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On the threshold energization of radiation belt
electrons by double layers
A. Osmane1 and T. I. Pulkkinen1

1Department of Radio Science and Electrical Engineering, Aalto University, Espoo, Finland

Abstract Using a Hamiltonian approach, we quantify the energization threshold of electrons
interacting with radiation belts’ double layers discovered by Mozer et al. (2013). We find that double
layers with electric field amplitude E0 ranging between 10 and 100 mV/m and spatial scales of the order
of few Debye lengths are very efficient in energizing electrons with initial velocities v∥ ≤ vth to 1 keV
levels but are unable to energize electrons with E ≥ 100 keV. Our results indicate that the localized
electric field associated with the double layers are unlikely to generate a seed population of 100 keV
necessary for a plethora of relativistic acceleration mechanisms and additional transport to higher
energetic levels.

1. Introduction

Recent in situ electric field measurements by the Van Allen Probes [Wygant et al., 2014] in the radiation
belts have revealed the existence and ubiquitous presence of double layers (DL). Encounters with DL
during 1 min burst mode intervals were both common and indicative of large cumulative potential drops
[Mozer et al., 2013]. With electric fields averaging 20 mV/m, and sometimes reaching as high as 100 mV/m,
observed double layers have been suggested by Mozer et al. [2013] as possible accelerators of radiation
belt electrons. More specifically, the authors suggested that DL might be capable of accelerating the
thermal population with energies of the order of 25 eV to the 100 keV seed population needed to generate
the relativistic particles.

It is an observational fact that planetary magnetospheres are efficient electron accelerators, with ener-
gies as high as several MeV in the Earth’s belts and 50 MeV in Jupiter’s belts [Friedel et al., 2002]. Numerous
mechanisms spanning a wide range of time scales (from minutes to days) have been theoretically inferred
[Thorne, 2010, and references therein] and in some cases observationally confirmed [Horne et al., 2005;
Reeves et al., 2013; Thorne et al., 2013]. However, a primary difficulty in our understanding of acceleration
by wave-particle interaction processes, deemed dominant in the radiation belts, stems from the fact that
known mechanisms involving large-amplitude whistlers [Cattell et al., 2008; Kellogg et al., 2010; Wilson et al.,
2011] require a seed population with E ≥ 100 keV [Omura et al., 2007; Summers and Omura, 2007; Osmane
and Hamza, 2012; Artemyev et al., 2012; Osmane and Hamza, 2014]. While radial diffusion, enhanced con-
vection and substorm injections of plasma sheet electrons can provide a seed population with E>100 keV
on hourly time scales [Meredith et al., 2002; Turner et al., 2012; Boyd et al., 2014], the recently discovered DL
within the radiation belts might provide a mechanism to generate a seed population on shorter kinetic
scales and in association with violation of the second invariant.

We theoretically and numerically quantify the energization of electrons by writing a Hamiltonian for a test
electron interacting with a DL in a dipolar magnetic field. The assumption underlying our Hamiltonian
approach, also stated in the Letter by Mozer et al. [2013], is that the potential energy associated with the DL
is cumulatively transferred to electrons. Hence, even though the Hamiltonian is not self-consistent, it is a
sufficient approach to quantify the energy gains of electrons interacting with DL.

We demonstrate that while DL are very efficient to accelerate thermal electrons, the threshold energization
of the order of 1 keV is well below the 100 keV levels necessary for the creation of a more energetic seed
population. Test electrons with larger energies (E ≥ 100 keV) are barely affected by DL with spatial scales of
the order of 10 km and electric fields of 10–100 mV/m. Incidently, we are led to the conclusion that for DL to
be responsible for the generation of a 100 keV population, a nonlinear and secondary kinetic mechanism,
arising from a perturbation of the distribution function, must be at play.
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2. Hamiltonian Analysis

We start the analysis by writing the Hamiltonian for the generalized momentum p∥ and coordinate s∥ :

H =
p2
∥

2me
+

me𝜔
2
bs2

∥

2
−

a
√
𝜋

2
qE0erf

( s∥
a

)
cos(𝜔t + 𝜃) (1)

for a charge q, electron rest mass me, bounce frequency 𝜔b =
√

9𝜇B0∕l2R2
E , double layer oscillation fre-

quency 𝜔, and spatial scale along the background field a. The Hamiltonian describes the interaction of an
electron bouncing in a magnetic mirror along a shell l and interacting with a parallel electrostatic structure
of amplitude E0. The motion is adiabatic in the first invariant, not in the second invariant, since the dou-
ble layer is here assumed to only energize electrons along the parallel component of the magnetic field. If
needed, the perpendicular motion can be inferred from the solution of the Hamiltonian and the conserva-

tion of the adiabatic invariant 𝜇 = mev2
⊥

2B0
. Hence, the use of the above Hamiltonian for the interaction of an

electron with a double layers incurs no loss of generality.

