
Jonatan Lehtonen

Collocation method for solving stochastic
elasticity problems with an uncertain domain

Master’s thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Technology in the Degree Programme
in Engineering Physics and Mathematics.

Espoo, February 10, 2015

Supervisor: Associate Professor Nuutti Hyvönen
Instructor: D.Sc. (Tech.) Harri Hakula

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80714218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science

Abstract of the Master’s Thesis

Author: Jonatan Lehtonen
Title: Collocation method for solving stochastic elasticity problems with an uncertain
domain
Degree Programme: Degree Programme in Engineering Physics and Mathematics
Major subject: Mathematics
Minor subject: Information and Computer Science
Chair (code): Mat-1
Supervisor: Associate Professor Nuutti Hyvönen
Instructor: D.Sc. (Tech.) Harri Hakula
Abstract: In this thesis, we formulate a method for determining how quantities such
as stress in an elastic body change depending on its shape. This stochastic elasticity
problem has important applications in structural analysis and design, such as deter-
mining how manufacturing flaws affect the properties of an object. We assume that
the shape of the object depends on some stochastic parameters, and use a combina-
tion of multivariate interpolation and conformal mappings to solve the problem. The
interpolation allows us to reduce the stochastic problem to a collection of determin-
istic elasticity problems, which are solved by using existing finite element analysis
software, and the conformal mappings are used to accommodate the varying shape
of the object. A sparse grid interpolation scheme is used to diminish the curse of
dimensionality related to multivariate interpolation. We define model problems in-
volving two stochastic parameters, for both 2D and 3D objects. The implementation
of the method is described in detail, and numerical results are provided for the model
problems. With as few as 29 deterministic problems, we reach the point where the
interpolation accuracy cannot be improved due to the inherent inaccuracy of the finite
element solutions.

Date: February 10, 2015 Language: English Number of pages: v+53
Keywords: elasticity problem, stochastic domain, stochastic collocation, Smolyak
construction, sparse grid interpolation, conformal mapping

ii

Aalto-yliopisto
Perustieteiden korkeakoulu

Diplomityön tiivistelmä

Tekijä: Jonatan Lehtonen
Työn nimi: Kollokaatiomenetelmä stokastiselle elastisuustehtävälle epävarmassa
alueessa
Työn nimi (engl.): Collocation method for solving stochastic elasticity problems
with an uncertain domain
Tutkinto-ohjelma: Teknillisen fysiikan ja matematiikan tutkinto-ohjelma
Pääaine: Matematiikka
Sivuaine: Tietojenkäsittelytiede
Opetusyksikön (ent. professuuri) koodi: Mat-1
Työn valvoja: Professori Nuutti Hyvönen
Työn ohjaaja: TkT Harri Hakula
Tiivistelmä: Tässä diplomityössä esittelemme menetelmän, jolla voidaan määrittää
kuinka jännityksen tai jonkin muun suureen arvo muuttuu elastisessa kappaleessa
kun sen muoto vaihtelee. Tällä stokastisella elastisuustehtävällä on tärkeitä sovelluk-
sia rakenteiden analyysissä ja suunnittelussa; sitä käyttäen voidaan esimerkiksi mää-
rittää valmistusvirheiden vaikutus kappaleen ominaisuuksiin. Oletamme kappaleen
muodon riippuvan joistakin stokastisista parametreista, ja käytämme usean muut-
tujan interpolointia sekä konformikuvauksia tehtävän ratkaisemiseksi. Interpoloinnin
avulla stokastinen ongelma voidaan muuntaa kokoelmaksi deterministisiä tehtäviä,
jotka ratkaistaan käyttäen elementtimenetelmää; konformikuvauksien avulla käsitel-
lään stokastisuuden aiheuttama kappaleen muodon vaihtelu. Usean muuttujan inter-
polointiin liittyvän dimensionaalisuuden kirouksen lievittämiseksi käytämme Smoly-
akin konstruktioon perustuvaa harvan hilan interpolointimenetelmää. Mallitehtävinä
käytämme kahdesta stokastisesta parametrista riippuvia kappaleita, tarkastellen sekä
kaksi- että kolmiulotteista tapausta. Kuvailemme menetelmän toteutuksen yksityis-
kohtaisesti, ja esittelemme mallitehtävien numeeriset tulokset. Menetelmä saavuttaa
jo 29 deterministisen tehtävän avulla pisteen, jonka jälkeen interpolaation tarkkuutta
ei enää voida parantaa elementtimenetelmälle luontaisesta epätarkkuudesta johtuen.
Päivämäärä: 10.02.2015 Kieli: englanti Sivumäärä: v+53
Avainsanat: elastisuustehtävä, stokastinen alue, stokastinen kollokaatio, Smolyakin
konstruktio, harvan hilan interpolointi, konformikuvaus

iii

Contents

1 Introduction 1
1.1 Prerequisites and definitions 3

2 Model problem 5
2.1 2D deterministic problem . 5
2.2 2D stochastic problem . 6
2.3 General 3D problem . 7
2.4 3D model problem . 8

3 Methods 9
3.1 Outline of the algorithm . 9
3.2 Univariate interpolation . 11

3.2.1 Piecewise linear interpolation 12
3.2.2 Lagrangian polynomial interpolation 14

3.3 Tensor product . 16
3.4 Multivariate sparse grid interpolation 18
3.5 Conformal mapping . 20

4 Implementation 26
4.1 2D problem . 26

4.1.1 Parameterized domain and boundary conditions 27
4.1.2 Meshing the domain 28
4.1.3 Conformal mapping . 29
4.1.4 Solving the deterministic problem 34
4.1.5 Interpolation . 36

4.2 3D problem . 39

5 Numerical experiments and evaluation 42
5.1 Sparse vs. full grid interpolation 42
5.2 Results . 44
5.3 Speed/accuracy tradeoff . 50

6 Conclusions 52

References 53

iv

Notation and abbreviations

Symbols
R set of real numbers
N set of natural numbers (non-negative integers)
R2,Rd set of plane vectors, set of d-dimensional vectors
Nd set of d-dimensional multi-indices (vectors of natural numbers)
a,x vectors (lower-case bold letters)
n normal unit vector
[a, b], I intervals of the set R

Operators
∂

∂xi
partial derivative with respect to xi

∇x vector gradient
∆u Laplace operator
x · y vector dot product
A ⊂B A is a subset of B
x ∈ R x is an element of R∑

ai sum∏
ai product⊗
ai tensor product (see Section 3.3)

v

Chapter 1

Introduction

Finite element analysis is widely used for solving problems of linear elasticity,
such as studying the deformation of an elastic solid object when subjected
to various loads, and computing the stresses caused by these loads. As these
problems are crucial for structural analysis and design, the finite element
method (FEM) has been the subject of extensive research. However, in clas-
sical FEM we need to explicitly know all properties of the object and the
loads acting on it. Thus it is only suited for solving deterministic problems,
where there is no random component involved. Naturally, this is seldom the
case in real-world problems, where measurements cannot be exact and ob-
jects never have an ideal shape, due to manufacturing flaws and other such
effects. These issues can often be ignored by assuming that their effect on
the properties of the object is small, but if the variations in shape are large
or if high accuracy is important, the shape of the object can no longer be
considered deterministic and an alternate method is required.

This leads us to a stochastic elasticity problem. Suppose that we have
an elastic body with a shape that is random to some extent. In order to
make this computationally feasible, we assume that the randomness can be
adequately described by some finite number of parameters; thus, these pa-
rameters can be thought of as random variables, and fixing their values yields
a deterministic problem. Our goal is then to determine the distribution of,
say, the stresses in the object as a function of these parameters. For simplic-
ity, we focus on finding the stresses at a single measurement point, but our
methods can easily be extended to several measurement points with only a
small additional cost. Note that while we refer to the problem as stochastic,
the same methodology could just as well be applied to, say, structural opti-
mization. Strictly speaking, we only need the shape of the object to depend
on some parameters; whether the parameters are random variables or not
makes little difference from a practical point of view.

What we have described above is generally known as a problem of un-
certainty quantification. Extensive research has been done in this field; good
overviews of the related spectral methods used for solving such problems can
be found, for example, in [11] and [7]. Unfortunately, most of the research
in this field focuses on problems where the stochastic part lies in the gov-

1

erning equations rather than the geometry of the domain. To an extent, the
same methods can still be applied when the geometry is stochastic, but some
problems arise since the finite element mesh used by FEM needs to change
with the geometry.

The most commonly used spectral methods are the Galerkin, colloca-
tion and Monte Carlo methods. Galerkin methods are known as intrusive
methods, since they require purpose-built software; this leads to high devel-
opment costs, which are further compounded by the changing mesh. By con-
trast, collocation and Monte Carlo are non-intrusive methods, which strive
to construct the solution to the stochastic problem by solving a number of
deterministic problems; that is, solving the problem for a collection of fixed
values of the parameters which define the shape of the object. Non-intrusive
methods are therefore much easier to implement, as we can use existing FEM
software for the deterministic problems. Another key advantage with non-
intrusive methods is that, as they are based on solving several deterministic
problems, they can be trivially parallelized to an almost arbitrary number
of computing cores; indeed, in our work we found that one of the greatest
bottlenecks on our performance was not the availability of computing cores,
but the number of software licenses available for Abaqus.1

Monte Carlo methods work by sampling the distribution at randomly se-
lected points, which can be used to measure quantities such as the mean or
variance of a distribution. In [8], Schenk and Schuëller applied such meth-
ods to a problem which is somewhat similar to ours. However, we want to
compute the distribution itself, which means we need to use some kind of
an interpolation scheme, and Monte Carlo methods do not naturally lend
themselves to interpolation.

Instead, we turn our attention to collocation methods. The main differ-
ence compared to Monte Carlo methods is that the points where we sample
the distribution are chosen deterministically. As the shape of the object
depends on a number of parameters, and our goal is to get the stress (or
some other quantity) at a given point as a function of these parameters,
the problem essentially becomes one of interpolating a multivariate function.
Intuitively, it could therefore make sense to use, say, a grid of equidistant
nodes and interpolate between them. However, this is extremely inefficient
due to the curse of dimensionality, as the number of nodes would increase
exponentially with the number of parameters used to describe the shape of
the object. Fortunately, this problem was solved by Smolyak in [9], where he
proposed a sparse interpolation grid which significantly diminishes the curse
of dimensionality while preserving the accuracy up to a logarithmic factor.

We emphasize that while the curse of dimensionality is diminished, it
is certainly still present. For example, if we increase both the number of
stochastic parameters and the order of interpolation by one, the number of
FEM problems which need to be solved increases approximately by a factor
of six. Naturally, the question of whether a given stochastic problem can be

1Abaqus is a software suite for finite element analysis; for additional information, see
http://www.3ds.com/products-services/simulia/products/abaqus.

2

http://www.3ds.com/products-services/simulia/products/abaqus

solved in a reasonable time depends on a multitude of factors, such as how
much computation time a single FEM problem requires, how many can be
solved in parallel, how high the order of interpolation has to be, and so on. It
is therefore difficult to assess beforehand whether a given problem is feasible.
We will discuss this subject further in Chapter 5.

In Chapter 2, we formalize the notion of the stochastic problem which
we described earlier, and introduce the model problems which we will use to
gauge the quality of our method. In Chapter 3, we provide an overview of all
the steps required to implement our method and give a detailed explanation of
the interpolation scheme which we mentioned earlier. We will also describe
how we can use conformal mappings to overcome the problems caused by
the random shape of the object. Details about the model problems and
the implementation of our methods are provided in Chapter 4, with the
intent of ensuring that anyone with some knowledge of FEM problems and
programming has the necessary information to use our methods in practice.
Finally, in Chapter 5, we give the results of our numerical experiments and
briefly describe the factors that should be taken into account to ensure that
the desired accuracy can be achieved in a reasonable amount of computation
time, before wrapping things up in Chapter 6.

1.1 Prerequisites and definitions
This thesis has a broad target audience, and as such we make very few
assumptions about what the reader already knows. The theoretical parts of
this thesis should only require a basic understanding of multivariate calculus,
which is part of all engineering-oriented university curriculums. Readers who
wish to implement the methods described in this work should already be
familiar with using some FEM solver (for this thesis, we used Abaqus); some
experience with programming will also be helpful.

We will now introduce some of the notation and terminology used in
this thesis. Note that the following definitions are very informal — they are
intended to be understandable, not rigorous or general.

Firstly, we use R to denote the set of real numbers. If a variable x only
takes values between two numbers a and b, i.e. it satisfies a ≤ x ≤ b, then
we write x ∈ [a, b]. We call [a, b] an interval, and denote it by I. Since I is a
subset of R, we write I ⊂ R.

We call a function univariate if it only depends on one variable, and
multivariate if it depends on several. In the univariate case, we may say
that f(x) is defined on an interval I, which means that the function is only
defined for x ∈ I. In the multivariate case we will write the function as
f(x) = f(x1, . . . , xd), where x ∈ Rd is a d-dimensional vector. Just like
univariate functions may be restricted to intervals, a multivariate function
f(x1, . . . , xd) may be restricted to a hyperrectangle I1 × · · · × Id, which is
equivalent to saying that each xi is restricted to its corresponding interval Ii.

We will also need another version of functions, which we call operators.
Simply put, the difference is that while functions map numbers to numbers,

3

operators can also map e.g. functions to numbers or even functions to other
functions. We will typically denote operators by U or V . For example, we
could have an integral operator U defined as

Uf :=
∫ b

a
f(x)dx.

We call U a linear operator if, for any two functions f and g and any two
real numbers a and b, it satisfies

U(af + bg) = a(Uf) + b (Ug).

In particular, we will be interested in a special class of linear operators called
univariate interpolation formulas, which we will describe in detail in Sec-
tion 3.2.

