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Abstract

Multilabel classification is an important topic in machine learning that arises naturally from
many real world applications. For example, in document classification, a research article can
be categorized as “science”, “drug discovery” and “genomics” at the same time. The goal of
multilabel classification is to reliably predict multiple outputs for a given input. As multiple
interdependent labels can be “on” and “off” simultaneously, the central problem in multilabel
classification is how to best exploit the correlation between labels to make accurate predictions.
Compared to the previous flat multilabel classification approaches which treat multiple labels
as a flat vector, structured output learning relies on an output graph connecting multiple labels
to model the correlation between labels in a comprehensive manner. The main question studied
in this thesis is how to tackle multilabel classification through structured output learning.

This thesis starts with an extensive review on the topic of classification learning including
both single-label and multilabel classification. The first problem we address is how to solve
the multilabel classification problem when the output graph is observed apriori. We discuss
several well-established structured output learning algorithms and study the network response
prediction problem within the context of social network analysis. As the current structured
output learning algorithms rely on the output graph to exploit the dependency between labels,
the second problem we address is how to use structured output learning when the output graph
is not known. Specifically, we examine the potential of learning on a set of random output graphs
when the “real” one is hidden. This problem is relevant as in most multilabel classification
problems there does not exist any output graph that reveals the dependency between labels. The
third problem we address is how to analyze the proposed learning algorithms in a theoretical
manner. Specifically, we want to explain the intuition behind the proposed models and to study
the generalization error.

The main contributions of this thesis are several new learning algorithms that widen the ap-
plicability of structured output learning. For the problem with an observed output graph, the
proposed algorithm “SPIN” is able to predict an optimal directed acyclic graph from an observed
underlying network that best responses to an input. For general multilabel classification prob-
lems without any known output graph, we proposed several learning algorithms that combine
a set of structured output learners built on random output graphs. In addition, we develop a
joint learning and inference framework which is based on max-margin learning over a random
sample of spanning trees. The theoretic analysis also guarantees the generalization error of the
proposed methods.
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1. Introduction

1.1 Scope of the Thesis

Machine learning, defined by Arthur Samuel in 1959 as “a field of study
that gives computers the ability to learn without being explicitly pro-
grammed”, has gained in popularity and become an active research field
in computer science during the last few decades. Machine learning not
only produces intelligent systems that generalize well from previously ob-
served examples, but is also firmly rooted in statistical learning theory
that establishes the conditions guaranteeing good generalization (Vapnik,
1998, 1999). Machine learning appears in many real world applications,
to name but a few, ranking web pages in internet search (Richardson
et al., 2006), spam filtering in email (Goodman and tau Yih, 2006), rec-
ommender systems for online shopping (Bell and Koren, 2007), and image
and speech recognitions (Bengio, 2009). With the increasing availability
of large scale datasets, machine learning is expected to play an indispens-
able role in many research fields (Fan and Bifet, 2013).

Supervised learning, an important paradigm in machine learning, is
usually defined as learning a function that is capable of predicting the
best value for an output variable given an input variable. The function is
learned by exploring a set of observed input/output pairs known as train-
ing examples. In the classical supervised learning setting, there is only
one variable to be predicted. This is called single-label classification if
the output variable is discrete, or regression if the output variable is con-
tinuous. Many single-label classification models have been designed and
applied in practice, for example, the perceptron (Rosenblatt, 1958), logis-
tic regression (Chen and Rosenfeld, 1999), and support vector machines
(Cortes and Vapnik, 1995).

11



Introduction

Multilabel classification is a natural extension to single-label classifica-
tion by defining multiple interdependent output variables associated with
each input. This type of problems are prevalent in everyday life. For ex-
ample, a movie can be classified as “sci-fi”, “thriller” and “crime”; a news
article can be categorized as “science”, “drug discovery” and “genomics”;
a gene can be associated with multiple functions in genomics research; a
surveillance photo can be tagged with “car”, “building” and “road”. When
multiple output variables are treated as a “flat” vector, the problem is
often called flat multilabel classification. Flat multilabel classification is
one branch of multilabel classification that has seen interest from the ma-
chine learning community (Tsoumakas and Katakis, 2007; Tsoumakas
et al., 2010). As multiple output variables can be “on” and “off” simul-
taneously, various flat multilabel classification algorithms have been de-
veloped that aim to explore the correlation between multiple output vari-
ables in order to make accurate predictions. In particular, Tsoumakas and
Katakis (2007) summarized the established flat multilabel classification
algorithms into two categories, namely problem transformation (Zhang
and Zhou, 2005; Read et al., 2009; Cheng and Hiillermeier, 2009) and al-
gorithm adaptation (Schapire and Singer, 1999; Bian et al., 2012).

There exists another line of research in multilabel classification known
as structured output prediction where a complex structure (output graph)
is defined on multiple output variables to model dependencies in a more
comprehensive way. Hierarchical classification is one type of structured
output prediction in which the prediction needs to be reconciled along a
pre-established hierarchical structure (Silla and Freitas, 2011). Hierar-
chical classification is usually applied to the problem in which different
levels of granularity need to be addressed by a hierarchical structure. The
hierarchy can be either a rooted tree such as in the document classifica-
tion problem (Hao et al., 2007; Li et al., 2007; Rousu et al., 2006), or a
directed acyclic graph (DAG) with parent-children relationships such as
in the gene function prediction problem (Barutcuoglu et al., 2006). There
exists a large body of work on hierarchical classification from the early
approaches which use the hierarchical structure heuristically for prepro-
cessing or post-processing (Koller and Sahami, 1997; Dumais and Chen,
2000; Liu et al., 2005; DeCoro et al., 2007) to the recent approaches which
encodes the structure into the learning process (Cai and Hofmann, 2004;
Cesa-bianchi et al., 2005; Rousu et al., 2006; Gopal et al., 2012).

Graph labeling is another type of structured output prediction in which

12
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Problem
Transformation
Flat Multilabel [ |
lassificati
Classification | Algorithm
Adaptation
Multilabel
Classification - -
Hierarchical

Structured | - Classification

Output Prediction L |

Graph Labeling

Figure 1.1. The taxonomy of the multilabel classification approaches.

the output graph often takes a more general form and does not require
the concept of “level” compared to hierarchical classification. The ap-
proach can be applied to a wider range of problems, for example, speech
tagging with sequence structure (Collins, 2002), and action recognition
with Markov network structure (Wang and Mori, 2011). The graph label-
ing approach often directly incorporates the output graph into learning
and exploits the dependency between labels to improve classification per-
formance (Collins, 2002; Lafferty et al., 2001; Taskar et al., 2002, 2004;
Tsochantaridis et al., 2004; Rousu et al., 2007). For graph labeling or
structured output learning in general, one central problem is the output
graph is assumed to be known apriori. However, this cannot be taken for
granted as the proper dependency structure for the output variables is ei-
ther hidden or difficult to retrieve in many applications (Chickering et al.,
1994).

Figure 1.1 illustrates the taxonomy of multilabel classification. How-
ever, there is no clear line drawn between different categories. In partic-
ular, some hierarchical classification models (Tsochantaridis et al., 2004;
Rousu et al., 2006) can also belong to the graph labeling category. As we
focus on graph labeling in structured output prediction, we will explicitly
use “structured output prediction” to refer to “graph labeling” throughout
this thesis.

In this thesis, we extend the applicability of structured output learn-
ing by developing several new learning models and applying them to real
world multilabel classification problems. In addition, we work on the
problem of structured output learning when the output dependency struc-
ture is not observed. The models thus created are not constrained by the

availability of the output graph and can therefore be applied to a wider
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Introduction

range of multilabel classification problems. We also investigate the ef-
ficiency and the scalability of the inference algorithms in the proposed
structured output learning models. Finally, we study the theoretic aspect
of the proposed models. The research questions can be summarized as

follows.

e Should we tackle multilabel classification with structured output

learning rather than flat multilabel classification?

e How to apply structured output learning to multilabel classification

problems when the output graph is not known apriori?

e Can we provide any theoretical studies to explain the behavior of the

proposed learning models and to guarantee the performance?

e Can we efficiently solve the inference problems of the proposed struc-

tured output learning models?

1.2 Contributions and Organization

The contributions of the thesis are several novel statistical learning mod-
els that widen the applicability of structured output learning. The thesis
starts by reviewing several lines of research in classification learning. The
first contribution is to develop a new structured output learning model for
the multilabel classification problem with an observed output graph. The
proposed model can predict an optimal directed acyclic graph (DAG) from
an observed underlying network which best responds to an input. The
model has been applied to network response prediction within the con-
text of social network analysis. For the general multilabel classification
problems in which the output graph is not known apriori, we develop sev-
eral new models that combine a set of structured output learners built
on a collection of random output graphs. In addition, we develop a joint
learning and inference framework that is based on max-margin learning
on a random sample of spanning trees. Thus, the proposed methods are
not constrained by the availability of the output graphs. Moreover, we
provide the theoretical studies which not only explain the intuition be-
hind the formalisms but also guarantee the generalization error of the
proposed models.

The remaining part of this thesis is structured as follows. Chapter 2

gives the background information to the learning problem in terms of
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classification, covering the basic concepts in classification learning in-
cluding regularized risk minimization in Section 2.1, single-label classi-
fication in Section 2.2, and ensemble learning in Section 2.3. Chapter 3
introduces the multilabel classification problem which is the core problem
under study in this thesis. The chapter also describes the flat multilabel
classification approach which is a standard treatment for the multilabel
classification problem. Chapter 4 and Chapter 5 present the main con-
tributions of the thesis. In particular, Chapter 4 presents the structured
output learning models developed for the multilabel classification prob-
lem with an observed output graph. The methods presented extend the
flat multilabel classification approaches described in the previous chap-
ter. Chapter 5 presents several models developed for structured output
learning when the output graph is not observed. Chapter 6 describes the
implementation details of the developed models. Chapter 7 concludes the
thesis and details the future research directions.

This thesis presents the idea and the background of the proposed struc-
tured output learning models. The formalisms of the proposed models are
also briefly explained. The notation and the presentation of some of the
proposed models are slightly improved to incorporate the models into an
unified framework. The technical details and the empirical evaluations of
the proposed models are not repeated, rather, they can be found from the

original research articles in the latter part of the thesis.
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2. Regularized Learning for
Classification

2.1 Regularized Risk Minimization

In this section, the author will introduce two fundamental concepts in
statistical machine learning, known as empirical risk minimization (Vap-
nik, 1992) and regularization (Evgeniou et al., 1999) which create most

learning algorithms presented in the remaining part of this thesis.

2.1.1 Empirical Risk Minimization

We assume that two random variables x € X and y € ) are jointly dis-
tributed according to some fixed but unknown probability distribution
P(x,y) over a domain X x ), where X is an input (instance) space and
Y is an output (label) space. We use bold face to distinguish vectors
from scalars. The definition of the output space ) will decide the type
of the learning problem, for example, multiclass classification by setting
Y = {1,--- ,K}, regression by setting )V = R where R is the set of real
numbers, binary classification by setting ) = {—1,+1}, and multilabel bi-
nary classification by setting Y = {—1, +1}*. In addition, we are provided
with paired examples (x,y) € X x ) which are generated by sampling
according to the distribution P(x,y). A hypothesis class H is a set of func-
tions that a learning algorithm is allowed to search against. The goal
of statistical learning is to provide an estimator f € H : X — Y which
predicts the best value of an output y given an input x.

