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The aim of this thesis is to analyze discrete-time models and current control of
synchronous motors with a magnetically anisotropic rotor structure, such as in-
terior permanent-magnet synchronous motors (IPMSMs) and synchronous reluc-
tance motors (SyRMs). Current regulators in most modern electrical drives are
implemented in digital processors. Discretization of continuous-time controllers
using the Euler and Tustin approximations, also known as the emulation-based
design, is the most common approach. This design gives satisfactory results when
the ratio between the sampling and fundamental frequencies remains high. The
performance of the emulation-based design deteriorates as the frequency ratio be-
comes small. For this reason, the controller based on the exact discrete-time model
of the machine is preferred. If the exact expressions are computationally too de-
manding, approximate expressions (series expansions) could be used instead. A
hold equivalent discrete-time model with the effects of the zero-order hold (ZOH)
and a sampler is studied in both the stator and rotor coordinates. A two-degrees-
of-freedom (2DOF) state-space controller is used with the gains based on the exact
discrete-time model of the motor. The results are compared with the emulation-
and series expansions (of the exact discrete-time model) based controllers. The
robustness of these methods against parameter errors is analyzed and the current
controllers are also investigated by performing simulations and experiments on a
6.7-kW SyRM drive.
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Symbols and Abbreviations

Symbols

Complex-valued variables are underlined and boldface letters represent matrices and
vectors. Reference values are marked by the subscript ref.

a0c, a0c, b1c, b1c Coefficients of the reference-following transfer function

a0c?, a1c?, b1c?,
b1c?

Intended coefficients of the reference-following transfer func-
tion for an SPMSM

A0, A1, A2, B0,
B1

Coefficient matrices for a discrete-time reference-following
transfer function

a Discrete-time current coefficient

A Discrete-time system matrix with current as a state variable

ac Continuous-time current coefficient

Ac Continuous-time system matrix with flux as a state variable

Ad Discrete-time system matrix with flux as a state variable

b Discrete-time voltage coefficient with current as a state vari-
able

B Discrete-time voltage input matrix with current as a state
variable

bc Continuous-time voltage coefficient

bc Continuous-time permanent-magnet flux input matrix

Bc Continuous-time voltage input matrix

bd Discrete-time permanent-magnet flux input matrix

Bd Discrete-time voltage input matrix

b′ Discrete-time voltage coefficient with the ZOH in rotor coor-
dinates

bψ Discrete-time permanent-magnet flux coefficient

bψc Continuous-time permanent-magnet flux coefficient

C Inverse inductance matrix

d Discrete-time permanent-magnet flux input matrix with cur-
rent as a state variable
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dq Synchronous or rotating coordinates

e, e Error signal input to the current controller

F Taylor series expansion

fs Sampling frequency

fsw Switching frequency

I 2 × 2 identity matrix

id d-axis component of the stator current

iq q-axis component of the stator current

is Stator current complex space vector

is Stator current real space vector

is,ripple Average ripple current

is,total Total stator current (sum of the sampled and ripple current)

j Imaginary unit

J Orthogonal rotation matrix

J Total moment of inertia for a system

k Sampling instant

k1 Discrete-time state feedback gain

K1 Discrete-time state feedback gain matrix

k2 Discrete-time voltage state feedback gain

K2 Discrete-time voltage state feedback gain matrix

k1c Continuous-time state feedback gain

k2c Continuous-time voltage state feedback gain

ki Discrete-time integral gain

kic Continuous-time integral gain

K i Discrete-time integral gain matrix

kt Discrete-time feedforward gain

ktc Continuous-time feedforward gain

Kt Discrete-time feedforward gain matrix

Ls Stator inductance

Ls Inductance matrix
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Ld Direct-axis inductance

Lq Quadrature-axis inductance

0 2×1 null vector

O 2×2 null matrix

p1, p1? Real pole and intended real pole

Rs Stator resistance

t Time variable

Te Electromagnetic torque

TL Load torque

Ts Sampling period

ud d-axis component of the stator voltage

ui Back-emf voltage

uq q-axis component of the stator voltage

us Stator voltage complex space vector

us Stator voltage real space vector

u′s,ref Reference voltage-output of the current controller

xi, xi Integral state of the current controller

α Current controller bandwidth

αβ Stationary or stator coordinates

ϑm Electrical angle

µr Relative permeability

Φ Overall system matrix

ψd d-axis component of the stator flux

ψpm Permanent-magnet flux

ψpm Permanent-magnet flux vector

ψq q-axis component of the stator flux

ψ
s

Stator flux complex space vector

ψs Stator flux real space vector

ωm Electrical angular speed



ix

Abbreviations

2DOF Two-degrees-of-freedom

AC Alternating current

DTC Direct torque control

PM Permanent magnet

IMC Internal model control

IM Induction motor

IPMSM Interior permanent-magnet synchronous motor

PI Proportional integral

PMSM Permanent-magnet synchronous motor

PWM Pulse-width modulation

SPMSM Surface permanent-magnet synchronous motor

SyRM Synchronous reluctance motor

ZOH Zero-order-hold



Chapter 1

Introduction

1.1 Background
Electrical machines are used for electromechanical energy conversion. Nearly all of
the world’s electrical power is being produced by synchronous generators, whereas
induction motors (IMs) are pre-dominantly used in large industrial to small house-
hold appliances for converting energy from electrical to mechanical [1]. Three-phase
motors are employed mostly in the industry, whereas single-phase motors are abun-
dantly used for household applications [1]. This trend of converting electrical energy
to mechanical energy using IMs is being followed for over a century.

IMs are the common choice due to their low cost, simple realizability, robustness
and the self-starting capability when connected directly to AC mains [2]. However,
recent changes in European energy laws and Europe’s 2020 goal to boost the energy
efficiency up to 20% have increased the interest in going for more energy-efficient
solutions. Energy efficiency is being considered the main driving factor now. Re-
cent developments in the design of synchronous motors, power electronic circuits
and permanent-magnet materials have made it possible to replace IMs with more
efficient synchronous motors. Synchronous motors provide increased efficiency, a
high torque-ampere ratio, small inertia and high power density compared with the
IMs of the same rating [2]. The increase in efficiency is due to the absence of the
rotor winding making the resistive losses small in the stator and almost negligible
in the rotor. The increase in the magnetic and thermal capabilities of permanent-
magnets (PMs) due to the increased usage of high-coercive PM-materials have made
PM-synchronous machines more efficient, robust and compact [3]. High-coercive
PM-materials are costly, but it is a compromise between the performance and cost.

Frequency converters are an essential part of an industrial control system when
providing high performance, better energy efficiency and robust control for AC ma-
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chines. Typically, an electric drive consists of an AC motor and a frequency converter
between the mains and the motor. A frequency converter is usually a combination of
a rectifier, dc-link (with capacitor) and a pulse-width modulated (PWM) inverter.
Electric motors are significant consumers of electricity, nearly half of the global elec-
tricity is being consumed by the electric motors [4]. Therefore, there is a need to
study and develop more effective control methods which are robust and of high per-
formance.

Permanent-magnet synchronous motors (PMSMs) and synchronous reluctance
motors (SyRMs) are increasingly applied in hybrid/electric vehicles (automotive in-
dustry), heavy-duty working machines and industrial applications. Despite the high
cost of PMs, PMSMs are still considered as a better choice than IMs for automotive
industry due to their increased efficiency, small size and robustness. Heavy-duty
working electric machines may run at very high speeds and excitation frequencies
(fundamental) can be as high as 1 kHz [5]. Controllers designed in continuous time
(emulation-based design) are not suitable for providing good dynamic performance
at high excitation frequencies. In the emulation-based design, the continuous-time
controller is discretized for the digital implementation using the Euler or Tustin
approximations [6–10]. In order to overcome the problem of poor performance at
high excitation frequencies, different approaches can be used, one of them is the
design of direct discrete-time controllers. Direct discrete-time controllers are pre-
ferred over continuous-time controllers because they provide better performance at
low sampling to excitation frequency ratios (lower or nearly equal to 10) [5, 11–14].
It should be noted that the sampling frequency (fs) is usually equal to or twice the
switching frequency (fsw).

Broadly speaking, two types of control methods are available for the control of
AC motors, scalar and vector control. Scalar control is considered to be the sim-
plest way of controlling AC motors, just by adjusting the magnitude of the stator
voltage proportionally to the supply frequency [15,16]. Due to this relationship be-
tween the voltage and frequency, this type of control is often called as the constant
volts-per-hertz control. Scalar control is often used for fans or pumps where there
is no need for high dynamic performance and accuracy [17]. It should be noted
that the scalar-control methods cannot be used for controlling the electromagnetic
torque of a motor. Vector-control methods are more advanced methods, they are
used in drives where high dynamic performance and precision are needed. PMSMs
and SyRMs are typically controlled using vector-control methods.

The increasing use of PMSMs and SyRMs has raised the interest in developing
high-performance control structures. In order to control the stator current of syn-
chronous motor drives, different control schemes have been developed among which
the flux orientation control methods and the direct torque control (DTC) can be
classified as vector control methods [15]. The stator current of synchronous motor
drives is typically controlled in rotor coordinates [6–14, 18]. Vector control in rotor
coordinates is a natural selection since the controllable quantities are transformed
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from three-phase AC to two-component DC quantities. Furthermore, all the other
parts of the control system are typically operated in rotor coordinates. Apart from
the ease of control and better performance, the synchronous frame control is inher-
ently prone to cross-coupling between the d- and q-axes. Transformation from the
stationary reference frame (stator coordinates) to rotating reference frame (rotor
coordinates) introduces speed dependent cross-coupling terms in the system [19].
These terms need to be decoupled in order to achieve high performance and robust
control.

Different control algorithms and schemes have been proposed in the literature
to cope with the problems of cross-coupling. The model-based control design of the
synchronous frame proportional-integral (PI) controller with feedforward decoupling
terms is used as one of the current regulation schemes [7,18]. PI controllers are well
understood and being used in industry for a long time, but they are not suitable
for machines like interior permanent-magnet synchronous motors (IPMSMs) and
SyRMs running at high speeds. The dynamic performance of the current regulator
reduces significantly at low switching to excitation frequency ratios (less than 10)
[18, 20]. Cross-coupling between the d- and q-axis quantities increases with the
increase in the rotor speed. Furthermore, the controllers are designed in continuous
time and then implemented digitally using the Euler and Tustin approximations
[21]. Advancements in digital signal processors have increased the usage of discrete-
time design methods over continuous-time. Furthermore, the continuous-time design
limits the closed-loop bandwidth of the controller to below one tenth of the sampling
frequency [5, 7].