When we define the multivariate interpolation scheme in Section 3.4, we
will make use of multi-index notation. We denote by N the set of all non-
negative integers, better known as the natural numbers. We call α a multi-
index if α ∈ Nd, i.e. if α = (α1, α2, . . . , αd) is a vector of natural numbers.
The 1-norm of α is defined as

|α| =
d∑
i=1

αi.

4

Chapter 2

Model problem

In this chapter, we describe the model problems which will be used as ex-
amples throughout this thesis. Sections 2.1 and 2.2 introduce a simple two-
dimensional problem that we used for testing our method. In Section 2.3 we
briefly discuss the general three-dimensional version of the problem, and in
Section 2.4 we describe a model problem which we will use to demonstrate
how the two-dimensional solution extends to three dimensions. The model
problems will be described in very general terms in this chapter, with specific
details provided later on in Chapter 4.

2.1 2D deterministic problem
Let us begin by considering the two-dimensional problem setting which served
as a test case in our work. Let Ω be a domain representing a deformable
medium subject to a surface traction g. The 2D model problem is then
to find the displacement field u = (u1, u2) and the symmetric stress tensor
σ = (σij)2

i,j=1 satisfying

σ(u) = λ div(u)I + 2µε in Ω, (2.1)
div(σ) = 0 in Ω, (2.2)

u = 0 on ∂ΩD, (2.3)
σ · n = g on ∂ΩN . (2.4)

These equations describe the deformation of a two-dimensional elastic body
under plane strain, although we have omitted the term for body forces. Plane
strain is a state which typically occurs in cases where the length of an object
is significantly greater than its width or height; thus, these equations can,
for example, be used to find the stresses in the cross-section of a beam.

There are several definitions needed for the equations (2.1)–(2.4) above,
so let us work through them from the top down. Firstly, the operator div(σ)
is the vector-valued tensor divergence, defined as

div(σ) :=
 2∑
j=1

∂σij
∂xj

2

i=1

. (2.5)

5

Note that we use the notation (·)2
i=1 to refer to the elements of a two-

dimensional vector; this should not be confused with (·)2, which denotes
the square of an expression.

The coefficients λ and µ appearing in (2.1) are the Lamé coefficients,
defined through

λ := Eν

(1 + ν)(1− 2ν) , µ := E

2(1 + ν) , (2.6)

where E is Young’s modulus and ν is Poisson’s ratio. In our work we used
the values E = 1000 and ν = 0.3. The value for Poisson’s ratio was chosen
to correspond to an object made of steel. As Young’s modulus only has a
linear effect on the solution, its value makes no difference in a model problem;
therefore, we simply chose a value which yielded reasonable displacements in
an object with unit width and height, subject to a unit force.

In (2.1) we also have the identity tensor I and the symmetric strain tensor

ε(u) = 1
2
(
∇u+∇uT

)
. (2.7)

Finally, ∂Ω = ∂ΩD ∪ ∂ΩN is the boundary of Ω, and n is its outward normal
unit vector.

What we have described in this section is a relatively simple engineering
problem, which can be solved for example using the finite element method
(FEM). In our work, we used the new NDSolve‘FEM-package introduced in
Mathematica 10, but any method of solving this problem is acceptable. We
will assume that anyone implementing our method is familiar with solving
deterministic elasticity problems, and thus we will not go into further details
about how to solve them. Specifics such as the shape of the domain Ω will
be given in Chapter 4, since they are not relevant to the theoretical aspects
of our work.

2.2 2D stochastic problem
The deterministic model described in Section 2.1 is sufficient as long as the
domain Ω is fixed. However, it may be the case that we do not know the
exact shape of the domain; perhaps due to inaccuracies in manufacturing,
or any number of other reasons. Whatever the reason may be, it is clear
that simply solving the deterministic model may not be sufficient. This is
precisely the type of problem that our method is designed to solve.

Suppose that instead of a fixed domain Ω, we have a stochastic domain
Ω(s1, s2, . . . , sd) defined as a function of d parameters, with the parameters
chosen in such a way that they describe the uncertainty of the model; for
instance, if the radius of a circular object is not known exactly, it could be
chosen as one of the parameters. Since we have d parameters, we adopt
the shorthand notation Ω(s) := Ω(s1, s2, . . . , sd) for the domain, where s =
(s1, . . . , sd) is a vector in Rd. Furthermore, we assume that each parameter
si is constrained to a corresponding interval Isi = [si,min, si,max]; using the

6

terminology of Section 1.1, this means that the vector s is constrained to the
hyperrectangle Is1 × · · · × Isd .

Now, we can model our uncertainty about the domain by treating the
parameters si as random variables. This turns the deterministic problem
of Section 2.1 into a stochastic one, and gives rise to a stochastic space of
domains Ω(s). Ideally we would like to solve the deterministic problem for
every possible domain in this space.

In practice, of course, solving an infinite number of problems is somewhat
difficult. We will tackle this issue by using a collocation method to discretize
the stochastic part of the problem, turning a stochastic problem into a col-
lection of deterministic ones. These will then be solved separately, and the
results will be interpolated to obtain a solution to the stochastic problem.
This procedure is explained in greater detail in Section 3.1.

2.3 General 3D problem
The method described in this thesis can be used for solving a very broad class
of problems. In principle, the only conditions are that we have a well-defined
stochastic space of domains such as in Section 2.2 and that we know how to
solve the given problem for any element of this stochastic space. Furthermore,
the governing equations should be deterministic; the stochastic part of the
problem should be restricted to the geometry of the domain. Of course, there
are ways of generalizing these methods to handle stochastic equations, but
that is beyond the scope of this work.

As a disclaimer, we note that the difficulty of implementing this method
may depend greatly on both the shape of the domain and the variation in
that shape caused by the stochastic part. The reason for this is that, given
two domains and a fixed point in one of them, we need a consistent way of
finding the corresponding point in the other domain. In this work, we will
describe a way of doing this for 3D problems assuming that, in some sense,
their geometry varies in just two dimensions. This is not as restrictive as it
may sound, since e.g. axisymmetric objects satisfy this condition. A prime
example of this is the 3D model problem we describe in Section 2.4.

Of course, more complex geometries can be handled as well if a suitable
mapping can be found, but the choice of such mappings is left to the reader
as it is beyond the scope of this work. However, as long as this part can be
managed, the rest of the method should be straightforward to implement re-
gardless of the exact nature of the problem; aside from the choice of mapping,
the method we describe is quite problem-independent.

In this thesis, we will constrain ourselves to problems of solid mechanics,
such as the ones solved by the standard Abaqus framework. In Section 2.4,
we describe one such problem, which we use to demonstrate how our solution
of the 2D problem extends to three dimensions.

7

2.4 3D model problem
The model problem that we chose is based on the 2D model problem de-
scribed earlier in Sections 2.1 and 2.2. We simply revolved the domain of the
2D problem 180 degrees around an axis to obtain a 3D object, which was
modelled as a general elastic body. All the details about this problem will
be given in Section 4.2.

8

Chapter 3

Methods

In this chapter, we introduce the various methods that will be necessary to
solve the stochastic elasticity problems described in Chapter 2. Since the
solution algorithm consists of many parts, we begin by briefly describing
the entire algorithm in Section 3.1, in order to provide the reader with an
overview of how all the pieces fit together. The following sections will then
describe the theory behind each part in greater detail.

As we mentioned in Chapter 1, we are interested in solving a stochastic
elasticity problem. Essentially this means that we have an elastic object for
which we want to compute quantities such as stresses or displacements, but
we do not know the exact shape of the object; rather, we know the probability
distribution for its shape. Given a measurement point x̃ in some reference
object, our goal is to obtain the distribution of, say, the stresses at x̃ as the
shape of the object changes. Solving this problem involves using interpolation
to deal with the the stochastic nature of the problem, reducing it to a series
of deterministic problems which we know how to solve. Furthermore, since
each deterministic problem involves an object of a slightly different shape,
we need to map these solutions to the reference object to be able to compare
and combine them.

In Sections 3.2 and 3.3 we introduce univariate interpolation and the
tensor product, respectively. Section 3.4 uses these concepts to describe
the multivariate interpolation scheme which is at the heart of our method.
Finally, Section 3.5 describes how we used conformal mappings to deal with
the changes in geometry caused by the stochastic part of the problem.

Since this chapter focuses on the theoretical aspects of the methods, it will
also be the most mathematically demanding chapter in this thesis; having
said that, we still only assume a basic understanding of multivariate calculus,
which should suffice for understanding the concepts that follow.

Implementation details will be given in Chapter 4.

3.1 Outline of the algorithm
In this section, we provide a brief overview of the necessary steps for im-
plementing the methods described in this thesis. We begin by making some

9

assumptions and definitions, and at the end of this section we give an ex-
plicit list of the general steps involved in making our method work. We will
then give detailed explanations of the more complex parts of the algorithm
in Sections 3.2–3.5.

As described in Section 2.2, we assume that we have a stochastic domain
Ω(s) = Ω(s1, . . . , sd) determined by d random parameters. If we fix all the
parameters, we obtain a deterministic problem which we know how to solve;
suppose that the solution is some distribution σ(x), which represents the
distribution of some quantity in the domain, such as stress in the case of
our model problems. In general, it makes no difference what exactly is being
measured, as long as the result is a distribution in the domain; that is, as long
as the solution can be evaluated at any point x in the domain. Whatever
this distribution may be, we denote it by σ(x; s) for consistency. Note that
s is included in the notation since the domain and consequently the solution
depends on s.

The next step is to fix what we will call the nominal domain, denoted
by Ω̃. In some sense, the domain Ω̃ defines our reference object; as such,
in applications where the stochastic part of the problem represents some
manufacturing errors, it may make sense to define the nominal domain Ω̃
to be the “ideal object” which has no such flaws. However, all we need
to assume is that such a domain exists and is an element of the stochastic
domain; in other words, there exists some vector s̃ of parameter values s̃i
such that Ω̃ = Ω(s̃).

The reason why we need a nominal domain is quite simple; we need to be
able to combine the solutions σ(x; s) from several domains Ω(s) into a single
one, and we need to do this consistently. Imagine as an extreme example that
we had a stochastic domain where some choice of the parameters si results
in a cube domain, and another results in a ball. We can probably solve the
deterministic problem in each of these domains, but how does one combine
the solution in a cube with the one in a ball? There are points x which
are contained in the cube but not in the ball, or vice versa; naturally, the
same problem always arises with different geometries, even if their difference
is not as extreme. We solve this problem by mapping all the solutions to the
nominal domain Ω̃.

This leads us to our next assumption: for each domain Ω(s), assume that
we have a mapping φ(x; s) which maps each point of the nominal domain
Ω̃ to the respective point in the domain Ω(s); furthermore, the mapping
should be bijective and consistent. Bijectivity guarantees that for every point
x′ in the target domain Ω(s), there is exactly one point x in the nominal
domain such that φ(x; s) = x′; this is why a bijection is sometimes called
a 1–1 correspondence. A pleasant consequence of bijectivity is also that the
mapping φ(x; s) can be inverted to obtain a similar mapping from Ω(s) to
the nominal domain Ω̃.

The condition of consistency is more vague, since the notion of consistency
depends greatly on the problem itself, but the basic principle is that a small
change in the domain Ω(s) should cause only small changes in the mapping

10

φ(x; s). In Section 3.5 we will explicitly define the mapping we used for the
model problems in this thesis.

Next, we need to choose the domains Ω(s) in which we will solve the
deterministic problem. These domains are chosen according to the inter-
polation formula that has been chosen; in our work, we used multivariate
Lagrangian polynomial interpolation, but in principle any multivariate inter-
polation formula can be used. Whatever the choice may be, it should give a
set of domains Ω(s) for which we solve the deterministic problem.

Observe that in Sections 3.2–3.4 we interpolate an arbitrary d-dimensional
function f(x) = f(x1, . . . , xd) for the sake of generality. In our work, the
measurement point x̃ is fixed; it is the point where we want to obtain the
distribution of σ(x; s) over all s in the stochastic space. Thus we actu-
ally interpolate over the parameters s, and the function f(x) is replaced by
f(s) = σ(φ(x̃; s); s). This function maps the fixed point x̃ to the domain
Ω(s) using the mapping φ(x; s), and then evaluates the solution σ(x; s) of
the deterministic problem at the point φ(x̃; s). Since the mapping φ(x; s)
is chosen in such a way that φ(x; s) is relatively close to x, the function
σ(φ(x̃; s); s) essentially gives us the distribution of σ at x̃ as a function of s,
which is exactly what we wanted to compute.

To sum up, the general scheme is as follows:

1. Pick a problem that can be solved in any fixed domain Ω.

2. Define the stochastic space Ω(s), the nominal domain Ω̃ and the mea-
surement point x̃ ∈ Ω̃.

3. Pick a multivariate interpolation formula; we used multivariate La-
grangian polynomial interpolation on a sparse grid.

4. Pick a mapping φ(x; s) which maps the point x from Ω̃ to Ω(s) in a
consistent manner.

5. Solve the deterministic problem in the domains Ω(s) to obtain the
solutions ω(x; s), where the parameter vectors s are dictated by the
interpolation formula.

6. Construct the interpolating function f(s) = σ(φ(x̃; s); s) from these
solutions, using the mapping φ.

In the following sections, we will describe in detail the interpolation formula
and mapping which we used for our method.

3.2 Univariate interpolation
Before we can introduce the multivariate interpolation scheme in Section 3.4,
we need to discuss two simpler concepts: univariate interpolation and tensor
products. Readers who are already familiar with these concepts may skip

11

ahead to Section 3.4, but skimming through this and the following section is
still recommended to become familiar with our notation and definitions.

Both this section and Section 3.4 are mainly based on Chapter 3 of [6],
which gives a wonderful treatise on multivariate interpolation; we recommend
it for anyone seeking more details on this subject.

