. Thread Initialisation Data Structure 

Decompression Process 

The decompression process consist on iterating through the initialisation registers in priority order. As 
the priority order is ensured by the linker, this process is simplified to a consecutive-order iteration 
implemented by a C “for” statement. The first step when accessing an initialisation record is to test if 
it is the record of the main thread, as the initialization process is slightly different. 

In case of all threads except main, the Stack space for the corresponding thread is written with the 
initial context on top of the stack (based on the function parameters and default values), and a 
“sentinel” value at the bottom of the stack to track possible overflows. Optionally, the rest of the stack 
space can be cleared if required. Finally, the TCB is initialised with the parameters regarding the stack 
limits, as well as the priority provided by the linker. A very important step during the TCB creation is 
to initialise the semaphore pointer to NIL. In other words, no thread initially blocked by any semaphore 
or timeout. 

The main thread follows a different initialisation procedure. First of all, it does not require the stack 
space to be initialised or to write an initial context on top of it stack, as it is already running. Second, 
the stack limits do not need to be assigned at runtime, as they are already assigned and are valid when 
this decompression takes place. In fact, the TCB state of the main thread is initialised as a thread that 
is currently running: the parameters are not valid until a context switch stores the correct values for 
future re-entrancy. 

At the end of the initialisation process, the RAM memory is allocated with the map shown in Figure 
11. The two most important sections for the scheduler are the pre-allocated, “thread_section” and 
“timeout_section”. They are pre-allocated in the sense that they do not contain any valid data until 
the scheduler is initialised. It is important to note that the stack of the main thread is already in use 
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when the scheduler is initialised. As a consequence, all the other stacks are allocated after it. The 
interrupt stack is located at the very end just before a possibly empty area. The objective is to prevent 
any problem in case the interrupt stack overflow, as it is not possible to precisely predict the number 
of nested interrupts or the functions user defined ISR may call during execution. 

 

Figure 12. RAM Map 
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Chapter 6 – Evaluation 

This chapter describes and discusses the methods used for testing and evaluating the scheduler and 
other Open Source RTOSs, as well as the results obtained from this process. The first section presents 
the selection procedure for comparable RTOSs. The second section describes the testing framework, 
which comprises a hardware setup as well as a common codebase for software support. The third 
section details the workload used evaluate the memory and timing performance of the selected RTOSs 
and the Ell-i scheduler. The next section presents the resulting data, which is evaluated and discussed 
in the last section of this chapter. 

6.1 Setting 

In order to evaluate the overall performance of the developed system, the chosen method of is to 
compare certain features with similar pieces of software also distributed as Open Source. As enabling 
threading in a very memory constrained system was the objective of the designed scheduler, systems 
with similar set of features were selected. In particular, the selected systems were also targeted 
toward small to medium MCUs, and had the option of disabling or enabling features during compile 
time. This particularity allowed a more fair comparison, as all the elements that provide functionality 
beyond the scope of the current analysis were deactivated. 

The selection of similar systems for comparison was achieved in a two stage process. The first step 
identified RTOS that support the MCU used, which has relatively high memory, speed, and instruction 
set constraints. As the MCU used is on the low end of the ARM Cortex-M family, only a subset of the 
existing (commercial and open source) RTOSs have ports to that particular architecture. In contrast, if 
it was a high end MCU, like the Cortex-M4, both RTOS and normal OS (such as Linux) have been ported 
and are available for off-the-shelf usage. 

The second step consisted on filtering the existing software according to the following criteria: 

1. License 
2. Popularity and Active Development 
3. Memory Footprint (Flash and RAM) 
4. Similar Features (Scheduler, Semaphores and Timer) 
5. Documentation and Adaptability to the Testing Framework 

From the licensing side, every software distributed with only a commercial licensing was discarded. 
After this, a quick analysis of popularity and how recently the software have been actively developed 
was performed. The result of this analysis left only four alternatives for further study (presented in 
Table 8). However, a special clause form the licensing terms on FreeRTOS prevents using the software 
for comparison purposes. Consequently, it was removed from the set for comparison, leaving only 
three systems (ChibiOS/RT, CoOS, and eCos). 

ChibiOS/RT FreeRTOS CoOS eCos 

Multiple [87]: 

• Pure GPL3 

Multiple [88]: 

• GPL2 with linking 
exception * 

Single [89, 90]: 

• 3 clause BSD 

Single [91]: 
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• GPL3 with linking 
exception 

• Commercial 

*Demos, test code and low 
level drivers under Apache 2.0 

• Commercial 

*Another exception is that the 
software cannot be used for 

any kind of comparison. 