We use loss function L(y, f(x)) : Y x ¥ — RT to measure the goodness
of an estimator, which is a monotonic bounded function between a true
value y and an estimated value f(x). There are many ways to define

the loss function including, for example, the hinge loss in support vector

17
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machines (Cortes and Vapnik, 1995)
Ehinge(?h f(X)) = max(07 1- Uf(X)), Y= [_17 +]-]7 (21)

the 0/1 loss in structured SvM (Tsochantaridis et al., 2004)

Lop(y, f(x) = Liy—fpop Y = {—1,+1}", (2.2)

the squared loss in ridge regression (Hoerl and Kennard, 2000)

'quuarcd(y7 f(X)) = (y - f(X))Q, y = Ru

the exponential loss in ADABOOST (Schapire and Singer, 1999)

Eexp(y, f(X)) = exp(—yf(x)), y - Ru (23)

and the logistic loss in logistic regression (Chen and Rosenfeld, 1999)

Liog(y, f(x)) = log(1 + exp(—yf(x))), ¥ = [-1,+1]. (2.4)

We will study the loss functions with the corresponding learning algo-
rithms in detail in the following part of this thesis.
The true risk of an estimator f over all examples from a domain X x )

is then defined as

R(f) = / Ly, F(x))P(x. ) dxd. 25)
(x,y)€EX XY

As a result, the learning algorithm should search for an estimator f € H
which minimizes the true risk. However, it is impossible to compute the
true risk directly according to (2.5), as the distribution P(x,y) is usually
unknown. Instead we are given a random sample of m examples, denoted
by S = {(x1,91), -, (Xm,¥ym)}, called the training data. The empirical
risk of an estimator f € H is defined as the average error made by the
estimator on the training data S of a finite size

m

Remp(f) = % Z [‘(yu f(xz)) (2.6)

i=1
This suggests that the learning algorithm should search for an estimator
to minimize the empirical risk (2.6), which is called empirical risk mini-

mization (Vapnik, 1992) in machine learning.

2.1.2 Regularized Learning

The empirical risk minimization strategy is ill-posed as it will provide an

infinite number of estimators with the same empirical risk on the same

18
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training data. Besides, it quite often leads to overfitting, in particular
when the dimensionality of the feature space is high and the number of
training examples is relatively small. That is, the underlying true distri-
bution P(x,y) is difficult to estimate based on a finite sample of training
examples. As a result, the estimator will generalize poorly on unseen test
examples. Regularization theory (Evgeniou et al., 1999, 2002) provides
a framework to tackle these two problems. In particular, it suggests to

minimize
j(f) = Remp(f) + /\Q(f)7 (27)

where Q(f) is a regularization function that controls the complexity of the
estimator by penalizing the norm of the feature weight vector, A is a pos-
itive parameter that controls the relative weight between the empirical
risk term and the regularization term.

For the linear function class, there are several ways to define the reg-
ularization term including, for example, the L;-norm and the L;-norm

regularizations. The Lo-norm regularization, defined by

d 3
Qr, (f) = lIwll2 = (Z W[i]|2) ; (2.8)
=1

controls the complexity of the estimator f and provides a smooth solution.
It has been applied in, for example, ridge regression (Hoerl and Kennard,
2000), logistic regression (Chen and Rosenfeld, 2000), and support vector
machines (Cortes and Vapnik, 1995). On the other hand, the L;-norm

regularization, defined by

d
Qu, (f) = lIwlh = Z wlill,

provides a sparse parameter estimation such that we obtain a high dimen-
sional feature weight vector with many zero entries. This is an attractive
property as feature selection is incorporated into the learning process. The
model thus created is usually easy to interpret. The L;-norm regulariza-
tion has been applied in, for example, LASSO (Tibshirani, 1994). Many
other regularization techniques have been widely studied, for example,
the L; >-norm regularization (Argyriou et al., 2007), and the elastic net

regularization (Zou and Hastie, 2005).
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2.2 Single-Label Classification

In this section, the author will introduce the basic classification prob-
lem known as single-label classification, and explain two prominent al-
gorithms in this area, namely logistic regression and support vector ma-
chines. Optimization techniques and the latest advances of these two al-
gorithms will also be briefly discussed. The goal is to provide background
information that is necessary to understand the algorithms presented in

the latter part of this thesis.

2.2.1 Preliminaries

In this section, we focus on the standard supervised learning problem also
known as binary classification, by explicitly assuming the output space
Y = {-1,+1}. Additionally, we assume a feature map ¢ : X — F, which
embeds an input into some high dimensional feature space F = R%. In
particular, ¢(x) is a vector of real values in d dimensions. We consider the
hypothesis class to be a set of linear classifiers that is parameterized by a

weight vector w and a bias term b defined as
fw,b) = (w,0(x)) + b, (2.9)

where (-, -) denotes the inner product of two vectors

d

(w.(x)) =D wlil p(x)]i].

i=1

For any 1 < p € R, the L,-norm of a vector w is defined as

d ;
lIwll, = <Z |w[ﬂ|”>
i=1

For the convenience of presentation, we will explicitly use ||w|| to refer to

the Ly-norm of w in the remaining part of the thesis.

2.2.2 Logistic Regression (LR)

Logistic regression is a classification model rather than a regression model
(Bishop, 2007). The formalism nicely transits from risk minimization
(Section 2.1.2) to regularized risk minimization (Section 2.1.2). Logistic
regression has been extended to many other classification algorithms pre-
sented in the latter part of the thesis, for example, IBLR in Section 3.2.3,
and CORRLOG in Section 3.3.2. The central idea of logistic regression, the
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odd-ratio type learning in particular, is also the building block of M3N in
Section 4.2.3 and many other algorithms developed in this thesis.
Logistic regression models the conditional probability P(y = +1|x) for a
binary output variable y € ). To model the probability, we do not restrict
to any particular form, as any unknown parameters can be estimated by
maximum likelihood estimation (MLE). However, we are most interested
in the simple linear model as described in (2.9). To apply the linear model,
we compute the logistic transformation of the original conditional proba-

bility by

o8 =1 = (w.p) 0
Solve it for P(y = +1|x), we obtain
P(y = +1|x;w,b) = - (2.10)
1+ e welo)b
We can also compute
P(y=-1|x;w,b) =1— Py = +1|x;w,b) = ! (2.11)

1+ eweG) b’

Putting (2.10) and (2.11) together, we define logistic regression as

Definition 1. Logistic Regression (LR).

1
11 o u((we)—b)"

P(ylx;w,b) =

We predict y = +1 when P(y = +1|x;w,b) > 0.5, and y = —1 otherwise.
The decision rule is such that we predict y = +1 when (w,p(x)) +b > 0,
and y = —1 otherwise. Besides the decision boundary, logistic regression
can output the class probability of a data point as the “distance” of the
data point to the decision boundary. It is the probabilistic output that
makes logistic regression no more than a classifier.

The parameter w and b can be obtained by maximizing the probability
(likelihood) of the training data. The likelihood of parameters given data

can be computed by
L(w,b|D) = HP vilxi). (2.12)

To apply MLE, it is easier if, instead of maximizing the likelihood, we

maximize the log-likelihood, which turns the product (2.12) into sum

log L(w,b|D) = ZlogP yilxi) = Zlog (14 ¢ willeG)w)+0)y - (913)
i=1 i=1
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MLE can generate a LR model that fits the training data. However, there
is no guarantee that the model also generalizes well on the unseen test
data. To achieve a better generalization power, we apply the regulariza-
tion technique presented in Section 2.1.2. Many regularization methods
for LR have been developed (Chen and Rosenfeld, 1999, 2000; Goodman,
2003) among which adding Gaussian prior on the weight parameter w is
a standard option. In practice, we assume w is generated according to a
zero-mean spherical Gaussian with variance 2. Thus, the MLE problem
(2.13) is transformed into the maximum a-posteriori (MAP) problem of the
following form

ik _lwli? 5 1
P(w. D% = Pwlo) T Pluibe) = ¢ [T 1w
1

i=1 i=

(2.14)

Instead of maximizing the posterior (2.14), it is easier to maximize the
log-posterior

2 m
[[wl] log (1 +4 e~ ¥i(lp0x).w)+0)). (2.15)
i=1

log P(w,b\D;az) =3 -
In fact, (2.15) is an instantiation of the regularized risk minimization
strategy described in (2.7) with the Ly-norm regularization (2.8) and the
logistic loss (2.4).

Many optimization techniques have been proposed (Minka, 2003), for ex-
ample, the iterative scaling method (Darroch and Ratcliff, 1972; Della Pietra
et al., 1997; Berger, 1999; Goodman, 2002; Jin et al., 2003), the quasi-
Newton method (Minka, 2003), the truncated Newton method (Komarek
and Moore, 2005; Lin et al., 2008), and the coordinate descent method
(Huang et al., 2009). There also exists a line of research that aims to
optimize LR from the dual representation (Jaakkola and Haussler, 1999;
Keerthi et al., 2005; Yu et al., 2011).

2.2.3 Support Vector Machines (SVM)

Support vector machines (SVM) is probably the most widely used single-
label classification algorithm in machine learning. Its extensions for mul-
tilabel classification will be described in the latter part of the thesis (e.g.,
SSVM in Section 4.2.5). In this section, we first introduce maximum-
margin principle which is also the basis of many structured output learn-
ing models, for example, M3N in Section 4.2.3, SPIN in Section 4.3, and

RTA in Section 5.4. After that, we will discuss the formalism of SVM, the
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primal-dual optimization strategy, and kernel methods which allow svM
to deal with the high dimensionality of the input feature space. In the end
we will briefly present the optimization strategies developed for SVM.
The framework of SVM was originally introduced by Cortes and Vapnik
(1995). The theory and the algorithm details of SVM are also presented
in the book chapters (Scholkopf and Smola, 2002; Shawe-Taylor and Cris-
tianini, 2004; Bishop, 2007). We begin our discussion by considering a
very simple case where the training data is assumed to be linearly sepa-
rable. There exists a Ayperplane in the feature space which separates the
training data into two classes. Additionally, we assume the separating

hyperplane has a simple linear form (2.9) as

F() = (w,p(x)) +b =0,

As a result, we predict y; = +1 if f(x;) > 0 and y; = —1 otherwise. Given
that a feature weight parameter w achieves a correct separation on the
training data, we can decide the label of an unseen test example x;5; by
the decision rule y;; = sign(f(xs)).

There can be an infinite number of separating hyperplanes that solve
the separation problem on the same training data, which is also suggested
by the empirical risk minimization strategy presented in Section 2.1.1.
We wish to find the hyperplane which also generalizes well on the test
data. A good strategy is to look for a hyperplane that keeps the maximum
distance from the examples of two classes, which is known as maximum-
margin principle. To see this, imagine putting a separating hyperplane
close to one class of examples, which will achieve better classification per-
formance for the test examples from the other class.

We further use +; to denote the margin of the i'th example defined as
the geometric distance from the data point to the separating hyperplane

yi({w, (%)) +0)

Vi =
' gl

We notice that if w and b are scaled by any constant x € R (e.g., w +
kw,b < kb) the margin 7; stays unchanged. The same classification per-
formance and generalization power can still be obtained. As the parame-
ters are invariant to scaling, we set ||w|| = 1. Given a collection of training
examples S, we define the margin with respect to S as the minimum mar-
gin achieved by an individual training example

= min ;.
K ie{l,m,m}f%
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Based on the maximum-margin principle, the goal of learning is to find
a separating hyperplane such that it maximizes the margin with respect
to all training examples while separating the training examples into two
classes. This corresponds to finding a “big gap” between the examples of
two classes in the feature space. The corresponding optimization problem
(Bishop, 2007) is given as

Wi

s.t. yl(<wa(p(xl)> + b) >, HWH =1, Vi € {17 t m}

This is very difficult to optimize not only because the constraint ||w|| = 1
is non-convex, but also the optimization is not in any standard form. By

replacing w with %, we obtain the following optimization problem
Definition 2. Primal Hard-Margin SVM Optimization Problem.

. 1
min —||w|
w 2

st yi((w,p(x;)) +b) > 1,Vie{l,--- ,m},

where the goal is to find a weight vector of the minimum norm which cor-
responds to maximize the margin between the examples of two classes.
The constraints state that the training examples should be correctly sep-
arated.

We do not use Definition 2 in practice for two reasons. First, many real
world data is not linearly separable, where the solution to the optimiza-
tion problem in Definition 2 does not always exist. Secondly, the data
usually comes with noises and errors. We do not want the resulting clas-
sifier to over-fit the training data. Therefore, we relax the constraints by
introducing a margin slack parameter ; for each training example z; and

rewrite the constraints as
yi((w,p(x:)) +b) >1—&,6>0,Vi € {1,--- ,m}. (2.16)

¢&; will allow data points to have a margin less than 1. In particular, with
& = 0, the data point x; is correctly classified, and lies either on the mar-
gin or on the correct side. With 0 < & < 1, the data point is correctly
classified, and lies between the margin and the separating hyperplane.
With & > 1, the data point is misclassified locating on the other side of
the separating hyperplane. Now the new goal is to maximize the margin
while penalizing the data points which either lie on the wrong side of the

hyperplane or have a margin less than one. This can be defined by
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Definition 3. Primal Soft-Margin SVM Optimization Problem.