Throughout Sections 3.2–3.4 we will consider the interpolation of some
arbitrary function f , to ease the notation and keep things on a slightly more
general level. We assume that evaluating f is relatively expensive; certainly
this is the case in our work, where a single evaluation of f corresponds to
solving an entire FEM problem.

The basic idea behind interpolation is that we know the value of the
function f at specific points, and we want to construct another function that
approximates f as accurately as possible between these points. In our work,
we are dealing with the type of interpolation where we are able to choose
the measurement points freely. The goal then becomes to pick the points in
such a way that we can get a good approximation of f with as few points as
possible. This is typically motivated by the cost of evaluating f , which we
mentioned above.

As the name itself implies, interpolation is done between measurement
points, so from now on we assume that f is defined in an interval I; for the
multivariate case which we consider in later sections, the interval is replaced
by a hyperrectangle I1 × · · · × Id.

3.2.1 Piecewise linear interpolation
Let us first consider one of the simplest interpolation techniques available:
piecewise linear interpolation. It is not ideal for accuracy, meaning that it
will require more measurements to reach the same level of accuracy as other
methods, but we mention it because it is very simple to implement. Once
we move on to the multivariate case, we will not consider piecewise linear
interpolation, but its extension to multivariate interpolation is trivial.

As the name implies, in piecewise linear interpolation the function is
approximated by a line segment between measurement points. Thus, if we
know the function values f(xi) at the points x0 = a < x1 < . . . < xn = b,
then the interpolation formula Uh

1 is given by

Uh
1 (f)(x) := f(xj) + f(xj+1)− f(xj)

xj+1 − xj
(x− xj) for x ∈ [xj, xj+1]. (3.1)

Note that since the points xi and function values f(xi) are constant, the only
variable above is x and the interpolating function Uh

1 (f) is indeed linear. It
is also easy to check that f(x) = f(xj) whenever x = xj.

In (3.1), we used the notation Uh
1 for the interpolation formula. Here,

1 refers to the degree of the estimate; similar notation will be used later
on when we discuss a higher-order method. The superscript h indicates the
largest length of an interval [xj, xj+1] among the measurement points xi; this
is useful for estimating the interpolation error. Indeed, if we assume that f

12

is twice continuously differentiable in each interval [xj, xj+1], which we write
as f ∈ C2([xj, xj+1]), then we have the convenient estimate

∥∥∥f − Uh
1 (f)

∥∥∥
∞
≤ h2

8 max
ξ∈[a,b]

|f ′′(ξ)|. (3.2)

The norm on the left-hand side of (3.2) is the maximum norm, and is given
by

‖f‖∞ = max
ξ∈[a,b]

|f(ξ)|.

Looking at the right-hand side, we see that (3.2) gives us an estimate
for the maximum norm of our error f − Uh

1 (f) which depends only on the
maximum interval length h and the magnitude of the second derivative of f .
Since f is a fixed function, the latter term is effectively constant, and we find
that as we reduce the interval length h, the error decreases quadratically.

It goes without saying that in real-world applications we do not know the
magnitude of f ′′; indeed, it might not even exist everywhere. However, the
error estimate of (3.2) still gives us a good idea of what kind of accuracy we
might expect to see as h decreases; it also suggests that the ideal distribution
for the measurement points is to pick them equidistantly, i.e. such that xj −
xj−1 = h for all j = 1, . . . , n.

Before we move on to higher-order methods, let us rewrite (3.1) in so-
called Lagrangian form, since we will use the same form later on as well. To
this end, define the basis functions aj as

aj(x) =


x−xj−1
xj−xj−1

, if x ∈ [xj−1, xj], j = 1, . . . , n,
xj+1−x
xj+1−xj

, if x ∈ [xj, xj+1], j = 0, . . . , n− 1,
0, otherwise.

(3.3)

These are so-called hat functions. Looking at the definition above, it is easy
to see that the function aj is linear on both [xj−1, xj] and [xj, xj+1], and we
have aj(xi) = 0 whenever i 6= j, but aj(xj) = 1. This is the type of behaviour
that we will see with all of our basis functions. Formally, this property can
be written as aj(xi) = δij, where δ is the Kronecker delta, defined as follows:

δij =
1, if i = j,

0, otherwise.

Now, with some manipulation of formulas, it is easy to see that when
x ∈ [xj, xj+1], we have

f(xj)aj(x) + f(xj+1)aj+1(x) = f(xj)
xj+1 − x
xj+1 − xj

+ f(xj+1) x− xj
xj+1 − xj

= f(xj) + f(xj+1)− f(xj)
xj+1 − xj

(x− xj),

13

which is exactly what we had in (3.1). This leads us to the Lagrangian form
we mentioned earlier:

Uh
1 (f)(x) =

n∑
j=0

f(xj)aj(x). (3.4)

Finally, note that using our previous observation that aj(xi) = δij, it is
immediately obvious that the form given by (3.4) is indeed exact at each
measurement point:

Uh
1 (f)(xi) =

n∑
j=0

f(xj)aj(xi) =
n∑
j=0

f(xj)δij = f(xi).

3.2.2 Lagrangian polynomial interpolation
Now that we are familiar with interpolation and the Lagrangian form, we are
ready to introduce the higher-order method. In the case of piecewise linear
interpolation, we had n+1 measurement points but our estimate was only of
degree 1. However, with n + 1 distinct point values, it is always possible to
find a polynomial which passes through each of these points. This polynomial
is unique, and is known as the Lagrange polynomial. It is of degree at most
n, and thus we denote the resulting interpolation formula by Un.

As in the previous section, the interpolation formula Un can be written
in Lagrangian form. To this end, define the basis polynomials

lj(x) =
n∏
k=0
k 6=j

x− xk
xj − xk

, j = 0, . . . , n. (3.5)

As before, we have assumed that x0 = a < x1 < . . . < xn = b, which
immediately implies that xj − xk > 0 for any k 6= j. Since the product skips
the case k = j, this means that lj(x) is well-defined. Note also that the basis
polynomials lj exhibit the same property as the aj’s of the previous section:
for any xi, we have lj(xi) = δij. It also follows that lj is always a polynomial
of degree n, since it is non-zero and has n roots.

Given the basis functions lj, we can again define Un in Lagrangian form
through

Un(f)(x) =
n∑
j=0

f(xj)lj(x). (3.6)

Our last result from the previous section holds here as well: for any measure-
ment point xi, we have

Un(f)(x) =
n∑
j=0

f(xj)lj(xi) =
n∑
j=0

f(xj)δij = f(xi).

This proves that Un is indeed a polynomial which passes through all of our
n+ 1 measurement points.

14

In the previous section we mentioned that for piecewise linear interpola-
tion, the ideal distribution of the measurement points is to pick them equidis-
tantly; that is, choosing them so that xj − xj−1 = h for all j = 1, . . . , n.
However, the same does not hold for Lagrangian polynomial interpolation.
In fact, choosing the points equidistantly gives rise to the error estimate

‖f − Un(f)‖∞ ≤
hn+1

4(n+ 1) max
ξ∈[a,b]

|f (n+1)(ξ)|, (3.7)

where f (n+1) denotes the derivative of order n+ 1. At first glance, this may
seem like a very good error bound, since hn+1 decreases very rapidly with h.
However, note that the derivative term depends on n. Therefore, as n tends
to infinity, the derivative term might explode, so we have no guarantee that
the interpolating function Un(f) converges to f as n tends to infinity. This
problem is known as Runge’s phenomenon.

Thankfully, it is possible to choose a distribution of measurement points
that does not exhibit the aforementioned problem; in fact, several such alter-
natives exist. We focus now on the Chebyshev–Gauss–Lobatto (CGL) points,
which guarantee convergence when f is continuously differentiable. In fact,
the weaker condition of Lipschitz continuity is sufficient; this is discussed in
greater detail in Section 3.1 of [6].

The CGL points for a fixed n > 0 are given by the set

Xn :=
{
xj = a+ b

2 + a− b
2 cos(jπ/n), j = 0, . . . , n

}
. (3.8)

Observe that in the special case of [a, b] = [−1, 1] this reduces to xj =
− cos(jπ/n), which should give a good idea of how the points are distributed;
the cosine moves points towards the closest boundary, causing the distribu-
tion to have more points near a and b than in the middle.

Figure 3.1 demonstrates Runge’s phenomenon, which we mentioned ear-
lier. The figure shows the basis function corresponding to the midpoint of
the interpolation interval [−1, 1] for n = 8 and n = 32, using equidistant and
CGL nodes. The interpolation nodes lie at the zeros of the basis functions.
As we can see, the basis function corresponding to the CGL nodes obtains
its maximum at the midpoint of the interval, whereas the basis function for
equidistant nodes blows up near the edges of the interval; note in particular
the vertical scale in the top right figure. This is precisely why we use the
CGL nodes for polynomial interpolation.

Finally, before moving on to tensor products, we give an error estimate for
the Lagrangian polynomial interpolation formula Un with Chebyshev–Gauss–
Lobatto points: for any function f which is l times continuously differentiable
in the interval [−1, 1] (in other words, f ∈ C l([−1, 1])), the interpolation error
satisfies the estimate

‖f − Un(f)‖∞ ≤ C2‖f (l)‖∞n−l log(n), (3.9)

where f (l) is the lth derivative of f and C2 is a constant independent of l and
n.

15

-1.0 -0.5 0.5 1.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-3.0×106
-2.5×106
-2.0×106
-1.5×106
-1.0×106
-500000

-1.0 -0.5 0.5 1.0
-0.2

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.5 1.0
-0.2

0.2

0.4

0.6

0.8

1.0

Figure 3.1: Demonstration of the pathological behavior of the polynomial
basis functions on equidistant nodes. The top row uses equidistant nodes,
the bottom row CGL nodes, with n = 8 on the left and n = 32 on the right.

3.3 Tensor product
Now that we can interpolate univariate functions, the next step is to extend
univariate interpolation to multivariate functions. First, we need to make
the distinction between interpolating functions and interpolation formulas.
The difference between them is that interpolation formulas are applied to a
function f to produce interpolating functions; in other words, Un is an in-
terpolation formula and Un(f) is the interpolating function that it produces.
Observe that by the definitions we gave in Section 1.1, this means that Un
is, in fact, an operator. Definitions of this term vary, but in this work we use
the word to describe an object that maps functions to functions; by contrast,
we think of functions as mapping numbers to numbers.

Given these definitions, let us start thinking about interpolating multi-
variate functions, starting with a simple two-dimensional example. Suppose
we have a function g(x, y) that we wish to interpolate, but we only have
a univariate interpolation formula Un, given as a sum of terms of the form
lj(x)f(xj) where the points xj are given by the set Xn defined in (3.8). This
is the notation we used in the previous section for the Lagrangian interpola-
tion formula; we will use it for the remainder of the theoretical sections since
it is the formula we will use when implementing these methods.

Recall that the most important property for the basis functions lj(x) was
that

lj(xi) = δij =
1, if i = j,

0, otherwise,

for any point xi ∈ Xn, where Xn is the set of interpolation points for the
formula Un. Our goal is now to construct two-dimensional basis functions

16

with a similar property; fortunately, this is almost trivial, since the product
of two basis functions gives exactly the kind of behaviour that we want.
Indeed, if we define

ljk(x, y) = lj(x)lk(y),
then for points xk, yl ∈ Xn we have

ljk(xi, yl) = lj(xi)lk(yl) = δijδkl =
1, if i = j and k = l,

0, otherwise.

Now, in the same way as we get a univariate interpolating function by
summing the terms lj(x)f(xj) over all xj ∈ Xn, we get a two-dimensional
interpolating function by summing ljk(x, y)f(xj, yk) over all pairs (xj, yk)
where xj, yk ∈ Xn; that is, over (n+ 1)2 different pairs (xj, yk). Writing this
out as a sum yields

(Un ⊗ Un)(g) =
n∑
k=0

n∑
j=0

lj(x)lk(y)g(xj, yk). (3.10)

The above is what we call the tensor product of two interpolation formulas,
which is why we used the notation Un ⊗ Un.

The next step is to extend the tensor product of (3.10) above to d di-
mensions. At the same time, we want to generalize it, so we now allow the
individual interpolation formulas to be different. Since we want to give the
tensor product explicitly, the notation unfortunately becomes a bit messy,
but later on we will be able to avoid this.

Assume that we have a d-variate function f(x1, . . . , xd) which we wish to
interpolate in the hyperrectangle I1 × · · · Id; in other words, each variable xi
is constrained to a corresponding interval Ii = [ai, bi]. Furthermore, assume
we have interpolation formulas Uni

for each variable xi, with corresponding
sets Xni

of interpolation points. Then the full d-dimensional tensor product
formula is given by

(Un1 ⊗ · · · ⊗ Und
)(f) =

n1∑
j1=0
· · ·

nd∑
jd=0

f(x1
j1 , . . . , x

d
jd

)
d∏
i=1

liji(x
i), (3.11)

where the last term denotes the product of basis functions l1j1(x1), . . . , ldjd(xd).
At first glance it might seem that (3.11) is all we need for multivariate

interpolation, but recall that by our assumption f is expensive to evaluate.
Since the construction of the interpolating function (Un1 ⊗ · · · ⊗ Und

)(f) in-
volves d nested sums of function evaluations f(x1

j1 , . . . , x
d
jd

), we need a total
of ∏d

i=1(ni + 1) evaluations of f . Assuming that the ni’s are all equal to
n, this means over nd evaluations; clearly, this is unacceptable. The expo-
nential growth of the number of evaluation points is known as the curse of
dimensionality.

It turns out that the above tensor product construction is not particularly
good in terms of accuracy. In fact, we can obtain similar levels of accuracy
with much fewer evaluations if we use a more clever method. In the next

17

section will introduce a sparse grid interpolation formula which allows us to
greatly reduce the number of function evaluations while giving very good
results in terms of accuracy. The tensor product formula is, however, far
from useless, since it is crucial for constructing the sparse grid interpolation
formula.