1.2 Objective and Outline of the Thesis
The objective of this thesis is to implement and analyze the discrete-time models
and current control for synchronous motors with a magnetically anisotropic rotor
structure, such as IPMSMs and SyRMs. The exact discrete-time models and cur-
rent control methods for an IPMSM and SyRM have been recently developed in
an ongoing research project, cf. [5]. A two-degrees-of-freedom (2DOF) state-space
controller is used to make a comparative study of the control based on different
models of synchronous motors. A 2DOF state-space controller-design based on the
exact discrete-time model of the synchronous motor is compared with the controller-
design based on the approximate motor models (e.g., the series expansions of the
exact discrete-time model). The emulation-based design (controller) will also be
compared with the direct discrete-time design.

The thesis concentrates on the field oriented current control of a synchronous
motor. A mechanical position sensor is used to measure the rotor position (angle).
Furthermore, the current control is studied at a constant rotor speed ωm. The se-
lected models and controllers are simulated in Matlab/Simulink environment and
the robustness of these methods against parameter errors is analyzed. Furthermore,
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the performance of the controllers is also investigated by experiments on a 6.7-kW
SyRM drive.

The thesis consists of five chapters. Chapter 2 introduces the continuous-time
and discrete-time models of synchronous motors. Chapter 3 gives a detailed expla-
nation about the current controller structure and its gain calculations. Gains of the
current controller are calculated based on the exact and approximate discrete-time
models of IPMSMs and SyRMs. The continuous-time controller and its discretiza-
tion using numerical approximations are also presented. Stability analysis, simula-
tions and experimental results are presented in Chapter 4. At the end, conclusions
are drawn based on the results.



Chapter 2

Modelling of Synchronous
Machines

Synchronous motors in terms of their rotor construction (magnetically) are broadly
divided into two main types, i.e., salient and non-salient pole motors. The salient
pole motors can be further divided into motors with the PMs buried inside their
rotors (IPMSMs) and the rotors without permanent-magnets (SyRMs). PMs are
used in the rotor instead of a separate field winding to reduce the rotor resistive
losses and in turn increase the efficiency. Non-salient PMSMs are also called surface
permanent-magnet synchronous motors (SPMSMs). It is clear from the name that
the PMs are mounted on the surface of the rotor for SPMSMs. Salient-pole PMSMs
or IPMSMs have PMs buried inside their rotor, thus changing the effective air-gap
and inductance in the direction of the magnetic axis (d-axis). The effective air-gap in
the d-axis direction is larger than in the q-axis direction, as the relative permeability
of PMs is nearly equal to that of air, µr = 1.05. Therefore, it can be inferred that
the inductance in the salient pole machine is dependent on the rotor position. In
this chapter, the continuous-time and discrete-time models of these machines are
developed and discussed.

2.1 Continuous-Time Model of an SPMSM
The construction of an SPMSM is simple, having a round rotor with PMs mounted
on the surface of the rotor, making the inductance constant all over the air-gap.
Furthermore, the inductance is not dependent on the rotor position because the rel-
ative permeability of PMs is comparable to air (µr = 1.05) which makes a uniform
air-gap between the stator and rotor. The stator or armature of PMSMs is typically
similar in construction to that of an induction motor [21]. The rotor has PMs which
produce the essential flux in the air-gap.

5
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d

q
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β

ϑm

F

F

Figure 2.1: Conceptual diagram of a three-phase SPMSM [22].

Figure 2.1 shows the conceptual diagram of a 3-phase SPMSM, where the αβ
represent the stationary coordinates and dq shows the rotating or synchronous co-
ordinates. The d-axis is oriented in the direction of the PM flux and the q-axis is
orthogonal to the d-axis. The electrical angular speed of the rotor is denoted by ωm

and ϑm is the rotor angle given as

ϑm(t) =

∫
ωmdt (2.1)

The equivalent circuit diagram of an SPMSM (in stator coordinates) is shown in
Figure 2.2. The voltage equation is given as

uss(t)−Rsi
s
s(t)−

dψs

s
(t)

dt
= 0 (2.2)

where Rs is the stator resistance, uss is the stator voltage vector, iss is the stator
current vector and ψs

s
is the stator flux vector in stator coordinates. The time

dependence of the vectors is given by t. The stator flux vector is given by

ψs

s
(t) = Lsi

s
s(t) + ψs

pm
(t) (2.3)



7

jωmψ
s

pm

iss
Rs

uss
dψs

s

dt

Ls

Figure 2.2: SPMSM equivalent circuit in stator coordinates.

where Ls is the stator inductance and ψs

pm
(t) is the time-varying PM flux vector in

stator coordinates.

From Figure 2.1, the PM flux ψs

pm
defines the d-axis of the rotor which is dis-

placed by an angle ϑm relative to the α-axis. In order to transform (2.2) and (2.3)
to rotor coordinates with the PM flux rotating at a synchronous speed ωm, following
relations will be used

ψs

pm
(t) = ejϑm(t)ψpm (2.4a)

uss(t) = ejϑm(t)us(t) (2.4b)

iss(t) = ejϑm(t)is(t) (2.4c)

where ψpm, us and is are the PM flux, voltage and current vectors in rotor coordi-
nates. Using (2.3) and (2.4), the voltage equation (2.2) in rotor coordinates become

dis(t)

dt
= acis(t) + bcus(t) + bψcψpm (2.5)

where
ac = −Rs

Ls

− jωm, bc =
1

Ls

, bψc = − jωm

Ls

(2.6)

It can be seen from (2.5) and (2.6) that the back-emf term bψcψpm is constant if the
speed of the motor is constant, as the PM flux is constant in rotor coordinates.

The electromagnetic torque of the machine is given by

Te =
3p

2
Im {ψ∗

s
is} (2.7)

where p is the number of pole pairs and * represent the complex conjugate. The
stator flux vector ψ

s
and the stator current vector is are

ψ
s

= Lsis + ψpm, (2.8a)

is = id + jiq (2.8b)
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where id and iq are the d- and q-components of the stator current is. Using the
results from the above equation, (2.7) becomes

Te =
3p

2
ψpmiq (2.9)

It is clear from (2.9) that the electromagnetic torque only depends on the value
of the q-axis current iq, as the PM flux ψpm is constant in rotor coordinates. The
equation of motion is given by

J
dωm

dt
= Te − TL (2.10)

where J is the total moment of inertia of the system and TL is the load torque.

2.2 Discrete-Time Model of an SPMSM
Different approaches have been used in the literature to model the stator voltage
when deriving discrete-time models for synchronous machines, considering the zero-
order-hold (ZOH) in rotor coordinates [18, 20] or in stator coordinates [11, 14]. In
the derivation of a discrete-time model for an SPMSM, following assumptions are
used:

i. The rotor speed ωm is assumed to be constant between the two consecutive
sampling instants.

ii. Motor parameters (Rs, Ls, ψpm) are assumed to be constant between the two
sampling instants.

Sampling of the stator current is synchronized with the pulse-width modula-
tion (PWM) and the switching-cycle averaged quantities are considered. Based on
these assumptions, the stator voltage in stator coordinates is a piecewise constant
between the two sampling instants and thus, corresponds to a ZOH in stator coor-
dinates. It means that if k is the sampling instant and Ts is the sampling period,
then the stator voltage uss(t) is constant between two sampling instants, i.e., between
kTs < t < (k + 1)Ts. From (2.11), it can be seen that the back-emf term bψcψpm

is constant in rotor coordinates (if the rotor speed is constant). If the back-emf is
represented in stator coordinates jωme

jωmtψpm, it changes to a vector, rotating at a
synchronous speed ωm unless the rotor speed is zero.

The exact discrete-time model of an SPMSM can be found using (2.5) as de-
scribed in [23]. The stator voltage us(t) is considered in stator coordinates. From
(2.5) we get

dis(t)

dt
= acis(t) + bscu

s
s(t) + bψcψpm (2.11)



9

where the time-varying input parameter is given by

bsc =
e−jϑm(t)

Ls

(2.12)

If the rotor speed ωm is assumed to be constant, the following relation for the angle
ϑm(t) will hold

ϑm(t) = ϑm(0) + ωmt (2.13)

where ϑm(0) is the initial rotor angle.

2.2.1 ZOH in Rotor Coordinates

In this section, the ZOH of the stator voltage is assumed to be in rotor coordinates.
The PWM signals are used to update the voltage pulses in stator coordinates. In a
full digital implementation, usually one sampling period Ts is used for computational
delay compensation. Furthermore, implementing a space-vector PWM in a digital
domain introduces further delay in the system, which can be approximated as half a
sampling period 0.5Ts delay [20]. So, a total of 1.5Ts delay is introduced in a digital
domain when the ZOH of the stator voltage is assumed to be in rotor coordinates.
The time delay 0.5Ts results in a phase and magnitude error. An analytical solution
to compensate the magnitude and phase errors was presented in [20]. The discrete-
time model of an SPMSM becomes

is(k + 1) = a is(k) + b′ u′s(k) + bψψpm (2.14)

where u′s(k) is the uncompensated stator voltage and a, b′ and bψ are the complex
parameters for the current, voltage and PM flux. The complex parameters used in
(2.14) can be calculated as

a = eacTs (2.15a)

b′ =

∫ Ts

0

eacτdτ · b = a−1c (a− 1)b =
1− a

Rs + jωmLs

(2.15b)

bψ =

∫ Ts

0

eacτdτ · bψc =
jωm(a− 1)

Rs + jωmLs

(2.15c)

The one-step computational delay used to compensate the finite computation
time of the control is usually considered as a delay in the stator voltage, in stator
coordinates as

uss(k) = uss,ref(k − 1) (2.16a)

or, when transformed into rotor coordinates

us(k) = e−jωmTsus,ref(k − 1) (2.16b)

where, us,ref(k − 1) is the one-step delayed output of the current regulator in rotor
coordinates. Voltage vector in rotor coordinates is rotating at a synchronous speed
ωm and the one-sampling period delay introduces a phase error of Tsωm (where ωm
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is assumed to be a quasi-constant quantity – constant between the two consecutive
sampling instants). This effect of the computational time delay on the voltage angle
can be easily compensated in coordinate transformation. In order to simplify the
equations, a simple change in notation is introduced here

u′s,ref = e−jωmTsus,ref (2.17a)

which gives
us(k) = u′s,ref(k − 1) (2.17b)

Furthermore, the angle compensation used for transforming the stator voltage from
rotating to stationary coordinates is ejϑ

′
m , where

ϑ′m = ϑm + Tsωm (2.18)

As mentioned earlier, in a drive system, the converter output voltage is kept
constant between the two sampling instants in stator coordinates. But as the ZOH
of the stator voltage is assumed in rotor coordinates, the phase and magnitude errors
produced in the stator voltage need to be compensated. Compensation for a purely
inductive load is presented as [20]

u′s(k) =
ωmTs/2

sin(ωmTs/2)
e−jωmTs/2us(k) (2.19)

It should be noted that the magnitude compensation for high sampling frequencies
(small sampling period Ts) reduce to unity. From basic trigonometry, if the angle
ωmTs/2 is small (in radians), which is the case if the sampling frequency is high,
then

sin(θ) ≈ θ

From this approximation, (2.19) can be written as u′s(k) = e−jωmTs/2us(k).