. 1 ) m
min Z|lw|?+C) ¢
in 3 lwl ;71&

s.t. y2(<w,<p(xz)> + b) >1- &,gl > O,V’L S {1, cee ,m}.

Definition 3 is an instantiation of the regularized risk minimization strat-
egy (2.7) with the Ly-norm regularization (2.8) and the hinge loss (2.1).
The optimization problem is usually transformed into a dual form by in-
troducing for each constraint a Lagrangian multiplier (dual variable) a.

We defined the dual optimization problem as

Definition 4. Dual Soft-Margin SVM Optimization Problem.

m 1 m m
max Y o5 Y aiogyiy(p(xi),e(x;))
i=1

i=1 i=1
s.t. iaiyi =0,0<q; <C,Vie{l,---,m}.
i=1

It is not difficult to verify that according to Karush-Kuhn Tucher (K.K.T)
conditions only the examples with & = 0 and satisfying the equality con-
straints (2.16) will be “active”, have a dual variable «; > 0, and lie on the
margin with v; = 1. They are called support vectors during the optimiza-
tion of SVM. In fact the number of support vectors is usually smaller than
the size of the training data. As the weight vector can be expressed as
a linear combination of training examples (Shawe-Taylor and Cristianini,
2004)

m

w="awipx),
=1

the evaluation can be done efficiently by maintaining a small set of non-
zero dual variables.

To solve the optimization problem in Definition 4, we only need the re-
sult of the inner product (p(x;),p(x;)) rather than work explicitly in the
feature space of ¢(x). This suggests that training data can be radically
represented through pairwise similarities. In particular, we defined a
function k£ : X x X — R such that training data S is represented through

am x m matrix of pairwise similarities.
Definition 5. Kernel function. A kernel k : X x X — R is a function that
for all x;,x; € X satisfies

k(xi, xj) = (p(xi), 0(x5)),

where ¢ : X — F is a feature map that encodes from an input space X to

some feature space F which is also an inner product space.
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Definition 6. Inner Product Space. A real vector space F is an inner prod-
uct space if it is defined with the inner product operation (-,-) : F x F - R
that is symmetric (z;,z;) = (z;,2;), bilinear in both scalars (A\z;,z;) =
Xz;, z;) and vectors (z; + z;,z) = (z,z, z;z), and positive (z,z) > 0, for all

AeRand z;,z5,z € F.

Definition 7. Symmetric and Positive Semi-definite Property. Given a
non-empty set S = {x1, -+ ,Xm} C X of m objects, a function k : S xS =+ R

is symmetric and positive semi-definite if it satisfies

k(xi,xj) = ]C(Xj,XZ') and Z CiCj]C(XZ‘,X]‘) Z O
i,j=1

forany Cl, " ,Cm € R.

Kernel functions in Definition 5 are symmetric positive semi-definite. In

particular, the symmetry can be verified by

k(xi, %) = (p(xi), p(x5)) = (p(x5), (i) = k(x5 %),

and the positive semi-definiteness can be verified by

37 cicik(xix) = Y cicilp(xi) 0(x))) = | > cip(xi)|P = 0. (2.17)
i,j=1 i,j=1 i=1

(2.17) also implies that kernels are positive semi-definite for any choice of
the feature map ¢. In particular, if X' is already a inner product space,
we can define a linear feature map prvgar : X — X, which corresponds to

the simplest kernel, known as linear kernel
Kiinear (%i,%;) = (xi,%;).
Kernels that are heavily used in practice include polynomial kernel
Epoty (x4, %5) = ((x4,%;) + b)d,

where b is a bias term and d is the degree of polynomial, and Gaussian

kernel (RBF)

202

2
X — X
kRBF(xiyxj) = exp <||Z]|>a

where o is the Gaussian width parameter.

Any kernel function can be represented as an inner product in some
feature space F. Kernel enables us to work in a high dimensional feature
space F without ever computing the exact coordinate or evaluating the
inner product explicitly in that space. Instead, kernel can be computed

based on the inner product in the original input space X.
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Definition 8. Kernel Matrix. Given any choice of m objects S = {x1,- -+ ,xn} C
X and a kernel function k on S, an m x m matrix K = (k(x;,%;));; is called

a Kernel matrix (Gram matrix) of kernel k with respect to S.

The kernel matrix is usually normalized by
K(i, j)
K(i,i)K(j,7)

to ensure that all elements in the kernel matrix lie on a unit hypersphere.

K(i,j) =

Definition 9. Positive Semi-definite Matrix. An m x m symmetric matrix

K is a positive semi-definite matrix if it satisfies

m
> ciejK(i,5) > 0
ij=1

forany ci, - ,cm € R

It has been shown that any Kernel matrices are positive semi-definite
(Shawe-Taylor and Cristianini, 2004). Positive semi-definiteness distin-
guishes between general similarity measures and kernels. The property
is essential in kernel based methods. It ensures kernel based methods will
converge to a relevant solution in convex optimization (Boyd and Vanden-
berghe, 2004).

The algorithms for solving the optimization problem of SVM have been
intensively studied, for example, the “chunking” method (Vapnik, 1982;
Pérez-Cruz et al., 2004), the decomposition method (Osuna et al., 1997;
Joachims, 1998), sequential minimal optimization (SMO) (Platt, 1998, 1999),
and the “digesting” method (Decoste and Scholkopf, 2002). There are
some recent studies that aim to scale SVM learning on large scale datasets,
for example, representing the training data with a small set of landmark
points (Pavlov et al., 2000; Boley and Cao, 2004; Yu et al., 2005; Zhang
et al., 2008), the greedy method for basis selections (Keerthi et al., 2006),
the online SVM solver (Bordes et al., 2005), approximating the objective
function of SVM (Zhang et al., 2012; Le et al., 2013), and approximating
the kernel matrix with a low-rank matrix (Smola and Schoékopf, 2000;
Fine and Scheinberg, 2002; Drineas and Mahoney, 2005; Si et al., 2014).

2.3 Ensemble Methods

Ensemble methods are general classification techniques in machine learn-

ing. The methods train several base classifiers and combine them in order
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to achieve more accurate predictions. There are several variants of ensem-
ble methods, to name but a few, bagging (Breiman, 1996a), boosting (Fre-
und and Schapire, 1997; Schapire and Singer, 1999), stacking (Smyth and
Wolpert, 1999), and Bayesian averaging (Freund et al., 2004). Ensemble
methods have improved the classification performance when compared to
their base learner counterpart, some of them are also supported with the
theoretical analysis which guarantees the performance (Schapire et al.,
1997; Koltchinskii and Panchenko, 2000; Cortes et al., 2014a,b). This sec-
tion will be devoted to bagging and boosting as both methods are exten-
sively studied and quite relevant to this thesis.

Ensemble methods and their theories are primarily developed for single-
label classification. The extensions for multilabel classification will be
briefly presented in Section 3.3.1. Moreover, we will present several new
learning algorithms in the latter part of the thesis, which are related to
the ensemble methods presented in this section but with significant dif-

ferences.

2.3.1 Preliminaries

In addition to the notations introduced in Section 2.2.1, we assume there
is a hypothesis class %% where we generate weak/base hypotheses f(z) €
H™. We use ¢ to index the #'th weak hypothesis. Let H(z) denote the
ensemble framework which combines multiple weak hypotheses and gen-
erate a stronger one. In many cases, no other information about f!(z) is
available to H(z) except that each weak hypothesis will take in a param-

eter x € X and generate an output y € ).

2.3.2 Boosting

Boosting corresponds to a learning framework or a family of algorithms
that takes in a weak classifier and tunes it into a strong one. We begin
our discussion from the concept class. A concept is a boolean function over
a domain X, and a concept class is a class of concepts. A concept class is
strongly learnable if there exists a polynomial learning algorithm which
achieves high accuracy with high probability for all concepts in the class.
On the other hand, a concept class is weakly learnable if the learning
algorithm achieves arbitrarily high accuracy where the only requirement
is that the learning algorithm finds a function which performs better than

the coin flipping. The concept of learnability was proposed by Kearns and
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Valiant (1989) together with the question whether the strong learnability
and the weak learnability are equivalent which is known as the hypothesis
boosting problem. Finding a weak learner which performs better than
random guessing is easy in practice, but finding a strong learner is usually
difficult. Schapire (1990) has proved that the two classes of learnability
are equivalent which lays the foundation of the boosting algorithm that
tunes a weak learning algorithm into a strong one.

Adaptive Boosting (ADABOOST) proposed by Freund and Schapire (1997)
is the very first practical boosting algorithm and is the most influential
one. In addition, Schapire and Singer (1999) proposed a variant of the
algorithm which updates the adaptive parameters to minimize the expo-
nential loss (2.3) of each weak learner. The algorithm is shown in Algo-
rithm 1. The central idea of ADABOOST is to maintain a distribution D
over all training examples, and update the distribution in each iteration
such that the difficult-to-classify examples will get more probability mass
for the next iteration (line 7). Particularly, in each iteration, the algo-
rithm computes a weak learner f!(x) based on all training examples and
the current distribution D! (line 3), calculates the weighted training error
¢’ (line 4), and computes the adaptive parameter o! (line 5). The ensemble

prediction is the weighted combination of all weak learners (line 9).

Algorithm 1 ADABOOST

Input: Training sample S = {(z;,y;)}}~,, learning function W, number

of weak learners T’
Output: Boosting ensemble H (x)
1: Initialize D'(i) = L, Vie {1,--- ,m}
2: fort=1---T do
3 fUx) < W(S, DY)
4 ¢ =30 DLy
5. ol = %ln (1sz
6:  Z =" D'(i) exp(—a'yif'(x;))
7. DYFL(i) = LDYi) exp(—aly; fi(x;)), Vi € {1,--- ,m}
8: end for

9: return H(x) = sign(>.", o/ f!(x))

For each weak learner f!(x), the strategy of updating the adaptive pa-
rameter o is to ensure that the exponential loss of o f!(x) is minimized.

To see this, we first compute the exponential loss of o' f!(x) given the cur-
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rent distribution D! and the adaptive parameter o
Lezp(y, o' f1(x); DY)

= D'(i) exp(—yia' f'(x:))
i=1

= exp(—a’) Y D' () 1gy= ey +exp(a’) D D (D) 1yrtx))
i=1 =1

=exp(—a’)(1 — ) + exp(at)e.

To minimize Le.p(y,a!f!(x); D), we take the partial derivative with re-
spect to ol and set it to zero

aﬁexp(yv atft(x)§ Dt)
oat

= —exp(—at)(1 — €') + exp(at)et = 0.

1 1—¢
ot =ZIn ¢ .
2 et

It is worth pointing out that ADABOOST described in (algorithm 1) re-

Solve it for of, we get

quires the learning algorithm W work with some specific distribution
defined on the training data. The distribution is usually generated by
reweighing which initializes a uniform distribution over all training ex-
amples and updates the distribution in each iteration. For the learning
algorithms that cannot work with distributions, resampling is often ap-
plied which generates a new training dataset in each iteration by sam-
pling training examples according to some desired distribution.

DEEPBOOSTING (Cortes et al., 2014b) improves ADABOOST by allow-
ing the base learning algorithm to use a complex hypothesis class. The
theoretic analysis of DEEPBOOSTING also advances the previous perfor-
mance guarantee of ADABOOST (Schapire et al., 1997; Koltchinskii and
Panchenko, 2000).

