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Sellutehtaiden ympäristövaikutusten minimointi ja prosessin tehokkuuden maksimointi ovat muun muassa 

olleet tekijöitä, jotka ovat johtaneet valkaisun vesikierron sulkemiseen. Rikkihapon hinnan sekä 

kuljetuskustannusten jatkuva nousu ovat nyt saaneet huomion kiinnittymään valkaisun A-vaiheeseen. 

Tehtailla, joilla on A-vaihe käytössä, ei ole esiintynyt merkittäviä saostumisongelmia. Näiden seikkojen 

ansiosta A-vaiheen suodoksen kierrättäminen on herättänyt lisääntyvää kiinnostusta. Tämän tutkimuksen 

tavoitteena oli tutkia kierrättämisen aiheuttamat vaikutukset A-vaiheelle ja muulle valkaisulle. Lisäksi 

haluttiin selvittää, millainen kierrätetty suodos on ominaisuuksiltaan ja voidaanko kierrätyksellä vähentää 

rikkihapon kulutusta. 

 

Työn kirjallisuusosassa käydään aluksi valkaisulinja läpi, minkä jälkeen keskitytään suodoksiin sekä 

aiempiin tutkimuksiin niiden kierrättämisessä. Lisäksi kuvataan erilaisia vierasaineita, joita suodokset 

sisältävät ja erityisesti metallien käyttäytymistä sekä niiden aiheuttamia mahdollisia ongelmia. 

 

Kokeellisessa osassa suoritettiin ensin kaksi valkaisusekvenssiä (A-EOP-D-P, A- EOP-Z/D-P) referenssiksi. 

Tämän jälkeen A-vaiheen suodos otettiin talteen ja sillä suoritettiin uudelle massalle uusi A-vaihe käyttäen 

apuna myös rikkihappoa. Tämä toistettiin yhteensä kolme kertaa, minkä jälkeen tästä saatu massa 

valkaistiin samoilla sekvensseillä loppuun. Kierrätetystä suodoksesta mitattiin muun muassa 

vierasainepitoisuudet sekä ajettiin UVRR-spektrit. 

 

Ensimmäiselle sekvenssille kierrätyksellä ei havaittu olevan minkäänlaisia haittavaikutuksia. Toisessa 

sekvenssissä Z/D-vaihe aiheutti kuitenkin eron kierrätetyn ja ei-kierrätetyn massan välille: 

heksenuronihappopitoisuudessa oli selkeä ero, joka näkyi myös kappaluvussa ja vaaleudessa. Lisäksi P-

vaiheessa muodostui vaaleudelle 89 %:n maksimitaso, jota ei ylitetty vaikka kemikaaliannosta kasvatettiin. 

Tällöin myös viskositeetti aleni. Itse suodoksessa suurin osa liuenneesta orgaanisesta aineksesta oli 2-

furaanihappoa ja ligniiniä sekä sen johdannaisia ja hajoamistuotteita. Rikkihappoa kierrätyksellä säästyi 

noin 20 %. Kriittisistä vierasaineista kloori oli pitoisuudeltaan korkein, mutta sitä ei esiintynyt kuitenkaan 

kohtuuttomasti. Mangaanipitoisuus niin ikään oli melko korkea. Barium-pitoisuutta ei pystytty 

selvittämään. 

 

A-vaiheen suodoksen kierrättämiselle ei tässä tutkimuksessa löydetty esteitä. Tärkeimmät säästöt saataisiin 

jäteveden määrän pienenemisenä ja sitä kautta myös ympäristövaikutusten vähenemisenä, eikä niinkään 

välttämättä rikkihapon säästönä. Tutkimusta on kuitenkin jatkettava vielä mahdollisten säästöjen 

maksimoimiseksi sekä varmistamiseksi, ettei vierasaineista aiheudu ongelmia. 
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Abstract 

 
The minimization of environmental impacts and maximization of process efficiency are issues that have led 

to the closing of water cycles in the bleach plant. The increases in the price of sulfuric acid and 

transportation costs have now evoked interest in A-stage. The mills having A-stage have not reported on any 

significant precipitation problems. Due to these facts the reuse of A-stage filtrate has become more 

interesting. The goal of this research was to investigate the effects the reuse has for the operation of A-stage 

and final bleaching. In addition, the aim was to find out if the consumption of sulphuric acid can be 

decreased with the circulation of the filtrate and what are its characteristic properties. 

 

In the literature the operation of bleach plant is first explained after which the focus is on filtrates and 

earlier studies about their circulation. Additionally, different non-process elements, which are found in 

filtrates, are described. Especially metals, their behaviour and problems they cause are explained. 

 

In the beginning of the experimental part two reference bleaching sequences (A-EOP-D-P, A- EOP-Z/D-P) 

were performed. The A-stage filtrate was recovered and used with fresh pulp and some additional sulfuric 

acid to carry out the next A-stage. This was repeated three times after which the obtained pulp was bleached 

with the same sequence as the reference pulps. The reused filtrate was analysed among other characteristics 

for the non-process elements and UVRR spectra. 

 

For the first sequence no harmful effects caused by the recirculation of the A-stage filtrate were found. 

However, the Z/D-stage in the second sequence brought on a difference between the two pulps. There was a 

significant difference in hexenuronic acid content which was reflected on kappa number and brightness. In 

addition, during P-stage a brightness ceiling of 89 % ISO was formed. This also caused a decrease in 

viscosity. The reused filtrate contained large amounts of 2-furoic acid, lignin, its derivatives and degradation 

products. The savings of sulfuric acid were about 20 %. Chlorine is the most critical non-process element but 

its concentration was not excessive. However, the concentration of barium could not be determined and the 

manganese concentration was quite high. 

 

In this research no obstacles were found for reusing the A-stage filtrate. However, the most important 

advantages would be rather in lower effluent volume than in saving of sulfuric acid. Further research is still 

required in order to maximize the savings and ensure that non-process elements do not cause any problems. 

 

Keywords  A-stage, hexenuronic acid, ECF bleaching, filtrate, circulation 

 

  



 

Acknowledgements 

 

First of all I would like to thank my instructors Janne Vehmaa and Christian Järnefelt from Andritz 

Oy. Their comments and ideas helped me to carry on with my work and gave new perspectives on 

the subject. I would also like to thank my supervisor professor Tapani Vuorinen who has been 

helping me already before the Thesis. 

In the experimental part I also received help from the people mentioned above, but also the staff of 

Department of Forest Products Technology was very helpful whenever I needed something. 

Especially I would like to thank Pam O’Leary from Andritz Inc. for performing some of the 

laboratory work in Glens Falls. 

Last, I want to give a huge thank to my parents and friends for the help and support throughout my 

whole student life. 

Espoo, 7
th

 of January 2015 

 

 

Taneli Alajoutsijärvi 

  



 

Table of Contents 
Acknowledgements ........................................................................................................................................... 4 

List of abbreviations .......................................................................................................................................... 8 

Introduction ..................................................................................................................................................... 10 

1 Background on chemical pulping ................................................................................................................. 11 

1.1 Pulp mill overview ................................................................................................................................. 11 

1.2 Principles of bleaching ........................................................................................................................... 12 

Literature part ................................................................................................................................................. 14 

2 Hexenuronic acid .......................................................................................................................................... 14 

2.1 Xylan in hardwood ................................................................................................................................. 14 

2.2 The formation of hexenuronic acid ....................................................................................................... 15 

2.3 Basic information about HexA ............................................................................................................... 16 

2.4 HexA and metals .................................................................................................................................... 17 

2.5 Degradation of HexA ............................................................................................................................. 18 

2.6 Possibilities of formic acid ..................................................................................................................... 19 

3 Non-process elements in pulp bleaching ..................................................................................................... 20 

3.1 Metals .................................................................................................................................................... 20 

3.1.1 Metals as elements ......................................................................................................................... 20 

3.1.2 Metal compounds ........................................................................................................................... 22 

3.1.3 Donnan theory ................................................................................................................................ 25 

3.1.4 The interaction between metals and fibers in practice ................................................................. 26 

3.2 Other non-process elements ................................................................................................................. 28 

4 Bleach plant operations ................................................................................................................................ 30 

4.1 A-stage ................................................................................................................................................... 30 

4.2 Chlorine dioxide bleaching .................................................................................................................... 32 

4.3 Ozone bleaching .................................................................................................................................... 35 

4.4 Alkaline bleaching stages ....................................................................................................................... 37 

4.4.1 Alkaline extraction .......................................................................................................................... 37 

4.4.2 Peroxide stage ................................................................................................................................ 39 

4.4.3 Metal control in alkaline stages ...................................................................................................... 41 

5 Washing and its filtrates ............................................................................................................................... 42 

5.1 Pulp washing .......................................................................................................................................... 42 

5.1.1 Washing principles and concepts ................................................................................................... 42 

5.1.2 Brown stock washing ...................................................................................................................... 44 



 

5.1.3 Washing stages in oxygen delignification and bleaching ............................................................... 44 

5.1.4 Practice of pulp washing ................................................................................................................. 47 

5.2 Filtrates of pulp bleaching ..................................................................................................................... 49 

5.2.1 Motivation for filtrate processing .................................................................................................. 49 

5.2.2 The development of filtrate processing ......................................................................................... 50 

5.2.3 Challenges in filtrate circulation ..................................................................................................... 51 

5.2.4 Composition of filtrates in general ................................................................................................. 52 

5.2.5 Composition of A-stage filtrates ..................................................................................................... 55 

5.2.6 Reuse of A-stage filtrates................................................................................................................ 56 

6 Conclusions of the theoretical part .............................................................................................................. 60 

Experimental part ............................................................................................................................................ 62 

7 Materials and methods................................................................................................................................. 63 

7.1 Initial pulp .............................................................................................................................................. 63 

7.2 Preliminary tests .................................................................................................................................... 63 

7.3 Bleaching procedures ............................................................................................................................ 64 

7.3.1 Conditions of bleaching stages ....................................................................................................... 64 

7.3.2 Performance of pre-bleaching ........................................................................................................ 66 

7.3.3 Performance of final bleaching ...................................................................................................... 66 

7.3.4 Sequences using filtrate circulated pulp ........................................................................................ 68 

7.4 Measurements from pulps and filtrates ................................................................................................ 68 

8 Results .......................................................................................................................................................... 69 

8.1 Preliminary tests .................................................................................................................................... 69 

8.2 Performance of A-stage ......................................................................................................................... 69 

8.3 Performance of EOP-stage ...................................................................................................................... 71 

8.4 Performance of D-stage ......................................................................................................................... 73 

8.5 Performance of Z/D-stage ..................................................................................................................... 74 

8.6 Performance of P-stage in A-EOP-D-P sequence .................................................................................... 75 

8.7 Performance of P-stage in A-EOP-Z/D-P sequence ................................................................................. 77 

8.8 Properties of A-stage filtrates ............................................................................................................... 78 

8.8.1 Non-process elements in the filtrates ............................................................................................ 80 

8.8.2 Organic compounds in the filtrates ................................................................................................ 81 

9 Discussion ..................................................................................................................................................... 83 

9.1 Development of pulp properties ........................................................................................................... 83 

9.1.1 A-stage pulp properties .................................................................................................................. 84 



 

9.1.2 EOP-stage pulp properties ............................................................................................................... 84 

9.1.3 D-stage pulp properties .................................................................................................................. 84 

9.1.4 Z/D-stage pulp properties .............................................................................................................. 85 

9.1.5 P-stage pulp properties .................................................................................................................. 85 

9.2 Comparison between the D- and Z/D- sequences ................................................................................. 86 

9.2.1 Brightness ....................................................................................................................................... 86 

9.2.2 Kappa number ................................................................................................................................ 88 

9.2.3 Viscosity .......................................................................................................................................... 89 

9.2.4 Brightness reversion ....................................................................................................................... 90 

9.2.5 UVRR spectra .................................................................................................................................. 90 

9.3 Filtrate properties .................................................................................................................................. 92 

9.3.1 Non-process elements .................................................................................................................... 92 

9.3.2 Organic compounds ........................................................................................................................ 94 

10 Conclusions ................................................................................................................................................. 95 

References ....................................................................................................................................................... 97 

List of Appendices .......................................................................................................................................... 107 

Appendix 1: The methods for determination of pulp and filtrate properties ............................................... 108 

Appendix 2: Standard method for determination of HexA content ............................................................. 109 

Appendix 3: UVRR Spectra............................................................................................................................. 112 



 

 

 

8 

 

List of abbreviations 

 

A   acid hydrolysis 

AHT   hot acid hydrolysis 

A/D acid hydrolysis and chlorine dioxide 

bleaching without an intermediate 

washing 

ADT   air dry ton 

AOX   adsorbable organic halogens 

BDT   bone dry ton 

BOD   biochemical oxygen demand 

CaCO3   calcium carbonate 

CaO   calcium oxide 

Ca(OH)2   calcium hydroxide 

ClO2   chlorine dioxide 

CO2   carbon dioxide 

COD   chemical oxygen demand 

D   chlorine dioxide bleaching 

D0   first chlorine dioxide bleaching  

D1   second chlorine dioxide bleaching  

D2   third chlorine dioxide bleaching  

DHT   hot chlorine dioxide bleaching 

DTPA   diethylene triamine pentaacetic acid 

E   alkaline extraction bleaching  

EO alkaline extraction bleaching that also 

uses oxygen 
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EOP  alkaline extraction bleaching that also 

uses oxygen and hydrogen peroxide 

EP alkaline extraction bleaching that also 

uses hydrogen peroxide 

ECF   elemental chlorine-free bleaching 

EDTA   ethylene diamine tetraacetic acid 

HexA   hexenuronic acid 

HMW   high molecular weight 

ISO International Organization for 

Standardization 

LMW   low molecular weight 

M   mass flow of pulp (BDT/h) 

meq   milliequivalent 

MgSO4   magnesium sulfate 

Na2CO3   sodium carbonate 

Na2SO4   sodium sulfate 

NaOH   sodium hydroxide 

NPE   non-process element 

OX   organically bound chlorine 

P   hydrogen peroxide bleaching 

Paa   peracetic acid bleaching 

TCF   totally chlorine-free bleaching 

TOC   total organic carbon 

UVRR   ultraviolet resonance raman 

Z   ozone bleaching  
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Introduction 

 

The capacities of modern pulp mills continue increasing all the time. However, 

simultaneously the emissions of the plant must be kept under control. In addition, 

the limits of global environmental emissions keep getting stricter. Furthermore, 

new requirements and legislation are born. These facts require that all existing 

solutions should be taken into operation. The closing of the water circulations 

among other new technologies is therefore more and more interesting. 