The double layer potential is modeled in terms of the error function erf(x) ∼∫ x
0 dy exp(−y2) and conse-

quently the electric field has a gaussian shape E ∼ exp(−x2). Choosing a different function for the electric
field, e.g., E ∼ cosh−2(x), does not alter the conclusion of the report but complicates the theoretical analy-
sis. For the sake of analytical tractability, we have deemed more appropriate to choose a Gaussian-shaped

electric field). The Hamiltonian is composed of an integrable Hamiltonian H0 =
p2
∥

2me
+

m𝜔2
b

s2
∥

2
and a perturbed

component H1(s∥, t) = a
√
𝜋

2
qE0erf( s∥

a
) cos(𝜔t + 𝜃) mimicking the double layer electrostatic structure along

the background field. The equations of motion are then easily found by computing Hamilton’s equation for
the parallel momentum :

ṗ∥ = −me𝜔
2
bs∥ − qE0 exp

(
−s2

∥∕a2
)

cos(𝜔t + 𝜃) (2)

and the coordinate along the magnetic field

ṡ∥ =
p∥

me
. (3)

The equations of motion can then be numerically integrated to obtain the particle trajectories. However,
before doing so, we compute an analytical estimate of the rate of energization for an electron interacting
with a double layer.

2.1. Analytical Estimate of Energization by Double Layers
We first proceed by normalizing the Hamiltonian in terms of the length scale L = vth𝜔

−1
b , time scale T = 𝜔−1

b ,
and thermal speed vth. Consequently, the normalized variables and parameters are written as

P =
p∥

mevth
, X =

𝜔bs∥
vth

, Ξ =
qE0

mevth𝜔b
, d =

a𝜔b

vth
, 𝜏 = 𝜔bt, 𝜈 = 𝜔

𝜔b
, (4)

and the normalized Hamiltonian as

H̃ = P2

2
+ X2

2
− Ξ

d
√
𝜋

2
erf

(X
d

)
cos(𝜈𝜏 + 𝜃). (5)

The second step consists of applying a canonical transformation to action-angle variables (X, P) → (𝛼, J),
resulting in the following transformed Hamiltonian:

K(J, 𝛼, 𝜏) = J − Ξ
d
√
𝜋

2
erf

(√
2J

d

)
cos(𝜈𝜏 + 𝜃), (6)

for the action J = H0(P, X) and angle cos(𝛼) = X∕
√

2J. Hence, the action J is proportional to the parallel
energy of the electron, and the angle 𝛼 is a measure of the bouncing motion of the electron in the dipolar
field as the electron is slowed down or accelerated by the double layer. Hamilton’s equations for the new
canonical variables yields

𝛼̇ = 1 − Ξ√
J

cos(𝛼) cos(𝜈𝜏 + 𝜃)F(J, 𝛼), (7)
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Figure 1. Bounce-averaged and phase-averaged <>𝜃k
change

in the action Jk normalized by the electric field amplitude E0 for
a single interaction. The double layer is much more efficient in
accelerating electrons with v∥ ≤ vth.

and

J̇ = −2Ξ
√

J sin(𝛼) cos(𝜈𝜏 + 𝜃)F(J, 𝛼), (8)

for the function F(J, 𝛼) = e
−J
d2 (1+cos(2𝛼)). This

system of equations is analytically equivalent to
equations (2) and (3).