• GPL3 with linking 
exception 

Table 8. License Analysis for selected RTOSs 

After the previous step, the remaining RTOS were studied at the source code level to evaluate the 
compatibility with the designed testing framework. In general, the modularity and limited usage of 
inline assembly allowed a straightforward understanding of the internal operation in all but one case: 
eCos. The main problem was that eCos uses an additional process before generating the actual source 
code and providing it to the compiler. This additional process is intended to generate the C code from 
general templates, after a configuration procedure. However, the base templates are not easy to 
understand, as they are not C or C++ code, but the input for a configuration tool. As a consequence, 
the absence of C source files and the necessity of using a specific set of tools (compiler and linker), 
prevented the adaptation of eCos to the testing framework. 

At the end, only two systems were left for comparison: ChibiOS/RT and CoOS. It is important to 
highlight that FreeRTOS had all the properties for being adapted to the testing framework. 
Nevertheless, the restrictions for comparison in public documents prevented its usage in this 
evaluation. The selected systems were ported to the testing framework for posterior analysis. The 
testing framework and evaluation procedures will be discussed in the next section. 

6.2 Procedure and Metrics 

Software Testing Framework 

A common set of compiler, compiler parameters, and helper files was stablished in order to remove 
the possible differences in space and execution time that different compilation process would lead to. 
From one side, the common compiler and respective configuration flags enabled measuring the 
efficiency of the scheduler implementations. Not using a common building process would lead to 
interference due to the efficiency and optimization capabilities of a specific compiler. In particular, as 
the objective is to deliver scheduling functionality to a memory constrained platform, the compiler 
was configured to optimize for space, and not for speed. 

Following the Open Source trend, the compiler tools used were the port from GCC for the ARM 
architectures [92](supported by ARM Holdings). It is important to highlight that the building process 
was purposely divided in a separate compilation and linking steps, in order to use a custom made 
linker script that allows further control of the specific location of objects. The details of the compiler 
and flags are presented below. 

• Compiler: GNU Tools for ARM Embedded Processors 4.8- Q1 2014 (Bare metal EABI pre-built 
binaries for running on a Linux host) 

• Relevant Compiler Flags: -Os --param max-inline-insns-single=500 -ffunction-sections -fdata-
sections -fno-common -nostdlib -mcpu=cortex-m0 –mthumb 

• Relevant Linker Flags: --gc-sections 
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As the target is memory constrained, the compiler is indicated to generate separate sections for each 
object, and subsequently the linker discards (garbage collects) all unused sections. With this 
configuration only used elements will be kept. As a result, all the files that compose the ported RTOS 
can be included in the compilation process, and only the elements that provide the required 
functionality will be kept. This strategy simplifies considerably the adaptation process of any RTOS to 
the framework. 

From the other side, a common set of initialization and library functions were used for all the ported 
RTOSs. From the initialization files, the most basic configuration needs two elements: a vector table, 
and a reset vector handler. In turn, the reset vector handler realizes at least three things: initializes 
variables by copying data from Flash to RAM, configures the clock and basic power systems, and calls 
the main function. From the library functions, the ported RTOS only require the division subroutines. 
As GCC determines which library to compile against based on the architecture, all systems used the 
same library. 

However, as some RTOS require different subroutines, the size of the objects taken from the libraries 
might vary. In addition, the user application might also vary from system to system, as data structures 
that support threads and synchronization primitives are different in each system. The size of the 
interrupt handlers for specific system services is variable as well. As a result, even if the basic 
initialization system is common for all ported RTOSs, detailed size analysis is needed. A size analysis 
script in Python was written to accurately provide the sizes of objects and particular linker sections 
(e.g. the size of the space between two identifiers), and effectively isolate the different parts of the 
system: mainly the user application and the scheduler functionality. 

Hardware Testing Framework 

A framework for measuring the execution time of selected primitives of the studied RTOSs was also 
implemented. In essence, the system consisted of a logic analyser connected to a low latency output 
pin. This configuration allowed measurements close to individual cycle accuracy. The main reason for 
this construction is the absence of internal channels able to collect information about the core 
operation with the required precision. In particular, some hardware factors that directly affect the 
metrics are in the range of ten to twenty cycles. 

Although other possible solutions include the use an available timer peripherals, various factors 
prevented their use. First of all, the precision required (in the range of tens of nanoseconds, or single 
cycle) urged for knowledge of the precise latencies of hardware events, such as timer latencies or 
exception entry times. As this information is not publicly available, the selected framework allowed 
the achievement of a second purpose: the accurate measurements of hardware events. These events 
include exception entry, exception return, tail-chaining, and timer latencies with cycle accuracy. 

In order to calculate approximately the accumulated errors when measuring events at the core from 
the outside, it is necessary analyse in sequential order the locations at which latencies are added to 
the measurement. This analysis is detailed in the section below. 

• First, the event is generated at the core. 
• The signal is sent toward the GPIO peripheral through the System Bus. However, it is not 

directly received by the GPIO, first is arbitrated by the Bus Matrix. 
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• The Bus Matrix uses a round-robin algorithm to arbitrate between the two masters: the core 
and the DMA driver [71]. Unfortunately, there is no accurate information about this latency. 
Nevertheless, the DMA was deactivated during all the tests performed. 