3.4 Multivariate sparse grid interpolation
Finally we have the necessary methods to introduce multivariate sparse grid
interpolation, which lies at the heart of our method. As we mentioned at
the end of the previous section, the problem with the tensor product inter-
polation formula is that it involves evaluating the function f far too many
times. We call the resulting d-dimensional grid of interpolation points a full
grid. By contrast, our goal is now to make do with a so-called sparse grid,
which should have much fewer points than the full grid while still produc-
ing an interpolating function of comparable accuracy. This may seem like
a very optimistic goal, but recall from Subsection 3.2.2 that changing the
choice of interpolation points can greatly affect the properties of an interpo-
lation formula; what we are doing now is similar, but rather than changing
the interpolation points, we use a smaller number of them and change the
construction of the interpolating function itself.

The reduction from a full grid to a sparse grid is based on an ingenious
construction by S.A. Smolyak, whose original paper was published in 1963
[9]. The Smolyak construction is based on using a sequence of univariate
interpolation formulas U i of increasing accuracy, and combining them cleverly
using tensor products. The key requirement for this sequence is that it should
be nested: for each i > 0, we require that U i uses all the interpolation points
of U i−1. Denoting by X i the set of interpolation points for U i, this condition
can be written as X i−1 ⊂ X i for all i > 0.

As we mentioned in Section 3.2, this section is also based on [6]. However,
we use somewhat different notation, so readers who are using both our thesis
and [6] should do so carefully.

We construct the sequence U i using the univariate Lagrangian interpola-
tion formula with Chebyshev–Gauss–Lobatto points which we described in
Subsection 3.2.2. Define X0 = {a+b

2 }, and for i > 0 let the set X i be given
by

X i :=
{
xj = a+ b

2 + a− b
2 cos(jπ/2i), j = 0, . . . , 2i

}
. (3.12)

This is precisely the set we had in (3.8), but we take 2i + 1 points instead of
n+1. It is easy to check that the definition above produces a nested sequence
of sets X i; in fact, the points in X i−1 are obtained by taking every second
point from the set X i. The exception we mentioned above is that the set X0

is defined to be the midpoint of the interval [a, b], but the sequence is still
nested since we have X1 = {a, a+b

2 , b}.
We now denote the basis functions for U i corresponding to xj ∈ X i by

18

lij(x), and define them as we did in (3.5):

lij(x) :=
∏

xk∈Xi

x− xk
xj − xk

. (3.13)

As in the case of the sets X i, we treat the case i = 0 separately, where we
simply define l00(x) = 1. Thus, according to (3.6), we have U0(f) = f(a+b

2),
and for i > 0 the formulas U i are given by

U i :=
∑
xj∈Xi

lij(x)f(xj), (3.14)

where X i is given by (3.12) and lij by (3.13).
Let α = (α1, . . . , αd) ∈ Nd be a d-dimensional multi-index as described in

Section 1.1, and define |α|1 = α1+. . .+αd. Furthermore, define the difference
operators ∆i by ∆0 = U0 and ∆i = U i − U i−1 for i > 0.

We are finally ready to present the multivariate sparse grid interpolation
formula of order k:

Akd(f) =
∑
|α|≤k

(∆α1 ⊗ · · · ⊗∆αd)(f)

= Ak−1
d (f) +

∑
|α|=k

(∆α1 ⊗ · · · ⊗∆αd)(f), (3.15)

where the sums are taken over all multi-indices α satisfying the given condi-
tion, and the term Ak−1

d (f) vanishes when k = 0.
The interpolation formula Akd given by (3.15) is the sparse grid version

of the tensor product interpolation formula (Uk ⊗ · · · ⊗ Uk)(f). It uses a
fraction of the number of grid points, but maintains the accuracy of the tensor
product version up to a logarithmic factor. The reason for the reduction in
the number of grid points is the condition |α| ≤ k in the sum of (3.15); since
the difference operator ∆i uses 2i interpolation points (as many as U i), the
tensor products ∆α1⊗· · ·⊗∆αd use ∏d

i=1 2αi = 2|α|1 ≤ 2k interpolation points.
By contrast, the full grid of order k contains 2k·d interpolation points. Of
course, there are many multi-indices α with |α|1 ≤ k and we are summing
over all of them, but the reduction is still quite significant.

Observe that, as (3.15) indicates, the formula Akd inherits the nesting
property of the sets X i. This has two very convenient consequences: firstly,
we can increase the order k without having to recompute everything; sec-
ondly, we can get an error estimate without needing any additional function
evaluations by comparing the interpolating functions Akd(f) and Ak−1

d (f),
since Akd(f) contains Ak−1

d (f).
It is also possible to rewrite (3.15) in terms of the univariate interpola-

tion formulas U i. In [10], Wasilkowski and Woźniakowski showed that the
Smolyak interpolation operator Akd(f) can be written as

Akd(f) =
∑

k−d+1≤|α|≤k
(−1)k−|α|

(
d− 1
k − |α|

)
(Uα1 ⊗ · · · ⊗ Uαd) (f). (3.16)

19

Note that |α| ≥ 0 since the elements of α are non-negative integers. The lower
bound |α| ≥ k − d+ 1 ensures that the binomial coefficient is well-defined.

The form given by (3.16) allows us to directly use the tensor product in-
terpolation described in Section 3.3, which will prove useful when we describe
the implementation of the sparse grid interpolation in Subsection 4.1.5. It
also directly gives us the set of interpolation points η(k, d), since we can re-
place the interpolation formulas U i by their corresponding CGL node sets
X i and change (3.16) accordingly to obtain

η(k, d) =
⋃
|α|=k

(Xα1 × · · · ×Xαd) , (3.17)

whereXα1×· · ·×Xαd is the Cartesian product of allXαi ; that is, the set of all
points (x1, . . . , xd) such that xi ∈ Xαi for all 1 ≤ i ≤ d. Note that in (3.16)
we only take unions over multi-indices α that satisfy |α| = k, because the set
of points corresponding to any multi-index β such that |β| < k is contained
in the set of points for some α satisfying |α| = k; this is a consequence of the
fact that the sets X i are nested, as described in Section 3.4.

As an example of what the interpolation node sets η(k, d) actually look
like, Figure 3.2 shows the sets η(k, 2) for k = 1, . . . , 6; the set η(0, 2) only
contains the midpoint of the interpolation region, and is therefore omitted.

3.5 Conformal mapping
Recall from Section 3.1 that we have a nominal domain Ω̃ and a stochastic do-
main Ω(s1, . . . , sn). We can discretize the stochastic domain by picking a set
of realizations of the random parameters (s1, . . . , sn); these realizations are
dictated by our choice of interpolation formula, as described in Section 3.1.
Since fixing the parameters makes the problem deterministic, we can solve
the problem separately for each of these realizations. The only open question
is then how we can map the solutions back to the nominal domain Ω in a
consistent way.

In our work, we chose to map the solutions using conformal mappings.
A mapping between two domains is called conformal if it preserves angles
locally. This means that if two lines intersect at, say, a 90° angle, the curves
obtained by mapping those two lines conformally will also intersect at a 90°
angle. Note that this property only applies locally — generally speaking, the
lines will not be straight lines anymore after being mapped.

The existence of a conformal mapping is unfortunately not guaranteed
between arbitrary three-dimensional domains; in fact, it generally does not
exist at all. However, in two dimensions one can always find a conformal
mapping between two simply connected domains (i.e. domains that do not
have holes). At the end of this section we will describe a way of using these
to obtain a mapping for certain types of three-dimensional problems as well,
but for general three-dimensional problems some other kind of mapping may
be needed.

20

Figure 3.2: Interpolation node sets η(k, d) given by (3.17), with d = 2 and
k = 1, . . . , 6. Note that the frames are merely for visual purposes; all nodes
at the edges lie on the boundary of the interpolation range.

21

We will soon describe a simple way of finding a conformal mapping from
any two-dimensional, simply connected domain to a rectangle. For a more
detailed explanation, we refer the reader to [5]. Finding the mapping between
two arbitrary domains is then a simple matter of mapping both domains
to rectangles and inverting one of the mappings. There is a slight caveat,
however: the exact dimensions of the rectangle depend on the domain, so
there is no guarantee that the domains will be mapped to similar rectangles.
In our work, this turns out not to be a problem, since it is not strictly
necessary for the mapping to be conformal; conformal mappings are merely
a convenient tool we are using to obtain mappings which are sufficiently
consistent. As such, we chose to bypass this issue by simply scaling the
rectangles to the same size. We do need to emphasize that this means the
resulting mapping is not actually conformal, since scaling just one dimension
is not a conformal transformation.

Disclaimers aside, let us see how exactly the conformal mappings can be
found. Take some domain Ω, and denote by Rh the rectangle [0, 1] × [0, h],
where h > 0 is a positive constant depending only on the domain Ω. This
constant will eventually vanish when we scale the rectangles.

Fix four distinct points z1, z2, z3, z4 ∈ ∂Ω on the boundary of Ω. These
points may be chosen arbitrarily, as long as they are distinct and ordered
counter-clockwise along the domain boundary ∂Ω. The choice is significant,
however, since these points will be mapped to the corners of the rectangle;
in particular, the choice should be consistent with the similar points chosen
in the nominal domain Ω̃, but we will get to that later on.

Fixing the four points as above effectively splits the boundary ∂Ω into four
arcs, which we shall denote by (z1, z2), (z2, z3), and so on. The significance of
these arcs will soon become apparent. Consider now the following (relatively
simple) PDE problem: find a function u satisfying the equations

∆u(x) = 0 for all x ∈ Ω,
u(x) = ψD(x) for all x ∈ D ⊂ ∂Ω,
∂
∂n
u(x) = 0 for all x ∈ ∂Ω \D,

(3.18)

where D is a subset of the boundary ∂Ω, ψD is a function defined on D, and
∆u(x) is the Laplacian of u, which is given in two dimensions by

∆u(x, y) = ∂2u(x, y)
∂x2 + ∂2u(x, y)

∂y2 .

The term ∂
∂n
u(x) in the last equation gives the derivative of u(x) in the

direction of the outward unit normal n, and the set ∂Ω \ D consists of all
points on the boundary which do not belong to the set D.

The problem (3.18) is a simple PDE with boundary conditions, which
is relatively easy to solve using a suitable piece of software; for our work,
we used the new NDSolve‘FEM package introduced in Mathematica 10. The
first equation of (3.18) is Laplace’s equation, and the second equation is a
Dirichlet boundary condition which fixes the values of u on the boundary.

22

The third equation is the homogeneous Neumann boundary condition; note
that in finite elements, this boundary condition is implicitly applied whenever
no other boundary condition is specified. The existence of a unique solution
u for (3.18) is guaranteed as long as ψD is nice enough, which it will be in
our application. For more discussion on the existence of solutions, we refer
the reader to [2] and [4].

Now, set D = (z1, z2)∪ (z3, z4), the union of two opposite arcs, and define

ψD(x) :=
1, x ∈ (z1, z2),

0, x ∈ (z3, z4).
(3.19)

With these definitions and a simply connected domain Ω, the Laplace prob-
lem (3.18) always admits a unique solution u. Similarly, if we set D′ =
(z2, z3) ∪ (z4, z1) and define

ψD′(x) :=
1, x ∈ (z2, z3),

0, x ∈ (z4, z1),
(3.20)

we obtain another unique solution v to (3.18). Combining these two solutions
then gives us a conformal mapping ϕ : Ω→ Rh by setting

ϕ(x) := (u(x), hv(x)),

where h is a constant given by

h :=
∫∫

Ω
|∇u|2 dxdy. (3.21)

Now that we know how to compute the conformal mappings, suppose that
we have the mappings ϕ and ϕ̃ with respective constant h and h̃, such that
ϕ maps the domain Ω to Rh and ϕ̃ maps the nominal domain Ω̃ to R̃h. As a
conformal mapping, ϕ is guaranteed to be invertible; thus we can obtain the
mapping from Ω̃ to Ω by first using ϕ̃ to map from Ω̃ to R̃h, then scaling the
y-coordinate to map from R̃h to Rh, and finally using ϕ−1 to map from Rh

to Ω.
Finally, let us write down the entire mapping to a domain Ω(s). Denote

the scaling function by T , defining it as

T (x) = T (x, y) =
(
x,
h̃

h
y

)
.

Then the mapping from the nominal domain Ω̃ to Ω(s) is given by

φ(x; s) = ϕ−1(T (ϕ̃(x))), for x ∈ Ω̃. (3.22)

We use the notation φ(x; s) since both ϕ−1 and T above depend implicitly
on s. Note, however, that ϕ̃ depends only on s̃, the parameter vector for the
nominal region. Thus in applications ϕ̃ only needs to be computed once.

23

Observe that ϕ−1 in (3.22) might not need to be computed explicitly. If
the goal is to essentially obtain the entire solution σ(x; s) for all parameter
vectors s, then inverting ϕ is indeed necessary. However, as we described at
the start of this chapter, in our work we settle for taking the solutions at
just one measurement point x̃ ∈ Ω̃; that is, finding the function σ(φ(x̃; s); s)
mentioned at the end of Section 3.1. This means that we only need the
mapping φ for the point x̃ rather than the entire domain Ω̃, so it is sufficient
to invert the mapping ϕ pointwise.

Recall that if f−1(x) is the inverse of f(x), then it satisfies

f(f−1(x)) = x

for all x such that f−1(x) is defined. We can use this by applying the mapping
ϕ to both sides of (3.22), which gives us

ϕ(φ(x; s)) = T (ϕ̃(x)). (3.23)

Thus, φ(x; s) is the point in Ω(s) which satisfies equation (3.23) above, and
since ϕ is invertible as a conformal mapping, this point is unique. Further-
more, if we denote the Laplace solutions defining ϕ and ϕ̃ by (u, v) and (ũ, ṽ),
respectively, then we have

ϕ(x) = (u(x), hv(x)),
ϕ̃(x) = (ũ(x), h̃ṽ(x)),

and (3.23) yields

(u(φ(x; s)), hv(φ(x; s))) = (ũ(x), hṽ(x)), (3.24)

where h̃ has been replaced by h on the right-hand side due to the scaling
function T .