It is worth mentioning here that the switching-cycle averaged quantities neglect
the switching harmonics produced by the PWM of power electronic switches. The
effect of these switching harmonics is not included in the discrete-time design, as the
current ripple produced by these harmonics is taken out due to the use of sampled
feedback current signals [14].

2.2.2 ZOH in Stator Coordinates

In this section, the ZOH is assumed to be in stator coordinates, where it occurs
naturally. This inherently takes into account the effect of time delay due to the ZOH.
Using this assumption, the discrete-time model of an SPMSM is derived using (2.11)
as a starting point, which can take the back-emf into account in rotor coordinates

is(k + 1) = a is(k) + b us(k) + bψψpm (2.20)
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The complex parameters a and bψ are same as given in (2.15), where b can be
calculated for an IPMSM as [5]

b =

∫ Ts

0

eacτbsc(Ts − τ)dτ · ejϑm(0) =
e−jωmTs − a

Rs

(2.21)

It should be noted that ejϑm(0) used in b is the coordinate transformation from
stationary to synchronous coordinates. The purpose behind this is to represent all
the variables in rotor coordinate system.

2.3 Continuous-Time Model of an IPMSM
IPMSMs have magnets buried inside the rotor, increasing the effective air-gap and
reducing the inductance in the d-axis (magnetic axis) direction compared with the
q-axis. The conceptual diagram of an IPMSM is shown in Figure 2.3. The stator
and rotor are shown in Figure 2.3 with PMs buried inside the rotor. The region
between the stator and rotor is the air-gap. The d-axis is oriented in the direction
of the PM flux and q-axis is orthogonal to the d-axis. Change in the air-gap in one
direction makes the inductance position-dependent in stator coordinates.

The SyRM is a special case of an IPMSM with the PM flux equal to zero
(ψpm = 0). Therefore, the model of an IPMSM will be developed and it can be
easily transformed to a SyRM by inserting ψpm equal to zero. Complex space vec-
tors were used to model an SPMSM, but it is difficult to model IPMSMs or SyRMs
using these complex space vectors. Instead of complex space vectors, real valued
space vectors will be used. Space vectors and matrices will be presented with bold-
face letters. All the quantities in stator coordinates will have the superscript s. In
rotor coordinates, the usual symbolic representation without any superscript is used.

Real space vectors and the inductance matrix in rotor coordinates are defined as

us =

ud
uq

 , is =

id
iq

 , ψs =

ψd

ψq

 (2.22)

ψpm =

ψpm

0

 , Ls =

Ld 0

0 Lq


Using (2.22) and (2.11) with the stator flux as a state variable we get the following
voltage equation for an IPMSM

dψs(t)

dt
= Acψs(t) +Bs

c(t)u
s
s(t) + bcψpm (2.23)
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where

Ac =

−Rs/Ld ωm

−ωm −Rs/Lq

 , Bs
c(t) = e−ϑm(t)J , bc =

Rs/Ld

0

 , (2.24)

and J is an orthogonal rotation matrix given by

J =

0 −1

1 0

 (2.25)

The voltage input matrix in rotor coordinates is a 2× 2 identity matrix

Bc = I =

1 0

0 1

 (2.26)

The stator-flux vector ψs can be written as

ψs(t) = Lsis(t) +ψpm (2.27)

d

q

Sta
tor

Ro
tor

Figure 2.3: Conceptual diagram of an IPMSM
(
modified based on [22]

)
.
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Using (2.22), (2.23) and (2.27), the derivative of the stator flux in a component form
can be written as follows

dψd

dt
= ud −Rsid + ωmψq

dψq

dt
= ud −Rsiq − ωmψd

(2.28)

where ψd and ψq are the d- and q-components of the stator flux ψs given as

ψd = Ldid + ψpm

ψq = Lqiq
(2.29)

If we replace Ld = Lq = Ls, the equations (2.28) and (2.29) become the same as
those for the case of an SPMSM. If we insert ψpm = 0, the equations reduce to the
model of a SyRM, which is a special case of an IPMSM. From (2.27), the current is
given as

is(t) = Cψs(t) + dψpm (2.30)

where

C =

1/Ld 0

0 1/Lq

 , d =

−1/Ld

0

 (2.31)

The electromagnetic torque equation for an IPMSM can be found in a similar
way as for an SPMSM. Using (2.7) for an IPMSM, we get

Te =
3p

2

(
ψdiq − ψqid

)
=

3p

2

[
ψpmiq + (Ld − Lq)idiq

]
(2.32)

From the above equation, it is clear that there is an extra term (Ld − Lq)idiq com-
pared with the case of an SPMSM given in (2.9). The term 3p

2
(Ld−Lq)idiq is called

the reluctance torque and is produced due to the saliency of the machine. If we
select the value of Ld = Lq in (2.32), we get (2.9) which is the torque equation for
an SPMSM. Furthermore, if the saliency Ld−Lq is large, the torque production can
be maximized by using a non-zero value of id. The PM flux is absent in the case of
a SyRM. From (2.32) it can be seen that there will still be torque even if the value
of ψpm = 0. This reluctance torque is the basis of calling this type of machine a
synchronous reluctance motor.

2.4 Discrete-Time Models of an IPMSM
The continuous-time design is a well-established and understood design approach.
Usually the continuous-time model of a plant is available and the controller is de-
signed based on this model. The continuous-time designed controllers are then
discretized using the Euler or Tustin approximations for digital implementation in
the emulation-based design. The emulation-based controllers work well with digital
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processors if the sampling frequency is high enough compared with the excitation
frequency. In order to improve the controller performance, the exact discrete-time
model of the plant is needed.

Exact discrete-time models can be computationally demanding. An approximate
solution could be used instead to improve the computational efficiency. The textbook
approach to find the approximate discrete-time models is to use a series expansion
of the exact discrete-time matrices, as given in [23]. First, the exact discrete-time
model of an IPMSM is presented, then, the approximate solutions based on series
expansions are obtained.

2.4.1 Exact Discrete-Time Model

The exact discrete-time model of an IPMSM can be found based on the assumptions
made for the case of an SPMSM.

The ZOH of the stator voltage is assumed to be in stator coordinates. Sam-
pling of the stator current is synchronized with the pulse-width modulation (PWM)
and the switching cycle averaged quantities are considered. Furthermore, the sam-
pling and the switching frequencies are equal. It should be noted that the ZOH in
stator coordinates means that the stator voltage is a piecewise constant in stator
coordinates. It means that the stator voltage remains constant between the two
consecutive sampling instants, i.e., us

s(t) is constant during kTs < t < (k + 1)Ts,
where Ts is the sampling period and k is the discrete-time index. The discrete-time
model for an IPMSM becomes

ψs(k + 1) = Adψs(k) +Bdus(k) + bdψpm (2.33a)

is(k) = Cψs(k) + dψpm (2.33b)

where the discrete-time matrices in (2.33) can be found as in [5].

The system matrix is

Ad = eAcTs =

ad11 ad12

ad21 ad22

 (2.34)

The input matrix Bs
c(t) corresponding to the stator voltage is time-varying in stator

coordinates. Hence, the discrete-time input matrix becomes

Bd =

∫ Ts

0

eAcτBs
c(Ts − τ)dτ · eϑm(0)J =

bd11 bd12

bd21 bd22

 (2.35)

where eϑm(0)J is the coordinate transformation from stator to rotor coordinates.
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The input matrix corresponding to the PM flux is

bd =

∫ Ts

0

eAcτdτ · bc =

bd1
bd2

 (2.36)

The elements of matrices Ad,Bd and bd can be found in Appendix A.

Using the stator current as a state variable, the state equation becomes

is(k + 1) = Ais(k) +Bus(k) + bψpm (2.37)

where

A = CAdC
−1 =

 ad11
Lq

Ld
ad12

Ld

Lq
ad21 ad22

 (2.38a)

B = CBd =

 bd11Ld

bd12
Ld

bd21
Lq

bd22
Lq

 (2.38b)

b = (I −A)d+Cbd =

ad11+bd1−1Ld

ad21+bd2
Lq

 (2.38c)

2.4.2 Approximation of the Exact Discrete-Time Model

The approximate solution for the exact discrete-time matrices in (2.33) can be found
using series expansions given in [23]. The system matrix Ad can be expressed as

Ad = I + TsAcF (2.39)

where

F = I +
TsAc

2!
+
T 2
sA

2
c

3!
+ . . . (2.40)

From (2.35) it can be seen that the voltage input matrix is a time-varying matrix
and it is difficult to express it directly in a series expansion form. If the ZOH is
assumed in rotor coordinates instead of stator coordinates, the voltage input matrix
can be written as

Bd ≈ TsFBc (2.41)

As explained earlier, if the ZOH is assumed to be in rotor coordinates, the voltage
input matrix is changed according to the compensation made in [20]. Using (2.19)
for an IPMSM, the voltage input matrix becomes

Bd ≈ TsFBc
ωmTs/2

sin(ωmTs/2)
e−(ωmTs/2)J (2.42)
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From (2.36) it is clear that there is no time-varying component in the PM flux
input matrix, as the PM flux is constant in rotor coordinates. So, the matrix bd can
be written as

bd = TsFbc (2.43)

As the sampling period Ts usually has a small value, only one or two terms of (2.40)
are used, i.e., F = I or F = I+ (Ts/2)Ac. Using F = I corresponds to the forward
Euler discretization of the continuous-time motor model.