2.3.3 Bootstrap Aggregating

Bootstrap Aggregating (BAGGING) (Breiman, 1996a) is an ensemble method
that exploits the independency between weak learners. The algorithm is
based on the fact that errors can be dramatically reduced by combining
independent base learners. Let f* denote the t'th weak learner. The en-

semble prediction H(x) is the averaged prediction over all weak learners

T
H(x) = sign (Z ft(x)> : (2.18)
t=1
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We assume that each base learner has a probability of € to make an inde-

pendent mistake

P(fi(x) #y) =«

As BAGGING (2.18) makes a mistake when at least half of the weak learn-

ers make mistakes, the probability of BAGGING making mistake can be

computed by
/2 [ )
P(H(x) #vy) = Z . (1—e)tel ™t <exp (—iT(Ze - 1)2) .
=0

The probability decreases exponentially in the number of weak learners,
which will approach zero when the number of weak learners approaches
infinity. However, it does not hold in practice as base learners are gener-
ated from the same training data which can hardly be independent from
each other. The goal of BAGGING is to best exploit the independency by
adding randomness into the algorithm.

Bootstrap sampling (Efron and Tibshirani, 1994) is applied in BAGGING
to generate subsets of training examples. Given a training set of m train-
ing examples, a subset of the same size is generated by sampling with
replacement m times from the original training set. The sampling pro-
cedure is repeated T times to generate T subsets for constructing base
learners. Sampled subsets will be similar as they are sampled from the
same training set. However, they will not be too similar in that each sub-
set will only cover around 63% of the original training data under the
condition that m is large. To see this, consider the probability that the
i’th training examples is not sampled once is (1 — %), and the probability
that it is not sampled at all is (1 — %)m. When m is large, this probabil-
ity will approach 37%. That is, around 37% of the training examples will
not appear in any sampled training set. The property of Bootstrap Sam-
pling also allows us to efficiently estimate the generalization error of the
base learner known as out-of-bag estimation (Breiman, 1996b; Tibshirani,
1996; Wolpert and Macready, 1999).
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3. Multilabel Classification

Multilabel classification is a natural extension to single-label classifica-
tion presented in Section 2.2. In multilabel classification, each input (in-
stant) is simultaneously associated with multiple outputs (labels). The
research of multilabel classification has progressed rapidly in the last two
decades with many learning models being developed and applied to the
real world classification problems (Lafferty et al., 2001; Taskar et al.,
2002, 2004; Tsochantaridis et al., 2004; Rousu et al., 2007). In general,
there are two broad categories of research in multilabel classification,
namely flat multilabel classification and structured output prediction. In
flat multilabel classification, multiple interdependent labels are treated
essentially as a “flat” vector of labels. Structured output prediction, on
the other hand, models the correlation between multiple labels with an
output graph connecting labels. The output graph is usually given apriori
in addition to the vector of multiple labels. This chapter will be devoted to
flat multilabel classification in which several well-established algorithms
will be presented. Structured output prediction will be covered in the lat-
ter part of the thesis.

It is prohibitive to present all the algorithms developed for flat multi-
label classification, it is easier if we can categorize the algorithms into
groups. In this chapter, we adopt the categorization scheme (Tsoumakas
and Katakis, 2007; Tsoumakas et al., 2010) which gives us two major
groups of algorithms, namely problem transformation and algorithm adap-
tation. Problem transformation aims to transfer the flat multilabel clas-
sification problem into other well-studied problems, for example, single-
label classification, label ranking, label power set. The algorithm adap-
tation directly modifies the established learning techniques to solve the
multilabel classification problem. Nevertheless, the presented algorithms

aim to tackle the central problems of flat multilabel classification, namely
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to explore the exponential sized multilabel space and to model the corre-
lation between labels. It is impossible to cover every lines of research in
the field of flat multilabel classification. Readers are pointed out to the re-
cent research survey articles (Tsoumakas and Katakis, 2007; Tsoumakas
et al., 2010; Zhang and Zhou, 2014).

3.1 Preliminaries

We borrow most notations from the single-label classification setting de-
scribed in Section 2.2.1. In particular, we examine the following multil-
abel classification problem. We assume training examples are drawn from
a domain X x Y, where X’ is an input (instant) space and ) is a space of
outputs (multilabels). The output space Y = Y x - - - x )}, is composed by a
Cartesian product of k sets J; = {—1,+1}. We retain a single-label classifi-
cation problem by setting k = 1. A vector y = (y[1],--- ,y[k]) € Y is called
a multilabel and its element y[j] is called a microlabel. We use y;[j] to
denote the j’th microlabel in the i’th multilabel. In addition, we are given
a training set of m labeled examples S = {(x;,y:;)}/", € X x Y. A pair
(xi,y), where x; is a training input and y € Y is an arbitrary output, is
called pseudo-example. It is worth pointing out that the pseudo-example
(xi,y) can be generated from a different distribution that generates train-
ing examples (x;,y;). The goal of learning is to find a mapping function
f € H: X — Y which can compute the best multilabel for an input exam-
ple such that the predefined loss function £ for the unseen examples will

be minimized.

3.2 Problem Transformation

Problem transformation aims to transform the flat multilabel classifica-
tion problem into other well studied problems. The most typical way
of the transformation is binary relevance (BR) (Tsoumakas and Katakis,
2007; Tsoumakas et al., 2010), which transforms a multilabel classifica-
tion problem into a set of single-label classification problems and to in-
dependently learns a single-label classifier for each subproblem. There
exists many other types of transformations, for example, into the label
power set problem (Tsoumakas and Vlahavas, 2007), and into the label

ranking problem (Elisseeff and Weston, 2002; Brinker and Hiillermeier,
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2007; Furnkranz et al., 2008; Chiang et al., 2012). However, learning by
label ranking will not be explained in detail as it slightly diverges from

the main scope of this thesis. We will focus on BR in this section.

3.2.1 Multilabel K-Nearest Neighbors (ML-KNN)

Multilabel K-Nearest Neightbors algorithm (ML-KNN) developed by Zhang
and Zhou (2005, 2007) is perhaps the most famous binary relevance clas-
sifier for flat multilabel classification. ML-KNN is also an instance based
learning approach (Aha et al., 1991) that is derived from the K-Nearest
Neightbors algorithm (KNN) designed for single-label classification. ML-
KNN transforms the flat multilabel classification problem into a set of
single-label classification problems and processes each microlabel inde-
pendently. For each unseen example x, ML-KNN first identifies a set of
K-nearest neighbors Ny (x) from the training set. After that, the algo-
rithm predicts the multilabel y of the example by examining the set of
multilabels collected from the K-nearest neightbors.

Mathematically, let C(j) denote the number of the neighbors of x with
the j’th label being “+1”, let H®(j) denote the event that the j’th label of
x is b € Y}, and let E'(j) denote the event that 0 < | < K neighbors of
z have the j’th label being “+1”. ML-KNN processes each microlabel at
a time and determines the value of the j’th microlabel by examining the

following maximize a-posteriori (MAP) problem

T b ECG) (4 P(H"(j))P(EYD (5)|H" ()
ylj)" = argmax ()| E0)(j)) = argmax PETG))
The prior probability distribution P(H?(j)) and the likelihood distribution
P(E€W(5))|H"(j)) can be estimated from the training data in terms of
relative frequencies.

The central problem of ML-KNN is that the algorithm ignores the corre-
lation between labels. Cheng and Hiillermeier (2009); Younes et al. (2011)
proposed several variants of ML-KNN that aim to explore the label corre-
lations. In addition, there exists many alternatives which also align to the
direction of KNN typed learning for flat multilabel classification (Brinker
and Hiillermeier, 2007; Chiang et al., 2012).

3.2.2 Classifier Chains (CC)

Classifier chains (cc) (Read et al., 2009, 2011) is another problem trans-

formation approach for flat multilabel classification. CC involves k binary
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transformations and forms a chain of k binary classifiers h = {hy,--- , hi},
in which the j’th classifier h; is built for predicting the j’th microlabel.
For the j’th microlabel y[j], CC first constructs a new training data S; by
taking the j’th microlabel as the output variable and combining the origi-
nal feature space with all j — 1 prior microlabels as the new input features
defined by

Si = {(Gaull], -, xild], yi[l], - yald — 1)), yalg]) ity -

A classifier h; is built by applying any single-label classification algorithm
on S;.

Thus, CC takes the correlation between labels into consideration by in-
corporating the label information as the concatenated features in the new
input feature space. The idea is not new which has been previously stud-
ied (Godbole and Sarawagi, 2004). CC makes a strong assumption that
there is a high correlation between the output microlabel and the concate-
nated microlabels. The central problem of CC is that the additional label
information only takes a small part of the input feature space especially
when the dimension of the original feature space is already high.

Probabilistic classifier chains (PCC) extends CC by analyzing the algo-
rithm with the condition probability theory (Read et al., 2009; Dembczyn-
ski et al., 2010). In addition, ensemble classifier chains (ECC) has been de-
veloped which improves CC by generating and combining multiple chains
of classifiers (Read et al., 2011).

3.2.3 Instant Based Logistic Regression (IBLR)

Cheng and Hiillermeier (2009) developed instance based logistic regres-
sion (IBLR) with an extension to flat multilabel classification. IBLR is also
an instant base learning approach (Aha et al., 1991) that is similar to
ML-KNN. It extends ML-KNN by exploring the correlation between labels
within the neighbors of an instant for posterior inference. The central idea
of IBLR is to take the labels of the examples in the neighbor as the only
features to predict the label of the current example. Similar ideas have
been applied in collective classification (Ghamrawi and McCallum, 2005)
and link based classification (Getoor, 2005; Getoor and Taskar, 2007).

In particular, for each unseen example x, IBLR first identifies a set of
K-nearest neighbors Ng(x) from the training data. The algorithm builds
a logistic regression model (Section 2.2.2) for each microlabel based on

the label information collected from the examples in Nk (x). Mathemati-
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cally, IBLR defines a posterior probability of the j’th microlabel of x being
labeled as “+1” by

=) = P(y[j] = +1|Nk(x)).

It constructs a logistic regression classifier for 7(/) which can be derived

from the following

&) LN
™ _ ., @ ., .0
log () = "o + E_l a - w (%),

where i iterates over all microlabels, w(()j ) is the regression constant which
can be computed from the training data, and al(j ) is the regression coeffi-
cient which can be obtained during training. wl(j) (x) defined by
w0 = Y K.x)- ¥
x'€Ng (X)
collects the ¢'th microlabel from each neighbor x' € Nk (x) and weights
the microlabels according to the similarity between x and x’ encoded in

K(x',x).

3.3 Algorithm Adaptation

Algorithm adaptation directly modifies popular single-label classification
algorithms to solve the multilabel classification problems. We will present
the algorithms that are modified from ensemble methods and logistic re-
gression. There also exists many other algorithms in the algorithm adap-
tation category, for example, the method based on label ranking (Cram-
mer et al., 2003), and the method based on neural network (Zhang and
Zhou, 2006). These methods are not explained in detail due to the diver-

gence from the main scope of this thesis.

3.3.1 Ensemble Methods for Flat Multilabel Classification

Ensemble methods have been initially developed for single-label classifi-
cation (Breiman, 1996a; Freund and Schapire, 1997) or regression (Breiman,
1996a), as it is straightforward to combine multiple scalar output vari-
ables. However, it is not immediately clear how to combine vector valued
outputs in flat multilabel classification.

ADABOOST.MH (Schapire and Singer, 1999; Esuli et al., 2008) is a multi-
label variant of the ADABOOST algorithm. The core idea of ADABOOST.MH
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is to apply the hamming loss instead of the 0/1 loss (2.2). In particular, the
algorithm reduces a multilabel classification problem into a single-label
classification problem by replacing each training example (x;,y;) with &
examples {(x;,y;[!])}_,. The algorithm is described in Algorithm 2. In
particular, it maintains a distribution over all examples and labels. In
each iteration, the algorithm takes in the distribution over all training
examples, generates a weak learner f(x) (line 3), computes the hamming
loss (line 5), computes the adaptive parameter o (line 6), and update the
distribution (line 8). The prediction H(z) is a weighted combination of the

base learners f!(x) weighted by the adapter parameters o'.