Finally, since both sides of (3.24) above are two-dimensional vectors, we
can split it into two equations, which gives us

u(φ(x; s)) = ũ(x), (3.25)
v(φ(x; s)) = ṽ(x). (3.26)

Thus the mapping φ(x; s) of a point x is the unique point in Ω(s) which
satisfies (3.25) and (3.26) above, and this point can be found without needing
to compute ϕ−1.

This pointwise approach might seem like a complicated way of doing
things, but implementing it can be much easier than computing ϕ−1 explic-
itly. We used Mathematica to find the mapping, and while the NDSolve‘FEM-
package easily gives us interpolating functions for the mappings ϕ and ϕ̃,
inverting ϕ−1 can be very tricky. In fact, even though we know that ϕ is
invertible, its interpolating function might not be. However, solving a pair
of equations such as the one given by (3.25) and (3.26) is very easy in Math-
ematica; details of how this was done can be found in Chapter 4.

24

Finally, we describe a way of extending this to three dimensions for some
types of problems; specifically, problems where we know that the point which
we are mapping should only move on a two-dimensional surface. In such
cases, mapping the point is a simple matter of applying the conformal map-
ping scheme on that surface. Of course, in general it can be quite difficult to
know if we should constrain the mapping to two dimensions, but sometimes
it is clear that we should. A prime example of this is the case where we have
a two-dimensional domain depending on the parameters s which has been
extruded to create a beam or revolved around an axis to create an axisym-
metric object. In such cases, where the cross-section is identical throughout
the entire object, it is clear that the point should only move within the cross-
section. The same principle can be used for more general problems, but the
quality of results may vary.

25

Chapter 4

Implementation

In this chapter, we describe how we implemented the methods described
in the previous chapter. We begin by discussing the solution for the two-
dimensional model problem that we defined in Sections 2.1 and 2.2, before
moving on to the three-dimensional problem.

As we have mentioned before, we used Mathematica and Abaqus for solv-
ing our model problems; this chapter will focus on the details of how this was
done. We will however include general remarks where appropriate, and much
of the Mathematica/Abaqus-specific material should translate to other soft-
ware with relative ease. The goal is to give the reader a solid understanding
of how to implement this method regardless of the software used.

Naturally, the disclaimers from previous sections still apply. For instance,
we assume that the reader is familiar with solving FEM problems, which is
why we will not include a detailed explanation of how to create a model
in Abaqus or any other FEM program. We will, however, describe how we
modified the model to change the parameters; in other words, we assume the
reader has a solution for the deterministic problem, and we only focus on
how to use that solution to solve the stochastic problem.

As a further disclaimer, note that our work is mainly a proof of con-
cept. As such, our implementation has not yet been optimized, and some of
our solutions may even seem crude; our goal was simply to make a working
prototype. In other words, while the methods we describe do work as ad-
vertised, there may be much room for improvement in terms of speed and
convenience. We leave such improvements to the reader, although we will
include any thoughts we have on improving the method.

4.1 2D problem
Let us consider first the two-dimensional model problem of Sections 2.1 and
2.2. This part of our work was done entirely with Mathematica 10. We
used the NDSolve‘FEM-package both to solve the deterministic problem of
Section 2.1 and to compute the conformal mappings described in Section 3.5.

Since Mathematica 10 was not yet available on the CSC supercomputers
when the computations were done for this thesis, everything related to the

26

2D problem was run on a desktop computer. The machine we used had 8
GB of memory and an Intel Xeon X3450 quad-core processor running at 2.67
GHz with eight threads.

Since the entire solution process is somewhat lengthy, we have split the
implementation details into five parts. We begin by defining the domain and
its boundary conditions. After this we move on to constructing the mesh,
finding the conformal mapping, solving the deterministic problem, and finally
constructing the interpolating function.

4.1.1 Parameterized domain and boundary conditions
The first step was to define the domain in which we are solving the equations
(2.1)–(2.4) that were given in Section 2.1. Consider the L-shaped domain
obtained by taking the unit square [0, 1] × [0, 1] and removing the top-right
quarter of it (i.e. the square [1

2 , 1] × [1
2 , 1]). The domain we used was based

on this L-shape, but we used a kind of fillet to smooth out the sharp inside
corner of the domain.

Since we wanted to obtain a geometry which depends on several param-
eters, we replaced the corner with two 45° circle arcs and a line segment be-
tween them, as can be seen in Figure 4.1. The two circle arcs lay tangent to
the line segments on either side of them and they were given the same radius
r. The length of the line segment between them is denoted by d. In our com-
putations, the parameters were constrained to the range r, d ∈ [0.075, 0.125],
and the nominal domain was given by setting r = d = 0.1.

Figure 4.1: Geometry of the domain and its dependence on r and d.

Observe that the domain obtained by the construction above is symmet-
ric, and it is uniquely determined by the values of the two parameters r and
d, which will serve as the random variables in our model problem. It may

27

seem odd that we have carefully described a multi-dimensional interpolation
routine only to use a domain of just two parameters, but the reason for this
is quite simple: if the method works with two parameters, it will work with
several. In particular, the mappings we described in Section 3.5 do not use
any information related to the number of parameters; thus it would be un-
necessary to make the model problem any more complex. In Chapter 5 we
will of course discuss how an increase in the number of parameters affects
computation times and accuracy, but these are properties of the interpolation
scheme and are effectively independent of the model problem.

Now that we have defined the domain for the 2D problem, the only things
missing from the deterministic problem of Section 2.1 are the boundary condi-
tions given by Equations (2.3) and (2.4). In our model problem, the left edge
of the domain was held fixed in both x- and y-directions, which corresponds
to the Dirichlet boundary condition (2.3). A uniform force was applied to the
bottom edge, which in turn corresponds to the Neumann boundary condition
(2.4). The force was directed upwards, and since the force was uniform, the
load vector g was a constant vector in the positive y-direction. The magni-
tude of the load vector was chosen to be |g| = 1. On the rest of the boundary,
we applied the homogeneous Neumann boundary condition g = 0.

4.1.2 Meshing the domain
The next step was to mesh the domain. The NDSolve‘FEM-package in Math-
ematica 10 is capable of autonomously meshing a domain. The only input
it needs is a region, constructed either implicitly as a set of equations that
points in the region must satisfy, or explicitly using simple geometric objects
and Boolean operations such as unions and intersections. However, while
this approach works quite well, problems sometimes arise when dealing with
regions parameterized by floating point numbers.

Instead of letting Mathematica do all the work, we created the bound-
ary mesh manually instead, and then let Mathematica fill in the rest of the
mesh by itself. This is quite easy to do, all it takes is a list of the coor-
dinates of every node on the boundary of the domain; with this input, the
ToBoundaryMesh-function creates a boundary mesh in the format required
by the FEM-package. Of course, this is somewhat cumbersome, but it has
the benefit of giving the user complete control over the accuracy of the mesh.

We created a boundary mesh consisting of elements with a length of
approximately 0.0023; as the domain Ω has a diameter of 1, this results
in approximately 430 elements on each side of the domain. The length of
the boundary elements was further divided by 3 for the inside corner of the
domain, since that was the area where we wanted to measure the stresses;
all in all, the boundary mesh consisted of 1850–1950 elements, depending on
the values of r and d.

The boundary mesh was used as input for the ToElementMesh-function,
which creates a triangle mesh with a maximum element size defined by the
user. In this context the element size is the area of the element, which

28

is why we chose the maximum size to be 0.00005. This results in a mesh
where the largest element has a side length of approximately 0.014, which
is six times as large as that of the boundary elements; the total number
of elements in the mesh was approximately 37000. The mesh may well be
much finer than actually necessary, we simply used the finest possible mesh
given the available computational resources, mainly system memory. The
computations were run in parallel on seven Mathematica kernels, and a finer
mesh would have exhausted the 8 GB of system memory available.

4.1.3 Conformal mapping
Now that we have described the meshing process, we can move on to solving
the two FEM-problems: the conformal mapping between domains, and the
deterministic problem of Section 2.1. We begin with the former, since solving
it is easier. The following few sections will include some Mathematica code,
but we will not go into great detail about it; if the reader wishes to learn
more about using FEM in Mathematica, there are a number of good tutorials
on the Wolfram website.

Recall from Section 3.5 that we only need to solve two Laplace problems
to obtain a conformal mapping from any domain Ω to a rectangle Rh. The
first step is to pick four distinct points z1, z2, z3, z4 ∈ ∂Ω, where ∂Ω is the
boundary of the domain Ω. These are the points which will be mapped to
the corners of the rectangle Rh, and the quality of the conformal mappings
depends to some extent on how they are chosen. It may be a good idea to
experiment with several choices and see how they work out, some examples
of good choices can be found in the test cases used in [5].

In our simple model, the choice is quite natural, since the L-shaped region
already resembles a rectangle that has been bent at the middle. We therefore
chose the following four points:

z1 = (1/2, 1), z2 = (0, 1), z3 = (1, 0), z4 = (1, 1/2).

Note that these points have been chosen in counter-clockwise order around
the boundary, as required in Section 3.5. This choice then gives rise to the
following two Laplace problems:

∆u(x) = 0, x ∈ Ω,
u(x) = 1, x ∈ (z1, z2),
u(x) = 0, x ∈ (z3, z4),
∂
∂n
u(x) = 0, x ∈ ∂Ω \D,


∆v(x) = 0, x ∈ Ω,
v(x) = 1, x ∈ (z2, z3),
v(x) = 0, x ∈ (z4, z1),
∂
∂n
u(x) = 0, x ∈ ∂Ω \D′.

(4.1)

Above we have used the same notation as in Section 3.5: the sets (z1, z2)
and so on are subsets of the boundary ∂Ω, corresponding to the part of the
boundary that lies between the respective points. Thus e.g. the set (z1, z2)
is the line from (1/2, 1) to (0, 1) in our model problem; in other words, the
set of points satisfying y = 1. Similarly, (z2, z3) is the set of points satisfying
either x = 0 or y = 0, and so on. Finally, as in Section 3.5, the sets D

29

and D′ denote the subset of the boundary where the Dirichlet boundary
conditions are applied; in other words, the homogeneous Neumann boundary
conditions in (4.1) are applied everywhere on the boundary ∂Ω where no
Dirichlet condition is given.

Solving the Laplace problems of (4.1) is quite easy: we only need to
encode the equation and boundary condition in a way which Mathematica
can understand. This is quite easy with the NDSolve‘FEM-package; in fact,
the solution to the first of these Laplace problems is given by the following
lines of code:

op = Laplacian[u[x, y], {x, y}];
dirichlet = {DirichletCondition[u[x, y] == 0, x == 1],

DirichletCondition[u[x, y] == 1, y == 1]};
NDSolveValue[{op == 0, dirichlet}, u, {x, y} \[Element] mesh}];

The last line of code above will output the solution to the Laplace problem.
Since FEM problems are only solved at the nodes of the mesh, Mathematica
interpolates the solution between the nodes.

The input for NDSolveValue consists of three parts: a set of the equations
and boundary conditions, the function to be solved, and a list of the inde-
pendent variables. \[Element] is the set membership symbol ∈, and mesh is
the output of the ToElementMesh-function described in the previous section;
thus, the last part indicates that the point (x, y) is in the area defined by the
mesh. The first line of code indicates that the operator op is the Laplacian
of u with respect to x and y. The second and third line give the Dirichlet
boundary conditions as described in Section 3.5: u(x) = 0 on (z3, z4) and
u(x) = 1 on (z1, z2). Observe that the homogeneous Neumann condition in
(4.1) does not need to be encoded, as it is implicitly applied on all parts of
the boundary where no other boundary condition is given.

The solution to the second Laplace problem in (4.1) is obtained by simply
applying the Dirichlet boundary conditions on (z2, z3) and (z4, z1) instead;
the boundary conditions are thus replaced by the following:

{DirichletCondition[u[x, y] == 0, x >= 1/2 && y >= 1/2],
DirichletCondition[u[x, y] == 1, x == 0 || y == 0]};

The rest of the code is identical. Note that the conditions given for x and y
in DirichletCondition are only checked along the boundary of the domain;
it makes no difference that the first line above has conditions which are also
satisfied inside the domain. This makes giving the boundary conditions much
easier, since we do not need to tell Mathematica anything about the shape
of the inside corner.

Figure 4.2 demonstrates what the conformal mapping ϕ̃(x) from the nom-
inal domain Ω̃ to the corresponding rectangle R

h̃
looks like. The first image

shows the shape of the nominal domain, and the second image gives a 20×20
rectangular grid in the rectangle R

h̃
. The third image in Figure 4.2 gives the

preimage of the rectangular grid under ϕ̃(x); in other words, ϕ(x) maps the
curves in the third image to the grid displayed in the second image. We can

30

see that the mapping is symmetric, which is to be expected with a symmet-
ric domain and a symmetric choice of the points z1, z2, z3 and z4. Observe
that the curves intersect at 90° as expected, since the conformal mapping
preserves angles locally. The parameter h̃ which determines the height of the
rectangle R

h̃
is given by (3.21), which yields h̃ ≈ 0.415; however, this value

is ignored when we map Ω̃ to another domain Ω(r, d).
Now we have the mapping from a domain Ω to a rectangle Rh, but what

we really want is the mapping from the nominal domain Ω̃ to another domain
Ω(r, d). Recall that we described a way of doing this pointwise at the end
of Section 3.5. The goal is to obtain the mapping ϕ(x; s) = ϕ(x; r, d) by
solving the following two equations:

u(φ(x; s)) = ũ(x),
v(φ(x; s)) = ṽ(x).