Bleach plant produces the largest amount of effluents in the whole pulp mill. 

Thus, bleaching is involved in most of the research and development projects, 

especially concerning eucalyptus pulp. (Bajpai, 2012) Lately, a bleaching 

sequence A-EOP-D-P, that is here investigated, has been more and more intriguing. 

With this sequence it could be possible to decrease the use of chlorine dioxide to 

very low levels and continue closing the bleach plant.  

The increasing price of sulfuric acid, which is an important chemical, and the long 

transportation distances especially to some areas in Brazil have aroused interest in 

decreasing the need of sulfuric acid. Because the mills using A-stage have not 

reported any significant problems about scaling this work focuses on A-stage 

filtrate reuse. The decrease of sulfur compounds in the filtrates would also make 

the filtrates more suitable for recovery cycle. First, in literature part the A-stage 

and the rest of the bleaching plant are discussed as well as the challenges and 

possibilities that the filtrate reuse arouses. The target of the thesis is to find out if 

the consumption of sulfuric acid in A-stage could be decreased by circulating the 

filtrate. Another aim is to define the composition of this filtrate and find out how 

the circulation effects the operation of A-stage, other bleaching stages, properties 

of pulp and chemical consumption.  
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1 Background on chemical pulping 

 

1.1 Pulp mill overview 
 

The principle of kraft pulping process is to chemically dissolve the components of 

wood that are holding the wood cells together with the least possible damage. A 

rough block diagram of the process is shown in Figure 1. The process starts when 

the wood logs are being debarked and chipped. After that the chips are being 

screened which ensures that the pulp will have an even quality. Then the chips are 

being prepared for the cooking process with air removal, steaming, heating and 

impregnation with liquor that contains hydroxide and hydrosulfide ions. With 

these actions the pulp will be more uniform, the cooking time is decreased and the 

fiberline production eased. The chips will end up in digester where the pulp will 

be cooked in high temperature, pressure and liquor. After the cooking phase the 

pulp will be discharged from the digester. At this point pulp contains significant 

amounts of impurities (organic and inorganic) and has darker color due to 

remaining lignin. The impurities and rejects are being removed by screening and 

washing. Oxygen delignification and bleaching continue the partial removal of 

lignin. In bleaching also brightness is increased by removing chromophores and 

hexenuronic acids in several different stages. (Gullichsen, 2000c) 

Figure 1. Block diagram of kraft process. 
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Black liquor from the washing stage after cooking is sent to the recovery boiler as 

shown in the Figure 1. This spent liquor includes cooking chemicals and a lot of 

organic matter which has high economic value. However, it is too dilute to be 

used directly. Thus, the liquor goes through a multistage evaporation plant where 

the dissolved solid content is raised to about 80 %. Concentrated black liquor is 

being burned in a recovery boiler so that energy is recovered in form of steam and 

electricity and green liquor is formed from sodium and sulfur chemicals. 

Green liquor, which contains mostly Na2CO3 and Na2S, goes to the white liquor 

plant, where white liquor for the cooking process is made. First, the lime is being 

slaked which means that CaO will be transformed to Ca(OH)2. After that it is used 

to convert sodium carbonate to sodium hydroxide which is then purified and used 

in cooking plant as a cooking chemical. CaCO3 is separated from this solution and 

the lime kiln produces CaO from it for the causticizing process, and so a more 

economical process is possible. Chemical recovery system is for sodium and 

sulfur while the rest of the chemicals end up as dregs or cause problems in the 

process like potassium, chlorine and silica. (Gullichsen, 2000c) 

 

 

1.2 Principles of bleaching 
 

Bleaching process has traditionally been very little connected to the chemical 

cycle. It can be divided into two parts on an industrial scale: pre-bleaching and 

final bleaching. In pre-bleaching the removed substance is mainly lignin with a 

relatively large chemical dosage. The brightness at this stage remains still quite 

low. In the final bleaching the main target is to raise the brightness to about 88 – 

94 % ISO and increase the purity of the pulp. (Gullichsen, 2000b) 

Bleaching is used because it is a more selective way to remove lignin from pulp 

compared to cooking. Thus, the degradation of polysaccharides is reduced. In 

addition, shives, dirt particles, extractives and other undesired components are 
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removed. Nowadays bleaching is performed mainly with ECF (elemental chlorine 

free) but also partly with TCF (total chlorine free) bleaching. (Gullichsen, 2000b) 

The most used bleaching chemicals are sulfuric acid, chlorine dioxide, sodium 

hydroxide, hydrogen peroxide, ozone, oxygen and peracetic acid. In mill 

processes the bleaching is performed in towers except for ozone bleaching and 

pulp is washed between the stages. It can be simplified, that the wash water for 

the washers comes from the washing stage of the following stage in which the 

pulp is cleaner. Finally from the first bleaching stages the effluent is led to the 

effluent treatment. Before the pulp is being fed to drying machine or paper mill, 

there is still a final screening that removes the rest of the impurities. (Gullichsen, 

2000b) 

The focus of bleaching development is not only in reducing chlorine dioxide 

consumption in bleaching stages but also in reducing the amount of sulfur 

components in bleaching filtrates. This would make the A-stage filtrate reuse in 

bleaching more attractive. 
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Literature part 

 

2 Hexenuronic acid 

2.1 Xylan in hardwood 
 

There is about 15 – 30 % xylan in hardwood, depending on the species. Other 

compounds found in wood are other hemicelluloses, lignin and cellulose. 

Hardwood xylan is O-acetyl-4-O-methylglucuronoxlyan, which means that the 

main chain consists of β-D-xylopyranosyl groups that are bound together with 

(1→4)-glycosidic bonds. This chain is substituted by 4-O-methyl-α-D-glucuronic 

acid groups (Figure 2). These acid groups are bound in about every tenth xylose 

unit with (1→2)-glycosidic bonds. Part of the xylose units of the main chain are 

also acetylated. In addition, in the reduced end of the xylan chain small amounts 

of L-rhamnose and galacturonic acid groups can be found. (Jääskeläinen and 

Sundqvist, 2007)  

 

 

 

 

Figure 2. The structure of hardwood xylan (Jääskeläinen and Sundqvist, 2007). 
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2.2 The formation of hexenuronic acid 
 

During kraft pulping in alkaline conditions some of the xylan’s 4-O-

methylglucuronic acid groups are degraded with the β-elimination of methanol 

(Johansson et al. 1977). The formed 4-deoxy-4-hexenuronic acid groups produced 

are better known as hexenuronic acid. This β-elimination is presented in Figure 3. 

After methanol has been eliminated from the uronic acid, a double bond between 

two carbon atoms is formed. (Teleman et al. 1995)  

 

Figure 3. The transformation of 4-O-methylglucuronic acid into hexenuronic acid during the kraft pulping 
(Jiang Z. et al. 2000). 
 

The amount of hexenuronic acids formed during cooking depends on cooking 

time, temperature, method, concentration and ionic strength of hydroxyl-ions and 

used raw material. (Buchert et al. 1995). As Figure 4 shows, when the cooking 

temperature is achieved, the HexA concentration is at its highest. When the 

cooking proceeds, the HexA content starts to decrease. 
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Figure 4. Development of HexA content in pulp during kraft cooking process (Vuorinen, 2011). 

 

 

2.3 Basic information about HexA 
 

There is a carbon-carbon double bond in the structure of HexA. When the kappa 

number is measured, potassium permanganate reacts with carbon-carbon double 

bonds that are located in lignin structure. Naturally, also the double bonds in 

HexA react with permangate. (Buchert et al. 1995) In hardwood pulps HexA is 

responsible for from 3 up to 7 units of kappa number. In practice 10 meq of HexA 

equals to one unit in kappa number meaning that hardwood pulps contain about 

30 – 70 meq HexA/kg. In softwood pulps the amount of HexA is about half of 

this. (Vuorinen et al. 1999) (Henricson, 1997) 

One kappa unit of HexA is known to consume as much bleaching chemicals as 

one kappa unit of lignin. The chemicals which react with HexA are chlorine 

dioxide (in situ formed HOCl is responsible for the reaction), chlorine, ozone and 

peracids, although it was found that in D-, Z-stages HexA and lignin were equally 

reactive (Vuorinen et al. 1997) (Vuorinen et al. 1999). In chlorine dioxide 

bleaching HexA was converted into for example tetratic, pentaric, 2-chloro-2-
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deoxypentaric and 3-deoxy-3,3-dichloro-2-oxohexaric acids. The formation of all 

these compounds consumes a considerable amount of chlorine dioxide. However, 

HexA does not react with alkaline peroxide or oxygen and therefore other 

chemicals are needed to produce thermally stable HexA-free pulps. (Vuorinen et 

al. 1997) In order to decrease the consumption of bleaching chemicals, the most 

economical way would be to decompose the HexA with a mild acid hydrolysis, 

i.e. A-stage. (Vuorinen et al. 1999) (Buchert et al. 1995) (Vuorinen et al. 1997) 

Furthermore, HexA binds heavy metals, increases the amount of AOX 

(organically bound halogens) and causes yellowing in the course of time (Buchert 

et al. 1995) (Vuorinen et al. 1997) (Vuorinen et al. 1999) (Clavijo et al. 2012) 

(Kawae et al. 2010). The effect of HexA on brightness reversion is shown in 

Figure 5. 

 

Figure 5. Effect of HexA content on brightness reversion (Pikka and Vehmaa, 2007). 

 

 

 

2.4 HexA and metals 
 

Positively charged metal ions like potassium, manganese and iron easily bind to 

carboxyl acid groups that have a negative charge. These carboxyl acid groups can 

be found in the uronic acid groups of hemicelluloses. Uronic acid groups not only 

have electric interaction with metal ions but they also have a tendency to twist and 
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fold so that they could also interact chemically with the ions. The carbon-carbon 

double bonds that HexA contains enhance the ability to bind metals substantially 

compared to other uronic acids. (Devenyns and Plumet, 1994) (Devenyns and 

Chauveheid, 1997) 

In acidic conditions H
+
-ions adhere to carboxyl groups releasing metal ions that 

HexA has bound (Devenyens et al. 1998). This means that with acid hydrolysis it 

is also possible to remove metals from pulp even though 2-furancarboxylic acid 

and formic acid that are the main products of the hydrolysis of HexA do not form 

a significant amounts of complexes with Ca
2+

, Mg
2+

 or Mn
2+

 (Räsänen et al, 

2001). Especially manganese can be removed almost as effectively as with EDTA 

or DTPA (Vuorinen et al. 1999) (Henricson, 1997) (Devenyns et al. 1998). This is 

thought to be due to hot and acidic conditions because the manganese ions are 

found to sorb into fibers just like any other divalent ion (Räsänen et al. 2001). In 

addition, the iron concentration has been found to decrease significantly. 

Unfortunately also the amount of magnesium decreases due to A-stage unless 

chelates are being used. (Henricson, 1997)   

It has also been proven, that HexA can cause formation of oxalic acid, especially 

when reacting with ozone (Rodrigues da Silva and Colodette 2002) (Pikka and 

Vehmaa 2007).  

 

 

2.5 Degradation of HexA 
 

Most common process in degrading HexA is the mild acid hydrolysis, A-stage, in 

which H2SO4 or HCl is used. During this acid hydrolysis the HexA degrades 

according to Figure 6. Acyclic form of HexA (1) is formed during the hydrolysis. 

It easily undergoes a β-elimination reaction, which produces substance (2) and its 

cyclic form (3). These compounds stabilize either via elimination of water (HD-2) 

or via elimination of both water and formic acid (HD-1) depending on if the 
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aldehyde group is hydrated or not. Elimination of water produces 5-carboxy-2-

furaldehyde (5-formyl-2-furoic acid) and the elimination of water and formic acid 

produces 2-furancarboxylic acid (2-furoic acid). (Teleman et al. 1996) About 90 

% of the eliminations happen with the latter way (Vuorinen et al. 1999). 

Figure 6. The degradation of HexA in acidic conditions (Teleman et al, 1996). 