• Then, the Bus Matrix directs the signal to the GPIO through the AHB2 Bus. 
• The GPIO receives the signal and starts the activation or deactivation of the desired pin. 

Although there is absence of details about the individual latencies between the core and the 
GPIO peripheral, it is stated that the maximum frequency for toggling an output pin is 2 cycles. 
As a result, the latency for a signal is between 0 cycles and 1 cycle. 

• After the GPIO receives the signal to change the output state of a pin, the latency for the 
output to reach the desired level is mainly dependent on the voltage input and the 
capacitance of the load connected to the pin (assuming the current demand is within the 
accepted limits) [93]. As the pins were directly connected to the logic analyser probe, and it is 
designed have an equivalent capacitance of 7 pF [94], the fastest response time is expected 
form the GPIO pin: 5 ns. 

• The Logic Analyser is able to read the signal from the output pin. The maximum time 
resolution that the analyser can handle is 10 ns when operation at its maximum frequency 
(set to measure at 100 MHz). However, another factor affects the operation, as the voltage 
levels that the Logic Analyser identifies as logic values might differ from the ones determined 
by the MCU. As a consequence, the manufacturers of the Logic Analyser indicates that the 
practical maximum bandwidth is 25 MHz (when operating at 100 MHz) [94]. In conclusion, the 
error that the analyser generates in practice is 20 ns. 

• Finally, the signal is received and stored by a Personal Computer. As the software that drives 
the Logic Analyser and stores the data warns if there is any error in the data transfer, no 
latency or error is provided for the connection between the Analyser and the PC. 

In summary, there are three latencies that accumulate for the final error calculation. As the processor 
is set to operate at its maximum frequency for the evaluation, the delay for the path between the core 
and the GPIO is equivalent to approximately 21 ns. Taking into consideration the other two latencies, 
5 ns for the output pin state, and 20 ns for the Logic Analyser, the total error that for the final 
measurement is of, approximately, 46 ns. The details of the multiple hardware layers that a signal 
travels from the Core to the PC is illustrated in Figure 12. 

As the time each iteration of the experiment takes is variable, it is necessary to calculate the average 
of multiple cycles to obtain a more accurate and valid figure of the behaviour of the studied RTOS. 
This variability is caused by two main factors: the measuring error, and the possible variations due to 
the implementation of the RTOS. As the Logic Analyser simply outputs a series of transitions in the 
voltage measured by the probe, an additional step was necessary to extract useful data. A script was 
written in Python, which allowed to obtain statistical values from the raw data generated by the Logic 
Analyser, mainly the average, maximum, and minimum values. 
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Figure 13. Hardware Testing Framework 

6.3 Workload 

The objective of the workload is to enable measuring the context switch latency and the related time 
costs of synchronization primitives. It is important to highlight that in all the studied systems, including 
the scheduler designed for this work, it is not possible to only measure the context switch latency. In 
concrete, the context switch never happens by itself; it is always associated with an event that requires 
a thread different from the current one to execute. As a consequence, in the present work and in 
related literature [84, 86], the measured time is the compound of a synchronization event together 
with the subsequent context switch that it generates. 

For this evaluation, two events were measured in the studied systems. The first event consists of a 
semaphore signal (V operation) from a low priority thread that activates a high priority thread and, 
subsequently, generates a context switch. The second event is a semaphore wait (P operation) from a 
high priority thread that blocks, and allows a low priority thread to activate, generating a context 
switch. As both events require only two treads with different priorities, the evaluation is performed 
with only two user threads. As system created threads, such as the idle thread or some monitoring 
routine, are not under the control of the user, they are not considered within this analysis. 

It is also important to highlight what kind of semaphores were selected for this test. As the scheduler 
designed for this thesis has no resource access protocol bind to the semaphores, similar primitives 
with the minimal functionality were also selected in the studied RTOSs. For the case of ChibiOS/RT, 
the binary semaphores offer the minimal functionality, as they can only have two states, are not 
associated with any resource access protocol (Priority Inheritance in this case), and can be signalled 
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from ISRs [95]. However, ChibiOS/RT offers the possibility of ordering the binary semaphores queue 
based not only on priority, but on a FIFO scheme. For the sake of comparison, the binary semaphores 
were configured at compile time to operate based only on priority, providing the equivalent 
functionality to the designed system.  

For the case of CoOS, semaphores were selected among other synchronization primitives like mutexes 
or flags [96]. The selection is based on the fact that semaphores are not bind to any resource access 
protocol (in comparison with mutexes, which use Priority Inheritance), the minimal implementation, 
and the ability to be signalled from ISRs. As in CoOS there is no distinction between binary and 
counting semaphores, it is not necessary to choose among them and simply “semaphores” are used. 