These are the equations (3.25) and (3.26) which were provided in Section 3.5.
Now, suppose that we have a point x = (x, y) ∈ Ω̃ that we want to map to

the domain Ω(r, d). The right-hand side of the equations above only requires
the functions ũ and ṽ, which are obtained by solving the Laplace problems
in the nominal region. Since we have already described how to solve them,
we assume that we have the solutions x0 := ũ(x) and y0 := ṽ(x). Similarly,
we can solve the functions u and v corresponding to the domain Ω(r, d).

All that remains is then to find the point which u maps to x0 and v maps
to y0; this point is unique and guaranteed to exist. Finding it is just a matter
of solving two equations, and Mathematica has a number of ways for doing
this. The way that we found to work well is to use the function NMinimize,
which numerically finds the minimum of a given function. This can be used
to solve equations by minimizing the norm of the difference between the two
sides of the equation. The last bit of code needed to obtain the conformal
mapping is then the following:

NMinimize[Norm[{x0 - u[x,y], y0 - v[x,y]}],
{x,y} \[Element] MeshRegion[mesh]];

Note the additional MeshRegion-function; this is needed for NMinimize since
the mesh is only used to specify the search region. We should also point out
that the above code may require Mathematica 10.0.2 or a later version; in
earlier versions, the following code can be used instead:

NMinimize[{Norm[{x0 - u[x,y], y0 - v[x,y]}],
SignedRegionDistance[MeshRegion[mesh]][{x,y}] <= 0},
{x,y}];

Observe that the functions ũ and ṽ only need to be solved once, since the
same functions can be used regardless of the target domain Ω(r, d). They
also only need to be evaluated once for each mapped point.

Now that we have described the implementation of the conformal map-
ping, let us see how accurate it is. Recall from Subsection 4.1.2 that the

31

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.2: A demonstration of the conformal mapping ϕ̃(x) from the nomi-
nal domain Ω̃ to the rectangle R

h̃
. The first image shows the nominal domain,

the second shows the rectangle and a 20× 20 grid in it, and the third shows
the curves in the nominal domain which ϕ̃(x) maps to the rectangular grid.

32

mesh we used consisted of 37 000 elements. In order to ensure that the con-
formal mapping was computed to a sufficient level of accuracy, we carried
out a mesh convergence study to examine how the accuracy depends on the
number of mesh elements. Scaling the values used in the construction of the
mesh in Subsection 4.1.2, we created meshes with approximately 37000 · 2m
elements, where m = −10, . . . , 4; the mesh corresponding to m = 0 was the
one which we actually used in our work. For each of these meshes, we com-
puted the conformal mapping of a point x̃ from the nominal domain Ω̃ to
another domain Ω(r, d); the exact location of the point x̃ is given later on in
Section 5.2, where we use it as the measurement point when we examine the
results of our method.

The mesh convergence study was carried out for the four domains corre-
sponding to the corners of the interpolation range, where r and d equal either
0.075 or 0.125. The worst accuracy occurred in the case where r = d = 0.075,
which is not surprising since the inside corner of the domain Ω(r, d) is sharper
when r and d are smaller. In Figure 4.3, we have plotted the accuracy of the
conformal mapping against the number of mesh elements used. The map-
ping obtained using the densest mesh was used as a reference point, and the
accuracy of all other meshes was computed as the absolute distance between
the mapped point and the reference point; note that the width and height of
the domain was 1. The accuracy of the mapping was approximately 4 · 10−7

for the mesh which we described in Subsection 4.1.2; clearly, this accuracy is
more than sufficient for our purposes.

500 1000 2000 5000 10000 20000 50000 100000200000

10-7

10-6

10-5

10-4

10-3

Figure 4.3: Semi-log plot of the accuracy of the conformal mapping as a
function of the number of mesh elements. The accuracy was measured as
the distance of the mapped point to the reference point which was computed
using a mesh of almost 460 000 elements. The fourth point from the right
has been marked in red to indicate the mesh which we used in our numerical
experiments in Section 5.2.

33

In general, the conformal mappings can be computed quite accurately,
as the only thing we need to do to obtain the mapping is solve a pair of
Laplace problems. Of course, we also need to invert a conformal mapping
pointwise to obtain the mapping from Ω̃ to Ω(r, d); this is what we used the
NMinimize-function for earlier in this subsection. However, the inversion can
be done with almost arbitrary accuracy, and so its effect on the accuracy of
the mapping to Ω(r, d) is negligible. In our numerical experiments, we used
a minimum accuracy of 10−14 for the inversion, as increasing the accuracy of
NMinimize is much less costly than increasing the accuracy of the conformal
mappings.

4.1.4 Solving the deterministic problem
The next step was to solve the deterministic problem which we introduced
in Section 2.1. The procedure is very similar to how we solved the Laplace
problems, but first let us manipulate the equations (2.1)–(2.2) into another
form. The goal is to obtain an equation involving only the displacement
vector u. We will then solve the equation for u and use it to compute
the stress component σ22. The other stress components are excluded simply
because we do not need them later on; the results were similar for all three
stress components, which is why we will only demonstrate the results for one
of them.

Substituting σ(u) from (2.1) into (2.2) and substituting ε(u) from (2.7)
yields

div
(
λ div(u)I + µ

(
∇u+∇uT

))
= 0.

Above, div(u) is the vector divergence and ∇u is the Jacobian matrix of
u. Denoting the components of u by u and v and writing the matrices out
explicitly, we obtain

div
(
λ

(
∂xu+ ∂yv 0

0 ∂xu+ ∂yv

)
+ µ

(
2∂xu ∂yu+ ∂xv

∂yu+ ∂xv 2∂yv

))
= 0, (4.2)

where ∂x denotes the partial derivative with respect to x.
Observe that the divergence now has a matrix as its argument. This is

the vector-valued tensor divergence which we defined in (2.5). Applying this
definition to (4.2) gives

λ

(
∂xxu+ ∂xyv
∂xyu+ ∂yyv

)
+ µ

(
2∂xxu+ ∂yyu+ ∂xyv
∂xyu+ ∂xxv + 2∂yyv

)
= 0. (4.3)

Since a vector is zero if and only if each of its elements is zero, equation
(4.3) above is equivalent to the following pair of equations:(λ+ 2µ)∂xxu+ (λ+ µ)∂xyv + µ∂yyu = 0,

(λ+ 2µ)∂yyv + (λ+ µ)∂xyu+ µ∂xxv = 0.
(4.4)

However, this cannot directly be used as input for Mathematica. Recall
that the Neumann boundary condition (2.4) is given for the stress tensor σ;

34

unfortunately, Mathematica has no way of knowing that this is the boundary
condition we want. However, if we can give the equations (4.4) in terms of
divergences, as in the original equations (2.2) and (2.4), then Mathematica
will be able to interpret the Neumann boundary condition correctly.

Fortunately, writing (4.4) in terms of divergences is relatively simple.
Indeed, the first equation can be written as

∇ ·
((

λ+ 2µ 0
0 µ

)
· ∇u+

(
0 λ
µ 0

)
· ∇v

)
= 0, (4.5)

and the second equation admits a similar form.
Now that we have the necessary equations to find the displacement vector

u, all that remains is to obtain the stress component σ22 as a function of u
and v. This can be done by directly solving from (2.1). Using the result
already obtained in (4.2), we see that (2.1) can be written explicitly as(

σ11 σ12
σ12 σ22

)
= λ

(
∂xu+ ∂yv 0

0 ∂xu+ ∂yv

)
+ µ

(
2∂xu ∂yu+ ∂xv

∂yu+ ∂xv 2∂yv

)
.

This can be written as four separate equations, and the one involving σ22
yields

σ22 = (λ+ 2µ)∂yv + λ∂xu. (4.6)
All in all, the plan is to solve the coupled PDEs of (4.4) using FEM, and use
the partial derivatives of the solution to obtain σ22 from (4.6).

Now that we have all the equations we need, we can give the Mathematica
code that was used for the actual computations. First, we need to obtain the
displacements u and v. These are given by calling NDSolveValue:
{uif,vif} = NDSolveValue[{op=={0,neumann},dirichlet},{u,v},

{x,y} \[Element] mesh];

As before, op encodes the equation itself, while neumann and dirichlet
give the boundary conditions. Note that the right-hand side of the equation
is now a vector, since we are solving two PDEs. The Neumann condition is
only applied to the second element of the vector, because the load vector g
points in the positive y-direction and thus only has a y-component. Observe
that the Neumann condition only needs to be specified when the load vector
is non-zero; as we mentioned in Subsection 4.1.3, Mathematica implicitly
assumes a homogeneous Neumann condition if no other boundary condition
is provided.

In Subsection 4.1.1 we defined that the Neumann boundary condition is
applied at the bottom edge where y = 0, and that the magnitude of g is 1.
The boundary condition is then obtained in Mathematica by setting
neumann = NeumannValue[-1,y==0];

The first argument above is negative since the load vector g and the outward
unit normal point in opposite directions.

The left edge of the domain was held fixed in both x- and y-directions;
thus the Dirichlet boundary condition sets u = v = 0 at x = 0. The appro-
priate code in Mathematica for this is

35

dirichlet = DirichletCondition[{u[x,y]==0,v[x,y]==0},x==0];

Finally, we need to define the operator op. It is given by the following
somewhat awkward piece of code:

op=Inactivate[{Div[{{λ+2µ,0},{0,µ}}.Grad[u[x,y],{x,y}],{x,y}]
+ Div[{{0,λ},{µ,0}}.Grad[v[x,y],{x,y}],{x,y}],
Div[{{µ,0},{0,λ+2µ}}.Grad[v[x,y],{x,y}],{x,y}]
+ Div[{{0,µ},{λ,0}}.Grad[u[x,y],{x,y}],{x,y}]},
Div|Grad];

Ignoring the Inactivate-function for a moment, the rest of the first four
lines encode the equations given by (4.4). The equations have been input in
the form given by (4.5); the functions Div and Grad give the divergence and
gradient. The Lamé coefficients λ and µ were computed from (2.6) using the
values E = 1000 and ν = 0.3 which we defined in Section 2.1.

The reason we needed to include the Inactivate-function is that it pre-
vents Mathematica from evaluating specific functions too early; in this case,
the last row tells Mathematica to leave the Div- and Grad-functions inactive.
If we did not use Inactivate, Mathematica would automatically simplify
the form given by (4.5) back into that of (4.4), which would again result
in the problem of NDSolve not understanding how we want the Neumann
boundary condition to be applied.

This completes all the definitions that are needed before the actual call
to NDSolveValue which we gave earlier. Now, we assume that we have the
interpolating functions uif and vif, representing u and v respectively. Then
all that remains is to obtain σ22 using (4.6). We skip the code since it is quite
trivial. The partial derivatives can be obtained with the following code:

dxu = Derivative[1,0][uif][x0,y0];
dyv = Derivative[0,1][vif][x0,y0];

The arguments of Derivative indicate how many times the function should
be differentiated with respect to each variable.

Naturally, at this point we can evaluate the stress component σ22 at as
many points as we want without having to solve the problem again, since all
we need to do is evaluate the derivatives at each point and apply (4.6). We
should point out that in terms of accuracy, stresses require a denser mesh
than displacements do, since solving them involves differentiating u; this is
the main reason why we constructed a mesh which was as dense as possible.

4.1.5 Interpolation
Up to this point we have focused on solving the entire problem for a single
choice of the parameters r and d. Now that we have a solution for this, we
can move on to interpolation.

As a quick recap, recall that we are using a sparse grid interpolation
scheme which, given some function, aims to use as few function evaluations as

36

possible to accurately interpolate the function over a given range of values. In
our model problem, this function essentially does everything we just described
in Subsections 4.1.1–4.1.4: given a point in the nominal domain and the
variables r and d, the function maps the point to the domain given by r and
d, solves the deterministic problem in the domain and returns the stresses at
the mapped point. However, complex as this is, from an interpolation point-
of-view it makes no difference; we can simply treat it as a regular function
in two variables.

In our work, we used interpolation code which was kindly provided by
our colleague Vesa Kaarnioja. However, the code is quite complex since it
has been optimized for applications where the run time of the interpolation
code itself has a significant impact on the overall speed. In our work this
is of course not the case, since each function evaluation requires solving an
entire FEM problem. We will therefore describe a simplified interpolation
code, which is easier to implement but still fast enough for our purposes.

In order to describe an algorithm for sparse grid interpolation, we need to
begin with an algorithm for the full grid interpolants Uα1 ⊗ · · · ⊗ Uαd which
appear in (3.16). Fortunately, Klimke has described such an algorithm in
detail, so rather than repeat his work here, we refer the reader to pages
29–35 of [6]; the algorithm itself is on page 34.

Using the algorithm for full grid interpolation, (3.16) can then be imple-
mented by simply summing over the terms. Algorithm 1 describes how this
can be done. The algorithm was given by Gerstner in [3]; we have corrected
a few misprints and modified it to match our notation. The full grid inter-
polation algorithm is denoted by FullGridInterpolation[x, α], where x is the
point which we want to interpolate and α is the multi-index from (3.16). In
a real implementation Algorithm 1 would of course also require the interpo-
lation range and function values at interpolation points as input, but since
this information is only passed on to the full grid interpolation function, we
have skipped such details.

Note that the binomial coefficient
(
n
k

)
should not be computed using the

definition (
n

k

)
= n!
k!(n− k)! ,

as it is prone to catastrophic overflow. If there is no pre-existing function
available for computing it, an easy solution is to use the recurrence formula(

n

k

)
= n

k
·
(
n− 1
k − 1

)
,

(
n

0

)
= 1.

This can and should be implemented using floating point arithmetic, as using
integers runs the risk of overflow.