Chapter 3

Current Control Methods

The field oriented control with the reference frame fixed to the rotor is used for
the control of AC motors. In a rotor fixed reference frame, both the flux and the
electromagnetic torque can be controlled separately by controlling the respective
components (id and iq) of the stator current. This type of control resembles the
control of DC motors [15]. Vector control methods based on the dynamic models of
electric motors are generally used if high accuracy and fast dynamics are required.
The vector control of a synchronous motor requires the rotor position, which can
be measured using a mechanical position sensor mounted on the shaft of a motor or
estimated using a flux observer.

3.1 Stability of a Linear Control System
Stability is the most fundamental property of a feedback control system. It can be
considered as a starting point in determining the performance of a control system.
One way to define the stability of a linear system is using an impulse response of
the system. If the impulse response of a linear control system approaches zero or
is limited (bounded) as the time approaches infinity, the system is stable, otherwise
unstable. Further details about the stability analysis of a linear control system can
be found in [24] and [25].

From the basic control theory, it is clear that the stable region of the s-plane
is mapped onto a unit disc in the z-plane. Suppose a system matrix of an overall
control system (including the motor and controller) is represented by Φ. The eigen-
values of this system matrix represent the poles of the system. Let us suppose that
λ1, λ2, . . . , λN represent the eigenvalues of the system matrix Φ, then the conditions
for stability are as follows:

17



18

i. Asymptotic stability: The magnitude of the eigenvalues (λi) of a system
matrix is less than 1. It means that all the eigenvalues of a system are inside
the unit disc in the z-plane.

ii. Marginal stability: If there is an eigenvalue with magnitude 1, this will
make the system marginally or conditionally stable.

iii. Unstable: If there is even a single eigenvalue with magnitude greater than 1
(outside the unit disc), this will make the system unstable.

3.2 State of the Art Controllers
The internal model control (IMC) method to design a synchronous-frame propor-
tional integral (PI) current controller can be considered as a state of the art con-
troller [7]. In this type of controller, a trial and error phase of selecting the propor-
tional gain and integration time constant is removed. The controller parameters are
based on the motor model and desired controller bandwidth. This method works
very well for IMs and SPMSMs but it is not suitable for IPMSMs and SyRMs run-
ning at high rotor speeds.

Cross-coupling between the d- and q-axis current components exists in a model-
based synchronous-frame PI-type current controller. A transient error is produced
in the d-axis current whenever there is a step change in a reference value of the
q-axis current and vice versa. In order to reduce the transient error, different im-
provements have been proposed for the synchronous-frame PI-type controller, one
of them is based on a one-step predicted current [18]. During steady state there are
high frequency oscillations in the d- and q-axis current components. These oscilla-
tions can be reduced by introducing a one-step predicted current in the decoupling
terms of the controller. Furthermore, the one-step predicted current is also intro-
duced in the damping term (active resistance) to reduce the level of oscillations.
The complex PI-type controller gives better performance with one-step predicted
compensation [18].

Some other controllers used in the current control of AC motors are the hystere-
sis controller, stator-frame PI controller, state-feedback controller, predictive and
dead-beat direct torque controllers [18, 26, 27]. The hysteresis controller is simple
but the switching frequency is not constant unlike in the case of the synchronous-
frame PI-type controller. The steady state error is zero in synchronous-frame PI-type
controller unlike the stator frame PI-type controller. The predictive and dead beat
controllers are sensitive to parameter errors [18]. The synchronous-frame PI-type
controller is a special case of the state feedback controller with integral action.

The one-step prediction algorithm with the forward Euler approximation used
in a synchronous-frame PI-type controller for the current control of an IPMSM is
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given below [18]

ψs(k) = Lsis(k) +ψpm (3.1a)
ψs(k + 1) = ψs(k) + Ts

[
us(k)−Rsis(k)− ωmJψs(k)

]
(3.1b)

is(k + 1) = Cψs(k + 1) + dψpm (3.1c)

It should be noted that the present value of the stator flux ψs(k) is calculated based
on the present value of the sampled stator current is(k). A more detailed com-
parative study of the predictive current control schemes for PMSMs can be found
in [28]. A predictive current control based on the forward Euler discretization of
the continuous-time model of PMSMs can be found in [29, 30]. The performance
of the predictive current controller deteriorates if there are parameter errors. The
variation of parameters was compensated using a disturbance observer in [30]. A
discrete-time PI-type current regulator for a SyRM running at high rotor speeds
was presented in [31]. The controller gains were trial and error based, making the
control specific to a particular machine.

First the continuous-time (2DOF) PI-type controller will be designed for SPMSMs,
then a discrete-time 2DOF state-space controller will be developed. The results will
then be extended for IPMSMs and SyRMs. Finally, the controller gains will be
calculated for different approximate motor models described in Chapter 2.

3.3 Continuous-Time Design
The continuous-time designed controller works very well for symmetric machines
with large ratios between the sampling and fundamental frequencies (at least 10). If
the ratio between the sampling and excitation frequencies is small, the cross-coupling
between the d- and q-axis becomes significant and the performance of the controller
deteriorates.

The state-space controller with an integral action, reference feedforward and state
feedback is used as a starting point for the control design. In rotor coordinates, the
control law for SPMSMs in the Laplace domain can be expressed as follows

us,ref(s) = ktcis,ref(s) +
kic
s

[
is,ref(s)− is(s)

]
− k1cis(s) (3.2)

where us,ref is the reference voltage, is,ref is the reference current, ktc is the feedfor-
ward gain, kic is the integral gain and k1c is the state feedback gain. For simplicity,
an ideal voltage production with no time delays is considered, i.e., us = us,ref . Using
(2.5) and (3.2) in the Laplace domain, we get

is(s) =

ktc
Ls
s+

kic
Ls

s2 + s
(k1c
Ls
− ac

)
+

kic
Ls

is,ref(s)− jωmψpm
s/Ls

s2 + s
(k1c
Ls
− ac

)
+

kic
Ls

(3.3)
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The closed-loop current response becomes

is(s) = Gc(s)is,ref(s)− Y ic(s)ui(s) (3.4)

where ui = jωmψpm is the back-emf voltage, Gc(s) and Y ic(s) are the closed-loop
transfer functions for the reference following and the disturbance, respectively. It is
worth noticing that, instead of considering ui as a state input, it can be seen as a
disturbance input to the system. The closed-loop transfer functions are

Gc(s) =
b1cs+ b0c

s2 + a1cs+ a0c
(3.5)

Y ic(s) =
s/Ls

s2 + a1cs+ a0c
(3.6)

respectively. The coefficients can be found using (3.3) as follows

a0c = kic/Ls, a1c = k1c/Ls − ac (3.7)
b0c = a0c, b1c = ktc/Ls

Using these relations, the closed-loop poles and zeros can be placed easily

ktc = b1c?L̂s, kic = a0c?L̂s, k1c = (a1c? + âc)L̂s (3.8)

where the parameter estimates are marked by the hat and the intended coefficients
are marked by the subscript ?.

3.3.1 Synchronous-Frame 2DOF PI-Type Controller

The synchronous-frame PI controller parameters can be found by placing the two
real poles using the characteristic polynomial of (3.5). The characteristic polynomial
can be expressed as s2 + 2ζω0s + ω2

0, where ω0 is the undamped angular frequency
and ζ is the damping ratio. By comparing a standard characteristic polynomial with
the denominator of (3.5), the coefficients become a0c? = ω2

0 and a1c? = 2ζω0 and for
a stable system ζ > 0. Hence, the design parameters for two real poles become

a0c? = α2, a1c? = 2α, b1c? = α (3.9)

where α is the desired closed-loop control bandwidth. Using (3.9), the gains for the
state-space controller given in (3.8) become

ktc = αL̂s (3.10a)

kic = α2L̂s (3.10b)

k1c = 2αL̂s − R̂s − jωmL̂s (3.10c)

Using the design parameters of (3.9) in (3.2), the resulting equation corresponds
to the 2DOF PI-type current controller given in [7,21,32,33]. The reference voltage
in (3.2) becomes

us,ref(s) =

(
αL̂s +

α2L̂s

s

)[
is,ref(s)− is(s)

]
−
(
αL̂s − R̂s − jωmL̂s

)
is(s) (3.11)
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From (3.5), (3.6) and (3.9), the closed-loop transfer functions for the reference fol-
lowing and disturbance rejection become

Gc?(s) =
α(s+ α)

(s+ α)2
=

α

s+ α
(3.12a)

Y ic?(s) =
s/Ls

(s+ α)2
(3.12b)

where the accurate parameter estimates have been assumed. It can be seen that the
closed-loop pole in Gc?(s) is cancelled with a closed-loop zero.

It should be noted that a standard PI-type controller is tuned using two pa-
rameters, i.e., proportional and integral gain. The control law given in (3.11) has
an advantage of tuning only one parameter, i.e., α [7]. Other parameters needed
for the control are the motor parameters, which can be measured easily. However,
the performance of this type of controller deteriorates as the ratio between the sam-
pling and excitation frequencies decreases. This is due to the cross-coupling between
the d- and q-axis quantities, which leads to oscillations and even instability of the
system. In order to reduce the cross-coupling at low sampling to excitation (funda-
mental) frequency ratios, a one-step predicted current given in (3.1) can be used in
the damping and cross-coupling terms.

3.3.2 Complex 2DOF PI-Type Controller

The complex vector design reduces sensitivity to parameter mismatch [8]. The design
parameters for a complex PI-type controller were proposed in [8], [9] as follows

a0c? = (α + jωm)α, a1c? = 2α + jωm, b1c? = α (3.13)

where α is the current controller bandwidth and ωm is the rotor speed. It should be
noted that the estimated or measured motor parameters are needed for the controller
parameter calculations. Using the actual motor parameters and the design param-
eters given in (3.13), the closed-loop transfer functions for the reference following
and disturbance rejection become

Gc?(s) =
α(s+ α + jωm)

(s+ α)(s+ α + jωm)
=

α

s+ α
(3.14a)

Y ic?(s) =
s/Ls

(s+ α)(s+ α + jωm)
(3.14b)

It can be seen that the reference-following transfer function Gc?(s) is equal to the
transfer function given in (3.12). From (3.14), it can be seen that the closed-loop sys-
tem has one real pole and one complex pole

[
which is cancelled by the corresponding

complex zero in Gc?(s)
]
.
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3.4 Discrete-Time Design
A 2DOF state-space controller shown in Figure 3.1 will be used for the design of a
control scheme in the discrete-time domain for IPMSMs and SyRMs. The output
voltage of the current regulator is used as a one-step delayed input to the con-
troller. The reason for using the output voltage as a one-step delayed input is to
directly place the poles and zero in the z-plane (discrete-time domain). Furthermore,
the gains of the controller can be calculated using the estimated motor parameters
(R̂s, L̂d, L̂q) and the desired bandwidth α of the current controller.