The system load is designed to make it react by itself. In other words, there are no inputs that trigger 
any change during measurements, only outputs. As it was stated above, it is not possible to isolate 
and measure only the context switch time. Therefore, for reducing the interference of the scheduling 
system and semaphore management, only two threads were created. 

This minimal configuration is the same strategy used in the work of Otava [84] and Ugurel and 
Bazlamacci [86]. In brief, a high priority thread blocks on a synchronizatin primitive owned by a low 
priority thread. After the context switch, the low priority thread immediately releases the primitive, 
generating a second context switch that returns to the high priority thread. This sequence is repeated 
indefinitively to enable multiple samples for statistical analysis. The general pseudocode for the 
operation is described in Snippet 7. 

The particular approach for enabling external measuring is to generate a GPIO pin toggle exactly 
before the start of the synchronization operation and another when the new thread starts executing. 
Another GPIO pin is also toggled for measuring the next context switch, just before the primitive is 
released and again when the high priority thread continues execution. As the time granularity of the 
hardware testing framework allows individual measurements (in comparison with number of switches 
in a predetermined time lapse), an additional busy loop is added to the main thread for providing a 
hint that one cycle has executed. Additionally, this busy loop allows to measure the interference from 
the GPIO toggling operation when comparing the output graph of both GPIO pins. A detailed scheme 
of the output waveforms and matching events is presented in Figure 13. 

High Priority Thread Low Priority Thread 

1. High() {    
2.     busy delay loop    
3.     set_pin0    
4.     sem_wait()    
5.     reset_pin1    
6. }   

1. Low() {    
2.     reset_pin0    
3.     set_pin1   
4.     sem_signal()   
5. }   

Snippet 7. High and Low Priority Threads 
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Figure 14. Detail of Context Switch 

6.4 Results 

The main results for the timing measurements are presented in Table 9. The values shown represent 
the average of the measurements taken during the scheduling cycles performed in a time frame of 
100 ms. As the deviation from the average is less than the error limit of 46 ns, in all cases, it is omitted 
from the table. It is important to highlight that the developed scheduler, referred as “Ell-i” in the 
results table, have a performance between the two other analysed RTOSs for both tests: it is faster 
than CoOS but slower than ChibiOS/RT. 

However, there is a significant difference in comparison with the timings of the other systems: the 
time needed to perform the Wait operation is longer than the one needed for the Signal operation. 
The possible reasons for this difference will be discussed in the following section. Aside from that 
difference, it is notable that ChibiOS/RT performs the Signal operation in only 80.5% of the Ell-i time, 
and the Wait operation in only 53.0 % of Ell-i time. It is even more relevant when comparing it with 
the time needed to save and restore the 17 registers of the full context: 1.271 ms 4. Further analysis 
of the reasons behind this enhanced performance will be treated in the next section. 

4 61 cycles (1271 ns at 48Mhz) = 15 cycles for exception entry + 16 cycles for exception return + 15 cycles for 
saving software registers ( 6 cycles for a STM instruction with 5 registers, 4 cycles for 4 MOV instructions, and 5 
cycles for another STM with 4 registers) + 15 cycles for restoring software registers (same procedure but with 
the LDM instruction). 
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 ChibiOS/RT Ell-i CoOS 

Semaphore Signal + 
CtxSwt (us) 

4.79 5.95 10.83 

Semaphore Wait with 
Blocking + CtxSwt (us) 

3.19 6.02 9.29 

Table 9. Timing Results 

Apart from the timing analysis, the memory requirements, both Flash and RAM, are of high 
importance for the present study. The reason is that the scheduler was specifically designed to enable 
threading in the low-end MCUs based on the ARM Cortex-M0, which are very limited in memory for 
cost reasons. For a detailed and fair comparison, the Flash occupancy was calculated by grouping 
program objects and assigning them to specific constituting elements in order to isolate the RTOS code 
from the user application code. The information for the Flash memory is detailed in Table 10. 

As in the timing tests, the Ell-i scheduler, together with all the necessary initialization routines and 
user code, takes slightly more program memory than ChibiOS/RT (5.66% more) and considerably less 
than CoOS (32.93% less). In concrete, isolating only the RTOS code, ChibiOS/RT uses only 77.11% of 
the memory required by Ell-i. Conversely, CoOS uses 57.62% more memory than the needed by the 
Ell-i core. 

However, the RTOS program code is not the only factor that affects the final binary size, the user 
application is also relevant. However, as the functionality is identical in the three cases, the size of the 
user application allows the analysis of the memory efficiency of the system APIs. In that respect, the 
designed scheduler outperforms the other two, requiring only 91.34% of the space used by ChibiOS/RT 
and only 86.36% of the Flash requirements of CoOS. 