 

 

 

2.6 Possibilities of formic acid 
 

Formic acid has recently shown potential as a biomass fractionation agent because 

of its ability to reach an extensive delignification simultaneously degrading 

hemicelluloses with a high yield. Cellulose yield has also been about 100 % when 

using formic acid. It has been suggested to be used in aqueous form in acid 

mixtures. In high temperatures formic acid treatment mostly degraded xylose and 

pentoses. (Dapía et al. 2002) During the process lignin is dissolved due to 

cleavage of β-O-4 bonds. Hemicelluloses are degraded into mono- and 

oligosaccharides. For delignification the acid concentration should be more than 



 

 

 

20 

 

80 %. The separation is based on the different solubilities of the components in 

acid, organic solvent and water, and the organic and acidic characters of formic 

acid. (Zhang et al. 2010) Formic acid was found to esterify hydroxyl groups of 

pulp during the delignification. In addition, the delignification mixture contained 

some acetic acid that was formed as a result of hydrolysis of acetyl groups in raw 

material. (Anttila et al. 2007) 

 

 

 

 

 

 

3 Non-process elements in pulp bleaching 

3.1 Metals 
 

3.1.1 Metals as elements 

 

Most of the metals that are found in the process enter with wood, but some 

elements, like silicon and aluminum enter with make-up lime (Ulmgren, 1997). 

Additionally, some metals can derive from the process equipment and end up in 

filtrates due to corrosion (Dahl et al. 1996). Naturally, most metals are unwanted 

in the process because they will cause different problems. These problems are 

shown in Table 1.  
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Table 1. Negative effects caused by metals.  

Plugging in recovery boiler K 

Corrosion K, Mg, Fe
 

Inert in lime cycle Al, Mg 

Scales and deposits Al, Ca, Ba 

Impact on the environment Pb, Cd 

Effect on pulp properties or bleaching Mn, Mg, Fe 

 

Transition metals such as iron, copper and manganese cause radical reactions. 

These reactions cause degradation of carbohydrate chains in oxygen-based 

chemical system, especially peroxide bleaching (Chirat et al. 2011). Iron is the 

most intractable of these and usually remains in pulp at the concentration of 10 – 

20 ppm. In the mill water iron content of 0.1 mg/l will not only decrease the 

quality and the brightness of the pulp but also cause corrosion (Dahl et al. 1996). 

In addition, some brightness reversion can happen which causes increase in 

bleaching chemicals. Iron can for example be produced by corrosion or come with 

the mill water. (Boffardi, 1992) 

Manganese has a detrimental impact on the brightness of the pulp. Therefore, the 

content of manganese should be less than 0.5 g/ADT. (Dahl et al. 1996) 

Magnesium and calcium inhibit the radical reactions. Therefore, the removal of 

transition metals and the retaining magnesium is necessary for effective pulp 

bleaching. (Räsänen, 2003) (Lapierre et al. 1997) However, under some 

conditions magnesium can also cause corrosion. (Ulmgren, 1997)  

Potassium can cause corrosion and plugging for example in the recovery boiler 

same way as chlorides (Ulmgren, 1997). It can accumulate in the sodium cycle 

and will end up in electrostatic precipitator dust. (Colodette et al. 2008) (Dahl et 

al. 1996) Normally potassium content is about 1 - 5 % of dry weight of 

concentrated black liquor solids. (Costa et al. 2005) 

Normal values for NPE’s in softwood processes are shown in Table 2. The values 

of wood can vary due to species, age and location (Ulmgren, 1997).  
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     Table 2. Non-process elements in sofwood process, units are g/ADT (Ulmgren, 1997) 

 Input wood After O Bleached pulp 

Al 12 -35 5 – 20 2 – 5 

Si 2 – 25 40 – 100 1 – 5 

P 50 – 100 15 – 50 2 – 5 

Mg 75 – 250 100 – 200 10 – 40 

Ca 500 – 1000 400 – 800 50 – 100 

K 300 – 800 20 – 150 - 

Cl 300 – 800 - - 

Mn 50 – 200 30 – 70 <1 

Cu 1 – 2 0.5 0.1 – 0.3 

 

3.1.2 Metal compounds 

 

In pulping process, the metals can form also different harmful compounds. 

Precipitated oxalates are the most common ones in pulping process. They are 

formed when metal ions, mostly calcium, adhere with oxalic acids. (Rodrigues da 

Silva and Colodette 2002) Calcium mostly originates from wood and white liquor, 

in hardwood pulp the amount can be as high as 2 – 6 kg/BDT (Rudie and Hart, 

2005) (Rodrigues da Silva and Colodette 2002). Main sources of oxalic acid are 

the cooking and especially the bleaching (Z- and D-stages) processes where up to 

90 mg/l of oxalate is formed (Ulmgren and Rådeström, 2001) (Rudie and Hart, 

2005). 

In the cooking calcium precipitates as calcium carbonate while oxalate remains in 

the solution and is removed by the brownstock washing. Later in the bleach plant 

calcium dissolves when pH drops below 7 and is capable of reacting with oxalic 

acid forming calcium oxalate. (Rudie and Hart, 2005) Especially in ozone 

bleaching, HexA is oxidized and oxalate is formed in the next EOP-stage where the 

highest oxalate content is found (Henricson, 1997). The formation of oxalates is 
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harmful because of the scaling problems in equipment and problems when closing 

water circulations (Sixta et al. 2006) (Rodrigues da Silva and Colodette 2002). 

Ulmgren and Rådeström (2001) found out that the solubility of calcium oxalate 

was increased when pH decreased below 4 and when the temperature, ionic 

strength and magnesium ion concentration were increased. This means that by 

adding magnesium sulfate, the amount of deposits can be reduced. The amount of 

deposits can also be reduced by decreasing HexA content. The solubility of 

calcium oxalate in the D-stage filtrates was higher than in solutions with no 

organic substance. This can be explained by the fact that D-stage filtrate contained 

both mono- and dihydrates of calcium oxalate whereas the filtrate-free solution 

consisted only of the monohydrate. (Ulmgren and Rådeström, 2001) If the pH is 

lowered to 2.5 in a chlorine dioxide stage, the precipitation of calcium oxalate is 

decreased because carbonate is in form of carbonic acid which degrades into 

water and CO2 which will be released to atmosphere. However, this will increase 

the risk of barium sulfate scaling. (Rudie and Hart, 2005) (Rudie and Hart, 2006) 

Low temperature increases the formation of precipitates, except for calcium 

carbonate. Therefore, calcium oxalate can be found e.g. on reactor walls and 

pumps. These deposits are extremely difficult to remove: a very strong acid or 

high pressure washing is needed. (Ulmgren and Rådeström, 2001) (Ulmgren, 

1997) 

In addition, barium forms deposits as barium sulfate (Ulmgren and Rådeström, 

2001). Barium enters the mill with wood and exits the digester as barium 

carbonate, mostly bound with fibers. When the pH decreases below 7, barium ions 

are released and they can start precipitating as barium sulfate. When the pH 

decreases to 2, barium starts to be released significantly more. The concentration 

of barium is low compared to calcium: only about 20 – 60 g/BDT in unbleached 

pulp and 1 – 2 g/BDT in the acid sewer. (Rudie and Hart, 2006)  

The summary for the solubilities of calcium oxalate, calcium carbonate and 

barium sulfate is shown in Figure 7. The intervals in which the precipitation 

occurs are marked on the top of the picture. 
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Figure 7. The effect of pH on the precipitation of BaSO4, CaC2O4 and CaCO3 (Ulmgren, 1997). 

 

Magnesium, as well as aluminum, can also form alkali insoluble compounds with 

carbonate which are removed by sedimentation and filtration of dregs. (Costa et 

al. 2005) Furthermore, aluminum can cause scales and deposits (Ulmgren, 1997). 

There is research going on about so called “kidneys”, such as ion exchange and 

precipitation. Calcium oxalate and non-process elements could be separated from 

the system thus hindering the scaling and other problems by using “kidneys”. 

(EIPPCB, 2001) Metal ions found in acidic effluents can be removed by adjusting 

the pH to 10 – 12. Thus, many non-process elements would be precipitated as 

insoluble inorganic compounds. (Ulmgren, 1997) 

The solubilities of different compounds are also affected by ionic strength, 

dissolved organic substance, solubility product of the compound, solvent, acidity 

and chelating agents (Ulmgren, 1997) (Dahl et al. 1996). The dissolved organic 

substance significantly increases the solubility of the compounds mentioned 

above because of interactions between these two components. In addition, the 

formation of these bleach plant deposits depends on the bleaching stages. In acidic 

stages such as acidic hydrolysis, chlorine dioxide and ozone stages the metal ions 

including calcium and barium are released from the fibers. In oxidative stages e.g. 

peroxide and ozone stages oxalate ions are formed and in stages that contain a 

high pH (E- and P-stages) carbonate ions are formed. In acidification sulfate ions 

are added. (Ulmgren, 1997) 
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3.1.3 Donnan theory 

 

Water in the fiber suspension can be divided into two parts: the liquid surrounding 

fibers and the liquid inside the highly porous and negatively charged fiber wall. 

The schematic representation of this system is shown in Figure 8. The cellulose 

fibers act as a polyelectrolyte gel. The metal cations that are in the liquid can 

interact with the functional groups of fibers by two different ways: non-

specifically and specifically. Non-specific interactions are electrostatic attraction 

and repulsion between the ions and fiber cell wall, which Donnan theory 

describes. Specific interactions include for example complexation of metal ions 

with functional groups and the adsorption of cations on to polarized surfaces. 

(Räsänen, 2003) 

 

Figure 8. A schematic representation of the fiber suspension (Tarvo et al. 2008). 

 

In a situation where pulp fibers are placed in a solution of electrolytes, anionic 

acid groups located within the fiber wall cause an uneven distribution of ionic 

species between the solutions inside the fiber wall and outside fibers (Räsänen et 

al. 2001) (Nordberg et al. 2001). In other words, an immobile or impermeable 

charge excess is located in one phase. In order to maintain the electroneutrality in 

both phases, the freely moving ions will move from one phase to another causing 
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this uneven distribution because of the immobile charge excess. (Räsänen, 2003) 

Donnan theory describes this distribution of ions between the fibers and the 

surrounding liquor. With this theory it is possible to predict the build-ups and 

other problems caused by non-process elements caused by system closure and 

identify the need for different separation technologies in order to prevent this 

accumulation (Neale, 1929) (Towers and Scallan, 1996) (Laivins and Scallan, 

1997). 

 

3.1.4 The interaction between metals and fibers in practice 

 

The strength of the interactions between ions and fiber cell wall depends strongly 

on the charge properties of the fibers (Räsänen, 2003). According to Donnan 

theory, when the acidic groups in the pulp deprotonate the negative charge arises. 

This causes the cations to enrich in the fiber wall while the anions are expelled. 

Therefore, it can be said that the concentration of metal ions in the solution is 

dependent on the amount of acid groups on fibres and their degree of dissociation. 

(Athley and Ulmgren, 2001) 

In addition, the charge of the metal ion and the concentrations of other 

components have an effect on the metal concentration. Sodium is the most general 

ion in the process solution of kraft pulping process thus affecting the distribution 

of other metal ions between the fibres and external solution. (Athley and Ulmgren, 

2001) The amount of sodium bound by pulp is affected by sodium content in the 

filtrates and pH. Sodium is the most abundant metal in the system and even 

though its binding is not as strong as with divalent ions, it is bound with 

significant amounts to fibres. (Gu et al. 2004) The increasing concentration of 

sodium will decrease Donnan effect (Haglind et al. 1989). 

The delignification process decreases the total charge of pulp (Räsänen, 2003). 

Calcium carbonate is formed already in the digester whereas magnesium 

carbonate presumably during oxygen delignification. These carbonates are located 

inside or on the fibre wall. When acid is added to the oxygen delignified pulp, a 



 

 

 

27 

 

considerable amount of acid is consumed by metal carbonates in the fibre. 

Therefore, the solids will dissolve and magnesium and calcium will exist as 

cations in the suspension. The other divalent ions are found in the suspension 

liquor. Sodium and potassium are found in their ionic forms because they cannot 

form any solid phases at these conditions. Because a part of sodium ions 

corresponding to the ion exchange capacity of the pulp is bound to the fibre, this 

part of sodium cannot be washed away but it will travel with pulp to the bleach 

plant. However, when magnesium sulfate is added, Mg
2+

-ions replace Na
+
-ions in 

the pulp. Manganese, which exists as solid magnesium-manganese carbonate, is 

formed in low concentrations. (Nordberg et al. 2001) 

At very low pH the internal and the external concentrations are identical for all the 

metals. The reason for this is that at low pH the acid groups are not dissociated 

which means that no basic condition for a Donnan equilibrium exists and no 

metals are bound to fibres, i.e. metals are easy to wash. When the pH increases, so 

does the internal concentration at the expense of external one. In this situation 

there is a larger amount of acid groups dissociated inside the fiber wall and the 

amount of metals bound to fibres increase. (Towers and Scallan, 1996) This is due 

to increase of negative charge on the fibres caused by deprotonation. Therefore, 

positively charged metal ions are more and more attracted and they cannot be 

removed by physical means. (Athley and Ulmgren, 2001) (Towers and Scallan, 

1996) In addition, there is a larger imbalance in the concentrations of mobile ions 

between the fiber wall and suspension liquor when pH increases (Towers and 

Scallan, 1996). 