Algorithm 2 ADABOOST.MH

Input: Training sample S = {(z;,y;)}}*,, learning function W, number

of weak learners T’

Output: Boosting ensemble H (x)
1: Initialize D'(i,1) = Vie{l,--- ,m}le{l, -k}
2: fort=1---T do
3 fUx) + W(S, DY)
4y, = fix),vie {1,--- ,m}
5 e = 3 X D0 D Ly vy
6 ot = 11 ( = )
T 2= b, D) exp(—atyil
8 DU(i0) = L', 1) exp(— ayzuy
9: end for

10: return H(x) = sign(>L_ o' f!(x))

mk’

1ill])

(1)), Vi, vi

Besides ADABOOST.MH, some other ensemble methods for multilabel
classification have also been developed that are based on boosting or bag-
ging (Wang et al., 2007; Yan et al., 2007; Kocev et al., 2013). In addition,
there is a large body of work which aim to apply ensemble methods to
solve the real world multilabel classification problems, for example, nat-
ural language processing (Collins and Koo, 2005; Zeman and Zabokrtsky,
2005; Sagae and Lavie, 2006; Zhang et al., 2009), and text and speech
recognition (Fiscus, 1997; Mohri et al., 2008; Petrov, 2010).

3.3.2 Correlated Logistic Regression (CORRLOG)

Correlated logistic regression (CORRLOG) is a model based approach for
flat multilabel classification (Bian et al., 2012). CORRLOG is a major step

forward of IBLR by constructing a logistic regression classifier over all mi-
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crolabels and by modeling the pairwise correlation of labels with a func-
tion defined on the microlabel pairs.

In fact, CORRLOG is derived from independent logistic regressions (ILRS).
Given a pair of an arbitrary training example and a label (x,y), we can
construct a set of ILRS classifiers, one for each microlabel. The posterior

probability can be computed by

k

k T
<) = i) = exp(y[jlw ¢(x))
Purs(ylx) = ]];E Prr(y[i]1%) Jl;[l exp(W (%)) + exp(—w' @ (x)) 3.1)

where j is the index that iterates over microlabels and 7 denotes matrix
transpose. The bias term as that appears in Definition 1 is omitted which
is equivalent to augmenting x with a constant term (Bian et al., 2012).
Otherwise, (3.1) can be derived into the same form of Definition 1 by re-
placing w with ¥. ILRS has the problem of ignoring the correlation be-
tween labels and overfitting the training data when the number of micro-
labels is large. To alleviate the problems, CORRLOG augments the poste-
rior probability (3.1) by a function Q(y) defined on the pairs of microlabels

as

Qy) =exp > ar;ylklylil ¢ - (3.2)

k<j

Putting together (3.1) and (3.2), CORRLOG can be defined as
Peorrroc(¥]x) o< PrLrs(¥[x)Q(y)

m
=expq > ylil(w, o)+ arylklylj]
j=1 k<j
Thus, CORRLOG examines the pairwise label correlations by augmenting
the joint prediction with a quadratic term Q(y) built from the pairs of

microlabels.

3.3.3 Multitask Feature Learning (MTL)

Multitask feature learning (MTL) (Argyriou et al., 2007) is another algo-
rithm designed for flat multilabel classification. MTL is quite different
from the algorithms discussed in the previous part of the section. Specif-
ically, MTL is based on the assumption that different microlabels are re-
lated such that they share a common underlying feature representation.
Similar assumptions are also made in other models (Caruana, 1997; Bax-
ter, 2000; Ben-David and Schuller, 2003).
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Let f;(x) denote a label specific function for the ¢'th microlabel. f;(x) can

be expressed as
d
fo(x) = (@, h(x)) = > alilh(x)[i],
i=1

where a; € R?is the feature weight parameter for the #'th microlabel. /(x)

is a linear feature mapping function defined as
h(x) = (U, p(x)),

where p(x) € R? is the input feature map in the original feature space
and U € R?*? is a square matrix. We further use A to denote the matrix
composed by a;. MTL assumes that microlabels share a small set of fea-
tures in which A is assumed to be sparse with many entries being zero.

The optimization problem of MTL is defined as

Definition 10. MTL Optimization Problem in Primal

T m
min. {zzayi,t., (a0, U o)) + C |A||§,1} 7
UeR =1 i=1

AERIXT ‘

where C is a positive parameter that controls the balance of the regu-
larization term and the risk minimization term. The optimization prob-
lem is an instantiation of the regularized risk minimization (2.7) with
the hamming loss and the L, -norm regularization. As Definition 10 is
non-convex and the second term is non-smooth, the optimization is trans-
formed into an equivalent form which is solved by an alternative opti-
mization approach (Argyriou et al., 2007).

Argyriou et al. (2008a) developed an extension of MTL that introduces
a nonlinear generalization using kernel methods. In addition, Argyriou
et al. (2008b); Jacob et al. (2009) have developed several similar but not
identical algorithms based on the assumption that microlabels form clus-
ters such that label specific weight vectors should be similar within the
clusters. Recently, Romera-Paredes et al. (2012) proposed a method that
exploits the information between unrelated microlabels based on a simi-
lar assumption that the microlabels of different groups tend not to share

any features.
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4. Structured Output Prediction

Structured output prediction is a natural extension to flat multilabel clas-
sification presented in Chapter 3. Unlike flat multilabel classification
which takes multiple interdependent output variables essentially as a
“flat” vector, structured output prediction assumes that multiple output
variables are correlated and located in a structured output space. In other
words, there exists an output graph (e.g., a chain, a spanning tree) given
as input in addition to the flat vector of multiple labels. The multiple out-
put variables are connected by the output graph so that the correlation
between labels can be utilized during learning. In this chapter, we will
start by introducing several structured output learning algorithms devel-
oped during the last decade. We will present our new algorithm SPIN that
can predict an optimal directed acyclic graph (DAG) which best “responds”
to an input, and examine the performance on the network response pre-

diction problem within the context of social network analysis.

4.1 Preliminaries

Multilabel classification deals with multiple interdependent output vari-
ables, y € Y. The problem is called structured output prediction when
these variables are located in a structured output space. That is, the cor-
relation between labels is described by an output graph connecting multi-
ple labels. In particular, we define the output graph G = (E, V) by a node
set V = {1,---,k} which corresponds to the microlabels {y[1],--- ,y[k]}
and an edge set £ = V x V which represents the correlation between mi-
crolabels. For an edge e = (j,5') € E, we use y. to denote the label of
the edge e with respect to a multilabel y by concatenating the head label
y[j] and the tail label y[;’], with an edge label domain y. € Y. = Y; x Yj.

We use y; . to denote the edge label of an example (x;,y;) on an edge e.
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Thus, given a training example (x;,y;) and an output graph G, we can
uniquely identify the node label y; and the edge label y; . of the output
graph. In addition, we denote the possible label of a node i by u; and the
possible label of an edge e by u. where u; and u. are not constrained by

any multilabel y. Naturally, u; € ); and u, € Y..

4.2 Related Methods

In this section, we will briefly present several related algorithms for struc-
tured output prediction including structured perceptron, conditional ran-
dom field, max-margin conditional random fields, structured SVM, and

max-margin Markov networks.

4.2.1 Structured Perceptron

The perceptron (Rosenblatt, 1958) is one of the oldest algorithms in ma-
chine learning. Structured perceptron (Collins, 2002; Collins and Duffy,
2002), as suggested by its name, is a generalization of the perceptron al-
gorithm to the structured output space. The formalism of structured per-
ceptron is quite similar to multiclass perceptron. The model assumes a
score function (w,¢(x,y)) as the inner product between a feature weight
parameter w and a joint feature map ¢(x,y), In particular, ¢ : X xY — R?
maps an input—output pair to a vector of d dimension. The joint feature
map is often defined based on the structure of the output graph (e.g.,
a chain in sequence tagging problem (Collins, 2002)). After the feature
weight parameter w is obtained, one needs to solve the argmax problem
to find the best output for a given input x, which is defined as

y = argmax (w,d(x,y)). 4.1)

yeY

The argmax problem is solved by an algorithm such as Viterbi decoding
(Collins, 2002) rather than an exhaustive search through the exponential
sized output space.

The weight parameter w is learned through the standard perceptron it-
erative update by solving the argmax problem (4.1) in each iteration. In
particular, the algorithm loops through all training examples and updates
w whenever the predicted multilabel y; is different from the true multil-

abel y;. The update is given by

W w+ (o(x4,yi) — d(xi,¥4)) - 4.2)
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The update (4.2) usually leads to over-fitting. A simple refinement is usu-
ally applied which is similar to averaged perceptron developed by Freund
and Schapire (1999).

The central problem with structured perceptron is the loss function. In
fact, Structured Perceptron tacitly applies 0/1 loss (2.2) on multilabels,
with which it is impossible to distinguish a nearly correct multilabel and a
completely incorrect one. Both will lead to the same update to the feature

weight parameter (4.2) during learning.

4.2.2 Conditional Random Field (CRF)

Condition random field (CRF) (Lafferty et al., 2001; Taskar et al., 2002) is a
discriminative framework that constructs a conditional probability P(y|x)
for an input variable x € X and an output variable y € Y. It optimizes
the log-loss which is analogue to the 0/1 loss (2.2) in the structured output
space.

Mathematically, let Y = {y1, - ,ym} denote a set of output random
variables and X = {xj, -+ ,X,,} denote a set of input random variables
to condition on. Let G = (E,V) denote an output graph such that y =
(y[v])vev. CRF defines a conditional probability distribution

Plylx) = j exp (W, 96(x,y)),

1
Z(x,w
where ¢(x,y) is a joint feature map defined according to the output graph
G. Z(x,w) is the partition function dependent on x that sums over all

possible multilabels

Zxw = Z exp (w, (x,y")). 4.3)
y'eY
When conditioned on x, random variables y[v] obey the Markov property
with respect to the output graph G.
Applying the similar regularization technique as used in logistic regres-
sion in Section 2.2.2, the feature weight parameter w can be solved by
introducing a Gaussian prior and maximizing the logarithm of the result-

ing maximize a-posteriori (MAP) problem (Taskar et al., 2002)
= 1
L(w) = Zl [(w, $(xi 1)) — log Z(xi, W)] — — |[wl?. (4.4)
i=
The optimization problem derived from (4.4) is an instantiation of the reg-

ularized risk minimization (2.7) with the log-loss and the L;-norm regu-

larization (2.8). An improved iterative scaling algorithm (11S) (Della Pietra
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et al., 1997) is used to solve the optimization problem in the original work
(Lafferty et al., 2001). To make CRF work in practice, one also need to

make sure that the partition function (4.3) can be evaluated efficiently.

4.2.3 Max-Margin Markov Network (M>N)

Taskar et al. (2004) proposed max-margin Markov network (M°N) that
combines the framework of the kernel based discriminative learning and
the probabilistic graphical model. M3N extends SVM (Section 2.2.3) to the
structured output space. It also improves CRF (Section 4.2.2) by which the
evaluation of the partition function (4.3) can be avoided by introducing
the odd-ratio typed learning that is not dissimilar to logistic regression
presented in Section 2.2.2.

M>N defines a log-linear Markov network over multiple labels which ex-

ploits the correlation between labels. The compatibility score defined by

can be seen as the affinity of a multilabel y to an input x according to
an output graph. The feature weight parameter w ensures the exam-
ple with the correct multilabel will obtain a higher score than with any
incorrect multilabels. M3N defines a margin as the difference of compati-
bility scores between the correct example (x;,y;) and the pseudo-example
(x;,y). Under the maximum-margin principle in Section 2.2.3, M?N re-
quires the margin to be at least /(y;,y). To learn the feature weight pa-

rameter w, we need to solve the following primal optimization problem

Definition 11. M?N Optimization Problem in Primal.

m

R T
- C 5
min 5 [w|" + ;5

s.t. <W7¢(XZ7YZ)> - <W,¢(Xz7y)> > Z(me) - §i7
V¢ > 0,Vy € V/yi, Vie {1, ,m},

where ¢; is the slack allotted to each example to make sure the solution
can always be found, ¢(y;,y) is the loss function between a correct mul-
tilabel y; and an incorrect multilabel y, C is the slack parameter that
controls the amount of regularization in the model.

For each example x;, the optimization calls for maximizing the margin
between the correct label y; and any incorrect labels y. The margin is
scaled by the loss function /(y;,y) such that the completely incorrect mul-

tilabel will incur bigger loss than the nearly correct multilabel. The loss
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scaled margin optimization will push the high-loss pseudo-examples fur-
ther away from the correct example than the low-loss pseudo-examples.
Definition 11 is an instantiation of the regularized risk minimization (2.7)
with the hamming loss and the Ly-norm regularization (2.8).