In order to estimate the energization of an elec-
tron we, employ a finite-difference technique
commonly used in plasma studies of linear
and stochastic heating [Smith and Kaufman,
1978; Karney and Bers, 1977; Reitzel and Morales,
1996]. The mapping is hereafter constructed for
one bounce period by substituting the solution
to the unperturbed Hamiltonian H0 = H0(J),
𝛼 = 𝜏 , and J = cst, in equations (7) and (8)
and integrating for 𝜏 = [0, 1]. The mapping
equations for 𝛼k = 𝜏k and Jk can therefore be
written as

𝜏k+1 − 𝜏k = 1 − Ξ√
Jk

e−Jk∕d2

∫
2𝜋

0
d𝜙e−J∕d2 cos(2𝜙) cos(𝜙) cos(𝜈𝜙 + 𝜈𝜏k + 𝜃), (9)

Jk+1 − Jk = −2Ξ
√

Jke−Jk∕d2

∫
2𝜋

0
d𝜙e−J∕d2 cos(2𝜙) sin(𝜙) cos(𝜈𝜙 + 𝜈𝜏k + 𝜃). (10)

Making use of the modified Bessel function identity for the integer index q ≥ 0

Iq(x) =
1

2𝜋 ∫
𝜋

−𝜋
d𝜙 exp[x cos(𝜙)] cos(q𝜙) (11)

Figure 2. Numerical computation of the average gain in parallel kinetic
energy as a function of initial parallel velocity. The electrons are
computed after 500 interactions with double layers. The zoomed figure
is plotted on a linear scale similar to that of Figure 1. Consistent with
the analytical estimate, the numerical computation of the electron
orbits demonstrate that double layers are much more efficient in accel-
erating electrons with v∥ ≤ vth = 3000 km/s. Electrons populating the
tail of the distribution are not affected by the double layers.

we can solve the integral for indices
q± = 𝜈

2
± 1

2
approximated by positive

integer values. The resulting
bounce-averaged equation yields the
following mapping set for the phase 𝜃k :

𝜃k+1 − 𝜃k = 2𝜋𝜈 + Ξ𝜈𝜋 cos(𝜃k)e
− Jk

d2[
Iq−

(
Jk

d2

)
+ Iq+

(
Jk

d2

)]
(12)

and action Jk

Jk+1 − Jk = − 2Ξ𝜋 sin(𝜃k)
√

Jke−
Jk
d2[

Iq−

(
Jk

d2

)
− Iq+

(
Jk

d2

)]
(13)

Whereas the two mapped equations
of the dynamical system are provided
for completeness, only the mapping
for Jk is required for an estimation of
the bounce-averaged energization
of an electron. Figure 1 shows the
phase-averaged change of the action for
given values of 𝜈 = 𝜔

𝜔b
. Since the double

layers reported by Mozer et al. [2013]
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Figure 3. Average gain in kinetic energy as a function of initial kinetic
energy computed for relativistic equations and for kinetic energies
up to 500 keV. The change in kinetic energy ΔK

K
for electrons of 1 keV

and below is of the order of 1–100, whereas electrons with K0 > 10
keV experience a gain of less than 1%. Since relativistic effects in the
equation of motion becomes apparent for K0 ∼ 100 keV, the Hamilto-
nian analysis for nonrelativistic energies appears qualitatively valid for
relativistic energies.

are quasi-stationary, we set 𝜈 ≤ 1. We
also note from Figure 1 that double lay-
ers primarily impact core electrons if
𝜈 is increased to larger integer values.
The estimate of the phase-averaged
change in action,

√
< ΔJ2 >∕2𝜋E0

∼ exp(− Jk

d2 )[Iq−
( Jk

d2 ) − Iq+
( Jk

d2 )] plotted in
Figure 1, indicates that electrons with
parallel energies much greater than ther-
mal speed will be neither accelerated
nor decelerated by double layers; i.e.,
for parallel momentums p∥ ≫ mvth

the change in action converges to zero.
We can now numerically integrate the
equation of motion to test the above
analytical estimate.

2.2. Numerical Estimation of Double
Layers Energization
Using equations (2) and (3), we numer-
ically computed the change in parallel
kinetic energy for an electron interact-
ing with a double layer electric field. The
result is plotted in Figure 2 for double

layers’ electric fields E0 =10 mV/m (blue) and E0 =100 mV/m (red). For thermal velocities vth ∼3000 km/s,
the energization for E0 in the range (10, 100) mV/m is of the order of Δv ∼ (

√
10, 10). We also notice

from (2) that particles with v∥ ≫ vth are not energized by the DL. Energetic electrons with parallel energy
mv2 ≫ q𝜙DL are unperturbed by the spatially narrow field of the DL. The analytical estimate of previous
section is therefore confirmed in that only orbits with v∥ ≤ vth are efficiently accelerated along the back-
ground field. Hence, the double layers affect the core distribution function of electrons in the radiation belts,
rather than the tail, and are very efficient in providing a seed population of the order of 1 keV. For several
interactions with large electric fields (E0 ≥ 100 mV/m) electrons can reach 10 keV, but even such threshold is
difficult to reach for double layers properties described by Mozer et al. [2013].