It can be seen from Figure 3.1 that the plant model includes the coordinate
transformation and the time delay (computational delay in the discrete-time do-
main). The angular error due to the computational time delay is compensated in
the coordinate transformation of the stator voltage reference from rotor to stator
coordinates, i.e.,

ϑ′m = ϑm + Tsωm (3.15)
It should be noted that the angle compensation is only required in voltage trans-

formation, no angular compensation is required for the current (stator to rotor
transformation). The controller gains K1, K2, K i, and Kt are generally 2 × 2
matrices for IPMSMs and SyRMs, while they can be expressed as complex scalars
(k1, k2, ki, and kt) in the case of an SPMSM. Furthermore, the sampling of the
stator current iss is synchronized with the PWM. For the position of the rotor (ϑm),
a mechanical position sensor is used.

The rest of the chapter addresses the design of a discrete-time controller shown
in Figure 3.1 and finding the gains of the controller using the discrete-time models
of an SPMSM, IPMSM and SyRM given in Chapter 2. First the controller gains
will be calculated using the discrete-time models of an SPMSM to reduce the com-
plexity and then the results will be extended for more complex cases like IPMSMs
and SyRMs.

The discrete-time counterpart of the control law given in (3.2) will be developed.
The closed-loop transfer function for the control law given in (3.2) corresponds to a
unity-gain first-order low pass filter

is(s)

is,ref(s)
=

α

s+ α
(3.16)

In a digital domain, one-step computational time delay cannot be avoided. It
can be modelled as 1/z in the z-domain. Mapping a real pole in the s-plane to
z-plane changes it to exponential, i.e., s = −α becomes z = e−αTs , where Ts is the
sampling period. The closed-loop transfer function (3.16) with one-step delay in a
digital domain (z-plane) become

is(z)

is,ref(z)
=

1− p1?
z(z − p1?)

(3.17)
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Figure 3.1: 2DOF state-space current controller with an integral action
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where
p1? = e−αTs (3.18)

is the intended real pole of the system. It can be seen from (3.17) that as the transfer
function is real valued, no cross-coupling between the axes exists.

Using the discrete-time transfer function in (3.17), the gains of the controller
given in Figure 3.1 will be calculated, first for an SPMSM and then for an IPMSM
and SyRM.

3.4.1 Current Control of an SPMSM

From Figure 3.1, the control law for an SPMSM in a digital domain using complex
scalars can be written as

xi(k + 1) = xi(k) + is,ref(k)− is(k) (3.19a)
u′s,ref(k) = ktis,ref(k) + kixi(k)− k1is(k)− k2us(k) (3.19b)

where xi is the integral state, ki is the integral gain, kt is the feedforward gain,
k1 and k2 are the state-feedback gains and u′s,ref(k) is the next step voltage i.e.
us(k+ 1) = u′s,ref(k). Since all the states are directly available, the closed-loop poles
can be placed arbitrarily. The control law (3.19) can be expressed in the z-domain
as follows

u′s,ref(z) = ktis,ref(z) +
ki

z − 1

[
is,ref(z)− is(z)

]
− k1is(z)− k2

z
u′s,ref(z) (3.20)

The forward Euler approximation of a 2DOF PI controller given in (3.11) can
be found if we select the following gains in (3.20)

kt = kpc, ki = Tskic, k2 = 0 (3.21)

k1 = kpc +Ra − jωmL̂s

where

kpc = αL̂s, kic = α2L̂s (3.22)

As mentioned earlier, the performance of this type of controller deteriorates as the
frequency ratio becomes lower than 20 between the sampling and fundamental fre-
quencies [5].

For control purposes, the plant model in (2.20) can be written as follows is(k + 1)

us(k + 1)

 =

a b

0 0

 is(k)

us(k)

+

0

1

u′s,ref(k) +

bψ
0

ψpm (3.23)

It should be noted that the time delay due to the ZOH is included in the plant model
(when deriving the expression for b) in a similar way as in [5]. The states is and us
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in the state feedback control are readily available as feedback signals. The stator
current is is available as a measured feedback signal and the stator voltage us equals
the previous value of the reference voltage u′s,ref (output of the current regulator).
In a z-domain, the plant model (3.23) can be expressed as

is(z) = Y (z)u′s,ref(z)− Y d(z)ui(z) (3.24)

where the pulse-transfer functions for the reference following and the load-disturbance
rejection are

Y (z) =
b

z(z − a)
, Y d(z) =

1

Rs + jωmLs

1− a
z − a

(3.25)

Using (3.20) and (3.24), the closed-loop behaviour of the current controller is
obtained as

is(z) = G(z)is,ref(z)− Y i(z)ui(z) (3.26)

The closed-loop pulse-transfer functions for the reference following and the load-
disturbance rejection can be rewritten in a more compact form as

G(z) =
b1z + b0

z3 + a2z
2 + a1z + a0

(3.27)

Y i(z) =
1− a

Rs + jωmLs

(z − 1)(z + k2)

z3 + a2z
2 + a1z + a0

(3.28)

where the coefficients can be obtained by comparing the results from (3.26) and
(3.27) as

a0 = k2a+ b(ki − k1) (3.29a)
a1 = a+ b k1 − k2(1 + a) (3.29b)
a2 = k2 − 1− a (3.29c)
b0 = b(ki − kt) (3.29d)
b1 = b kt (3.29e)

It should be noted that the coefficients a0, a1, a2, b0 and b1 are the actual coeffi-
cients of the closed-loop transfer function G(z) and a, b are the actual parameters of
the plant model. The intended coefficients are marked with the subscript ? and the
parameter estimates by a hat. Keeping these notations in mind, due to the effect of
time delay, a0? = 0 is selected. The gains of the current controller as a function of
the coefficients of the closed-loop transfer function can be calculated as

k1 = ki + k2â/b̂ (3.30a)
k2 = 1 + a2? + â (3.30b)

ki = (1 + a1? + a2?)/b̂ (3.30c)

kt = b1?/b̂ (3.30d)
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The closed-loop poles and zero of (3.27) can be arbitrarily placed using the
expressions of gains given in (3.30). The characteristic polynomial (denominator) of
(3.27) can be expressed as

z(z2 + a2z + a1) = z(z − p
1
)(z − p

2
) (3.31)

where p
1
and p

2
are the closed-loop poles. Hence, the coefficients a1 and a2 can be

written in the form of poles p
1
and p

2
as a1 = p

1
p
2
and a2 = −p

1
− p

2
. Choosing

the real values, the intended coefficients required in (3.30) become

a1? = p21?, a2? = −2p1?, b1? = 1− p1? (3.32)

It can be seen from (3.30) that selecting the real coefficients, the gain expressions
in (3.30) lead to the desired closed-loop pulse-transfer function of (3.17).

It is worth mentioning here that the gains in (3.30) depend on the rotor speed
because of the discrete-time model parameters â and b̂ as given in (2.21). The
closed-loop pole is cancelled by the closed-loop zero in a similar manner as in the
continuous-time case of (3.12). Furthermore, no extra parameters are required for
the discrete-time design, rather the estimates of the same motor parameters (R̂s,
L̂s) and the controller bandwidth α are needed.

3.4.2 Current Control of an IPMSM

The exact discrete-time model of an IPMSM given in Chapter 2 will be used as a
starting point to design the controller for this motor. The model of an IPMSM is
expressed as follows

is(k + 1) = Ais(k) +Bus(k) + bψpm (3.33)

where the expressions for matrix elements can be found in Appendix A. If the ma-
trix elements of the exact discrete-time model are computationally demanding, an
approximate solution (series expansions) could be used instead. Some of the ap-
proximations are already presented in Chapter 2. More details about the current
control using approximate motor models is presented in Section 3.5.

It should be noted that the complex space vectors used in the case of an SPMSM
are now replaced with the real space vectors. The stator current vector is is =
[id, iq]

T, where id and iq are the d- and q-components of the stator current vector
and the superscript T is used to mark the matrix transpose.

The exact discrete-time model of an IPMSM using (3.33) can be written in a
z-domain as

zis(z) = Ais(z) +Bus(z) + bψpm

is(z) = (zI −A)−1Bus(z) + (zI −A)−1bψpm (3.34)
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The stator voltage expressed in terms of the reference voltage is

us(z) =
u′s,ref(z)

z
(3.35)

Using (3.34) and (3.35), the stator current in terms of pulse transfer functions can
be expressed as

is(z) = Y (z)u′s,ref(z)− Y i(z)ui(z) (3.36)

where
Y (z) = z−1(zI −A)−1B (3.37)

is a 2×2 reference following pulse-transfer-function matrix. The computational time
delay is taken into account in a similar manner as in the case of an SPMSM

The induced voltage due to the PM flux and the corresponding pulse-transfer-
function matrix are defined as follows

ui(z) = [0, ωmψpm]T (3.38a)

Y i(z) = −(zI −A)−1[0, b/ωm] (3.38b)

where 0 = [0, 0]T is a null column vector. Similar to the case of an SPMSM, the
induced voltage ui due to the PM flux can be seen as a disturbance input to the
system. For the controller parameter calculations, following relation of the stator
current can be used

is(z) = Y (z)u′s,ref(z) (3.39)

where u′s,ref(z) is the reference voltage, which can be found in a similar way as for
an SPMSM in (3.20). Only change is that the controller gains will now be 2× 2 real
matrices instead of complex scalars.

The pulse transfer function of the control law for an IPMSM is given as

u′s,ref(z) = Ktis,ref(z) +
K i

z − 1
[is,ref(z)− is(z)]−K1is(z)− K2

z
u′s,ref(z) (3.40)

where Kt, K i, K1 and K2 are 2 × 2 gain matrices. The control law in (3.40)
represents a 2DOF state-space controller with integral action shown in Figure 3.1.
Kt is the reference feedforward gain, K i is the integral gain and K1 and K2 are
the state feedback gains.

Using (3.39) and (3.40), the closed-loop behaviour of the stator current can be
obtained as

is(z) = G(z)is,ref(z) (3.41)

where G(z) is the closed-loop reference following pulse-transfer function given by

G(z) =
zB1 +B0

z3I + z2A2 + zA1 +A0

(3.42)
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where the coefficient matrices are

A0 = B(K2B
−1A+K i −K1) (3.43a)

A1 = A+B[K1 −K2B
−1(I +A)] (3.43b)

A2 = BK2B
−1 − I −A (3.43c)

B0 = B(K i −Kt) (3.43d)
B1 = BKt (3.43e)

It can be seen from (3.43) that the coefficient matrices for an IPMSM resemble the
scalar coefficients of an SPMSM given in (3.29).