The primal optimization problem of M?N in Definition 11 is difficult to
solve as there are exponential number of constraints, one for each pseudo-
example (x;,y). The corresponding dual form is also difficult due to the
exponential number of dual variables (Taskar et al., 2004). By exploring
the Markov network structure, the original optimization problem (Defini-
tion 11) can be formulated into a factorized dual quadratic programming,
as long as the loss function ¢ and the joint feature map ¢(x,y) are decom-
posable over the Markov network.

As the number of parameters is quadratic in the number of training
examples and the edges of the Markov network, it still cannot fit into
the standard Quadratic Programming (QP) solver. Taskar et al. (2004)
developed a coordinate descent method analogous to sequential minimal
optimization (SMO) (Platt, 1998, 1999). Many other efficient optimiza-
tion algorithms have been proposed, for example, the exponential gradi-
ent optimization method (Bartlett et al., 2005), the extra-gradient method
(Taskar et al., 2006), the sub-gradient method Ratliff et al. (2007), and the
conditional gradient method (Rousu et al., 2006, 2007).

To use M®N in practice, one have to solve the loss augmented inference
problem defined as

y = argmax (w,$(x;,y)) + £y y)- (4.6)

YEY/yi
To compute (4.6) efficiently, the loss function need to be decomposable
over the Markov network. Nevertheless, M?N improves CRF by avoiding
the evaluation of the partition function (4.3) and allowing complex loss

functions to be defined.

4.24 Max-Margin Conditional Random Fields (MMCRF)

Max-margin conditional random field (MMCRF) (Rousu et al., 2007) is a
structured output learning method, that extends M®N by defining the joint
feature map as the tensor product between an input feature map and an
output feature map, and by developing an efficient optimization strategy.
MMCREF is applied in Publication II in which the task is to reliably predict
the multiple interdependent molecular activities.

In particular, MMCRF uses exponential family to model the conditional
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probability of a multilabel y given an input example x

P(ylx) < exp((w, d(x,¥))) = [ ] exp((we, pe(x.¥0))),

ecE

where the joint feature map ¢.(x,y.) = ¢(x) ® T (y.) is defined as the
tensor product between an input feature map and an output feature map
which is the label of an edge ¢ € F in an output Markov network G with
respect to a multilabel y. To obtain w, one needs to solve the primal opti-
mization problem that is not dissimilar to Definition 11. After the feature
weight parameter w is obtained, the prediction of an input example can

be computed by solving the following argmax problem
y = argmax (w, ¢(x;,y)). (4.7)

yeY/yi

To solve the optimization problem, MMCRF uses the conditional gradi-
ent optimization method (Bertsekas, 1995) in the marginalized dual space
(Taskar et al., 2004), which not only benefits from a polynomial-size pa-
rameter space but also enables kernels (Definition 5) that can deal with
the non-linearity of the complex input space. The inference problem (4.7)
is solved by loopy belief propagation (LBP) which is an instantiation of the

message-passing algorithm (Wainwright and Jordan, 2003).

4.2.,5 Support Vector Machines for Interdependent and
Structured Outputs (SSVM)

Support vector machines for interdependent and structured output space
(ssvM) is developed by Tsochantaridis et al. (2004, 2005). The formalism
of SSVM is quite similar to M3N described in Section 4.2.3. Compared to
M3N which scales the margin by the loss function, SSVM scales the margin
errors (slacks) by the loss function. The primal optimization problem of

SSVM can be defined as
Definition 12. SSVM Optimization Problem in Primal.
. 1 5 C m
min S lw|l*+ - ;f

&
Uyi,y)’

st (w,0(zi,yi)) — (W, é(z;,y)) > 1 —

where ¢; is the slack allotted to each example, ¢(y;,y) is the loss function
between a correct multilabel and an incorrect multilabel, and C is the

slack parameter that controls the amount of regularization in the model.
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The interpretation of Definition 12 is also similar to that of Definition 11.
Besides, Tsochantaridis et al. (2004) suggests that M*N will work hard on
the pseudo-examples (x;,y) which incur a big loss though they may not
even close to be confusable to the true multilabel y;.

On the other hand, the optimization techniques employed by ssvM differ
significantly compared to M3N. SSVM will have to work with the exponen-
tial number of constraints as the optimization is not decomposable over
the Markov network. An iterative optimization approach (Tsochantaridis
et al., 2004) has been developed which creates a nested sequence of suc-
cessively tighter relaxations of the original problem via the cutting-plane
method (Bishop, 2007; Joachims et al., 2009). Constraints are added as
necessary and the iterative optimization approach will converge to an op-
timal solution of ¢ precision within a polynomial number of iterations.

Besides the issue during the optimization, another problem with SSVM
is the intractability of the inference problem. To find the most violat-
ing constraint, we need to compute the loss-augmented inference problem
(Tsochantaridis et al., 2005) defined as

y = argmax [1 — (w,¢(x;, y))] {(yi,y)- (4.8)
yeY/yi

The loss function appears as a multiplicative term making (4.8) not de-
composable over the Markov network. This gives an intractable inference
problem in general. In exchange of the intractability, SSVM can work with
complex loss functions which do not assume any properties of decompo-
sition. The generality of the loss function can be seen as an advantage

compared to CRF, M3N, and MMCRF.

4.3 SPIN for Network Response Prediction

Publication I presents a novel definition of the network response predic-
tion problem and develops a structured output learning model for the
problem. Unlike the previous methods which model the influence in terms
of the network connectivity, the proposed model (SPIN) is context-sensitive.
That is, the influence dynamics also depend on the properties of the action
performed on the underlying network. The inference problem of SPIN is
NP-hard in general. We develop a semi-definite programming algorithm
(sDP) with an approximation guarantee as well as a fast GREEDY heuris-

tics.
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4.3.1 Background

With the extensive availability of the large scale networks, there is an
increasing amount of interest in studying the phenomena of the network
influence, in particular, the structure, the function, and the influence dy-
namics. The outcome of the network influence research has been widely
applied to many areas, for example, the spreading of pathogens or infec-
tious diseases (Hethcote, 2000; Anderson and May, 2002), the diffusion
of medical and technology innovations (Strang and Soule, 1998; Rogers,
2003), the opinion and news formations (Adar et al., 2004; Gruhl et al.,
2004; Adar and Adamic, 2005; Leskovec et al., 2007; Liben-Nowell and
Kleinberg, 2008; Leskovec et al., 2009), and the viral market (Domingos
and Richardson, 2001; Kempe et al., 2003; Liben-Nowell and Kleinberg,
2003).

In the field of studying the network influence, one primary interest is
to discover the latent structure that reveals the dynamics of influences.
In general, the problem can be defined into two different ways depend-
ing on the availability of the underlying network structure. On one hand,
one would assume that the underlying structure is hidden or incomplete
and the only observation is a cascade of actions. The instantiations of the
setting include, for example, the online news agents sharing information
but not physically connected, in the epidemiological study where people
are affected by pathogens through various ways. The task is to infer the
network structure in terms of edges connecting nodes given a collection
of actions. Many algorithms are designed to solve the problem in this
setting, for example, NETINF (Gomez Rodriguez et al., 2010), NETRATE
(Rodriguez et al., 2011), KERNEL CASCADE (Du et al., 2012), the two stage
model for inferring influence (Du et al., 2014), the inference algorithm us-
ing cascades without any timestamps (Amin et al., 2014), and the general
framework of inferring the diffusion structure (Daneshmand et al., 2014).
However, we argue the problem is unnecessarily hard as in many cases
the structure of the network is observed (e.g., the friendship network, the
citation network). There are also many related research that aims to dis-
cover the hidden variables in the network (Saito et al., 2008; Goyal et al.,
2010).

None of them consider the property of the action performed on the net-
work. In particular, our network influence problem is motivated by the

following observation: for a given action a performed on a network G, the
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influence from a node u to a node ' not only depends on their connections
but also depends on the action under consideration. For example, v’ is a
follower of u in Twitter, v’ will retweet the message from w if it is related
to science but not related to politics. Therefore, we propose the following

definition of the network response problem

Definition 13. Network Response Problem. Given a complex network and
an action performed on the network, predict an optimal subnetwork that
best responds to the action. In particular, which nodes perform the action

and which directed edges relay the action from one node to its neighbors.

4.3.2 Methods

We approach the problem by structured output learning, where we define
a computability score as the inner product between an action a and a

response network G,
F(a,Ga;w) = (w,4(a, Ga)).

Intuitively, the action a with a correct response network G, will achieve
a higher score than with any incorrect response network G,. The joint
feature map ¢(a, G,) is composed by the tensor product between an in-
put feature map @(a) of an action and an output feature map Y(G,) of
a response network. In particular, p(a) can be a bag-of-words feature of
an action (e.g., a posted message on Twitter) and Y(G,) can be a vector
of edges and labels of the response network G,. See Publication I for an
example of input and output feature maps.

The feature weight parameter w is learned through maximum-margin

structured output learning by solving the following optimization problem

Definition 14. Primal SPIN Optimization Problem.
1 m
. 2
= C i
min S [[wl"+ ;:1 3

d. F(a;,Ga; > F(a;, G, ; la(Ga,,GL)) — &,
b FlauGai) > ) g, (FouGuiw) + oG Gol) ¢

gi ZO7VZ € {17 7m}a

where #H(G) denotes a set of directed acyclic graphs of G. To solve the
above optimization problem, we have to compute the highest-scoring sub-

graph given an action. In particular, the goal during training is to find the
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worst margin violating subgraph which corresponds to solving the follow-
ing loss-augmented maximization problem

H*(a;) = argmax (F(a;, Gy w)+la(Ga,, Gy))-
Gl €H(G)/Ga,

The goal during prediction is to find the subgraph with maximum com-

patibility given an action a

H*(a) = argmax F(a, H;w). (4.9)
HEN(G)
As these two problems are different only in terms of the definition of

scores, we explain our inference algorithm based on (4.9) by writing the

problem explicitly in terms of the weight vectors and the feature maps

H*(a) = argmax (w,p(a) @ T(H))

HEN(G)
= argmax Z sy, (e, a), (4.10)
HEW(G) hm

where sy (e,a) = ), W;.y.p(a)li] denotes the score of an edge e with an
edge label y.. The tuples (7, e, y.) index the elements in the vector w.

We have proved the NP-hardness of (4.10) by forming a reduction from
the MAX-CUT problem (Garey and Johnson, 1990). In addition, we pro-
posed two algorithms to solve the inference problem (4.10). The first is
called SDP inference which introduces for each node v € V' a binary vari-
able z,, € {—1,+1} and transforms the inference problem into an integer
quadratic programming problem (I1QP). The 1QP is tackled by a similar
technique proposed by Goemans and Williamson (1995) such that each
variable z,, is relaxed to a vector v,, € R" and the relaxed problem is solved
by semi-definite programming (SDP). The resulting vector is rounded back
into binary values by incomplete Cholesky decomposition. The benefit
from SDP inference algorithm is an approximation guarantee. In particu-
lar, the proposed SDP inference algorithm is a 0.796 approximation of the
original 1QP.