Naturally, Algorithm 1 can also be used to obtain the set of interpolation
points η(k, d) given by (3.17) with very small modifications. The outer for-
loop should be removed since we are only interested in the case where l = k.
The variable p should be replaced by a set, or any other data structure which
does not store duplicate values. Finally, the function fullGridInterp[x, α]

37

Algorithm 1 An algorithm for evaluating the sparse grid polynomial
interpolant Adk(f) using the form given by (3.16). This algorithm
requires two functions: BinomialCoefficient[n, k], which evaluates

(
n
k

)
,

and FullGridInterpolation[x, α], which evaluates the full grid interpolant
(Uα1 ⊗ · · · ⊗ Uαd) (f)(x). Note that the latter function will require the val-
ues of f at the interpolation nodes; this is not considered here, we only show
how to evaluate the sum in (3.16).
Input:

k ∈ N: Order of interpolation.
d ∈ N+: Dimension of interpolation.
x: Point which we want to interpolate.

Output:
p = Akd(f)(x): Interpolated value of f at x.

1: Let p = 0.
2: For max(0, k − d+ 1) ≤ l ≤ k do
3: Let α = (α1, . . . , αj) = (0, . . . , 0).
4: Let c = (−1)k−l · BinomialCoefficient[d− 1, k − l].
5: If l = 0 then
6: Let p = p+ c · FullGridInterpolation[x, α].
7: Continue.
8: End If
9: Let α̂ = (α̂1, . . . , α̂j) = (l, . . . , l).
10: Let q = 1.
11: while αd ≤ l do
12: Let αq = αq + 1.
13: If αq > α̂q then
14: If q 6= d then
15: Let αq = 0.
16: Let q = q + 1.
17: End If
18: Else
19: For 1 ≤ r ≤ q − 1 do
20: Let α̂r = α̂q − αq.
21: End For
22: Let α1 = α̂1.
23: Let p = p+ c · FullGridInterpolation[x, α].
24: Let q = 1.
25: End If
26: End while
27: End For
28: Return p.

38

should be replaced by a function which returns all the interpolation points
in the full grid corresponding to the multi-index α.

The entire interpolation scheme can finally be implemented by taking
the interpolation points given by the algorithm described in this subsection,
solving the corresponding deterministic problems and mappings, and using
the results as input for Algorithm 1.

4.2 3D problem
In this section we describe the implementation of the 3D model problem
which was very briefly introduced in Section 2.4. The description will be
shorter than the previous section, since most parts of the 2D implementation
carry over to the three-dimensional case.

For the three-dimensional case, we still used Mathematica for computing
the mappings and interpolating. However, Abaqus was used for solving the
deterministic problems. Mathematica was still used on the same desktop
computer that we described in Section 4.1, but for Abaqus we made use of
the Taito supercluster, a computing server managed by CSC.

We will go into greater detail about computational aspects later on; for
now, let us start from the beginning by filling in all the details for the model
problem which were skipped in Section 2.4.

The three-dimensional domain Ω(r, d) was obtained by rotating the 2D
domain, which we showed in Figure 4.1 of Subsection 4.1.1. In that subsec-
tion, we specified the coordinate system such that the bottom left corner was
at the origin, with the x-axis pointing to the right and the y-axis upwards.
For the three-dimensional case, let the bottom left corner of the 2D domain
be located at (0, 1) instead; otherwise, we use the same coordinate system.
The three-dimensional object was then obtained by rotating the 2D domain
180 degrees around the y-axis; the resulting object is displayed in Figure 4.4.
In the figure, the positive y-direction is to the left and the positive x-direction
is upwards.

The object was modelled as a general elastic body, with the material prop-
erties of steel, given by E = 2 · 1011 and ν = 0.3. The boundary conditions
were similar to those of the 2D problem, with one face of the domain fixed
and another subjected to an external load. Using Figure 4.4 for reference, the
bottom side of the object was fixed using an encastre boundary condition,
which prevents both movement and rotation in all coordinate directions. The
external load was applied to the curved inner surface of the object, which
corresponds to the bottom edge of the two-dimensional domain in Figure 4.1.
Since we wanted to keep the boundary conditions analogous to those of the
two-dimensional case, we modelled this external load as a uniform pressure
on the surface, with its sign chosen such that the resulting force pushes the
surface radially outward, away from the y-axis. The pressure was given a
magnitude of 108.

The next step was to encode the deterministic problem described above in
Abaqus. As we have stated earlier, we assume that anyone implementing our

39

Figure 4.4: The 3D nominal domain and the mesh which was used for it.
Observe that the mesh was made significantly denser in the inside corner, as
this is where we wanted to measure the stresses.

work has the necessary experience to solve such deterministic problems using
some software such as Abaqus, so we will focus on the additional challenges
caused by needing to create several models for various values of r and d.

The easiest way to create an object such as the one in Figure 4.4 using
Abaqus is to first sketch the 2D domain and then rotate it around an axis.
This also made it easy to create a model depending on r and d, since we
simply needed to create a sketch which depends on these two values. However,
care must be taken to ensure that the sketch is correct for every choice of r
and d in the chosen range, which in our case was r, d ∈ [0.075, 0.125] as in the
two-dimensional case. Fortunately Abaqus makes this quite easy, since its
sketching tool includes constraints which can be used to, for example, force
two line segments to be parallel or two arcs to have the same radius.

The fact that r and d can vary also makes meshing quite difficult. It
goes without saying that the accuracy of the interpolation is limited by the
accuracy of the FEM solution, so we had to make it as accurate as possible
for all possible values of r and d. At the same time, we had to ensure that any
single FEM problem could be solved quickly enough. The mesh that we used
for the nominal domain can be seen in Figure 4.4, and it was constructed
carefully to ensure that the mesh is similar regardless of the values chosen
for r and d. The mesh was densest at the inside corner of the L-shape, since
this is where we measured the stresses. The total number of elements in the
mesh ranged from 58000 to 65000, depending on the values of r and d.

We should point out that the ranges we used for r and d were intentionally
quite large; naturally, smaller variation in the parameters will also make mesh
design easier. Regardless, we highly recommend checking the mesh quality
for several values of the model parameters, in particular the extreme cases
where parameters get their largest or smallest values.

We tackled the problem of creating multiple models by first creating a
model for the nominal domain, and then writing a script which used that
model as a template. In Abaqus, models can be edited or even created using

40

Python commands. Furthermore, when using the graphical user interface
to design models, Abaqus simultaneously writes every action into a Python
script, which makes it quite easy to script Abaqus actions without prior
experience.

Naturally, creating or editing models using a script imposed a similar
problem as meshing: extreme care had to be taken to ensure that the model
was correct for any values of r and d. A particular problem that we encoun-
tered was that changing r and d could, in our model, change the surfaces
where boundary conditions were applied. Such problems can be very rare;
this one only happened five times in a set of over 700 models. We solved
this problem by simply creating the boundary conditions with the script file
instead of having them in the template model, but it serves well to highlight
the kinds of problems which may arise. In most cases, these problems will
of course stand out: either the calculations for the model fail, or the result
clearly sticks out from the rest of the data.

The conformal mappings were implemented in the exact same way as in
the two-dimensional case. As we explained at the end of Section 3.5, the map-
pings for a three-dimensional object can be constructed in two dimensions
if the object has the same cross-section throughout. This is clearly the case
here, since we have created the object by rotating a two-dimensional domain.
Therefore, we used the same conformal mappings as in the two-dimensional
case, making sure that the mapped point stays in the same cross-section as
the original point; in other words, both points were required to lie in the
same plane as the y-axis.

In the interpolation scheme, nothing changes when we add a spatial di-
mension. The interpolation needs no information about the underlying func-
tion, it only cares about the function values at specific points (r, d). However,
since we were no longer working with a single software, or even on a single
computer, our implementation did change slightly as a result. As we men-
tioned earlier, we used Abaqus on the Taito supercluster, while Mathematica
was run on a desktop computer since the CSC machines did not yet have
the latest version of Mathematica which introduced the FEM functionality
we needed. Consequently, some parts of the solution process were impossible
to automate. Thus, instead of solving the entire problem related to a point
(r, d) before moving on to the next one, we instead solved a single step for
all the points (r, d) given by the interpolation scheme before moving on to
the next step.

Naturally, the first step was to extract a list of points (r, d) from the
interpolation scheme. Next, we computed all the conformal mappings in
Mathematica and solved all the deterministic problems in Abaqus; these two
steps could be done at the same time since they are independent of each other.
Finally, we extracted the stresses from the solutions to the deterministic
problems at the points determined by the conformal mappings. This data
was then used as input for the interpolation scheme.

41

Chapter 5

Numerical experiments and
evaluation

Now that we have described the theory behind our method and how it was
implemented, all that remains is to see how the method actually performs.
In Section 5.1, we compare the sparse and full grid interpolation schemes
which were described in Chapter 3. In Section 5.2, we present the results
of our numerical experiments and analyze the accuracy of the interpolation.
Finally, in Section 5.3 we discuss how various factors affect the speed and
accuracy of our method, and provide the computation times in our model
problem as a reference.

5.1 Sparse vs. full grid interpolation
One of the key parts of our method is the Smolyak sparse grid interpolation
scheme. It is therefore natural to ask how much better it actually is compared
to the naïve full grid interpolation. This is of course difficult to answer in
general, since the answer depends greatly on the function which is being
interpolated.

From a theoretical point of view, it can be shown that the sparse grid
interpolant preserves the accuracy of a full grid interpolant of the same order
up to a logarithmic factor. On the other hand, the full grid uses (2k + 1)d
grid points, which is exponential in d. Meanwhile, in [1], Bungartz and
Griebel show that the sparse grid uses at mostO(2kkd−1) interpolation nodes;
thus, the sparse grid greatly diminishes the curse of dimensionality which is
predominant in full grid interpolation.

As a concrete example of just how many fewer points are needed by the
sparse grid, we have computed the number of interpolation points required
by both schemes for various values of k and d; the results are shown in
Table 5.1. We can see that even with the simple two-dimensional case, the
full grid of order 7 uses over 20 times as many points as the sparse grid does,
and when we go up to eight dimensions, the ratio increases to over 1011. The
number of sparse grid points does seem to grow quite rapidly as well, but
we should keep in mind that the underlying univariate quadrature rule uses

42

Table 5.1: A comparison of the number of nodes required by the full grid and
sparse grid interpolation schemes at various values of d and k. The numbers
are given by Nfull = (2k + 1)d and Nsparse = |η(k, d)|.

d = 2 d = 4 d = 8
k Nfull Nsparse Nfull Nsparse Nfull Nsparse

0 1 1 1 1 1 1
1 9 5 81 9 6561 17
2 25 13 625 41 3.9 · 105 145
3 81 29 6561 137 4.3 · 107 849
4 289 65 83521 401 7.0 · 109 3937
5 1089 145 1.2 · 106 1105 1.4 · 1012 15713
6 4225 321 1.8 · 107 2929 3.2 · 1014 56737
7 16641 705 2.8 · 108 7537 7.7 · 1016 1.9 · 105

2k + 1 interpolation points, so incrementing k by one should always at least
double the number of points used.

Naturally, we have to keep in mind that the full grid interpolant of order
k does still give better results than the sparse grid version of the same order.
Therefore, Table 5.1 does not actually tell the whole truth, but it merely
serves to indicate how quickly the full grid approach becomes unfeasible;
keep in mind that we need to solve a FEM problem for each grid point, and
solving tens of thousands of them can be quite problematic.

All of this makes one thing clear: the sparse grid approach is definitely
the way to go when k and d are large. Unfortunately, this is not necessarily
the case in our work, since the expense of solving FEM problems makes it
preferable to keep k and d as small as possible.

When the theoretical approach fails, the natural solution is to try both
methods in practice. Luckily, A. Klimke has already done this in his won-
derful PhD thesis [6], the same work which we used as a basis for the in-
terpolation sections of Chapter 3. Interested readers should take a look at
his results, which can be found on pages 55–57 of the thesis; the relevant
figures are the ones which show the CGL interpolant, which is the same one
that we have used in our work for the sparse grid interpolation. We will
now briefly describe the results, but we do not include the graphs or specific
details about the test functions used.

In his work, Klimke computed the accuracy of the sparse and full grid
interpolants as a function of the number of grid points required. Five different
test functions were used, and the test was done for dimensions d = 2, d = 5
and d = 10. The results which Klimke obtained clearly show that the sparse
grid approach starts pulling ahead as the number of dimensions increases,
which is precisely what we would expect. Even in the case of d = 2, it
provided better results on average.

The full grid approach did prove to work better for two functions in
the two-dimensional case and one function in the five-dimensional case, but

43

these functions had relatively sharp peaks which is not the kind of behaviour
that we would expect from the functions we are interpolating here. The
conclusion is that while there do exist cases where the full grid interpolant
may outperform its sparse counterpart, the results provided by [6] clearly
favor the sparse grid approach.

5.2 Results
In this section, we examine how well the method worked for our two model
problems. For both cases, we computed the interpolating functions of order
up to k = 7. In order to gauge the accuracy of our method, we first define
the maximum error for a function f through

ek(f) :=
∥∥∥Ak2(f)− A7

2(f)
∥∥∥
∞
, (5.1)

where Ak2(f) is the two-dimensional interpolant of order k for f , and the
interpolant of order 7 is used as a reference since the function f is not known
explicitly. The norm ‖·‖∞ above gives the maximal absolute value of its
argument; in other words, for any point (r, d) the difference in the function
values predicted by the interpolants of order k and order 7 is at most ek(f).

Now, the error estimate which we will use in this section is a normalized
version of (5.1), given by

en
k(f) := ek(f)

e0(f) =

∥∥∥Ak2(f)− A7
2(f)

∥∥∥
∞

‖A0
2(f)− A7

2(f)‖∞
, (5.2)

In other words, we normalize the errors such that en
0(f) = 1. The main

reason for this is to make it easier to compare the results of the two- and
three-dimensional model problem.