Cross-coupling between the d- and q-axis can be avoided only if the non-diagonal
elements of G(z) are zero. In order to achieve the desired closed-loop dynamics of
a first-order low pass filter (3.17), G(z) can be expressed as

G(z) =
b1?z + b0?

z3 + a2?z2 + a1?z + a0?
I (3.44)

Choosing a0? = 0 due to the computational time delay as done for an SPMSM, the
controller gains can be expressed as

K1 = K i +K2B̂
−1
Â (3.45a)

K2 = (1 + a2?)I + B̂
−1
ÂB̂ (3.45b)

K i = (1 + a1? + a2?)B̂
−1

(3.45c)

Kt = b1?B̂
−1

(3.45d)

The closed-loop poles and zero of (3.44) can be placed arbitrarily. Selecting co-
efficients a1? = z2c , a2? = −2zc and b1? = 1 − zc result in the desired closed-loop
pulse-transfer function (3.17). Where, zc is the intended real pole of the system

zc = p1? = e−αTs (3.46)

It should be noted that the closed-loop pole is cancelled with a closed-loop zero in
a similar way as for an SPMSM.

3.5 Approximate Discrete-Time Controllers
An analytical direct discrete-time pole-placement design method for the 2DOF state-
space current controller with an integral action described in the last section will be
used as a starting point for the gains calculation. Gains of the 2DOF state-space
current controller will be calculated based on the continuous-time and approximate
discrete-time (series expansion) models of an IPMSM and SyRM given in Chapter
2. All the design methods used for the gains calculation of the controller are as
follows:
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1. Emulation-based design

2. Approximate discrete-time design (series expansion)

i) F = I

ii) F = I + AcTs
2

3.5.1 Emulation-based Design

Emulation-based design is the simplest way to obtain the discretized controller using
the continuous-time design of the controller. The continuous-time gains given in
(3.10) will be used as a starting point. The discrete-time implementation of an
integral state can be done using the numerical approximations, i.e., the Euler and
Tustin methods. The gains in the discrete-time domain are given as

Kt = αL̂s, K i = α2TsL̂s (3.47)

K1 = 2αL̂s − R̂sI − ωmJL̂s, K2 = O

where

O =

0 0

0 0

 (3.48)

and the estimated motor parameters (R̂s, L̂s) are used.

As described earlier, the ZOH of the stator voltage occurs naturally in the stator
coordinates. In order to include the effect of the ZOH, an approximate solution in
rotor coordinates was presented in [20]. The effect of the computational delay is
already included in the coordinate transformation, shown in Figure 3.1. So, com-
pensating the effect of time-delay caused by the ZOH with half a sampling period,
the gains in (3.47) become

Kt = e(Tsωm/2)JαL̂s, K i = e(Tsωm/2)Jα2TsL̂s (3.49)

K1 = e(Tsωm/2)J
(
2αL̂s − R̂sI − ωmJL̂s

)
, K2 = O

The gains of a synchronous-frame 2DOF PI controller for an IPMSM can be
found in [21]. Compensation for the computational delay is also presented and im-
plemented in the coordinate transformation. The integral state of the controller
is implemented using the forward Euler approximation. The emulation-based de-
sign with the Tustin approximation is suitable when the sampling instant is small,
making the ratio between the sampling and the fundamental frequency greater than
10 [34].

The forward Euler approximation gives satisfactory results when the frequency
ratio is about twenty [5]. If the frequency ratio is less than twenty, the actual
closed-loop system deviates significantly from the continuous-time design. Due to
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discretization errors, cross-coupling exists between the d- and q-components of the
stator current which leads to oscillations in the current waveform or even instability
[5]. The cross-coupling between the axes increase with the increase in fundamental
frequency.

3.5.2 Series Approximations of the Exact Discrete-Time Model

Series approximations of the exact discrete-time model for an IPMSM are given in
Chapter 2. Using those results, the system matrices are found considering the stator
flux as a state variable. The results can then be extended for the case with the stator
current as a state variable.

Case 1: F = I

Using this approximation, we get the following results

Ad = I + TsAc, Bd = Ts
ωmTs/2

sin(ωmTs/2)
e−(ωmTs/2)J (3.50)

The results from the above equation corresponds to the forward Euler discretization
of the continuous-time motor model. This kind of approximation is only feasible if
the ratio between the sampling and fundamental frequencies is high. It can be seen
from the formula of Bd that the ZOH is assumed to be in rotor coordinates [20].

Case 2: F = I + AcTs
2

Using this approximation, we get the following results

Ad = I + TsAc

(
I +

AcTs
2

)
, Bd = Ts

(
I +

AcTs
2

) ωmTs/2

sin(ωmTs/2)
e−(ωmTs/2)J

(3.51)

The results shown above are obtained using just the first two terms from the Taylor
series expansion of F . If we increase the number of terms in the series expansion, the
results will become very close to the exact model. If the frequency ratio is chosen
to be higher than 10, the approximation given in (3.51) gives very good results,
comparable to the exact discrete-time model.

3.6 Robustness
The system of equations used to study the robustness of a linear control system
described in the last few sections are as follows

is(k + 1) = Ais(k) +Bus(k) + bψpm (3.52a)
us(k + 1) = Ktis,ref(k) +K ixi(k)−K1is(k)−K2us(k) (3.52b)
xi(k + 1) = xi(k) + is,ref(k)− is(k) (3.52c)
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The first equation represents the machine model and the next two give the con-
troller design. The closed-loop state-space representation of the current control is
formulated as follows


is(k + 1)

us(k + 1)

xi(k + 1)

 =


A B O

−K1 −K2 K i

−I O I


︸ ︷︷ ︸

Φ


is(k)

us(k)

xi(k)

+


O

Kt

I

 is,ref(k) +


b

O

O

ψpm (3.53)

The eigenvalues of the system matrix Φ will give the stable region of the complete
system. If the eigenvalues of the system matrix are inside the unit circle, it will
represent a stable system otherwise unstable.

It should be noted that the gains of the controller are considered constant (based
on the rated motor parameters) in this analysis. The variation of parameters are in-
troduced in the machine model (matricesA andB). Similar results can be obtained
by changing the controller parameters to be variable and considering the machine
model to be constant.

In an actual system, the variation in parameters especially the inductances is
significant due to the phenomenon of magnetic saturation. The variation in induc-
tances can be very high, even during one sampling period. This variation causes an
additional bandwidth limitations.



Chapter 4

Results

The results in this thesis are divided into three main parts. First the analytical ap-
proach will be used to study the robustness of different controllers given in Chapter 3.
Then the controllers will be tested using simulations and at the end, the results of ex-
periments are presented. The experiments are performed on a transverse-laminated
6.7-kW four-pole SyRM whose rated values are given in Table 4.1. Four different
current control designs have been evaluated:

Case 1: Emulation-based design

Case 2: Series approximation of the exact discrete-time model with F = I

Case 3: Series approximation of the exact discrete-time model with
F = I + AcTs

2

Case 4: The exact discrete-time model

Table 4.1: Ratings of the SyRM used in simulations and experiments.

Rated power PN 6.7 kW

Rated voltage (rms L-L) UN 370 V

Rated current (rms) IN 15.5 A

Rated frequency fN 105.8 Hz

Rated torque TN 20.1 Nm

Rated speed ωm 3175 r/min

Pole pairs p 2

32
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4.1 Robustness Analysis
The robustness of the four current control designs (Case 1 – 4) against parameter
errors is analyzed by calculating the eigenvalues of the system matrix given in (3.53).
Stability maps are produced for two different sampling frequencies of 1 and 2 kHz.
Different control designs were presented in Chapter 3, but due to brevity only se-
lected control designs are presented here. Robustness of the controller against the
variation in Ld, Lq and Rs is studied separately. It should be noted that the machine
model (3.52a) is always considered to be based on the exact discrete-time model in
this analysis.

4.1.1 Variation in Ld

First the results are presented with the variation in the d-axis inductance. The
controller gains are calculated using the parameter estimates L̂d = 2.0 p.u., L̂q =

0.3 p.u., and R̂s = 0.04 p.u.. The actual inductance Ld is varied in a range from 0
to 2.5L̂d while, the other actual parameters are kept constant (equal to their esti-
mates). The desired bandwidth α is varied in a range from 0 to 2π·500 rad/s.

Results for two different rotor speeds are given here. Figure 4.1 shows the sta-
bility maps as a function of the desired bandwidth α and the ratio Ld/L̂d. It can
be seen from Figure 4.1 that at a sampling frequency of 1 kHz and ωm = 0 rad/s,
the results from Case 2, 3 and 4 are overlapping. It means that at this sampling
frequency and rotor speed, there is not much difference in the stability of the overall
system for different cases. From Figure 4.1 it can be seen that as the sampling
frequency increases, the region of stability increases for all the cases as expected.
Similarly at a rotor speed of ωm = 2π · 200 rad/s, the results for two different sam-
pling frequencies of 1 and 2 kHz are given in Figure 4.2. At this high speed, the
emulation-based design is unstable for a sampling frequency of 1 kHz. One reason
behind this instability is the small value of the frequency ratio. The exact model
has the largest stability area at 1 kHz. It can be seen from Figure 4.2(b) that the
stability regions for Case 3 and 4 overlaps at a sampling frequency of 2 kHz. It was
expected as the approximation (Case 3) becomes nearly equal to that of the exact
model at high frequency ratios.

4.1.2 Variation in Lq

Similar kind of variation was introduced in Lq keeping all the other parameters fixed
(equal to their estimates), the results are shown in Figure 4.3. Comparing Figure 4.2
and Figure 4.3, it can be seen that the results are almost similar which concludes
that the effect of variation in Lq on the system is similar to that of Ld. For this
reason, only some of the results for the variation in Lq are shown here.
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4.1.3 Variation in Rs

Variation in the actual value of stator resistance Rs is introduced in a similar way
as in the case of Ld and Lq. The actual value of Rs is varied from 0 to 2.5R̂s while,
the other parameters are kept constant (equal to their estimates). The variation in
Rs is tested at two different rotor speeds (ωm = 0 and ωm = 2π · 200 rad/s) and a
sampling frequency of 2 kHz. It can be seen from Figure 4.4(a) that the stable region
for Case 1 remains same throughout the parameter range. As expected, the current
control is insensitive to the variation in the model resistance. The stable region for
the other cases spans over the whole range as shown in Figure 4.4(a). Similarly at a
speed of ωm = 2π ·200 rad/s, the results are almost similar to Figure 4.4(a), making
the current control independent of the variation in the stator resistance.