 ChibiOS/RT Ell-i CoOS 

Total 
(Bytes) 

1800 
 

• 1784, text 
• 16, data 

1902 * 
 

• 1890, text 
• 12, data 
 

* Without automatic peripheral 
initialization, for fair comparison 

2836 
 

• 2824, text 
• 12, data 

Data 
(Bytes) 

16 
 

12 
 

12 
 

System 
Initialisation 

(Bytes) 

468 
 

• 196, g_pfnVectors 
• 84, Reset_Handler 
• 188, System (2) 
 

468 
 

• 196, g_pfnVectors 
• 84, Reset_Handler 
• 188, System (2) 
 

468 
 

• 196, g_pfnVectors 
• 84, Reset_Handler 
• 188, System (2) 

 

Standard 
Libraries 
(Bytes) 

158 
 

• 158, div (6) 
 

0 
 

194 
 

• 194, div (6) 
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User Application 
(Bytes) 

208 
 

• 164, main (1) 
• 44, Thread (1) 
 

190 
 

• 158, main (1) 
• 32, Thread (1) 
, 

220 
 

• 140, main (1) 
• 80, Thread (2) 
 

RTOS 
(Bytes) 

950 
 

• 20, SysTick_Handler 
• 14, NMI_Handler 
• 916, Rest 

1232 
 

• 24, SVC_Handler 
• 72, PendSV_Handler 
• 84, SysTick_Handler 
• 1052, Rest 
 

1942 
 

• 70, PendSV_Handler 
• 88, SysTick_Handler 

1784, Rest 

Table 10. Flash Memory Results 

Regarding the RAM memory usage, it is necessary to conceptually divide between the dynamic stack 
space requirements and the statically allocated variables used by the internal kernel operation. From 
the stack requirement perspective, it is almost entirely related with the user application, and only 
affected by the underlying RTOS by three specific aspects. First, stack space for interrupts handling 
needs to be allocated somewhere: either by adding some extra space in each user stack, or by 
concentrating all interrupts in an independent section. Second, the RTOSs also requires a stack for the 
Idle Thread, which is additional to all other user stacks. Third, in case the main line of execution is 
abandoned after the threading functionality is enabled, the stack used by this ‘initial’ thread is 
thereafter unused. 

The results of the stack analysis are presented in the last row of Table 11. In relation with the allocation 
of stack space for interrupts, the Ell-i scheduler is the only one to allocate a specific stack for this 
purpose. As the other systems lack of this feature, the size calculation for user threads’ stacks should 
also consider the possibility of interrupts being handled in addition to the normal flow of code. 

Regarding the Idle Thread, the stack form Ell-I is the smallest, with only 96 bytes in comparison with 
100 bytes from CoOS and 176 bytes from ChibiOS/RT. In addition, ChibiOS/RT and Ell-i transform the 
main line of execution into a thread, requiring only two stacks for the two running threads. In contrast, 
CoOS ‘abandons’ the main thread, requiring one additional stack for the initialisation thread (resulting 
in three independent stacks). 

As discussed earlier, the RAM usage also depends on the statically allocated variables for storing 
internal data of the RTOS system. These variables are assigned to different code sections depending 
on the initial data they contain. Zero initialised variables are assigned to the .bss section, while 
variables with any other value are assigned to the .data section. As shown in the first row of Table 11, 
Ell-i requires only 52 bytes of combined allocation (.data + .bss). In contrast, ChibiOS/RT requires 80 
bytes. This is an important figure as the data structures from Ell-i are more compact, what provides 
additional benefits when scaling to a larger number of threads. 

Unfortunately, the ‘minimal’ configuration of CoOS still contains variables for event handling and 
other functions. This exemplifies one of the main problems with reduced configurations, as removing 
part of the system logic does not translate into resource saving (both, memory footprint and execution 
speed). 
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 ChibiOS/RT Ell-i CoOS 

Total (Without 
Stacks Space) 

(Bytes) 

80 
 

• 16, data 
• 64, bss 

52 * 
 

• 12, data 
• 40, bss 
 
 
 

* Without automatic peripheral 
initialization, for a fair comparison 

668 * 
 

• 12, data 
• 656, bss * 
 

* Includes “events” related unused 
variables, which is non-minimal, and 

prevents a fair comparison 
Data 

(Bytes) 
16 

 
12 

 
12 

 
Bss 

(Bytes) 
64 

 
40 

 
656 

 

Stacks 

3 
 

• Idle Thread (system) 
o 176 bytes 

• Low Prio. Thread (user) 
• Main, which converts to 

High Prio. Thread (system / 
user) 

 

4 
 

• Idle Thread (system) 
o 96 bytes 

• Low Prio. Thread (user) 
• Main, which converts to 

High Prio. Thread (system / 
user) 

• Interrupt Stack (system / 
user) 

 

4 
 

• Idle Thread (system) 
o 100 bytes 

• Low Prio. Thread (user) 
• High Prio. Thread (user) 
• Main, which is abandoned 

after threading starts 
(system) 

Table 11. RAM Memory Results 

6.5 Discussion 

Before proceeding to examine the results, it is necessary to distinguish the code optimization level of 
the analysed RTOSs. In general, the Open Source RTOSs analysed have gone through years of crafting 
and incremental improvements. In comparison, the development for the Ell-i system was almost 
halted as soon as the desired functionality was achieved. This fact is a side consequence of the limited 
development time frame, usual for Master thesis related projects. However, the author is quite certain 
that after incremental improvements and revision from external developers, the performance of the 
system can be dramatically improved. 