The pH inside the fibers is always lower than in the external solution (Haglind et 

al. 1989). The biggest change in the metal distribution occurs when the pH is 3 - 

5. This is in correlation with the dissociation of carboxylic acid groups that have 

pKa of 4 (Towers and Scallan, 1996). The major part of charge in unbleached 

pulps is, however, caused by hexenuronic and methylglucuronic acids which have 

pKa-values of about 3.1-3.3 (Räsänen et al. 2001) (Laine et al. 1994) (Teleman et 

al. 1995). At pH 5 – 6 various acids in residual lignin and extractives will 

dissociate (Laine et al. 1994). At neutral pH all the acid groups are dissociated 
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thus allowing 𝜆 to reach its maximum. The pKa value of phenolic groups of lignin 

is about 10. All these groups mentioned are able to bind ions. (Towers and 

Scallan, 1996) 

 

 

3.2 Other non-process elements 
 

There are several other non-process elements that can accumulate in filtrates. A 

large part of them enters the mill with wood chips but the amount of non-process 

elements in the pulp depends also on the cooking conditions and washing 

efficiency (Gu et al. 2004). The silicon and phosphorous compounds present are 

alkali soluble. Their removal happens with equipment that removes green liquor 

dregs, lime mud, bleach plant effluents and precipitator dust. Table 3 presents the 

negative effects that are caused by elements that are not metals. 

Table 3. Negative effects caused by non-process elements.  

Plugging in recovery boiler Cl 

Corrosion Cl, SO4
2- 

Inert in lime cycle Si, P 

Scales and deposits Si, SO4
2-

, CO3
2-

 

Impact on the environment N, P 

Dissolving in white liquor Si 

 

Most critical non-process elements that are not metals are chlorides and 

potassium. They have a tendency to accumulate in the sodium cycle causing 

corrosion. Usually they will end up there with different liquors. (Costa et al. 2005) 

Chlorine originates from wood itself – especially high chlorine content is found in 

eucalyptus (Vehmaa et al. 2011). Chlorides will end up in fly ash in electrostatic 

precipitator where it can be removed. Otherwise chlorides will cause plugging and 

corrosion in recovery boiler. Plugging happens on heat surfaces of the boiler due 

to lowered sticky temperature caused by chloride concentration. The corrosion 
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caused by chlorides in the equipment has been substantial and the level for 

chloride concentration should be less than 10 g/l depending on the temperature so 

that the problems in the recovery plant would be avoided (Colodette et al. 2008) 

(Dahl et al. 1996). Increasing temperature also increases corrosion (Dahl et al. 

1996). Decreasing pH increases the corrosion caused by chlorides. In strongly 

alkaline pH the corrosion is known to be insignificant. (Ulmgren, 1997) 

When circulating filtrates it is crucial to remove chloride or otherwise totally 

closed circulation of bleaching waters would be difficult to be performed. This is 

because the acidic bleaching filtrates contain too much chlorine for example for 

the recovery boiler (Jaretun and Aly, 2000). A trouble-free operation for recovery 

boiler requires less than 1 wt-% in black liquor and in precipitator dust (not 

NaCl). However, even values up to 10 wt-% can be found in fly ash. (Pfromm, 

1999) Chloride can also react with water and form hypochlorous and hydrochloric 

acid, thus increasing steel corrosion and iron staining. 

Sulfate ions are found to also cause corrosion. No impact on the pulp quality has 

been found for both sulfate ions and chlorides. (Boffardi, 1992) 

Other ions that can be found in effluents are for example nitrates, phosphates, 

silicates and acetates. The main part of the inorganics found in effluents originates 

from the pulp or from chemicals used in bleaching. (Dahl et al. 1996) Sulfates can 

be removed by improving brown stock washing. Another possibility is to decrease 

the addition of sulfur as sulfuric acid in the bleach plant. (Rudie and Hart, 2006) 

Sulfates and carbonates can also cause scaling. 

Non-process elements can also accumulate somewhere else in the pulp mill cycle. 

Silicon and phosphorous accumulate in calcium cycle. This will result in 

increased dead load in lime mud and deteriorating reaction efficiency in lime kiln. 

Already one percent of these elements will decrease the efficiency by about 5 – 6 

%. Silicon can also dissolve in white liquor due to its high solubility. At higher 

concentrations calcium silicate can be formed. Calcium phosphate dissolves better 

in green liquor than in white liquor. (Costa et al. 2005) Silicon can also cause 

some scales and deposits (Ulmgren, 1997). 
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4 Bleach plant operations 

 

After cooking, oxygen delignification is used for removing the phenolic lignin 

that is left in pulp. It is more selective way to decrease the kappa number to the 

range 12 – 20 with hardwood pulps, than by continuing cooking. Due to the 

reduced kappa number, oxygen delignification decreases the bleaching chemical 

consumption later on. The use of oxygen delignification also enables the 

circulation of effluents to recovery and therefore lowers the COD (Chemical 

Oxygen Demand) and BOD (Biochemical Oxygen Demand) emissions in 

bleaching effluents. (Sixta et al. 2006) The removal of HexA is, however, not 

possible because HexA does not react with oxygen. Thus, in principle the order of 

oxygen delignification and A-stage does not matter. (Vuorinen et al. 1999) 

 

 

4.1 A-stage 
 

As mentioned, HexA is degraded in A-stage which is the first bleaching stage 

after oxygen delignification in the modern hardwood pulp mills. The conditions of 

A-stage are shown in Table 4. (Vuorinen et al. 1999) At pH higher than 3.5 the 

hydrolysis of cellulose becomes independent of pH due to catalysis of water and 

therefore pH should be lower than this (Vuorinen et al. 1997). Nevertheless, if the 

end pH drops to 2.5, the degree of polymerization decreases significantly. The 

harsher the conditions are, the more HexA can be removed. However, this also 

leads to degradation of glycosidic bonds in cellulose chains that lowers the 

viscosity. Thus, it is important to control the conditions carefully during the 

hydrolysis. (Vuorinen et al. 1999) Vuorinen et al. (1997) found that when 

hydrolyzing hardwood pulps, the dissolved part was mainly xylose and its 

polymers whereas for softwood mainly arabinose was liberated. 
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Table 4. The industrial process conditions of acid hydrolysis (Henricson, 1997) (Clavijo et al. 2012). 

Temperature (°C) 80 - 95 

End pH 3 – 3.5 

Retention time (h) 2 - 4 

Consistency (%) 9 – 14 

H2SO4 (kg/BDT) 7 - 11 

 

In Figure 9 the influence of temperature for the hydrolysis is shown. It can be seen 

that at some point the kappa number is no more decreasing because nearly all 

HexA has been degraded. Nevertheless, the viscosity continues decreasing when 

the A-stage proceeds. Additionally, the higher the temperature is, the faster the 

viscosity decreases. Vuorinen et al. (1999) found that when 90 % of the HexA 

was removed, the viscosity decreased an average of 50 – 100 dm
3
/kg. When the 

temperature of the hydrolysis is 120 °C, begins the zero-span tensile index to 

suffer. Although HexA is removed in A-stage the brightness of the pulp does not 

increase (Eiras and Colodette, 2003). 

 

Figure 9. The change in viscosity as a function of kappa number during the A-stage, (∆, 115 °C; □, 105 °C; ○, 
95 °C) (Vuorinen et al, 1999). 
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4.2 Chlorine dioxide bleaching 
 

In the modern hardwood pulp mills the use of chlorine dioxide as a first bleaching 

stage after oxygen delignification is no longer very common. It is more 

economical to first remove HexA with acid hydrolysis. Earlier D0-stage used to 

start the bleaching sequence. 

However, nowadays the modern mills that are using eucalyptus as their raw 

material have added a D0-stage right after the A-stage without an intermediate 

washing (Pikka and Vehmaa 2007). One reason for this has been that if a stand-

alone A-stage was installed, both a tower and a washer would be required. It has 

been found that the kappa number after the D0-stage can be even lower when no 

washer is used between the stages. This is due to the fact that pH and temperature 

are similar to both stages and the organic products formed in the A-stage consume 

only slightly D0-stage chemicals. (Sixta et al. 2006) (Henricson, 1997) 

It is also possible to combine A- and D0-stage effect into one, DHT-stage. This 

means that both hydrolysis and D0-stage would happen at the same time. In the 

beginning of DHT-stage HexA and lignin are equally reactive but after few 

minutes only HexA is degraded. (Vuorinen et al. 1999) (Vuorinen et al. 1997) 

DHT-stage required less chlorine dioxide thus producing less AOX in the effluent 

than conventional D-stage. This was thought to be due to the harsh conditions of 

the DHT-stage. (Eiras and Colodette, 2003) In a lengthened A-stage it is the 

opposite: first only HexA is degraded but after some time HexA and lignin are 

removed at the same rate. However, when A/D-stage is used the removal of both 

components is more efficient. (Vuorinen et al. 1999) (Vuorinen et al. 1997) In 

Medina’s study (2007) A/D-stage produced less overall AOX (OX values were 

higher for A/D-stage) than DHT while the chemical consumption was on the same 

level. In addition, the active chlorine dosage can be lower for A/D-stage (Eiras 

and Colodette, 2003). 

In the final bleaching chlorine dioxide can be used in one or two different stages. 

It can also be followed by P-stage. Nowadays the trend is to use fewer stages so 
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that the investment costs could be lowered although the operating costs tend to 

increase. However, the use of only one final bleaching stage leads to lower 

brightness stability. (Colodette et al. 2008) Other factors that have to be taken into 

consideration are final brightness, emissions, costs and chemicals used. (Pikka 

and Vehmaa, 2007) 

In D0-stage the main objective is to reduce or eliminate residual lignin and in 

latter D-stages to brighten the pulp by removing chromophores. Typical industrial 

process conditions for these stages are shown in Table 5. 

Table 5. Typical industrial process conditions for chloride dioxide bleaching (Gullichsen, 2000b) (Chirat 
et al. 2011). 

 D1 D2 

Temperature 60 – 80 60 - 85 

Final pH 3.5 - 5 3.5 - 5 

Retention time (h) 1.5 - 4 2 - 4 

Consistency (%) 10 - 13 10 - 15 

Residual oxidant concentration (g/l) trace  - 0.05 trace – 0.03 

ClO2 (kg act. Cl/BDT) 13 – 42 5 - 21 

 

The chemical consumption in each stage depends on the kappa number, but 

normally a small ClO2 residual is maintained (10 – 50 mg ClO2/l). The pH of the 

stage will decrease rapidly as soon as chlorine dioxide reacts with pulp. Therefore, 

an addition of sodium hydroxide is used to adjust the pH. (Gullichsen, 2000b) An 

optimum final pH of D1-stage is shown in Figure 10. With increasing pH more 

chlorite is formed. As the pH rises above 4, the reactivity of chlorite with pulp 

drops rapidly. (McDonough, 1996) 
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Figure 10. The dependence of brightness on the final pH in D1-stage (McDonough, 1996). 

Recent study by Tamminen (2010) stated that retention time of 60 minutes is 

sufficient for maximal brightness values. However, the brightness reversion 

would decrease when retention time is increased. When the temperature is 

increased, the rate of bleaching increases as well as the consumption of chlorine 

dioxide. Normally D1- and D2-stages are separated with alkaline extraction or 

short neutralizing in order to make D2-stage more efficient – higher brightness 

with less chemicals will be achieved. If only one D-stage is used, the chemical 

dosage has to be significantly higher. (McDonough, 1996)  

If the pH of the chlorine dioxide stage is adjusted with hydrochloric acid, the 

delignification process can be enhanced. This is due to the fact that hydrochloric 

acid increases the content of chloride ions which can lead to beneficial changes in 

pulp properties when the delignification is performed with 100 % chlorine 

dioxide. When the chloride concentration is higher, the chlorate formation is 

reduced. Chlorate is unwanted because it decreases the amount of oxidizing 

chemicals available for delignification. However, the AOX values were increased 

when using hydrochloric acid in initial bleaching. (Medina, 2007) 
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4.3 Ozone bleaching 
 

The use of ozone is possible with or without chlorine dioxide stage. Z- and D-

stage can be united because they both utilize acidic conditions. Acid conditions 

are chosen due to the better dissolution of ozone in low pH, normally between 2 

and 3. This way the viscosity of the obtained pulp is higher and kappa number 

lower as shown in Figure 11. 

 

Figure 11. The effect of pH on the pulp properties in ozone stage (Chirat et al. 2011) 

 

Ozone is known for its high reactivity and ability to react with almost any organic 

material. In addition, the effluent of Z-stage contains no chlorine compounds and 

can therefore be circulated to the chemical recovery system. (Sixta et al. 2006) 

The OX content of the effluent is also low as well as the brightness reversion of 

the pulp, when ozone is used (Colodette et al. 2008). The negative side of using 

ozone is that due to its gas form it has to be produced on-site which increases the 

plant investment costs. Ozone also attacks on carbohydrates and heavy mixing is 

required due to the fast reactivity. (Sixta et al. 2006) 

The operating conditions of a Z-stage vary. Low consistency has been proven to 

require too much energy in mixing, but also medium consistency has been 

considered difficult due to high energy consumption. In practice ozone stage is 

performed in high or medium consistency. Temperature in the industrial practice 

is 50 – 80 °C because higher temperatures cause ozone decomposition. However, 

temperatures up to 80 °C are possible. Ozone can also be decomposed forming 

radicals due to presence of transition metals. Thus, chelation could be in theory 

combined with Z-stage. However, in practice no industrial solutions exist. The 
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reaction time of ozone with a pulp suspension is usually just seconds which means 

that in an industrial scale ozone bleaching is generally combined with a mixer or a 

small reactor. (Sixta et al. 2006) 

Ozone can cause degradation of cellulose especially in final bleaching because the 

lignin content is too low. Selectivity is better for hardwood pulp due to the HexA 

content. (Sixta et al. 2006) Ozone as a matter of fact prefers to react with HexA 

rather than lignin (Pikka and Vehmaa, 2007). Thus, ozone is mainly used for 

removing HexA and lignin in prebleaching (Colodette et al. 2008). 