As SDP inference is not scalable to large scale networks, we develop a

GREEDY heuristic based on the observation stated in the following lemma:

Lemma 1. The inference problem (4.10) can be expressed equivalently
with a set of activated vertices VPH and the marginal gain function F,,(v;)

defined on each vertex v; € V! as

H*(a) = argmax Z Fon(v;).
HEN(C) ' cyn
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The proof and the definition of the marginal gain function are given in
the supplementary material of Publication I. As a result, the GREEDY
algorithm starts with an empty vertex set and adds one vertex in each
iteration such that the increment of the score is maximized over all possi-
ble choices of inactivated vertices. The procedure ends when the objective
cannot be improved. It is worth pointing out that we are not able to give
any approximation guarantee for the solutions produced by the GREEDY
algorithm. The property of sub-modularity, which is often used to ana-
lyze the greedy algorithm, only holds for the special case of our inference

problem.
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5. Structured Output Prediction with
Unknown Output Graphs

Structured output learning relies on an output graph connecting multi-
label interdependent output variables to exploit the correlation between
labels. The applicability of structured output learning is limited due to
the fact that the output graph needs to be known apriori. In this chap-
ter, we aim to develop several structured output learning algorithms that
are not constrained by the availability of the output graph. As a result,
structured output learning can be applied to a wide range of multilabel
classification problems. In Section 5.1, we study the multilabel molecular
classification problem with structured output learning in which the out-
put graph is extracted from auxiliary datasets. In Section 5.2, we present
MVE which uses majority vote to combine the predictions from a set of
structured output learners built on a collection of random output graphs.
In Section 5.3, we present two aggregation techniques, namely AMM and
MAM, which perform inference on output graphs before or after combin-
ing multiple structured output learners. In Section 5.4, we present RTA
which is a joint learning and inference model that performs max-margin

learning on a random sample of spanning trees.

5.1 Structured Output Prediction for Molecular Classification

The molecular classification problem has been tackled by a variety of
single-label classification approaches (Menchetti et al., 2005; Singh et al.,
2012; Dutt, 2012). On the other hand, multiple interdependent molec-
ular activities are often screened simultaneously in the field of drug re-
search (Shoemaker, 2006), which presents two challenges for single-label
classification. The first challenge is the scalability issue in which a set
of single-label classifiers needs to be built to predict multiple activities

of a molecule. This becomes infeasible in computation when we need to
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examine a large number of molecular activities at the same time. The
second challenge is that single-label classification ignores the correlation
between multiple output variables. On the other hand, multiple molec-
ular activities are often correlated which can be utilized to improve the
classification performance. In Publication II, we explore the potential of
structured output learning in the molecular activity classification prob-
lem. To apply structured output learning, we extract output graphs from
several auxiliary datasets which encode the correlation between multiple

molecular activities.

5.1.1 Background

Molecular classification, the goal of which is to predict the anti-cancer po-
tentials of drug-like molecules, is a crucial step in drug discovery and has
gained in popularity from the machine learning community (Singh et al.,
2012; Dutt, 2012). Viable molecular structures are scanned, searched, or
designed for therapeutic efficacy. In particular, expensive preclinical in
vitro and in vivo drug tests can be largely avoided and special efforts can
be devoted to few promising candidate molecules, once accurate in silico
models are available (Burbidge et al., 2001).

A variety of machine learning methods have been developed for this
task, to name but a few, inductive logic programming (King et al., 1996),
artificial neural network (Bernazzani et al., 2006), kernel methods for
nonlinear molecular properties (Trotter et al., 2001; Ralaivola et al., 2005;
Swamidass et al., 2005; Ceroni et al., 2007a), and the SVM based methods
(Trotter et al., 2001; Byvatov et al., 2003; Xue et al., 2004). Albeit with
a large quantity of the developed methods, they only focus on predicting
a single output variable (e.g., the inhibition potential of a molecule in a
target cell line). On the other hand, a large number of interdependent
molecular activities are often screened at the same time in the field of
drug research. For example, in the recent NCI-60 human tumor cell line
screen project (Shoemaker, 2006), thousands of molecular structures are

tested agains hundreds of target cell lines.

5.1.2 Methods

To efficiently and accurately predict molecular activities in multiple cell
lines at the same time, we applied a structured output learning approach

in Publication II, which is to our knowledge the first multilabel classifica-
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tion approach for the molecular classification problem. The algorithm is
an instantiation of MMCRF (Rousu et al., 2007) presented in Section 4.2.4.
In particular, the model defines a compatibility score through the inner
product of a molecular structure x and the activities in multiple target

cell lines y

F(x,y;w) = (w,8(x,y)),

where w is the feature weight parameter to ensure that a molecule with
the correct activity will be scored higher than with any incorrect activities.
w is obtained by maximizing the minimum loss-scaled margin between
the correct examples (x;,y;) and the incorrect pseudo-examples (x;,y)
over all training examples, which amounts to solving the optimization
problem that is not dissimilar to Definition 11.

As MMCRF kernelizes input, we use graph kernel to measure the sim-
ilarity between a pair of molecular structures. The common way to rep-
resent the structure of a molecule is to use an undirected labeled graph
G = (V,E) with a set of vertices V = {v1,---,v,} that corresponds to
atoms and a set of edges £ = {ej, - ,e,,} that corresponds to covalent
bonds. The adjacency matrix A of a graph G is defined such that the
(i, 7)’th entry A; ; equals to one if there is an edge connecting the i’th and
the 7’th atoms.

Walk kernel (Kashima et al., 2003; Gartner, 2003) computes the sum of
all matching walks in a pair of graphs. The contribution of each match-
ing walk is down scaled exponentially by the length of the walk. Let w,,
denote a walk of length m such that there exists an edge for each pair of
vertices (v;,v;+1) forall i € {1,--- ;m — 1}. In addition, we use G« (G1,G2)
to denote the direct product graph of two graphs G; and G, in which the

set of vertices in G« is computed by
Vi (G1,G2) = {(v1,v2) € Vi X Va, label(vy) = label(ve)},
and the set of edges in G« are computed by
Ey(G1,G2) = {((v1,v2), (u1,u2)) € Vi x Vi, (v1,u1) € E1 A (v2,u2) € Es}.

Walk kernel can be equivalently expressed in terms of the adjacency ma-

trix Ay of the product graph G as

Vx| 0
Kwk(GI:GQ) = Z |:Z /\nAZ

n=0

ij=1
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where 0 < XA < 1 is a scaling parameter. Using exponential series or
geometric series, walk kernel can be evaluated in cubic time (Gértner,

2003) in the number of vertices Vi according to
Kwk(Gh Gz) = eT(I — /\Ax)ile,

where I denotes an identity matrix and e denotes a vector of ones.

Weighted decomposition kernel (Menchetti et al., 2005; Ceroni et al.,
2007b) is an extension of substructure kernel (Komarek and Moore, 1999)
that weights the identical atoms of two graphs by contextual information.
The contextual information is defined as the matching subgraph in the
neighborhood of an atom. In addition, we used Tanimoto kernel (Ralaivola
et al., 2005) on a finite set of molecular fingerprints (Wang et al., 2009).
The readers are also pointed to the comprehensive survey on graph ker-
nels (Vishwanathan et al., 2010).

To apply the structured output learning method described above, we
need an output graph connecting labels given apriori. However, the out-
put graph is not known in the molecular classification problem. There
exists a variety of auxiliary datasets (Shoemaker, 2006) which implicitly
encodes the correlation of labels (target cell lines). To extract the output
graph, we first compute a covariance matrix of cell lines from the auxil-
iary data, then extract the structure of the output graph by the following
two methods. The maximum spanning tree approach takes the minimum
number of edges that make a connected graph whilst maximizing the sum
of edge weights. The correlation thresholding approach takes all edges
that exceed a fixed threshold in terms of the pairwise correlation, which

typically generates a non-tree graph.

5.2 Graph Labeling Ensemble (MVE)

The structured output learning approaches, relying on the representation
of multiple output variables through an output graph, allow us to exploit
the correlation between labels. To apply structured output learning, it
is assumed that the structure of the output graph is known apriori. For
the molecular classification problem in Publication IT where the output
graph is not observed, we can extract the structure of the output graph by
examining a collection of auxiliary datasets which explicitly encode the
correlation of labels. For most real world multilabel classification prob-

lems, however, we cannot take for granted the availability of the output
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graph or the auxiliary data that reveals the label correlations. Therefore,
in Publication III, we explore the potential of using majority vote to com-
bine the predictions from a set of structured output learners built on a
collection of random output graphs. We also examine the classification

performance on the molecular classification problem.

5.2.1 Methods

We use MMCRF as the base classifier trained on a collection of random
output graphs. In particular, a random graph G; is generated for each
base learner to couple the multiple labels which are the activities of the
molecule in all target cell lines. The base model MMCRF is learned with
the training data S = {(x;,y;)}/*; and the output graph G;. After all base
learners have been generated, the predictions are extracted from the base
learners and are collected for a post-processing step, in which we compute
a majority vote over the graph labeling from the sign on the means of the

base classifier’s prediction

T
1
MVE y e
F7F = ai'g]r;}a:x ( 271 1{F;t)(z)_y[j]}> NVie{l, -k},

where T denotes the size of the ensemble which is also the number of
random output graphs, and F*)(x) = {Fj(t)(x) le denotes the predicted
multilabel from the #’th base learner. That is, the ensemble prediction on
each microlabel is the most frequently appearing prediction among the
base classifiers. It is also worth pointing out that MVE is not restricted
to the base learner MMCRF and can be extended with any other struc-
tured output learning models as long as the model incorporates the out-
put structure into learning and makes predictions based on the structure
of the output graph.

In addition, we design two approaches to generate the random output
graphs. The random spanning tree approach first generates a random cor-
relation matrix and extracts a spanning tree out from the matrix, which
outputs a tree structure connecting all vertices. The random pairing ap-
proach randomly draws two vertices at a time and couples the two with

an edge, which outputs a set of disconnected pairs.
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5.3 Random Graph Ensemble (AMM, MAM)

Section 5.2 has shown that the prediction performance in the molecular
classification problem can be improved by applying majority vote to com-
bine the predictions from multiple structured output learners built on a
collection of random output graphs. This section is based on Publication
IV in which we present two aggregation techniques to combine multiple
structured output learners. The proposed model, namely AMM and MAM,
also perform inference before or after combining the base learners. The
performance of the proposed models is evaluated on a set of heterogeneous
multilabel datasets from a variety of domains. In addition, we study the
performance of MAM in terms of the reconstruction error of the compati-

bility score.

5.3.1 Background

We still work with the assumption made for MVE in Section 5.2 in which
we assume the structure of the output graph is incorporated during learn-
ing and the prediction is made according to the structure. In addition, we
assume that the base learner for AMM and MAM is defined on a Markov
network. That is, the base learner computes a compatibility score ¥ (x,y)
for (x,y) € X x Y based on the output graph G, indicating how well an
input x gets along with an output y. The compatibility score ¥ (x,y) is
defined as

d)(X, Y) = <W7¢(X7 Y)> = Z<W87¢8(X7 y€)> = Z¢E(X5ye)v

ecE ecE
where 1.(x,y.) denotes the edge compatibility score (edge potential) be-
tween an input example x and the edge label y. of an edge e. w is the
feature weight parameter which ensures that an input x with the correct
output y will achieve a higher compatibility score than with any incorrect
outputs.
In addition, we assume that we have access to the set of edge potentials

of the t'th base classifier

¢g‘> = (wgt) (X7 uE))eEE(i)ﬁueeye-

With the edge compatibility scores, we can infer the max-marginal (Wain-

wright et al., 2005) of the j’th node which is the score incurred by assign-
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ing a label u; € Y; to the j’th node defined by

1Z](x uy) max Zwe X,Ye)-

y€y7yj UJ

In words, the max-marginal is the maximum score of a multilabel consis-
tent with y[i] = u;. We use ¢ = (1 (x, u;))jevu;ey; to denote the collection

of max-marginals.

5.3.2 Methods

Let G = {GM,... ,G(T)} denote a set of random output graphs, and let
{{b(l), e ,12)<T)} denote the max-marginal vectors from the base learn-
ers built on a collection of random output graphs. The prediction of the
average-of-max-marginal (AMM) aggregation on the j’th node is obtained
by averaging the max-marginals from all base classifiers and choose the

maximizing microlabel for the node

AMM (t)
F; = argmax — T Z (i ,u,

u; €Y

The predicted multilabel by AMM is composed by the predicted microlabels
AMM __ AMM

F = (Fj )jev‘

AMM performs inference to find the set of max-marginals before com-
bining base classifiers. On the other hand, the maximum-of-average-
marginals (MAM) aggregation first collects the local edge potentials ¢‘%)
from each base learner, averages them and performs a final inference
with the averaged edge potentials on a global consensus graph G = (E, V)
where £ = UtT:1 E® is the union of distinct edges of the set of random

output graphs. Mathematically, MAM is defined as

FMAM(g) = argmax Z Z YO (z,y.) = arg‘max ZZ (z,¥.)).

yey t 1och

In addition, Publication IV, Lemma 1 simplifies the computation of MAM
in terms of dual variables and kernels.