Another factor which influences the validity of the measurements is that the definition of “minimal 
configuration” for each RTOS, which is non-trivial and debatable. In fact, there was a discussion 
between the author of this document and the developers of FreeRTOS with the objective of granting 
permission to publish the timing and memory comparisons. The main reason for denying the 
permission was precisely the concept of “minimal configuration”, as the FreeRTOS creators considered 
that removing functionality to improve performance metrics actually degrades the overall quality and 
usability provided by the standardly configured system. 

The following is a brief analysis of the possible underlying reasons driving the obtained results. First, 
factors related to timing performance are discussed, followed by memory occupancy aspects. 

Timing 

In the other analysed systems, the time taken by the Wait operation is always shorter than the time 
required for the Signal operation (Twait < Tsignal). For ChibiOS/RT, the Wait latency is only 66.59% of the 
Signal latency; similarly, for CoOS it is 85.78. However, on the Ell-i scheduler, the time required for the 
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wait operation is almost equal to the Signal operation (Twait = Tsignal). In fact, the Wait operation is 1.17% 
longer than the Signal operation. The underlying reason is just an oddity from the particular thread 
configuration used for the test. Theoretically, the execution time of the Signal operation should be 
larger than the Wait operation for the average and worst cases. 

The sched() and the find_waiting_thread() functions in Snippet 8 can have a worst case execution time 
of a constant multiplied by the number of threads in the system. However, the two threads 
configuration, with the highest priority (HP) blocking on a semaphore, leads to a condition where the 
execution time of the Signal operation is almost equivalent in cost to the Wait operation. The 
particular branching of the original code that leads to these specific cases has been removed for 
simplicity of the pseudo code. 

Signal (unblocking HP thread) Wait (blocking HP thread) 

thread_t *new; 
thread_t *curr; 
semaphore_t *sem; 
 
thread_t *waiting; 
 
/* The worst case of this function 
 * is the number of threads in the 
 * system (2 in this case), however 
 * as the HP thread is the one 
 * blocked in the experiment, it 
 * always has cost of 1, as it 
 * stops at the first element 
 * because of the priority order. 
 */ 
waiting = find_waiting_thread(sem); 
 
/* unblock HP thread */ 
waiting->sem = NULL; 
 
/* The worst case of this function 
 * is also the number of threads in 
 * the system (2). As the HP thread 
 * has been just unblocked in the  
 * previous instruction, the 
 * iteration will stop also at the 
 * first element (HP thread), also 
 * leading to a cost of 1. 
 */ 
sched(); 

thread_t *new; 
thread_t *curr; 
semaphore_t *sem; 
 
/* block HP thread */ 
curr->sem = sem; 
 
/* The worst case of this function 
 * is the number of threads in the 
 * system (2). As the HP thread has 
 * been just blocked in the previous 
 * instruction, the iteration will 
 * stop at the second element (LP 
 * thread), leading to a cost of 2. 
 */ 
sched(); 

Snippet 8. Conceptual Semaphore Wait and Signal Pseudocode 

As discussed earlier, it is remarkable that ChibiOS execution time is almost half of the required by the 
Ell-I scheduler for the Wait operation. The underlying reason is that ChibiOS uses voluntary preemption 
to reduce almost by half the number of registers that need to be saved and restored. This is possible 
because the point where the semaphore APIs are called within the thread execution is carefully crafted 
to obviate the necessity of saving the processor state and scratch registers. With this strategy, it is not 
necessary to use the automatic context saving mechanism of the ARM interrupt controller, allowing a 
pure software strategy which does not require any system interrupts such as PendSV or SVCall. 
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However, the voluntary preemption strategy is only useful when the context switch is between two 
threads. In case a semaphore is released from an interrupt context, it is necessary to save and restore 
the full context frame and, additionally, use any of the system interrupts (PendSV, SVCall, or NMI). In 
that regard, it is necessary to add logic to distinguish if a system API is being called from an ISR or from 
normal context. As a consequence, ChibiOS provides additional constraints to user defined ISRs which 
call system APIs (in particular, it is necessary to add a ‘prologue’ code that reads the LR register to 
detect from which context the APIs will be called). 