However, it can also be used after an A-stage. Even though A-stage lowers the 

selectivity of Z-stage by removing HexA, it has been proved that A-stage can 

lower the bleaching costs in the sequence. (Colodette et al. 2008) Z-stage can also 

be located in the middle of the sequence or as a final bleaching stage (Sixta et al. 

2006) (Andrew et al. 2013). Andrew et al. (2013) found that applying ozone 

immediately after A-stage is more beneficial than applying it right after oxygen 

delignification. In obtaining final brightness ozone has been proven to be better 

than chlorine dioxide. When ClO2 reacts with lignin fragments, new colored 

groups were formed while an excess of ozone degraded these kinds of groups that 

were formed during Z-stage. In addition, chlorine dioxide did not have any effect 

on quinones whereas ozone easily destroyed them. (Lachenal et al. 2009) 

When medium consistency ozone and chlorine dioxide stage are joined together, 

no intermediate washing is used. The most common solution is to use this 

combined stage as a first bleaching stage. (Lachenal and Muguet, 1992) Both 

Z/D- and D/Z-stage have been studied and Chirat et al. (1997) found that D/Z was 

superior for unbleached pulp whereas Z/D was superior for oxygen-delignified 

pulp. However, no reference is found for D/Z bleaching stage and the discussion 

of it is only based on laboratory experiments. After the oxygen delignification 

stage one kilogram of ozone can replace up to 3 kilograms of active chlorine 

without causing any adverse effect on pulp characteristics. Chirat and Lachenal 

(1997) discovered in their laboratory tests that D/Z-stage in the end of the 

bleaching sequence was efficient in increasing brightness. Addition of 0.6 % of 
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ozone saved 1.5 % of chlorine dioxide thus lowering AOX levels. In addition, the 

viscosities were even higher when ozone was used compared to the process where 

only chlorine dioxide was used. 

 

 

4.4 Alkaline bleaching stages 
 

4.4.1 Alkaline extraction 

 

Usually in an industrial bleaching sequence there is at least one alkaline extraction 

stage. This so-called E-stage is in the modern eucalyptus pulp mills used as the 

second bleaching stage and the most critical one. (Pikka et al. 2000b) The aim of 

the extraction is to dissolve and remove the lignin that has reacted in the previous 

D-stage; it converts quinone moieties to polyphenols (Brogdon and Lucia, 2005a). 

Alkaline extraction also degrades lignin into smaller fragments therefore making 

the lignin removal easier. (Pikka et al. 2000b)  

During extraction the main part of alkali is consumed for neutralizing the 

dissolved acidic reaction products, acidic groups of pulp, acid carryover and 

activating remaining lignin (Colodette et al. 2008). During the first few minutes of 

extraction the kappa number decreases rapidly. This is presumably caused by 

neutralization. The slower stage, which happens afterwards, is related to the 

ionization and slow mass transfer within the fibers. (Gullichsen, 2000b) 

For many years the extraction had been enhanced with an addition of oxygen 

and/or hydrogen peroxide. This enables the kappa number to decrease further and 

the brightness to increase. With these oxidants it is possible to increase the 

ionization of phenolic groups of lignin and thus improve solubility. For eucalyptus 

pulp the EO-stage is rather inefficient but EP- and EOP-stages are more often used. 

(Colodette et al. 2008) EO-stage does not remove more lignin than E-stage but 

oxidizes polyphenols to hydroxyquinones which is shown as a slightly lower 
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kappa number. EO-stage pulp also has somewhat better bleachability. (Brogdon 

and Lucia, 2005a) EP- and EOP-stages provide a lower kappa number and Klason 

lignin content than extraction stages without peroxide. This is due to the fact that 

use of peroxide eliminates quinonoid and muconic acid moieties. Because oxygen 

oxidizes polyphenols to quinones and peroxide then eliminates them, the EOP-

stage is proved to be the most efficient one. (Brogdon and Lucia, 2005b) 

As mentioned before, the chemicals used for alkaline extraction are sodium 

hydroxide, oxygen and hydrogen peroxide. The industrial process conditions for 

extraction are given in Table 6. 

Table 6. The industrial process conditions of alkali extraction (Gullichsen, 2000b). 

Temperature (°C) 70 – 90 

End pH 10.5 – 11 

Retention time (min) 60 – 120 

Consistency (%) 9 – 16 

NaOH (kg/BDT) 10 - 12 

O2 (kg/BDT) 0 – 6 

H2O2 (kg/BDT) 0 - 6 

 

Sodium hydroxide charge is influenced by several factors: lignin content of pulp 

entering the bleach plant, oxygen delignification and cooking conditions, 

carryover from previous stage, washing filtrate circulation and E-stage conditions. 

(Gullichsen, 2000b) Addition of even a small amount of oxygen can cause a 

significant decrease in kappa number and increase in final brightness. When 5 

kg/BDT oxygen is used, about 3.5 kg/BDT of chlorine dioxide is saved. This 

results in considerable savings in the chemical costs. (Reeve, 1989) Oxygen 

requires a pressurization of some kind – it is possible to pressurize only a pre-

reactor or the whole tower. The pressure of an upflow tower is usually 2 – 3 bar at 

the top while downward flow tower uses atmospheric pressure. Already a dosage 

of 1.5 kg/BDT of hydrogen peroxide decreases chlorine dioxide consumption by 

about 3 kg/BDT. (Gullichsen, 2000b) (Chirat et al. 2011) 
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The consumption of hydrogen peroxide could be as high as 6 kg/BDT, as can be 

seen in the Table 6. This usually happens when the bleach plant is short in 

chlorine dioxide and usually requires pressurized conditions. The effect of 

temperature is significant in the extraction: it will also have an effect on the 

brightening agent consumption later on in bleaching. (Colodette et al. 2008)  

If AHT/D- or DHT-stage is the first stage, it is reasonable to take advantage of the 

high temperature of the pulp and run the extraction at higher temperatures. 

However, the washing in between also affects temperature. With temperatures of 

over 90 °C in E-stage the consumption of peroxide increases while the yield and 

viscosity decrease. Oxygen is, however, not always needed if the hardwood pulp 

has been already treated with AHT/D- or DHT-stage. Oxygen can even attenuate the 

effect of peroxide during the extraction. However, for softwood pulp the use of 

oxygen in the extraction is advantageous. (Colodette et al. 2008) 

 

4.4.2 Peroxide stage 

 

P-stage is used normally as the final stage in the ECF bleaching sequence. Lately, 

it has been attracting more interest than D2-stage due to the achieved higher final 

brightness, better brightness stability and beatability (Süss et al. 1999) (Carvalho 

et al. 2008). Although the kappa number was higher for peroxide using sequence 

compared to the use of chlorine dioxide in study performed by Eiras and 

Colodette (2005), the brightness stability was better. 

In P-stage the reducing groups of carbohydrates and lignin such as oxidized 

cellulose and xylans are removed. Additionally, peroxide can remove o- and p-

quinoid structures that are formed by side-reactions and only partially removed in 

preceding chlorine dioxide stage. These structures in addition to other reduced 

groups would react with HexA causing more brightness reversion. (Colodette et 

al. 2008) Quinone structures are an important part of color causing systems in 

lignin in the final bleaching. Peroxide, however, forms perhydroxyl anions in 
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alkaline conditions. These anions react easily with certain types of chromophores, 

especially carbonyl structures, such as quinones. (Carvalho et al. 2008) 

The alkaline conditions allow the reaction products to be removed (Süss et al. 

2004). It can be said that the more chlorine dioxide is used in bleaching before P-

stage, the higher the consumption of peroxide should be in order to remove these 

formed quinones. (Carvalho et al. 2008) Furthermore, the changing the pH of pulp 

from acidic to alkaline environment and the fact that remaining chromophores are 

more prone to react with peroxide than with chlorine dioxide have an influence on 

the better performance of peroxide. However, still some mills oppose the idea of 

replacing D-stage with P-stage if process waters and wood contains large amounts 

of potassium. (Carvalho et al. 2008) 

Perhydroxyl anion is a strong nucleophile and responsible for the most bleaching 

reactions in P-stage. Peroxide can also decompose and form oxygen which can 

react with lignin. The reactions taking place during the P-stage are generally slow. 

However, using pressurizing reactors will allow higher reaction temperatures, 

shorter reaction times and result in a higher brightness with an equal chemical 

consumption. The typical reaction conditions of an industrial P-stage are 

presented in Table 7. (Gullichsen, 2000b) 

Table 7. The typical industrial process conditions for P-stage (Gullichsen, 2000b) (Chirat et al. 2011). 

Temperature (°C) 80 - 90 

Final pH 10.5 – 11 

Retention time (min) 30 – 180 

Consistency (%) 10 – 15 

H2O2 (kg/BDT) 2 - 40 

MgSO4 (kg/BDT) 0 - 2 

 

Peroxide is not as efficient as chlorine dioxide in removing shives and dirt. Thus, 

P-stage requires extra attention to screening and pre-delignification compared to 

D-stage as the final stage in order to reach comparable cleanliness of the final 

pulp. However, the AOX amounts will decrease when using peroxide instead of 
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chlorine dioxide although peroxide residuals in effluents are detrimental to 

microbial activity in biological treatment. (Gullichsen, 2000b) 

 

4.4.3 Metal control in alkaline stages 

 

A well-known problem with bleaching stages using peroxide is its ability to be 

catalyzed by transition metal ions. These reactions produce hydroxyl radicals and 

superoxide anions which both can react with polysaccharides by degrading them 

and lowering the viscosity of the pulp. Therefore, it is normal to decrease the 

amount of metals by using chelants and/or adding magnesium sulfate both in 

alkaline extraction that uses peroxide and in peroxide stage. Even a low level of 

transition metals can cause this degradation, thus making it important to design 

the metal control. Even a small addition of magnesium sulfate was found to 

decrease the viscosity loss and lowered peroxide consumption. (Carvalho et al. 

2008) A normal charge is up to 2 kg/BDT. 

The protective characteristic of magnesium is shown in Figure 12. The addition 

can be either as magnesium sulfate or hydroxide. Studies have shown that the 

ratio Mg/Mn should be over 30 in normal P-stage conditions but when the 

temperature increases, the ratio should be increased as well. However, an 

excessive addition of MgSO4 may suppress the bleaching reaction. (McDonough, 

1996) Even though the viscosity will be lower for peroxide treated pulp than for 

chlorine dioxide bleached pulp, the physical and optical properties will be better 

for peroxide bleached pulp. In addition, the study made by Carvalho et al. (2008) 

showed that the brightness before the last P-stage should be around 87 %.  
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Figure 12. The protective attribute of magnesium on pulp viscosity (Liu et al. 2014) 

Süss et al. (1999) found out that also an addition of sodium silicate increased the 

brightness and decreased the heat aging tendency. It works the same way as 

magnesium sulfate and complexes the transition metals through oxygen or 

hydroxyl bridges (McDonough, 1996). 

 

 

 

5 Washing and its filtrates 

5.1 Pulp washing 
 

5.1.1 Washing principles and concepts 

 

Pulp washing can be mainly performed with three different ways: by diluting and 

thickening, displacing and pressing. Dilution-thickening is the simplest way of 

them all. In principle it means that first the pulp suspension is being diluted by 

adding wash liquor, the suspension is mixed, the filtrate is removed and the pulp 

is discharged like in Figure 13. This technique is not very efficient, so it should be 

performed several times in series. In practice this principle is found in some 

bleach plant wash presses, like screw or roll presses. (Krotscheck, 2006) 
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Figure 53. Dilution-thickening (Krotscheck, 2006, p. 524). 

Displacement washing means that clean wash liquor is fed on top of the pulp cake 

and the liquor pushes away the dirty liquor that enters with pulp. The dirty liquor 

becomes filtrate and finally all that is left outside the fibers, is the washing liquor. 

So in this case there is no mixing of any kind. After the displacement there might 

also be need for some thickening. In theory all of the dirty liquor outside the fibers 

would be removed, but in reality there is always some kind of un-wanted mixing 

involved. Theoretical scheme is shown in Figure 14. (Krotscheck, 2006) 

 

Figure 6. Displacement washing (Ruuttunen, 2010). 

 

Pressing is about pressing the dirty liquor entering with the pulp mechanically into 

filtrate. The pressure causes the filtrate to go through wire or screen. Firstly, only 

the impurities outside the fibers are being removed, but it is also possible that 

when the pressure increases also the liquor trapped inside the fibers is moved to 

the filtrate. (Krotscheck, 2006) 

The most important concepts for pulp washing are dilution factor, displacement 

ratio and Nordén’s E-factor. Dilution factor signifies the difference between the 
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incoming wash liquor and the liquor leaving with pulp, divided by the pulp flow. 