Stability maps were also developed for a sampling frequency of 1 kHz and rotor
speeds of ωm = 0 and 2π · 200 rad/s, the results also show that the current control
is independent of the variation in the stator resistance. Case 1 was unstable at
a sampling frequency of 1 kHz and ωm = 2π · 200 rad/s due to the low sampling
frequency; not the variation in Rs.
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(a)

(b)

Figure 4.1: Stability maps for all 4 cases at ωm = 0 rad/s and α = 2π · 100 rad/s
(a) fs = 1 kHz (b) fs = 2 kHz.
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(a)

(b)

Figure 4.2: Stability maps for all 4 cases at ωm = 2π · 200 rad/s and α = 2π · 100
rad/s (a) fs = 1 kHz (b) fs = 2 kHz.
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(a)

(b)

Figure 4.3: Stability maps for all 4 cases with variation in Lq at ωm = 2π ·200 rad/s
and α = 2π · 100 rad/s (a) fs = 1 kHz (b) fs = 2 kHz.
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(a)

(b)

Figure 4.4: Stability maps for all 4 cases with variation in Rs at fs = 2 kHz and
α = 2π · 100 rad/s (a) ωm = 0 rad/s (b) ωm = 2π · 200 rad/s.
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Figure 4.5: Simulation model of a SyRM drive.
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4.2 Simulations
Simulations are performed on a 6.7-kW SyRM and the corresponding simulation
model is shown in Figure 4.5. The “PMSM and Mechanics subsystem” is based
on the continuous-time model of the SyRM and the “Vector Control” subsystem is
based on different discrete-time controllers given in Chapter 3. All the input and
output symbols are the same as used in this thesis, the input voltage and output
current of the “PMSM and Mechanics” subsystem are in stator coordinates. Ratings
and parameters of the SyRM are given in Table 4.1 and Table 4.2 respectively. It
should be noted that the current shown in the results is the sampled current in
synchronous coordinates, instead of the continuous-time current. Details about the
inter-sampling current will be presented at the end of this analysis.

Simulations are performed at two different sampling frequencies of 1 and 2 kHz.
Similarly, the current controllers for the SyRM are tested at two different speeds of
ωm = 0 and ωm = 2π · 200 rad/s, the bandwidth of the controller is kept constant
at α = 2π · 100 rad/s. Three best cases are selected to compare the results: Case
2, Case 3 and Case 4. Case 1 which is the continuous-time design with the forward
Euler discretization is unstable at a sampling frequency of 1 kHz. It works if we
decrease the rotor speed to 0 rad/s and increase the sampling frequency to 2 kHz,
but the overshoot is significant which deteriorates the performance of the controller
as the rotor speed increases.

The comparison between Case 3 and Case 4 is presented at a sampling frequency
of 1 kHz and a rotor speed ωm = 0 rad/s. As mentioned earlier, the bandwidth of
the current controller is kept constant at α = 2π · 100 rad/s. The results for these
operating conditions are given in Figure 4.6. It can be seen from Figure 4.6 that
the results for Case 3 and Case 4 are similar, but the difference seems to appear if
the controller is simulated at a rotor speed of ωm = 2π · 200 rad/s. The results for
these operating conditions are given in Figure 4.7. It can be seen from Figure 4.7(a)
that the coupling between the d- and q-axis increases significantly as the rotor speed
increases. Results for Case 4 as shown in Figure 4.7(b) remain the same as given in
Figure 4.6.

Table 4.2: Parameters of the SyRM used in simulations and experiments.

Inductance on d-axis Ld 45.6 mH

Inductance on q-axis Lq 6.84 mH

Stator resistance Rs 0.55 Ω

PM-flux ψpm 0 Wb

Moment of inertia J 0.015 kgm2
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Simulations were also performed for Case 2 at a sampling frequency of 1 and 2
kHz. The results for a rotor speed of 0 rad/s correspond to the ones given in Fig-
ure 4.6. At a rotor speed of 2π · 200 rad/s and a sampling frequency of 1 kHz, Case
2 is unstable. The results at a sampling frequency of 2 kHz are given in Figure 4.8.
It can be seen from Figure 4.8(a) that the coupling between the d- and q-axis is
significant, whereas in Figure 4.8(b) the coupling is reduced nearly to zero. The
results from Figure 4.8(b) shows that Case 3 behaves like Case 4 if we increase the
sampling frequency to 2 kHz.

Next the issue of inter-sampling current is discussed. The zoom-in of the continuous-
time current at a sampling frequency of 1 kHz and a rotor speed of 2π · 200 rad/s is
shown in Figure 4.9. It can be seen that the d- and q-axis currents vary significantly
between the sampling instants and reach a certain value at the sampling instants.
At the start of a step change in the q-axis current, there is a large overshoot which
is not visible in a sampled current as shown in Figure 4.7. It is clearly visible from
Figure 4.9(a) that there is a strong coupling between the d- and q-axis for Case 3,
but Case 4 has no visible coupling, just an inter-sampling current. It can be seen
that the sampled currents are not the average of the actual currents given in Fig-
ure 4.9. In order to solve this problem, a compensation method was presented in [18].

The idea behind the compensation method presented in [18] was to get the actual
average current from the sampled current by introducing another component of the
current called the average ripple current is,ripple such that

is,total = is + is,ripple (4.1)

where is,total is the total value of the average current and is is the average of sampled
current. The additional ripple current is,ripple will shift the continuous-time current
such that the average of the actual continuous-time current is obtained between the
two sampling instants, instead of peaks at the sampling instants. It is worth men-
tioning here that as the sampling frequency is increased, the inter-sampling current
reduces and the value of is,ripple approaches zero. For this reason, this compensation
is not included in the simulations or experiments. But if the sampling frequency
is reduced such that the frequency ratio is small (less than 10), the inter-sampling
currents become significant and it is reasonable to compensate them in the controller
model.
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Figure 4.6: Simulation results showing sampled values of id (blue), iq (red), and
their references (black), when the speed is ωm = 0 rad/s, the desired bandwidth is
α = 2π · 100 rad/s, and the sampling frequency is 1 kHz: (a) Case 3: controller
based on the approximate model with F = I+(Ts/2)A (b) Case 4: controller based
on the exact discrete-time model of the motor.
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Figure 4.7: Simulation results showing sampled values of id (blue), iq (red), and their
references (black), when the speed is ωm = 2π · 200 rad/s, the desired bandwidth
is α = 2π · 100 rad/s, and the sampling frequency is 1 kHz: (a) Case 3: controller
based on the approximate model with F = I+(Ts/2)A (b) Case 4: controller based
on the exact discrete-time model of the motor.
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Figure 4.8: Simulation results showing sampled values of id (blue), iq (red), and their
references (black), when the speed is ωm = 2π · 200 rad/s, the desired bandwidth
is α = 2π · 100 rad/s, and the sampling frequency is 2 kHz: (a) Case 2: controller
based on the approximate model with F = I (b) Case 3: controller based on the
approximate model with F = I + (Ts/2)A.
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Figure 4.9: Simulation results showing the inter-sampled values of id (blue), iq (red),
and their references (black), when the speed is ωm = 2π · 200 rad/s, the desired
bandwidth is α = 2π · 100 rad/s, and the sampling frequency is 1 kHz: (a) Case
3: controller based on the approximate model with F = I + (Ts/2)A (b) Case 4:
controller based on the exact discrete-time model of the motor.
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Figure 4.10: Block diagram of the experimental setup used in the laboratory test.

4.3 Experiments

4.3.1 Setup

The block diagram of the experimental setup is shown in Figure 4.10. Similar kind
of setup with slight modifications was used in [35]. The control algorithms were
implemented in a dSpace DS1104 PPC/DSP board. All the control algorithms are
modelled in the Matlab/Simulink environment and then are compiled and loaded
into the dSpace board.

The rated parameters and ratings of the SyRM used in experiments are given in
Table 4.2 and Table 4.1. The SyRM is fed by a frequency converter controlled by
the dSpace board, DS1104. It can be seen from Figure 4.10 that an IM servo drive
is used as a load machine in a speed control mode. The rotor speed ωm and rotor
angle ϑm are measured using an incremental encoder. Different signals are measured
for the control and monitoring purposes, the important ones are the stator current
and the DC link voltage.

4.3.2 Magnetic Saturation

In order to achieve high torque density, SyRMs often run in extreme saturation
conditions [36]. Due to the magnetic saturation, it is not reasonable to model the
inductances as a constant. In order to achieve better control performance, the
magnetic saturation has to be included in the model. The actual inductances Ld
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Table 4.3: Fitted per-unit parameters

Ldu Lqu α β γ a b c d

2.73 0.843 0.847 3.84 2.37 6.61 1.33 0.41 0

and Lq in the SyRM can be modelled as functions of the fluxes (or currents). The
model proposed in [36] is as follows:

id(ψd, ψq) =
ψd

Ldu

[
1 + (α|ψd|)a +

γLdu

d+ 2
|ψd|c|ψq|d+2

]
(4.2a)

iq(ψd, ψq) =
ψq

Lqu

[
1 + (β|ψq|)b +

γLqu

c+ 2
|ψd|c+2|ψq|d

]
(4.2b)

where Ldu and Lqu are the per-unit unsaturated inductances, and α, β, γ, a, b, c,
and d are non-negative constants. It should be noted that this model inherently
takes into account the cross-saturation between the d- and q-axis inductances.

The estimated inductances L̂d and L̂q were calculated in rotor coordinates using
the measurement data. The measurements were carried out in steady state at a
constant speed of ωm = 0.3 p.u. The measurement range was id = 0.1 . . . 0.7 p.u.
and iq = −1.4 . . . 1.4 p.u. The inductance estimates were calculated as follows

L̂d =
uq −Rsiq
idωm

(4.3a)

L̂q =
ud −Rsid
iqωm

(4.3b)

The actual inductances Ld and Lq were calculated from the functions (4.2) using
the actual values of the fluxes ψd and ψq in each operating point. The fitted per-
unit parameters are given in Table 4.3. The measured inductance data and curves
from the fitted functions are shown in Figure 4.11. It can be seen that the model
proposed in [36] fits very well to the measured data. It is evident from Figure 4.11
that the cross-saturation is significant in the SyRM under study. If there was no
cross-saturation, the curves in Figure 4.11 would overlap.