Another timing property that is relevant for Real Time applications is the latency generated by blocking 
segments of kernel code. As an example, Ell-i and ChibiOS are compared in regard to the blocking time 
generated by a context switch from a semaphore wait system call (Figure 14). This system API can 
have different execution alternatives, depending of the state of the semaphores and threads at the 
time of the call (the shorter alternatives are depicted in smaller scale on the left side). 

While ChibiOS performs the context switch in a single blocking event, Ell-i divides the call in up to three 
segments. The latter behaviour considerably improves latency, as incoming interrupts can be handled 
in between this segments, and consequently, sooner. However, this allows a more complex 
interleaving of events, as, for example, interrupts can modify the desired target thread of the context 
switch. Hopefully, the Ell-i scheduler is carefully crafted to handle this specific conditions, due to the 
state space analysis described in section Context Switch State Space 

 

Figure 15. Blocking Time Diagram for Wait Operation for ChibiOS and Ell-i 

Memory 

The overall program memory (Flash) footprint of Ell-i is sufficiently small in comparison with the 
analysed RTOSs set, although it is slightly larger than ChibiOS. However, the RAM occupancy is 
considerably smaller in comparison with the closest counterpart (ChibiOS). This is really important, as 

Sem Sched
Ctx. Switch

push pop swap

ChibiOS/RT

Sem

Sem Sched

Sem Sched
Ctx. Switch

push popswap

Ell-i

Sem

Sem Sched

Sem Pre
Sem P

Sem P

Sem P



58 
 

RAM is the main pricing factor, among the memories, and also in respect with the other MCU’s 
components. 

Another important feature of the Ell-i scheduler, also shared by ChibiOS, is the ability to statically 
initialise threads and semaphores (at compile time). In contrast, CoOS is only capable of initialising 
this elements at runtime. In fact, ChibiOS is capable of both, runtime and static initialisation. Although 
initialising elements at runtime provides flexibility, for memory constrained applications, it generates 
considerable costs. Initially, additional RAM is necessary for this initialisation process. Second, it is not 
possible to realise safety checks (e.g. data allocation or stack availability) at compile time. If this is 
required, additional program memory and RAM is necessary to allocate runtime safety logic. 

Finally, protection against stack overflow is very important for real-life applications. As the worst-case 
stack requirements of an application are independent of the RTOS, the system can only provide two 
guarantees: that the space requested by the user is really allocated, and that the system will be as 
resilient as possible in case of stack overflow. As discussed above, it is possible to confirm memory 
availability for the required stack sizes at compile time (as Ell-i scheduler does), or by careful runtime 
allocation. For resiliency on a stack overflow event, the best alternative is to provide a stack layout 
that protects the system. In this regard, Ell-i scheduler is designed to allow overflow of the interrupt 
stack without effects. This feature is relevant because calculating the stack size requirements for 
interrupts involves analysis of the worst-case interrupt nesting, which is fairly complex and prone to 
underestimation. 
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Chapter 7 - Conclusions and Future Work 

This main objective of this thesis was to test the feasibility of enabling multithreading in the cheapest 
low-end ARM Cortex-M0 MCUs, by designing and implementing a memory constrained scheduler. In 
this regard, competitive metrics were achieved in comparison with popular Open Source RTOSs. In 
particular, significant figures in performance, memory footprint and safety were obtained, evaluated 
and discussed. 

The evaluation of performance and memory footprint was relatively straightforward, as the resulting 
metrics were completely objective. However, they depended on selecting an adequate workload. Even 
if, ideally, this workload would simulate a practical, common use case, using a very complex scheme 
could also prevent the isolation specific variables. The selected workload was considered adequate as 
it balanced between real applications while still allowed to understand the underlying factors. 
Additionally, it was the same workload used for the similar purposes in the revised literature. 

It is also important to highlight that the timing measurements were more dependent on the workload 
than the footprint measurements. The underlying reason is that the memory analysis was done at 
compile time, and thus it was possible to separate the contribution of application data from system 
data. In contrast, timing measurements were extracted from runtime execution, and also depended 
on the measuring hardware framework. 

As discussed above, safety metrics were also used to characterise the developed scheduler and the 
selected Open Source RTOSs. However, these metrics were more subjective, as the testing framework 
could not directly measure the ‘safeness’ or ‘resilience’ of the system. Nevertheless, by providing a 
detailed analysis, it was possible to distinguish safe practices. Some examples are: statically allocating 
space for stacks and system data structures, or analysing the possible interleaving of hardware events 
and system API calls generated by the Cortex-M0 interrupt controller. 

As a summary, the designed scheduler usage of RAM was considerably lower, while Flash occupancy 
was close to the optimum. In regards to timing performance, it was not optimal as the scheduler did 
not took advantage of the voluntary preemption concept used by other systems. In terms of ‘safeness’, 
the Ell-i system was definitively safer than any other system, due to the usage of static allocation of 
all system data structures and user stacks, as well as the analysis of the hardware interrupt state space. 