Displacement ratio means the actual washing efficiency compared to the ideal 

displacement washing efficiency. (Krotscheck, 2006) The most common 

parameter in Scandinavia, however, is Nordén’s E-factor. It expresses the amount 

of ideal dilution-thickening stages that are required to attain a similar washing 

efficiency as in certain equipment. It can be presented also as E10-value which 

means E-factor in a consistency of 10 %. (Nordén, 1966) (Gullichsen, 2000a) 

 

5.1.2 Brown stock washing 

 

The purpose of brown stock washing is to remove the impurities and recover 

cooking chemicals with designed dilution factor and equipment. Pulp should be 

clean for bleaching so that the chemical consumption would be as low as possible, 

the runnability would not suffer and no degradation of carbohydrate chains would 

happen. Usually the impurities in the pulp after cooking consist of black liquor. 

Normally the organic and inorganic substances are separated: when talking about 

organic matter, the term used is COD and when it is about inorganics, usually 

sodium is used (mostly Na2SO4). (Krotscheck, 2006)  

Generally, one brown stock washing stage is insufficient because the washing 

does not normally happen like in theory and efficiency requirement for pulp 

washing is quite high. Therefore, multiple washers should be installed in series or 

a washer should have several washing stages. The filtrate of the first washing 

stage has the highest concentration of impurities and it is sent to the evaporation 

plant. (Krotscheck, 2006) 

 

5.1.3 Washing stages in oxygen delignification and bleaching 

 

In washing stages between bleaching stages and after oxygen delignification the 

goal is to remove the unwanted components before the next bleaching stage. 



 

 

 

45 

 

These components cause increase in chemical consumption and harm the pulp 

properties. (Gullichsen, 2000b) (Krotscheck, 2006) After an ECF bleaching stage 

these components are mainly of organic matter including chlorinated organic 

compounds, residuals of oxidant and other non-process elements (NPE), such as 

metals (Costa et al. 2005). In addition, washing decreases scaling problems and 

adjusts other conditions, such as pH, suitable for the next bleaching stage 

(Gullichsen, 2000b) (Krotscheck, 2006).  

Usually the optimum has to be found between the purity of the pulp and the 

amount of water used (Gullichsen, 2000b). The washing stage after oxygen 

delignification should have the best washing efficiency in the bleach plant. This is 

because of the large amount of dissolved organic material that consumes 

bleaching chemicals. E-value of 8 is necessary. (Krotscheck, 2006) (Pikka et al. 

2000b)  

Lately the focus in different mills has been in decreasing the water consumption 

of bleaching. That is why countercurrent washing is used. It means that the 

cleanest wash liquor is used in the last washing stage in which the pulp is also the 

cleanest. This wash liquor can be white water from drying machine, fresh water or 

condensates from the evaporation plant (Histed and Nicolle, 1973). The filtrate of 

this stage is used as the washing liquor of the second last stage and so on until all 

the washing stages have been gone through (Figure 15) (Krotscheck, 2006). Some 

fresh or white water can also be added to the second last washing stage (Costa et 

al. 2005). When the amount of filtrate out from a washing stage is lower, also the 

quantity of heat is lower and therefore energy efficiency of the washing stage is 

higher. (Krotscheck, 2006) 
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Figure 7. Countercurrent washing (Krotscheck, 2006). 

 

Countercurrent washing is nearly always performed like shown in Figure 15. 

However, for example in bleaching some mills use so-called split-flow and jump-

stage countercurrent washing. In split-flow countercurrent washing the filtrate 

flows are divided into two streams (acidic and alkaline). Before a bleaching stage 

pulp is washed with a filtrate that has a similar pH and that has been formed in a 

latter bleaching stage. After this bleaching stage the pulp is washed with a filtrate 

that has pH close to the one in the next stage in the sequence. (Pikka and Vehmaa, 

2007) (Histed et al. 1996) Split-flow countercurrent washing is presented in 

Figure 16.  

 

Figure 8. Split-flow countercurrent washing (Histed et al. 1996). 

 

In jump-stage countercurrent washing the acidic and alkaline filtrates are kept 

apart. For example the D1-stage filtrate is sent to D0-stage washer. (Pikka and 
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Vehmaa, 2007) (Histed et al. 1996) Jump-stage countercurrent washing is shown 

in Figure 17. 

 

Figure 9. Jump-stage countercurrent washing (Histed et al. 1996). 

 

When the filtrates were first being circulated and the filtrate circulations closed, 

fractional washing was established. This way it is possible obtain significantly 

lower COD content in the bleaching stages. The only washing equipment that uses 

fractional washing is a drum displacer. It enables the use of two or more different 

filtrates in a single washer at the same time. The liquids are being supplied 

separately and the formed filtrates are kept apart. Thus, these filtrates can be sent 

further to different locations of the mill: the dirtier can for example be removed 

from the process and the cleaner sent to another washing stage. (Pikka et al. 

2000b) 

 

5.1.4 Practice of pulp washing 

 

In practice pulp washing is based on displacement, just like in Figure 18. First the 

dirty pulp with its liquor enters on top of the screen or wire forming a cake. After 

this the wash liquor is fed on top of the cake and forced to flow through it. The 

wire or screen under the cake separates the cake from the filtrate, with the 

impurities, that passes through. (Krotscheck, 2006) 
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It is also easy to notice the three phases in which the suspension can be divided: 

the solid fibers, the mobile liquor that moves freely around the fibers and the 

liquor trapped inside and between the fibers. (Gullichsen and Östman, 1976) The 

free-flowing liquor is easy to displace with the wash liquor, drain or press it from 

the fiber suspension. The liquor inside the fibers can only be removed according 

to Donnan theory. On the other hand, when the dirtier liquor has been replaced 

with a cleaner one, the impurities can also transfer to the outside of the fibers by 

diffusion. This means that the molecules randomly move to the outside of the 

fibers due to diffusion in order to balance the concentration differences. 

(Krotscheck, 2006)  

Some of the impurities can also be attached on the fibers themselves. When the 

impurities are accumulated like this, the phenomenon is called sorption. 

(Gullichsen and Östman, 1976) Sorption includes both terms adsorption and 

absorption. The cations that usually attach to fibers are sodium, potassium, 

magnesium and calcium. Sorption is not only affected by pH but also temperature. 

In acidic conditions especially carboxylic groups but also other acidic groups 

cause sorption. The sorption, however, reduces when the pH is lower than 3 due 

to the pKa of acidic groups. In alkali conditions hydroxyl groups are the main 

reason for the sorption. Generally, the higher the pH is, the larger is the amount of 

sodium. Temperature has only a slight effect on the adsorption of metals: when 

the temperature is higher, the ions are more weakly adsorbed by the fibers. This 

means also that in higher temperatures the adsorption of metals is lower. 

(Eriksson and Grén, 1996) 

Figure 10. The washing of a pulp cake (Krotscheck ,2006, p. 512). 
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5.2 Filtrates of pulp bleaching 

 

5.2.1 Motivation for filtrate processing 

 

In addition to the countercurrent washing, mills have taken extended cooking, 

oxygen delignification and external effluent treatment into operation. The size of 

mills has increased causing the degree of closure of mills to grow. These 

improvements enable new mills to be built on sites that have only limited 

resources of fresh water and makes the operation of mills located in the 

environmentally sensitive areas possible. It also might give an advantage on the 

market due to the environmentally sustainable solutions. (Bajpai, 2012) 

Furthermore, the requirements of environmental permits have become stricter on 

e.g. AOX and inorganic matter. For example in Paraiba, near Rio de Janeiro, 

Brazil, legislation has established fees for expenditure of fresh water and 

discharge of used water. (Costa et al. 2005) The sizes of some pulps mills are too 

large, especially because they are located close to big cities.  

The reuse of effluents can also benefit economically the sodium recovery as well 

as decrease chemical costs. (Bajpai, 2012) Additionally, the heating and cooling 

costs of water will decrease significantly when the reduction in water use is 

utilized (Vehmaa et al. 2011). 

The reason for the large interest in countercurrent washing and filtrate circulation 

is that bleach plant is responsible for the largest amount of effluents in the pulp 

mill. This is because brownstock side and oxygen delignification are connected to 

the recovery circle as a closed cycle whereas bleaching, wood handling and drying 

operate separately. The sources of effluent in a pulp mill are shown in Table 8. 

Due to the harmful composition of effluents, the volume should be kept as low as 

possible. (Bajpai, 2012) (Lindberg et al. 1994) (Vehmaa et al. 2011) 
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Table 8. The effluent volumes from each department of a mill (VTT, 2011). 

Department of mill Effluent volume (m
3
/ADT) 

Woodhandling 2.0 

Fiberline and oxygen delignification 0.3 

Bleaching 15.6 

Drying machine 0.3 

Recausticizing and lime kiln 0.4 

Evaporation 0.1 

Recovery boiler and power boiler 2.3 

Sealing water 0.3 

Total 21.3 

 

5.2.2 The development of filtrate processing 

 

Nowadays the environmental impact of a modern pulp mill is almost negligible. 

The comparison to the situation few decades ago is shown in Figure 19. Not only 

the amount of effluents derived from bleach plant has decreased from 40 – 70 

m
3
/ADT to about 10 – 15 m

3
/ADT but also the amount of solid waste and air 

emissions have decreased. (Pikka and Vehmaa, 2007) (Crăciun et al. 2010) 

(Axegård et al. 1997) However, it should be noticed that although the effluent 

amounts per ton of pulp are decreasing, the increase in the size of the mills has 

caused the absolute amount of effluents per mill even to rise. In addition, the 

concentrations of the effluents have increased. The ultimate target for the closure 

of the circuits would eventually be that mills do not either discharge or take in any 

water from the water reserves (Vehmaa et al. 2011). 
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Figure 19. The development of AOX amounts in bleach effluents (Germgård et al. 2011). 

 

At the moment it is possible to decrease the effluent discharge to about 5 m
3
/BDT, 

but a complete closure and reutilization of effluents is not yet in use. In addition, 

having a degree of closure this high might not always be cost effective and the 

washing efficiency becomes significantly important. (Bajpai, 2012) If the washing 

is not sufficient, the carryover becomes a problem. Thus, the closure of the filtrate 

circulation has caused growing interest in efficient washers (Pikka and Vehmaa, 

2007). When the degree of closure is on this level, the alkaline filtrates are reused 

but the acidic ones are usually excluded due to their heavy metal content. Alkaline 

filtrates can even be used for the washing of unbleached pulp which leads to 

significant reduction of water flows and discharges in the system. (Bajpai, 2012) 

 

5.2.3 Challenges in filtrate circulation 

 

The reuse of filtrates is however demanding: The non-process elements  can 

accumulate in the process causing scaling and corrosion in the equipment, 

increase the chemical consumption of oxygen derived chemicals, increase the load 

of dregs and sand, and decrease pulp quality (Costa et al. 2005) (Bajpai, 2012) 

(Pikka et al. 2000a). The deposits and problems caused by metals are explained 

more detailed in the chapters 3.1.1 and 3.1.2. 

The closing of the bleach plant circulation to recovery causes also an excess of 

sulfur and sodium in the liquor loop. Therefore, some of the caustic should 

possibly be replaced with oxidized white liquor and occasionally some sulfur 
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should be removed from the system. Without the circulation the bleaching 

sequences require an addition of sulfuric acid and caustic. (Bajpai, 2012) 

Due to the filtrate circulation also the COD of washing liquor increases (Pikka et 

al. 2000a) (Viirimaa et al. 2002). This COD affects both kappa number and 

brightness due to the organic matter that decreases the effect of bleaching 

chemicals. Thus, the chemical consumption is increased (Figure 20). The 

chemical consumption can also increase due to the pH adjustments and the buffer 

capacity of the pulp.  

 

Figure 20. Addition of post oxygen stage filtrate into D0 stage (Pikka et al. 2000a). 

 

However, different kinds of filtrate circulations for example in D-stage have been 

investigated (Pikka et al. 2000a) (Vehmaa et al. 2011). These studies show that 

the reuse of filtrates can be totally possible. In the study of Vehmaa et al. (2011) 

the obtained brightness was even higher after D-stage due to a higher Cl
-
-content 

in effluent when lignin was removed. The color of this effluent was dark brown 

but inert and did not have any effect on the pulp properties. Thus, color does not 

tell everything about the possibilities of reusing filtrates – lignin increases the 

color of the filtrate but there are also other components that increase the color, e.g. 

iron and manganese. (Dahl et al. 1996) (Vehmaa et al. 2011) 

 

5.2.4 Composition of filtrates in general 

 

In addition to lignin, carbohydrates and non-process elements there are a lot of 

different compounds in the filtrates. The compounds in effluents are separated 

normally to low molecular weight (LMW) and high molecular weight (HMW) 
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materials. The limit between these two categories is usually 1000 Da. (Martin et 

al. 1995) This classification is required because the biological effluent treatment 

can remove mainly LMW substances. The compounds vary between monomeric 

compounds and large molecules. (Lehtinen, 2004) Dahlman et al. (1995) 

discovered that the carbohydrates dissolved in the filtrate from hardwood 

bleaching were mostly xylan. In addition, the carbohydrate content in the filtrate 

was higher for hardwood than for softwood.  

HMW components are the ones that carry a considerable part of AOX and COD 

in the bleach effluents although the effluent mainly consists of LMW (Lehtinen, 

2004). BOD content is mainly caused by LMW simple organic compounds (Dahl 

et al. 1996). In ECF bleaching the D0-stage produces a significant amount of COD 

in the effluent. Thus, if D0-stage is open, the wastewater amount and water usage 

increase but the COD level is low in the system and the chemical consumption 

can be minimized. If the stage is closed, brightness loss can be minimized by 

fractional washing but still more chemicals are required. (Pikka et al. 2000a)  

The modern ECF hardwood pulp mills use less and less chlorine containing 

chemicals for bleaching. This is presented in Figure 21. Thus, the amount of 

chlorine components in the bleaching effluents has decreased significantly. 