2.3. Extension to Include Relativistic Effects
The Hamiltonian analysis and the numerical integration of the previous sections were conducted for non-
relativistic electrons. Even though 1–10 keV electrons have kinetic energies 2 orders of magnitude smaller
than their rest mass, it is appropriate to apply the same analysis for relativistic equations to test the valid-
ity of the nonrelativistic results. Using the normalized variables of equation (4) and rewriting the relativistic
momentum P = m𝛾v∥

mvth
, we therefore integrate the following equations of motion :

Ṗ = X
𝛾
− Ξ[X, 𝜏] (14)

Ẋ = P
𝛾

(15)

𝛾̇ = n2 P
𝛾
Ξ[X, 𝜏] (16)

in which the constant n = vth

c
≪ 1. The result of the integration is shown in Figure 3 for electrons

with kinetic energies ranging between a few eV and 500 keV. We notice that the change in kinetic energy
ΔK
K

for electrons of 1 keV is of the order of 0.1 keV; that is, gains are of the order of less than 1%. For 100 keV
electrons and above, the energy gain is of the order of 0.01%, corresponding to a gain 0.1 keV. While the
nonrelativistic Hamiltonian analysis is a simplification, it describes correctly the energization process and
relativistic effects do not modify its conclusions.
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3. Discussion and Conclusion

Using a Hamiltonian approach, we have theoretically quantified and numerically verified that double layers
with electric field amplitudes of the order of 20–100 mV/m and length scales of the order of a few Debye
lengths can energize thermal electrons from 25 eV up to energy levels of 1 keV. In order to reach energies
of the order of 100 keV, electrons would need to interact with electric field of the order of 350 mV/m. Con-
sequently, double layers should not be able to directly provide for a seed populations of 100 keV necessary
for a plethora of other acceleration mechanisms in the radiation belts [Omura et al., 2007; Summers and
Omura, 2007; Osmane and Hamza, 2012; Artemyev et al., 2012; Osmane and Hamza, 2014]. However, since
double layers are nonlinear structures akin to BGK modes [Bernstein et al., 1957] and since they primarily
accelerate small velocity electrons and significantly perturb the core of the thermal distribution, we can-
not completely rule out that double layers, through a reconfiguration of the distribution function, and a
secondary mechanism, can generate a seed population of 100 keV electrons.

As for the necessity for a self-consistent treatment of electrons-DL interactions, our analysis indicates that
we cannot use quasi-linear methods to quantify the effect of DL on the distribution functions [Diamond
et al., 2010; Morales and Lee, 1974]. In quasi-linear theory, the wave turbulence is generated by the core of
the distribution functions, while the wave-particle interaction phenomena of Landau and cyclotron reso-
nance are only significant for the tail of the distributions. The inverse is true for the problem of electrons-DL
interactions in the radiation belts, i.e., the origin of the turbulence (double layers) is to be found in the
tail [Mozer et al., 2013], whereas the core of the distribution function is severely affected and the tail is, at
least to first order, barely affected. (See Morales and Lee [1974] for a laboratory plasma example in which a
quasi-linear approach is used to describe the effect of localized electric field structure on the velocity distri-
bution function. Unlike the particular case treated hereafter, the DL studied by Morales and Lee [1974] only
affect ions in the tails and a quasi-linear approach is therefore validated.)

As far as the role of DL in the acceleration of electrons from thermal energies to ultrarelativistic levels is con-
cerned, we note that other wave-particle mechanisms [Thorne, 2010] can provide the last energization step
between keV levels and a few to several 100 of keV levels. Recent Van Allen Probes measurements are also
indicating that a three-step mechanism involving double layers, small-amplitude whistler turbulence, and
finally large-amplitude waves could combine to transport thermal electrons to relativistic levels [Agapitov
et al., 2014]. However, such questions cannot be fully answered without a clearer understanding of
the mechanisms generating and sustaining DL with electron acoustic properties in the radiation belts
plasma. Future work will be focusing on the generation of the double layers and the relationship with
large-amplitude oblique whistlers.
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