Turning now to the business side, the objective of providing Open Source Software that fits within the 
business model of Ell-i was also achieved. By collectively owning the copyright of the designed 
scheduler, the possibility of licencing the complete software stack to companies became more viable. 
Additionally, the scheduler is specially tailored to power the prototype Ell-i PoE node. This allows a 
complete package of Open Source Hardware tightly coupled with Open Source Software that can be 
further licensed to companies, or used to showcase the capabilities of the node. 

Before proceeding to examine the directions of future work, it is necessary to relate the results of this 
work to a broader scope. Before a technological breakthrough improves the performance of memory, 
particularly RAM, it will be the bottleneck of computer hardware. Considering this constraint, any 
system that provides the desired functionality with limited memory usage is relevant. Furthermore, 
there are multiple applications which are simpler to implement when deployed over a threading 
system. This includes networking and sensing applications, systems with real-time constraints, and 
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also legacy code that was originally targeted to 8bits or 16bits MCUs and requires porting to modern 
architectures. 

As discussed earlier, this development was targeted to the ‘Internet of Wired Things’. However, there 
are no technical limitations that prevent its use into generic IoT systems, particularly wireless systems. 
Even if the system was targeted to PoE devices, which are not energy constrained, the fundamental 
decisions regarding safety and reduced memory footprint apply. Other design decisions, like the ones 
regarding system interrupts or clocks configuration, might need re-evaluation for energy constrained 
systems. Nevertheless, the implemented scheduler could be used as a basis for a wireless oriented 
Open Source RTOS. 

With respect to future directions of work, there are plenty of design and implementation decisions 
that could be reconsidered, in addition to multiple possible testing framework changes. However, it is 
important summarize them, and only highlight the ones that are important for this thesis. Three 
elements for future work were selected and are discussed below. 

The main design change would consist on taking advantage of the voluntary preemption when there 
is a context switch between threads. This was the reason why ChibiOS achieved better timing 
performance than the Ell-i system, even when the data structures from the former are more complex 
than the ones from the latter. With this change, it is expected that Ell-I would achieve the fastest 
context switch among the systems evaluated for this thesis. 

Another direction of future work is related to testing. Although there are multiple elements that could 
be improved, two changes are considered for discussion. First, it would be ideal to test the selected 
RTOSs with more threads, and compare the behaviour. This is important because scalability is a very 
important measurement of performance that was not evaluated. Second, another relevant use case 
that was not revised consists of switching between an ISR and a thread (or vice versa). This is also 
relevant as, apart from providing a figure for a different kind of context switch, it could offer some 
insight about the safety of the system, as this interacts with the hardware interrupt controller. 

The last point is related to re-evaluating the design decisions with different constraints. In concrete, it 
would be interesting to add limitations to power consumption, as battery life is of high importance for 
wireless applications. This could provide new directions of development, which could target more 
general IoT systems, and, possibly, offer new ideas for improvements that also benefit the wired 
applications, including but not limited to PoE. 
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Appendix A - Measurement of Hardware Exception Handling Times 

This measurements were performed with the same equipment configuration as the one presented in 
section Hardware Testing Framework. The only difference is that the operation frequency of the MCU 
was decreased to 8 Mhz (by using the internal oscillator instead of the PLL as main clock source). With 
that modification, it is possible to measure with cycle precision regardless of the interference 
generated by the layers of peripherals and connections before the input of the Logic analyser. 

For each measurement, a specific assembly code was executed in an endless iteration, in order to 
generate a waveform similar to the one described in the section 6.3 Workload. As it is not possible to 
only measure an isolated event (e.g. exception entry), a detailed calculation of the timing behaviour 
of the GPIO pin set and unset instruction was also realized to obtain precise measurements. It is 
important to highlight that this measurements, when analysed statistically, present no relevant 
variation apart from the error generated by the Logic analyser sample rate. This error was two orders 
of magnitude smaller than a single cycle time, and therefore is considered negligible. 

Direct Measurements 

Event Cycles 

Toggle 2 

STR (instruction) 2 

Exception Entry + Toggle 17 

BX + Tail Chaining + Toggle 17 

BX + Exception Return + Toggle 18 

STR + PendSV Asynchronous Delay + Exception Entry + Toggle 21 

SVC + Exception Entry + Toggle 20 

STR + (1 + N) Cycles Count + Tim. Async. Delay +Exception Entry + Toggle 26 + N (N == 2) 
25 + N (N  >  2) 

Indirect Measurements 

Event Cycles 

Exception Entry + Toggle 15 

BX + Tail Chaining 15 

BX + Exception Return 16 

PendSV Asynchronous Delay 2 

SVC (instruction) 3 

Timer Asynchronous Delay 6 (N == 2) 
5 (N  >  2) 
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