(Vehmaa et al. 2011) Chlorinated compounds that are formed during the 

bleaching process cause serious environmental problems, such as death of algae 

and bioaccumulation in organisms (Lehtinen et al. 1991) (Lehtinen et al. 2004). 

 

Figure 21. The consumption of active chlorine in pulp bleaching in last decades (Germgård et al. 2011). 
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Different types of compounds and their numbers in different bleaching effluents 

are presented in Table 9. It is easy to see how much less different compounds, 

especially chlorinated ones, ECF filtrates have compared to chlorine-based. 

Table 9. Types and numbers of compounds found in different types of bleach effluents. Number of 
chlorinated compounds is in brackets. (Mckague et al. 1998) 

 Chlorine-

based 

ECF TCF 

Acids and derivatives 120 (70) 83 (18) 71 

Phenols and phenyl ethers 54 (51) 27 (22) 3 

Alcohols 35 (19) 11 (0) 2 

Aldehydes and ketones 87 (64) 41 (13) 19 

Hydrocarbons 99 (84) 38 (24) 4 

Dioxins and furans 24 (24) 2 (2) 0 

Miscellaneous 23 (17) 11 (8) 4 (1) 

Total 442 (329) 213 (87) 103 (1) 

 

HMW substances contained much more carboxylic acid groups compared to the 

amount found in kraft lignin (Dahlman et al. 1995). The presence of carboxylic 

acids is beneficial to bleaching because they make it easier for residual lignin to 

dissolve (Dahlman et al. 1995).  

Low molecular weight compounds can be divided into three different classes: 

phenolic compounds, acids and neutral compounds. The neutral compounds 

include e.g. resin acids, fatty acids, terpenes and sterols of which the first two are 

neutral only in acidic conditions. The compounds are usually non-organochloric 

compounds in the filtrates. (Lehtinen, 2004) The most common non-organochloric 

compounds are palmitic and stearic acids but also simple straight chain 

dicarboxylic acids were present (Mckague et al. 1998) 

 

 



 

 

 

55 

 

5.2.5 Composition of A-stage filtrates 

 

The A-stage filtrate contains a high concentration of metals, other non-process 

elements, sulfuric acid and reaction products of HexA (Räsänen et al. 2005). 

Table 10 presents the characteristics of A-stage filtrate of an eucalyptus pulp 

(Costa et al. 2005). 

Table 10. Characteristics of A-stage filtrate from eucalyptus kraft pulp 
(Costa et al. 2005). 

 

Effluent volume (m
3
/t) 0.11 

Acute toxicity - MICROTOX (EC50%) >100 

COD (mg O2/l) / (kg O2/t) 1297 / 11.67 

BOD5 (mg O2/l) 670 

Biodegradability (BOD5/COD) 0.52 

Color (mg Pt/l) 1356 

AOX (mg Cl
-
/l) / (kg Cl

-
/t) 0.6 / 0.005 

Volatile Dissolved Solids (mg/l) 968 

Na (mg/l) 594 

SO4
2-

 (mg/l) 1172 

Cl (mg/l) 66.5 

K (mg/l) 54.7 

Ca (mg/l) 31.3 

Mg (mg/l) 2.42 

Fe (mg/l) 0.04 

Cu (mg/l) 0.04 

Mn (mg/l) 0.86 

P (mg/l) 4.66 

Al (mg/l) 1.02 

HCl Insoluble (mg/l) 9.33 

 

This filtrate was reused 9 times, so the composition should be stabilized. The 

study showed that this AHT-stage filtrate contained a higher organic load of COD, 
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BOD and color than filtrate of D-stage. Thus, if the filtrate is reused somewhere in 

the mill the organic load of effluents in the effluent treatment will decrease 

significantly.  

Surprisingly, the load of the filtrate produced in this study is actually lower than 

in the currently discharged streams (COD = 20.9 kg O2/t, AOX = 0.67 kg Cl
-
/t) at 

the mill. The toxicity of this filtrate was again higher than in the mill (EC50% = 

20.3). (Costa et al. 2005) Costa et al. (2005) also studied the whole sequence 

AHT(EOP)D(PO) and the AOX content of the final effluent was quite low. The 

factors causing this were low dose of chlorine dioxide in the sequence, very low 

kappa number of pulp entering D-stage and removal of HexA, that is the 

responsible for a large amount of AOX, already in AHT-stage (Costa et al. 2005) 

(Costa and Colodette, 2002). In the study of Costa et al. (2005) the filtrate reuse 

caused only a slight decrease in brightness, but otherwise no other impact was 

seen. 

Gomes et al. (2007) found out that the pre-bleaching produces up to 80 % of the 

whole effluent load when the sequences begin with A/D or DHT-stages. These 

sequences produce effluents with higher loads of COD, BOD and TOC than 

sequences without A/D and DHT-stages. Nevertheless, the effluents of a sequence 

starting with A/DHT-stage had similar loads of COD and BOD and even lower in 

TOC. 

 

5.2.6 Reuse of A-stage filtrates 

 

Costa et al. (2005) suggested the use of A-stage filtrate in the causticizing plant 

which can tolerate this high organic load. Thus, a significant amount of sodium 

could be recovered. 

According to Teleman et al. (1995) the hydrolysis should only happen in acidic 

conditions because the degradation proceeds formally through the undissociated 

pKa,HexA 3.1. However, the findings stated below show that this hydrolysis can 
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also be initiated when the pH of the external solution is close to neutral: The 

acidic groups in the fiber wall consist mainly of uronic acids and lignin-bound 

ionizable groups. At pH > 7 the acids exist as neutral salts. Acidification and 

washing the metal ions attached to fibers neutralize the acidity of the pulp. 

Acidification and washing remove the counter ions while the fiber bound acids 

stay in their protonated form. Simultaneously the pH is lowered enough to 

conduct the hydrolysis. (Räsänen et al. 2011) (Räsänen et al. 2005) 

In addition to the reuse of A-stage filtrate in causticizing plant, Räsänen et al. 

(2005) have suggested the circulation of the filtrate in the A-stage. This scheme is 

presented in Figure 22. The arrangement required acidifying pulp by using acidic 

solution and then washing it before the hydrolysis. Here the fiber charge decreases 

and cations are released from the pulp and bound anionic groups are converted 

into their acid forms. The lower the pH is the better is the removal of metals. Next 

the acid hydrolysis takes place: It is performed without use of any acid addition 

like sulfuric acid because the fibers are already acidic due to washing. In other 

words the external solution has significantly higher pH than the fibers. This 

happens only when the ion concentrations are low in the pulp suspension. 

 

Figure 22. The circulation of filtrate back to A-stage. ck means cellulose kraft, w stands for washing, a for 
acid addition and A for A-stage. (Räsänen et al. 2005) 

  

In the study pH of 2 – 3.5 was enough to initiate and sustain selective hydrolysis. 

However, when the HexA content is decreased the formed carboxylic acids that 

are liberated to the external solution starting to lower the pH of the solution. In the 

experimental part the removal of HexA was about 70 % when the hydrolysis was 

performed for 2.5 hours at 80-95 °C. In addition, the pH of the washing had an 

impact on the removal efficiency of HexA. The higher the pH was the lower was 
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the removal of HexA. Removal of about 60 % of the cationic charge resulted in 

sufficient HexA removal. (Räsänen et al. 2005) 

Another solution that is based on the same idea by Räsänen et al. (2005) is 

presented in Figure 23. First the pulp is being washed with acidic filtrate in order 

to remove the metals and non-process elements from the pulp and then the 

washing with water changes the ionic form of the pulp. After the washing stage 

the acid hydrolysis is performed but again without any added acid. The reaction 

products of HexA buffer the pH of the pulp solution suitable for the D-stage that 

is combined with A-stage without any intermediate washing. The removal of 

metals also allows the direct addition of chlorine dioxide. This formed filtrate 

contains reaction products of HexA and chlorine dioxide bleaching but only a 

small amount of non-process elements is present. Hence, this filtrate could be 

reused in the acidification stage before AD-stage to remove the metals and NPE’s 

from the pulp. Additionally, this way the metals could cause less damage to the 

pulp quality during bleaching. (Räsänen et al. 2005) 

 

Figure 23. Combined A- and D-stage with a circulation of AD-stage filtrate to acidification of the pulp. D 
refers to D-stage. (Räsänen et al. 2005)  

 

If this kind of continuous recycling of the filtrate would be taken into use, the 

addition of sulfuric acid to A-stage could be significantly reduced or even 

eliminated totally although the properties of the pulp are not improved by this 

circulation (Räsänen et al. 2005). 

The same idea as in processes mentioned is also used in producing microcellulose 

by using the own acidity of the pulp. The process is similar to the ones already 

presented but the pH of the acidification step is lower: preferably between 1.5 and 
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2.5. This pH can be reached with different mineral acids but also the use of formic 

acid or other organic acids was suggested. (Räsänen et al. 2011) This could enable 

the reuse of hydrolysis filtrate since it contains formic acid among other organic 

acids that are formed due to the degradation of HexA. 
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6 Conclusions of the theoretical part 

 

The limits of environmental emissions have globally become tighter and 

nowadays market demands favor environmental friendliness. These changes 

together with increasing mill sizes have caused the industry to look for different 

options in decreasing emissions. This objective is relevant especially in building 

new mills in highly populated areas. 

Bleach plant is responsible for the largest volume of effluents. Thus, one of these 

process developments has been closing the water circulation in the washing stages 

of bleaching. The effluent discharges have decreased to about a fourth in few 

decades and the target is to decrease them further – even to zero. At the moment 

the lowest effluent discharges are about 5 m
3
/BDT but the economical side has to 

be also taken into consideration. 

Currently in the pulp mills using eucalyptus as their raw material, it is necessary 

to have a stage to hydrolyze HexA formed in cooking. This happens in acidic 

conditions where formic acid, 2-furoic acid and some 5-carboxy-2-furaldehyde 

are formed from HexA. 

Reusing the filtrate formed in the A-stage is now under observation because the 

price of sulfuric acid has been increasing and because of the long transportation 

distances to the mills increase the price even more. It has been proven that using 

the own acidity of pulp, it is possible to sustain autohydrolysis. Thus, circulating 

A-stage filtrate back to A-stage should decrease the use of sulfuric acid. 

However, the transition metals can build up in the filtrate because significant 

amount of metals is released during the degradation of HexA. The accumulation 

causes different kinds of problems such as precipitation, corrosion and 

degradation of cellulose chains. Degradation in most cases takes place when 

peroxide is used and radicals are formed. Thus, magnesium sulfate is usually 

added in order to prevent the degradation. The most significant metals barium and 

calcium can form problematic compounds like calcium oxalate, calcium carbonate 
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and barium sulfate. Other harmful non-process elements are for example 

potassium and chlorine. The higher the pH is, the more metals are bound to fibres. 

Therefore, in acidic conditions metals are released to the liquid phase. Donnan 

theory is used to describe the uneven distribution of ionic species between the 

solution inside the fiber wall and outside fibers. Thus, it is possible to predict how 

the metal cations would act during the process. In addition to the compounds 

mentioned above, also lignin is present in the filtrates in large quantities. 

For now, according to different studies A-stage filtrate could be used at least as 

washing liquor prior to A-stage, reused before a washing stage and hydrolysis and 

possibly in causticizing plant. 

The most harmful effluent comes from D0-stage, which produces a significant 

amount of COD. In addition, the chlorine compounds are the most harmful ones. 

In general, it can be said that the whole pre-bleaching generates up to 80 % of the 

effluent load of the whole sequence. In one study A-stage filtrate was found to 

have even higher organic load than D-stage filtrate, so if the reuse can be 

performed the load in effluent treatment would decrease significantly. 

Due to the harmfulness of D-stage effluents, environmental emissions and their 

limits, mills are trying to decrease the use of chlorine dioxide. For example the 

use of peroxide stage as the last bleaching stage in the sequence is nowadays a 

popular choice. In addition, peroxide stage will e.g. decrease the brightness 

reversion. Peroxide is also used in an EOP-stage that is proven to be the most 

efficient of alkali extractions and thus it is in most cases chosen. 
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Experimental part 

 

The objective of the experimental part was to see if the sulfuric acid consumption 

could be decreased in A-stage by the formed A-stage filtrate. The goal was to 

attain a filtrate that would be similar to one to be produced at a mill non-stop. An 

aim was also to see what the properties of the filtrate are and how the recirculation 

would affect the operation of both A-stage and the following bleaching stages. 

The sequences containing A-stage filtrate circulation are compared to similar 

sequences not having filtrate circulation with differences in chemical 

consumptions and properties of pulp. On these grounds the industrial possibilities 

of A-stage filtrate circulation can be assessed. 

The experimental part consisted of preliminary tests and two different reference 

bleaching sequences (A-EOP-D-P and A-EOP- Z/D-P) that were compared. These 

two sequences were carried out with a clean A-stage and an A-stage using 3 times 

circulated filtrate. The properties of A-stage filtrates and pulps after each stage 

were analyzed. The first sequence was chosen because it has been lately attracting 

interest in research and it has been taken into use in modern pulp mills, such as 

one in Brazil (Clavijo, 2010) (Vianna, 2013) (Pöyry Corporation). In addition, the 

pulp used in this experiment was received from a mill that could use this 

bleaching sequence. The second sequence is just a small modification of the first 

one using the chemicals mentioned in the literature part. The experimental layout 

is presented in Figure 24. 