The effects of the differential inductance were not included for simplicity. In
order to properly incorporate the effects of the differential inductance, following
one-step predicted matrices should be used

A(k) = C(k + 1)Ad(k)C−1(k) (4.4a)
B(k) = C(k + 1)Bd(k) (4.4b)

The effects of the differential inductance were omitted and the following relations
were used instead

A(k) = C(k)Ad(k)C−1(k) (4.5a)
B(k) = C(k)Bd(k) (4.5b)



48

0 0.4 0.8 1.2
0

1

2

3

ψd (p.u.)

L
d
(p
.u
.)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

ψq (p.u.)

L
q
(p
.u
.)

Figure 4.11: Results from curve fitting and experimental data: (a) Ld as a function
of ψd for three different values of ψq =

[
0.1 p.u. (black line), 0.2 p.u. (blue line),

0.3 p.u. (red line)
]
; (b) Lq as a function of ψq for three different values of ψd =

[
0.6

p.u. (black line), 0.8 p.u. (blue line), 1.0 p.u. (red line)
]
[36].
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4.3.3 Results

Similar to the simulations, the experiments are also performed at two different speeds
of 0 and 2π · 200 rad/s and two different sampling frequencies of 1 and 2 kHz. The
controller bandwidth is kept constant at α = 2π · 100 rad/s. Figure 4.12 shows one
of the experimental results at zero speed. The results from both the cases (Case
2 and 4) are similar, showing that the performance of all the control algorithms is
almost identical at low speeds. The results in Figure 4.12 are in accordance with the
stability maps of Figure 4.1. The results from Case 3 are also similar to that of Case
2 and 4 at ωm = 0 rad/s. It can be seen that the controller gives desired performance
except at the instants when there is a step change in the current references. This
is due to the effect of magnetic saturation. It is expected that the oscillations and
cross-coupling can be reduced by including the effects of differential inductance. The
effects of magnetic saturation in IPMSMs and PM-assisted SyRMs are less severe
in comparison with that of SyRM. Figure 4.13 shows the zero speed results at a
sampling frequency of 1 kHz. It can be seen that the oscillations are grown due to
large variations in Ld and Lq during one sampling period. The model used for the
magnetic saturation does not give good results at this sampling frequency (large
sampling time).

Figure 4.14 and Figure 4.15 show the results at a speed of 2π · 200 rad/s with
two different frequencies of 1 and 2 kHz. It can be seen from Figure 4.14(a) that the
controller does not give satisfactory results, but it is still stable or more appropri-
ately marginally stable in accordance with the stability maps of Figure 4.2. Figure
4.14(b) shows the results for Case 4 at 1 kHz, the overshoot is very large (more than
50% in iq) with high oscillations. Figure 4.15 shows very good results compared with
Figure 4.14 as the sampling frequency increases to 2 kHz. The results from Case 2
are shown in Figure 4.15(a), the cross-coupling can be seen clearly and the oscilla-
tions are very large in comparison with Case 4 in Figure 4.15(b). The oscillations
in Figure 4.15 can be reduced by including the effect of the differential inductance
in the saturation. At a sampling frequency of 2 kHz, the results from Case 3 were
similar to that of Case 4, in accordance with the stability maps of Figure 4.2.

It is worth mentioning here that the inverter voltage drops and the dead-time
effects of the inverter switches are compensated inside the control algorithm. The
output voltage of the current regulator is limited inside the control algorithm to
about 0.9 p.u.
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Figure 4.12: Experimental results showing sampled values of id (blue), iq (red), and
their references (black), when the speed is ωm = 0 rad/s, the desired bandwidth is
α = 2π · 100 rad/s, and the sampling frequency is 2 kHz: (a) Case 2: controller
based on the approximate model with F = I (b) Case 4: controller based on the
exact discrete-time model of the motor.
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Figure 4.13: Experimental results showing sampled values of id (blue), iq (red), and
their references (black), when the speed is ωm = 0 rad/s, the desired bandwidth is
α = 2π · 100 rad/s, and the sampling frequency is 1 kHz: (a) Case 2: controller
based on the approximate model with F = I (b) Case 4: controller based on the
exact discrete-time model of the motor.
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Figure 4.14: Experimental results showing sampled values of id (blue), iq (red),
and their references (black), when the speed is ωm = 2π · 200 rad/s, the desired
bandwidth is α = 2π · 100 rad/s, and the sampling frequency is 1 kHz: (a) Case 2:
controller based on the approximate model with F = I (b) Case 4: controller based
on the exact discrete-time model of the motor.
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Figure 4.15: Experimental results showing sampled values of id (blue), iq (red),
and their references (black), when the speed is ωm = 2π · 200 rad/s, the desired
bandwidth is α = 2π · 100 rad/s, and the sampling frequency is 2 kHz: (a) Case 2:
controller based on the approximate model with F = I (b) Case 4: controller based
on the exact discrete-time model of the motor.



Chapter 5

Conclusions

In this thesis, the discrete-time models and current control of synchronous motors
with a magnetically anisotropic rotor structure, such as IPMSMs and SyRMs were
studied. The exact discrete-time model of the SyRM and IPMSM was studied with
the ZOH assumed in the stator coordinates, where it occurs naturally. The presented
exact discrete-time model of the SyRM can be applied for the design, analysis, and
implementation of the controllers and observers. Based on the exact discrete-time
model of the machine, the gains of a 2DOF state-space controller were calculated.
Digital implementation requires the need for including the computational time delay
and delay due to the ZOH inside the controller. Both of these delays were included
in the control algorithm.

The controller based on the exact discrete-time model of the SyRM was compared
with the controllers based on the continuous-time design (emulation) and the series
expansion of the exact discrete-time model of the machine. The series expansions
with one and two terms of the Taylor series expansion were used. In these controllers
(emulation and series expansions), the ZOH of the stator input voltage was assumed
in rotor coordinates. The computational requirements of the model increases with
the increase in the number of terms of the Taylor series expansion. The emulation-
based design gives poor performance in comparison with other controllers. The
other benchmark methods, such as series expansions give better performance than
the emulation-based design, with the two term expansion very close to the exact
model in terms of performance. As the fundamental frequency increases, the oscil-
lations were increased and the performance deteriorates for the benchmark methods.

The performance of the controller based on the exact discrete-time model of the
SyRM was better than all the other benchmark controllers studied. The robustness
of these methods against parameter errors was analyzed. The stability maps show
that the exact discrete-time design has a comparatively larger stable region (against

54
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inductance errors) than the other controllers. The results also show that the robust-
ness of the current controllers is insensitive to the errors in the stator resistance.
The current controllers were investigated using the simulations. The simulation re-
sults agree reasonably with the stability analysis. The emulation-based design had
the poorest performance and the results from the series expansion with two terms
were comparable to the exact model. The experiments were performed on a 6.7-kW
SyRM drive. The experimental results were in accordance with the simulations and
stability analysis. One factor which reduces the performance of the controllers is
the magnetic saturation. In experiments, the saturation model was included in the
controllers, but it still needs some improvements to properly incorporate the incre-
mental or differential inductance.

A suitable topic for future research is to improve the existing saturation model by
including the effect of the incremental inductance. Next stage would be to design a
sensor-less control by implementing a suitable discrete-time rotor-position observer.
A torque maximizing and loss-minimizing controllers will be developed for high
speed applications.
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Appendix A

The elements of system matrix Ad and input matrices Bd and bd are as follows,

Ad = eAcTs =

ad11 ad12

ad21 ad22

 (A.1)

The closed-form solutions for the elements are given by

ad11 = e−σTs
[
cosh(γTs)− δ

sinh(γTs)

γ

]
(A.2a)

ad22 = e−σTs
[
cosh(γTs) + δ

sinh(γTs)

γ

]
(A.2b)

ad21 = −ad12 = −ωme−σTs
sinh(γTs)

γ
(A.2c)

where1

σ =
Rs

2

(
1

Ld

+
1

Lq

)
, δ =

Rs

2

(
1

Ld

− 1

Lq

)
(A.3)

γ =
√
δ2 − ω2

m

The input matrix Bs
c(t) corresponding to the stator voltage is time variant. Hence,

the discrete-time input matrix becomes

Bd =

∫ Ts

0

eAcτBs
c(Ts − τ)dτ · eϑm(0)J =

bd11 bd12

bd21 bd22

 (A.4)

1If ω2
m > δ2, then γ = jγim = j

√
ω2
m − δ2 is imaginary. All the matrix elements remain real since

cosh(jγimTs) = cos(γimTs) and sinh(jγimTs)/(jγim) = sin(γimTs)/γim hold due to the properties of
hyperbolic functions. Furthermore, for γ = 0, these functions reduce to cosh(γTs) = sinh(γTs)/γ =
1.
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The closed-form solutions for the matrix elements are2

bd11 = K
[
g1 cos(ωmTs)− 2(σ − δ)δωm sin(ωmTs)

− g1ad11 + (σ + δ)ω2
m(ad11 − ad22)

] (A.5a)

bd22 = K
[
g2 cos(ωmTs) + 2(σ + δ)δωm sin(ωmTs)

− g2ad22 + (σ − δ)ω2
m(ad22 − ad11)

] (A.5b)

bd12 = K
[
2(σ − δ)δωm cos(ωmTs) + g1 sin(ωmTs)

− 2(σ − δ)δωmad11 + g2ad21

] (A.5c)

bd21 = K
[
2(σ + δ)δωm cos(ωmTs)− g2 sin(ωmTs)

− 2(σ + δ)δωmad22 − g1ad21
] (A.5d)

where

K =
1

(σ2 − δ2)2 + 4σ2ω2
m

(A.6a)

g1 = (σ − δ)2(σ + δ) + 4σω2
m (A.6b)

g2 = (σ + δ)2(σ − δ) + 4σω2
m (A.6c)

The input matrix corresponding to the PM flux is

bd =

∫ Ts

0

eAcτdτ · bc =

bd1
bd2

 (A.7)

where the elements are given by

bd1 = H [(σ − δ)(1− ad11)− ωmad21] (A.8a)

bd2 = H

[
−σad21 + ωm

(
ad11 + ad22

2
− 1

)]
(A.8b)

and
H =

σ + δ

(σ + δ)(σ − δ) + ω2
m

(A.9)

2In the derivation, it is important to notice that ex+y = exey does not hold for matrix expo-
nentials in general.
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