Recall from Section 3.1 that a measurement point x̃ is chosen in the
nominal domain Ω̃. We experimented with a number of measurement points,
but since none of the results particularly stood out, we present all our results
using a single measurement point. In the 2D nominal domain of Figure 4.1,
the point was located at the middle of the topmost arc, at a depth of 0.001
inside the domain; recall that the width and height of the domain is 1. For
the 3D domain, the measurement point was chosen from the cross-section
at the center of the domain. Since the cross-section is identical to the 2D
domain, the same point was chosen within the cross-section.

For both cases, we computed the interpolating functions of order up to
k = 7. As can be seen from Table 5.1, this means we solved a total of 705
FEM problems for each case. We measured the stress component σ22 in both
the two-dimensional and three-dimensional case.

Figure 5.1 shows the function values at the interpolation points with order
k = 7, and Figure 5.2 shows the interpolating function itself. The result looks
quite smooth, which is not entirely unexpected given the simple nature of the
model problem. It does however raise the question of whether it is necessary
to use an order 7 interpolant.

44

0.08
0.10

0.12

0.08

0.10

0.12

- 5.0

- 4.5

- 4.0

- 3.5

Figure 5.1: Function values at the interpolation points for the 2D model
problem, with k = 7. The bottom axis corresponds to r, the diagonal axis
to d and the vertical one to σ22.

Figure 5.2: Interpolating function of σ22 for the 2D model problem, with
k = 7, using the values and axes shown in Figure 5.1.

45

As it turns out, for the 2D model problem we would have obtained an
interpolating function of sufficient accuracy even with an interpolant of order
2 or 3. Figure 5.3 displays the error of the interpolation as a function of k,
using the normalized maximum error en

k defined in (5.2). The first two errors
are quite large as expected, given that they correspond to a constant and
linear interpolant. However, the interpolants of order 2–6 all have approx-
imately the same maximum error. The reason for this lies in the inherent
inaccuracy of the FEM solution for σ22, which prevents us from getting any
better accuracy regardless of the order of interpolation; naturally, the inter-
polating function cannot be more accurate than the function values which it
is interpolating.

The noise in the data is almost impossible to notice in Figure 5.1, but if
we first subtract the values predicted by a low-order interpolant, the effect
becomes quite clear. In Figure 5.4, we have taken the interpolation points
lying on the d-axis, subtracted the values predicted by the interpolant of
order 1 at the same points, and then divided the values by e0 ≈ 0.83; this
scaling was done to make it easier to see how the values might affect the
accuracy of the method, as the same scaling was used in the normalized
error given by (5.2). As we can see, the noise in the data is quite significant.
For example, approximately at d = 0.106, there is an instance where two
consecutive points differ by over 0.002, even though from the general trend
we would expect the difference to be smaller by an order of magnitude. Since
every second point in Figure 5.4 is only available for the interpolant of order
7, there is no way that a lower order interpolant could have a normalized
error en

k smaller than 0.001. In this context, the error of 0.005 which we saw
in Figure 5.3 is quite acceptable.

The above analysis demonstrates a key factor in our method: the accuracy
of the FEM solution plays a large part in determining how accurate our
interpolation can be. Naturally, in most applications we may not need to
reach higher accuracies, but this effect can also be used as a good indicator
for when to stop increasing the order of interpolation k. Of course, it is a
good idea to verify that the accuracy is indeed sufficient by taking a random
sample of points and comparing the real values at those points to the ones
predicted by the interpolation.

Next, let us look at the 3D model problem. As can be seen in Fig-
ure 5.5, the result is essentially the same as in the 2D model problem, which
is not entirely surprising since the three-dimensional problem is an analogue
of the two-dimensional one; however, it does demonstrate that the method
extends to three dimensions without any significant problems. Naturally, the
three-dimensional analogue of Figure 5.1 also looks like its two-dimensional
counterpart, which is why we chose not to include it here.

Figure 5.6 shows that the normalized errors en
k in the 3D model problem

are quite similar to those of the 2D problem; however, the errors plateau at a
level of 0.015–0.02, as opposed to the error of 0.005 which we had in the two-
dimensional case. Still, this accuracy is certainly good enough considering
that we are dealing with FEM problems.

46

0 1 2 3 4 5 6

0.005

0.01

0.05

0.1

0.5

1

Figure 5.3: Semi-log plot of the normalized errors en
k for k = 0, . . . , 6 in the

2D model problem.

0.08 0.09 0.10 0.11 0.12

-0.004

-0.002

0.002

0.004

Figure 5.4: Function values at the interpolation points lying on the d-axis in
Figure 5.1, after subtracting values predicted by the interpolant of order 1
and scaling by the error term e0 ≈ 0.82.

47

Figure 5.5: Interpolating function for the 3D model problem, with k = 7.
The bottom axis corresponds to r, the diagonal axis to d and the vertical one
to σ22.

Figure 5.7 shows the only real difference which we observed between the
results of the 2D and 3D problems. This is the analogue of Figure 5.4;
the values have again been scaled by the error term e0, which in the three-
dimensional case had a value of approximately 2.0 · 107. While Figure 5.4
clearly showed how noisy the data was, what we see in Figure 5.7 does not at
first glance look like numerical noise. However, there is certainly no physical
explanation for why the graph should behave like this, since the domain
Ω(r, d) changes smoothly with respect to r and d. It is therefore highly
unlikely that Figure 5.4 represents any real problem with our method; rather,
the noise in the data simply presents itself in a different way.

There are a number of things which could cause the behavior which we see
in Figure 5.7. Our first thought was that the problem might be in the meshing
process, but there was no discernible difference in the meshes corresponding
to values of d at either side of any of the peaks in Figure 5.7. The problem
may also be related to the way that Abaqus solves the FEM equations or
the way it interpolates stress values between mesh nodes, or any number of
other reasons. Needless to say, software like Abaqus is mainly designed for
solving individual FEM problems rather than an entire collection of them,
so surprising things are bound to happen. As we pointed out earlier, any
doubts about the accuracy of the interpolation can easily be put to rest by
simply comparing the interpolated values against a random collection of FEM
problems.

48

0 1 2 3 4 5 6

0.005

0.01

0.05

0.1

0.5

1

Figure 5.6: Semi-log plot of the normalized errors en
k for k = 0, . . . , 6 in the

3D model problem.

0.08 0.09 0.10 0.11 0.12

-0.015

-0.010

-0.005

0.005

0.010

0.015

Figure 5.7: Function values at the points lying on the d-axis in the 3D model
problem, after subtracting values predicted by the interpolant of order 1 and
scaling by the error term e0 ≈ 2.0 · 107.

49

5.3 Speed/accuracy tradeoff
Thus far, we have mainly focused on the accuracy of our method. However,
speed is just as important, since a high-accuracy method is almost worthless
if its running takes weeks. In this section, we list how much CPU and real
time was required for solving each part of the model problems, before moving
on to discuss the tradeoff between speed and accuracy in more general terms.

In the two-dimensional model problem, using Mathematica 10.0.1 with
the desktop computer described in Section 4.1, solving the conformal map-
ping for a point (r, d) took approximately 6 seconds, and solving the deter-
ministic problem took 7 seconds. These are CPU times, and since we used
seven parallel kernels for the computations, both parts took approximately
one second to solve. This adds up to approximately 22 minutes for com-
puting all the values required by the order 7 interpolant. The interpolation
computations were negligible by comparison: computing the coordinates for
all the interpolation nodes took less than a second, and the interpolating
function could be evaluated approximately 1500 times per second.

In the three-dimensional case, all other computation times naturally stay
the same, but the deterministic problem took significantly longer to solve.
Using the mesh described in Section 4.2, a single problem took an average of
5 minutes to solve using four cores; in other words, 20 minutes of CPU time
was required per Abaqus model, and a total of 235 hours of CPU time was
used to generate the data for the order 7 interpolant. This may of course
seem like a huge amount of time, but such is the nature of 3D FEM problems;
it should also be noted that the mesh we used was probably denser than truly
necessary.

However, since the computations were done on a supercluster, we had
potentially thousands of CPU cores at our disposal, and the computations
were trivial to parallelize. Unfortunately we had to restrict ourselves to
solving only 20 models at a time due to the number of Abaqus licenses
available from CSC, but this still meant using 80 cores at the same time,
which brought the previously mentioned CPU time down to 3 hours in real
time.

All of this goes to show that several factors need to be taken into account
when implementing our method. As we saw in Section 5.2, it makes no
difference how high the order of the interpolating function is if the data
itself is too noisy; on the other hand, if the interpolation uses too many
dimensions or if a single deterministic problem takes too long to solve, it is
possible that the point where the accuracy stops improving cannot be reached
in a reasonable amount of time. Consequently, it is a good idea to begin by
determining an approximate upper limit on how many interpolation points
may be used.

The upper limit really depends on three factors: how many problems
can be solved in parallel, how long it takes on average to solve a single
problem, and how much time is available in total. Typically, the number of
problems which can be solved in parallel will be limited by the availability of

50

computing cores, memory, or software licenses. The average time it takes to
solve a problem is mostly determined by the number of mesh elements and
CPU cores used by a single FEM problem. The total time limitation can be
in either real or CPU time; for instance, it may be desirable to complete the
computations overnight, or there may be a CPU time quota which may not
be exceeded.

When an upper limit has been determined, it is quite easy to check the
highest order of interpolation k which can be reached for a given dimension
d. In most cases, the goal is to reach k = d at the very least, since this is the
lowest order k which includes the corners of the interpolation region. The
reason why lower-order interpolants do not use the corners of the region is
that, as long as k < d, all d-dimensional multi-indices α satisfying |α| = k
contain at least one zero. As can be seen from the definition of the collection
of interpolation points η(k, d) in (3.17), this means that the terms Xα1×· · ·×
Xαd necessarily include the set X0, which only contains the midpoint of its
corresponding interval; however, the corners of the entire interpolation range
are only obtained if all sets Xαi include both ends of their corresponding
intervals, which only happens when αi ≥ 1 for all 1 ≤ i ≤ d.

51

Chapter 6

Conclusions

In this work, we have demonstrated an efficient way of using interpolation to
solve FEM problems with stochastic domains. The accuracy of our method
was examined in Section 5.2, to the conclusion that the interpolation matched
the accuracy of the FEM problem already in the case of an interpolant of
second order; that is, with a quadratic interpolant. While this may in part
be due to the simplicity of our model problem, it still shows that even a
low-order interpolant can be sufficient.

In Section 5.1, we explained why sparse grid interpolation should be pre-
ferred over its full grid counterpart, and referred to past experiments by
Klimke in [6] to motivate this statement. While it is true that the full grid
interpolant may perform better for certain low-dimensional functions, the av-
erage case strongly favored the sparse grid interpolation scheme. Of course,
the sparse grid interpolation is somewhat harder to implement, but we feel
that the pros far outweigh the cons even in low dimensions.

We did not specifically analyse how good conformal mappings are at
controlling the consistency of our method compared to other options, as this
was beyond the scope of our work. There may well be better options, but
the conformal mapping has the significant advantage of working for a large
category of problems, as its only requirement is that the mapping needs to
be constructed in two dimensions.

In some applications, our method may be improved by using a dimension-
adaptive sparse grid construction such as the one described in Section 3.4 of
[6]. We did not consider this in our work, since the method of interpolation
is essentially disconnected from the rest of our method, and the dimension-
adaptive routine makes it impossible to compute the set of interpolation
nodes before-hand. However, in higher-dimensional problems, a dimension-
adaptive approach could yield significant improvements.

52

References

[1] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–
269, 5 2004.

[2] R. Dautray and J. Lions. Mathematical Analysis and Numerical Meth-
ods for Science and Technology: Volume 2 Functional and Variational
Methods. Springer Berlin, 1988.

[3] T. Gerstner. Sparse grid quadrature methods for computational finance.
Habilitation, University of Bonn, 2007.

[4] D. Gilbarg and N. Trudinger. Elliptic Partial Differential Equations
of Second Order, volume 224 of Grundlehren der mathematischen Wis-
senschaften. Springer Berlin, 1977.

[5] H. Hakula, T. Quach, and A. Rasila. Conjugate function method for
numerical conformal mappings. Journal of Computational and Applied
Mathematics, 2011.

[6] W. A. Klimke. Uncertainty Modeling using Fuzzy Arithmetic and Sparse
Grids. PhD thesis, Universität Stuttgart, 2006.

[7] O. P. Le Maître and O. M. Knio. Spectral Methods for Uncertainty
Quantification: With Applications to Computational Fluid Dynamics.
Scientific Computation. Springer, Dordrecht, 2010.

[8] C. Schenk and G. Schuëller. Uncertainty Assessment of Large Finite Ele-
ment Systems. Lecture Notes in Applied and Computational Mechanics.
Springer-Verlag Berlin Heidelberg, 2005.

[9] S. A. Smolyak. Quadrature and interpolation formulas for tensor prod-
ucts of certain classes of functions. Soviet Mathematics, Doklady, 4:240–
243, 1963.

[10] G. Wasilkowski and H. Woźniakowski. Explicit cost bounds of algo-
rithms for multivariate tensor product problems. Journal of Complexity,
11(1):1–56, 1995.

[11] D. Xiu. Numerical methods for stochastic computations: a spectral
method approach. Princeton University Press, 2010.

53

	Introduction
	Prerequisites and definitions

	Model problem
	2D deterministic problem
	2D stochastic problem
	General 3D problem
	3D model problem

	Methods
	Outline of the algorithm
	Univariate interpolation
	Piecewise linear interpolation
	Lagrangian polynomial interpolation

	Tensor product
	Multivariate sparse grid interpolation
	Conformal mapping

	Implementation
	2D problem
	Parameterized domain and boundary conditions
	Meshing the domain
	Conformal mapping
	Solving the deterministic problem
	Interpolation

	3D problem

	Numerical experiments and evaluation
	Sparse vs. full grid interpolation
	Results
	Speed/accuracy tradeoff

	Conclusions
	References