Besides the proposed algorithms, we also present a theoretical analy-
sis to explain the improvement of MAM. The analysis extends the the-
ory of single-label ensemble (Brown and Kuncheva, 2010). In particular,
Publication IV, Theorem 1 states that the reconstructive error of MAM is
guaranteed to be less than or equal to the average reconstruction error

of base classifiers. The improvement can be decomposed into two terms,
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namely diversity and coherence. The former measures the variability of
the individual classifiers learned from different perspectives which shares
the same argument as the analysis of single-label ensemble (Brown and
Kuncheva, 2010). The latter measures the correlation of microlabel pre-

dictions in which the correlation has a positive effect on the performance.

5.4 Random Spanning Tree Approximation (RTA)

Publication V presents random spanning tree approximation (RTA) for
structured output learning in which the output graph is not observed but
believed to play an important role during learning. RTA is a major step for-
ward of MAM by bringing in a joint learning and inference framework such
that the base learners built from a collection of random spanning trees are
optimized simultaneously towards the same global objective. Publication
V also presents the theoretical studies which not only explain the intu-
ition behind the learning model but also guarantee the performance by
the generalization error analysis. Meanwhile, RTA lays the foundation
of tackling the intractability of the graph inference on unknown graph
structures in which the fast optimization and accurate predictions can be

achieved with attainable computational efforts.

5.4.1 Background

The applicability of structured output learning is limited due to the fact
that the output graph is assume to be known apriori. It is difficult to learn
the correlation structure of labels from data (Chickering et al., 1994) if it
is not harder than structured output learning. Instead we can resort to a
complete graph by assuming that a complete set of pairwise correlations
have enough expression power to describe the dependency of labels. With
the complete graph as the output graph, we can construct a structured
output learner and use the optimization algorithm to correctly reveal the
hidden “parameters” defined on the edges of the compete graph (e.g., edge
potentials).

Structured output learning on a complete graph is not an easy problem
as the inference is A'P-hard in nature. The inference problem is often
instantiated as finding a maximum a-posteriori (MAP) configuration on a
graph structured probability distribution. In terms of the intractability is-

sue of the graph inference problem, many techniques have been proposed
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but with important differences. Jordan and Wainwright (2004) developed
a semi-definite programming convex relaxation for the inference on the
graph with cycles. Wainwright et al. (2005) proposed a MAP inference
with the tree-based and linear programming (LP) relaxation. Efficient in-
ference algorithms on special graphs have also been studied (Globerson
and Jaakkola, 2007).

Publication V is motivated by the well-established maximum-margin
principle as described in Section 2.2.3. The work investigates whether the
problem of inference over a complete graph in structured output learning
can be avoided by exploring the properties of the maximum-margin prin-
ciple. Starting from a sampling results, Publication V, Lemma 3 shows
that with high probability a big fraction of the margin achieved by a com-
plete graph can be obtained by a conical combination of a random sample
of spanning trees. The number of the spanning trees does not need to be
large. Besides, Publication V, Theorem 5 shows that good generalization
error can also be guaranteed when learning with, instead of a complete
graph, a random sample of spanning trees.

Thus, in addition to Publication IV, Theory 1, we further provide the
theoretical justification of combining a set of base learners trained on a
collection of random output graphs. Besides, Publication V, Theorem 5
suggests we should, instead of optimizing the margin separately on each
spanning tree similar to that in MAM, optimize the joint margin from all
spanning trees. The strategy leads to the learning model presented in the

following section.

5.4.2 Methods

Let 7 = {T1,--- ,T,,} denote a sample of n random spanning trees, and
{w,|T; € T} denote the feature weight parameters to be learned on each
tree. For each example (x;,y;), the goal of the optimization is to maximize
the joint margin from all spanning trees between the correct training ex-

amples and the pseudo-examples (x;,y) defined as

Definition 15. Primal L;-norm Random Tree Approximation (RTA).

mln ZHWTtI +CZ§Z

WTtv i

n

Z WT“‘IST, XlaYl)> - ';l;?x Z <WTN¢T,,(X1‘7Y)> >1- £ia

i

t=1

&>0,Vie{l,...,m},
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where ¢r1,(x,y) is the feature map that is local on each tree 7}, &; is the
margin slack allocated for each x;, and C is the slack parameter that con-
trols the amount of regularization. Definition 15 is an instantiation of the
regularized learning (Section 2.7) in terms of the Lo-norm regularization
(2.8) and the 0/1 loss (2.2).

The key for the optimization is to solve the argmax problem efficiently.
This is an N'P-hard problem in practice, as the size of the multilabel space
is exponential in the number of microlabels. In Publication V, we have
developed a K-best inference algorithm working in ©(Knk) time per data
point, where k is the number of microlabels and K is the number of best
multilabels we compute from each random spanning tree.

It is known that the exact solution for the inference problem on an indi-
vidual tree T; is tractable (Koller and Friedman, 2009) for which

yr,(z) = argmax Fy,,. (z,y) = argmax(wr,,¢r,(2,y)), (5.1)
yey yey

can be solved in O(k) time by dynamic programming also known as max-
product or min-sum. However, there is no guarantee that the maximizer
of (5.1) is also the global maximizer of Definition 15 over the set of ran-
dom spanning trees. Therefore, we compute the top K-best multilabels
for each random spanning tree. In total the computation costs O(Knk)
time for all spanning trees. Publication V, Lemma 7 provides a method to
retrieve the best multilabel from the K-best multilabel list in linear time.
We still need to make sure that the global maximizer is within the K-best
multilabel list. Publication V, Lemma 8 guarantees that with high proba-
bility the global maximizing multilabel is in the list and K does not need
to be large.

In addition, we derived the marginalized dual representation of the pri-
mal optimization problem in Definition 15, which not only works with a
polynomial sized parameter space but also enables kernels to tackle the

complex input space.
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6.

Implementations

The main contributions of this thesis are several new structured output

learning models for multilabel classification problems. Additionally, each

proposed model has been implemented into a software package. In this

chapter, the author aims to briefly discuss the implementations and point

out the locations from which the software packages can be found.

1. RTA, developed in Publication V, is a structured output learning al-

gorithm for multilabel classification with an unknown output graph.
RTA performs joint learning and inference on a random sample of

spanning trees.

(a) The learning system is implemented in MATLAB. The inference
algorithm is implemented in C. The parallelization of the infer-
ence algorithm is implemented with OPENMP. Other parts of

RTA are mostly implemented in MATLAB.

(b) The package can be found from https://github.com/hongyusu/
RTA.

. SPIN, developed in Publication I, is a structured output learning al-

gorithm for multilabel classification with an observed output graph.
SPIN can predict an optimal direct acyclic graph (DAG) that best re-
sponds to an input. The algorithm has been applied to the network
response prediction problem within the context of social network

analysis.

(a) The learning system of SPIN is implemented in MATLAB. The
SDP inference algorithm is implemented with CVX toolbox which
is designed for convex programming. The data preprocessing
with Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is im-
plemented in PYTHON and MATLAB.
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(b) The package can be found from https://github.com/hongyusu/
SPIN.

3. MVE developed in Publication III as well as AMM and MAM developed
in Publication IV are the structured output learning algorithms that
are not constrained by the availability of the output graph. The
algorithms combine a set of structured output learners built on a

collection of random output graphs.

(a) The learning systems are mostly implemented in MATLAB.

(b) The packages can be found from https://github.com/hongyusu/
RandomOutputGraphEnsemble.
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7. Conclusion

7.1 Discussion

In this thesis, we have studied supervised learning for classification. In
particular, we focused on multilabel classification where the task is to pre-
dict the best values for multiple interdependent output variables given
an input example. As multiple output variables can be “on” or “off” si-
multaneously, the central problem in multilabel classification is how to
best exploit the dependency of labels to make accurate predictions. The
problem has previously been tackled by the flat multilabel classification
approaches which treat multiple output variables essentially as a “flat”
vector. The approaches have difficulty of modeling the correlation be-
tween labels. Structured output learning arises as a natural extension
to flat multilabel classification in which the correlation is modeled by an
output graph connecting labels.

The first outcome of the thesis is a new structured output learning model
for multilabel classification in which the output graph is known apriori.
In particular, the proposed algorithm SPIN can predict a directed acyclic
graph from an observed underlying network which best “responds” to an
input example. The empirical evaluation on the network response predic-
tion problem within the context of social network analysis shows that the
proposed model outperforms several state-of-the-art flat multilabel clas-
sification approaches. The study demonstrates that accurate predictions
can be achieved by structured output learning when the output graph is
known and utilized during learning.

Current structured output learning approaches rely on an output graph
connecting multiple output variables to exploit the correlation between

labels. Thus, the applicability of structured output learning is limited
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due to the fact that the output graph needs to be known apriori. The
second outcome of the thesis is that we have developed several new mod-
els for structured output learning which are no longer constrained by the
availability of the output graph. Analog but with significant differences to
the previously established ensemble methods, the proposed models aim to
combine a set of structured output learners built on a collection of random
output graphs. In particular, MVE applies majority vote to directly com-
bine the predictions from the base learners, while AMM and MAM perform
additional inference on the output graphs before or after combining base
learners. In addition, we have developed RTA based on the theoretical
study. The proposed model performs max-margin learning on a random
sample of spanning trees. The joint learning and inference in RTA ensures
that the base learners, which are built from a set of random spanning
trees, are optimized simultaneously towards a same global objective. RTA
has also laid the foundation of tackling the intractability of the graph in-
ference on any unknown graph structures in which the fast optimization
and accurate predictions can be achieved with attainable computational
efforts.

In addition to the practical learning algorithms, the thesis also con-
tributes to the theoretical studies which not only explain the intuition
behind the formalisms but also guarantee the generalization error of the

proposed models.

7.2 Future Work

The work presented in the thesis will be extended along two main direc-
tions. First, the algorithms developed in this thesis can be applied to
other multilabel classification problems in which the output graph does
not need to be observed but is believed to play an important role during
learning. Secondly, the development of the learning algorithms and the
theoretical studies are readily to be continued. As the first research direc-
tion is application oriented, we will focus on the latter part.

To serve as a starting point, the inference algorithm for SPIN can be
further developed such that the model can be applied to large scale social
network datasets. It is also important to obtain an approximation guar-
antee for the new inference algorithm in order to ensure the quality of
the solution. Secondly, we plan to study RTA in the multilabel classifica-

tion problems where the output graph takes a more general form. The
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setting is interesting as in many real world problems the underlying out-
put graph structure is usually more complex than a spanning tree or a
chain but should be much simpler than a complete graph. The exact in-
ference is also prohibitive for any polynomial time algorithms. To tackle
the problem we plan to randomly sample spanning trees from the general
graph structures rather than a complete graph. In particular, we are in-
terested in the properties of the new algorithm (e.g., the generalization
error bound, conditions for exact inference). We also need to develop the
algorithm that allows to generate spanning trees uniformly at random.
Next, we plan to investigate the possibility of learning a convex combina-
tion of a set of random spanning trees. Compared to the current conical
combination, this approach will lead to a different objective function that
is similar to the L;-norm regularized parameter combination previously
studied in multiple kernel learning (Rakotomamonjy et al., 2008). The
objective function can be expressed equivalently as learning a weighted
Lo-norm regularized parameter combination. The weight can be inter-
preted as the affinity of an output graph to the current training data. We
can use the weights to select relevant output graph structures. We need
to study the corresponding optimization algorithm as the current alterna-
tive optimization developed by Rakotomamonjy et al. (2008) is not very
efficient. The theoretical analysis of RTA should also be extended to the

new algorithm.
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field in machine learning that arises
naturally from many real world applications.
For example, in document classification, a
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"science”, "drug discovery” and “genomics”
at the same time. The goal of multilabel
classification is to reliably predict multiple
outputs for a given input. As multiple output
variables are often interdependent, the
central problem in multilabel classification
is how to best exploit the correlation
between labels to make accurate
predictions. The main question studied in
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classification through structured output
learning. The main contributions are several
new learning algorithms that widen the
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