 

 

 

 

 

 

 

Figure 24. The experimental layout of bleaching. 
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7 Materials and methods 

7.1 Initial pulp 
 

Pulp used for the experimental part was eucalyptus pulp after oxygen 

delignification from a Brazilian mill. The initial pulp properties are shown in 

Table 11 and the methods in Appendix 1. Sheets that were used for brightness 

measurement were also used for ultraviolet resonance Raman (UVRR) 

measurements. 

Table 11. The properties of the initial pulp. 

Viscosity (ml/g) 1010 

Brightness (% ISO) 62.6 

Kappa number 10.7 

HexA (meq/kg) 60.2 

 

 

7.2 Preliminary tests 
 

The preliminary tests were performed for oxygen delignified pulp. The main point 

of the tests was to find out the optimum retention time of acid hydrolysis. A-stage 

was performed for 2, 3 and 4 hours in an air bath digester shown in Figure 25. The 

temperature was chosen as 90 °C because a higher temperature would probably 

lead to a lower viscosity. 200 grams of oven dry pulp was measured in each 

autoclave, the consistency was adjusted with deionized water and pH with sulfuric 

acid. The digester temperature was raised to 90 °C in 55 minutes while rotating 

the autoclaves continuously. This continued for the whole retention time. After 

the A-stage the autoclaves were cooled down in cold water for 20 minutes and the 

filtrate was recovered by pressing the pulp in a cloth. Then, the pH of the filtrate 

was measured and pulp was washed using deionized water: 4 liters of deionized 

water was added to pulp suspension and after short mixing, excess water was 
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pressed out of the suspension by hand, that is the washing was done as dilution-

thickening. This was repeated four times after which the dry matter content was 

increased to about 33 %. Eventually the pulp was homogenized. Kappa number 

and brightness were measured according to Appendix 1. 

 

Figure 25. Air bath digester used for preliminary tests, A- and EOP-stages. 

 

 

7.3 Bleaching procedures 

7.3.1 Conditions of bleaching stages 

 

The conditions of each stage were chosen according to the literature part and 

preliminary tests. The conditions were close to the optimum and similar to those 

used in the study of Clavijo (2010). The conditions of the sequences are shown in 

Tables 12 and 13. Alkaline extraction was to be carried out with peroxide and 

oxygen because EOP is the first brightening stage, and they have been proven to 

enhance the brightness. Use of magnesium sulfate is obligatory in achieving a 

high viscosity (Clavijo, 2010). Retention time in D-stage was only 60 minutes due 

the fact that it was reported to be long enough (Tamminen, 2010). In addition, the 

final pH was lower so that enhanced brightness would be achieved. The acid/base 

addition was chosen so that the final pH of each stage would be achieved. For 
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parallel samples the dosages of sodium hydroxide and sulfuric acid were kept the 

same.  

     Table 12. The bleaching conditions for the first reference sequence. 

 A EOP D P 

Temperature (°C) 90 85 75 85 

Retention time (min) 180 90 60 100 

Consistency (%) 10 10 10 10 

Final pH 3.1 – 3.5 10.5 - 11 3.1 – 3.6 10.5 

H2SO4 (kg/BDT) 4.8 - - - 

NaOH (kg/BDT) - 5.8 - 7 1.3 5.7 - 6 

H2O2 (kg/BDT) - 6.0 - 5 - 8 

O2 (kPa) - 300 - - 

MgSO4 (kg/BDT) - 1.2 - 1.8 

ClO2 (kg act. Cl/BDT) - - 14 - 

 

     Table 13. The bleaching conditions for the second sequence. 

 A EOP Z D P 

Temperature (°C) 90 85 75 75 80 

Retention time (min) 180 90 - 60 100 

Consistency (%) 10 10 10 10 10 

Final pH 3 – 3.5 10.5 - 11 3 - 10.5 – 11 

H2SO4 (kg/BDT) 4.8 - 2.4 – 4.6 - - 

NaOH (kg/BDT) - 5.8 - 7 - 0.5 9 - 11 

H2O2 (kg/BDT) - 6.0 - - 5 - 9 

O2 (kPa) - 300 - - - 

MgSO4 (kg/BDT) - 1.2 - - 1 

O3 (kg/BDT) - - 1.7 - - 

ClO2 (kg act. Cl/BDT) - - - 7.5 - 

 

Ozone stage was performed so that the retention time could not be precisely 

determined. The objective was to use 3 kilograms of ozone in the Z/D-stage but 



 

 

 

66 

 

due to a small amount of pulp only 1.7 kg was consumed. To keep the bleaching 

sequences comparable, only 1.7 kg of ozone was applied for the second sample. 

The final pH of the chlorine dioxide stage was let to decrease with ClO2 usage and 

again the NaOH addition for P-stage was determined so that the correct final pH 

was achieved. 

 

7.3.2 Performance of pre-bleaching 

 

Both A- and EOP-stages were carried out in an air bath digester which was shown 

in Figure 25. A-stage was performed just like preliminary tests but the time 3 

hours for all the autoclaves. 

In EOP-stage the pulp amount for each autoclave was 150 grams of oven dry pulp. 

After the pulp, deionized water, magnesium sulfate, sodium hydroxide and 

hydrogen peroxide were put into the autoclave. Then 300 kPa of oxygen was 

added to the autoclave and then depressurized. This was repeated twice but after 

oxygen was added third time it was left in the autoclave and the autoclave was 

placed into the digester. The digester was heated rapidly to 85 °C while rotating 

the autoclaves. After 85 minutes the autoclaves were again cooled down, filtrate 

was recovered and pulp was washed similarly to post A-stage except that the 

volume of washing water was each time 3 liters. This way the washing effect was 

the same as in the A-stage washing. After this the dry matter content of the pulp 

was again increased and homogenized. 

 

7.3.3 Performance of final bleaching 

 

D-stage was performed in a MC-mixer that is shown in Figure 26. 100 grams of 

oven dry pulp was first warmed up in a microwave oven with deionized water and 

sodium hydroxide. The suspension was then put into the mixer. Once the 

suspension was properly mixed, chlorine dioxide was added while mixing was 

continued at about 1800 rpm. After that the mixing was performed every 5 
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minutes with 360 rpm for 20 seconds until the retention time reached 60 minutes. 

Then pulp was removed from the mixer using vacuum cleaner and washed like 

previously, but now with 2 liters of water each time, following an increase of dry 

matter content and homogenization. 

 

Figure 26. MC-mixer used in D-stage. 

 

P-stages were carried out using plastic bags in a water bath. Each bag contained 

30 grams of oven dry pulp. Before placing the bags containing pulp, water and 

chemicals the suspension was warmed up in a microwave oven. The correct 

peroxide dose was determined by doing the stage with multiple different peroxide 

dosages and interpolation so that the desired brightness (89 % ISO) was achieved. 

The plastic bags were mixed by pressing them with hands every 8 minutes for 20 

seconds. After 100 minutes the pulp was again washed, but this time only with 1 

liter of deionized water each time, and homogenized. The 89 % ISO brightness 

target level was chosen because the selected chemical charges supported it the 

best. 

The second reference sequence started with A- and EOP-stages that were 

performed under the same conditions as in the first reference sequence. Z/D-stage 

was performed in the laboratory of Andritz in Glens Falls as well as the peroxide 

stage after it. Quantum Mark MC bleaching reactor was used as the bleaching 

equipment.  
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7.3.4 Sequences using filtrate circulated pulp 

 

The contaminated filtrate that was used for A4-stage (A-stage in which the 3 

times circulated filtrate was used) was produced according to Figure 24. This 

meant that first the filtrate of a normal A-stage was recovered and then reused 

instead of deionized water for adjusting the consistency of a new A-stage. The pH 

was adjusted to about 3.4 with sulfuric acid. Another A-stage was then performed 

as before. This procedure was repeated three times in total after which the pulp 

was bleached normally. Pulp was divided in two parts: the first part was bleached 

as mentioned in the Table 12 and the other part like in the Table 13. 

 

 

7.4 Measurements from pulps and filtrates 
 

The properties of pulp after each stage were measured similarly to determinations 

shown in the Appendix 1, except for HexA content which was not measured. In 

addition, kappa number after the P-stages was not measured. Brightness and 

kappa number were measured also from A-2 and A-3 pulps in order to see how 

the properties change when the filtrate is more and more circulated. The 

brightness reversion was measured according to TAPPI UM 200. 

On the filtrates of each stage, the pH was measured first. The methods for the 

other determinations of filtrates are shown in the Appendix 1. Non-process 

elements were measured by Department of Chemistry of Aalto University except 

for chlorine. 

Both the A1- and A4-stage filtrates were also later titrated using sodium 

hydroxide to see how the pH would change. The volume of each filtrate sample 

was 50 ml and the concentration of added NaOH was 76.9 mmol/l. After every 

0.5 ml the pH was re-measured. In addition, UVRR spectra were measured on A1- 

and A4-filtrates. 
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8 Results 

8.1 Preliminary tests 
 

The preliminary tests were not as successful as expected (Table 14). The final pH 

was below the optimum for all the retention times. The target pH was between 3 

and 3.5. However, this was not a serious failure because the main interest was to 

see how well HexA is degraded. On the grounds of the results 3 hours was 

decided as the retention time of the A-stage.  

    Table 14. The results of the preliminary tests. 

 2 hours 3 hours 4 hours 

Final pH 2.53 2.52 2.56 

Kappa number 6 5.6 5.3 

Brightness (% ISO) 62.0 61.2 60.7 

 

 

 

8.2 Performance of A-stage 
 

The differences between the A-stage pulps were not considerable as shown in 

Table 15. When comparing the brightness values between the samples it is easy to 

see that the brightness gets slightly lower when the filtrate is reused. The 

decrease, however, is not substantial and all the values are on a quite high level. 

Kappa number of A1-stage was somewhat higher than with other samples 

although the final pH was lower than in other stages. When comparing the 

viscosities of pulps A-1 and A-4 there was a difference of only 20 ml/g which is 

not significant enough to show any distinction between them. 
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Table 15. Properties of pulp after each A-stage.  

 A-1 A-2 A-3 A-4 

Final pH 3.09 3.19 3.25 3.31 

Viscosity (ml/g) 980 - - 960 

Brightness (% ISO) 60.3 60.3 59.4 58.8 

Kappa number 7.3 6.8 7.0 6.8 

 

Although the removal of HexA during A-stage was not the best possible, it was 

noted that the brightness seldom increases during A-stage (Eiras and Colodette, 

2003). The kappa number remained quite high when compared to other studies 

even though the duration of A-stage was 3 hours (Clavijo, 2010) (Costa et al. 

2005) (Vuorinen et al. 1999). Nevertheless, this somewhat lower removal of 

HexA enabled the good preserving of fibres: the viscosity barely decreased unlike 

in the study of Clavijo (2010). 

An interesting fact is that although the pH in the beginning did not change 

between A-stages, the final pH increased. However, although the final pH of the 

A4-stage was higher than in A1, it only had a slight impact on HexA removal and 

kappa number. The target pH was achieved for every stage. 

The least intense removal of both lignin and HexA occurred with A4-stage 

although the difference was not considerable (Figure 27). This is in agreement 

with the fact that no significant differences were found between different A-stage 

pulps. The HexA content decreased to only about half (peak at 1655 cm
-1

) which 

means that 35 meq/kg was still left. The lignin content barely decreased (peak at 

1609 cm
-1

) which is in agreement with previous studies. 
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Figure 27. UVRR spectra of pulps obtained after A-stages compared to pulp before A-stage. 

 

 

 

8.3 Performance of EOP-stage 
 

After the EOP-stage still no considerable differences between the pulps can be seen 

as Table 16 shows. Although kappa number before EOP-stage was quite high, it 

did not decrease more than in other studies but stayed on high level. The 

brightness increased significantly even though it was already on a great level 

before the stage (Clavijo, 2010) (Costa et al. 2005). It is an advantage that there is 

some residual peroxide because otherwise the easily oxidized lignin structures 

could still be present. The pH for EOP-1 and EOP-4 were somewhat higher than 

desired, but show that the viscosity still did not suffer significantly from the too 

high dose. From the results it can be seen that the higher the pH is, the lower is the 

residual peroxide concentration.  
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Table 16. Properties of pulps after EOP-stages. EOP-12 is the pulp that was later used in Z/D-stage and          
which was attained without the circulation. The difference in final pH values can be explained by 
differing additions of sodium hydroxide. 

 EOP-1 EOP-12 EOP-4 

NaOH charge (kg/BDT) 7.0 5.8 7.0 

Final pH 11.11 10.55 11.33 

Residual peroxide (mg/l) 3.2 51 1.9 

H2O2 consumed (kg/BDT) 5.97 5.49 5.98 

Viscosity (ml/g) 930 920 910 

Brightness (% ISO) 73.2 73.5 72.6 

Kappa number 6.4 5.6 5.8 

 

All of the properties of A-12 pulp were not measured but the viscosity and 

brightness of EOP-12 are on the same level as with EOP-1. Kappa number, 

however, is lower which can be a result of slightly lower A-stage pH (2.95). 

As can be seen from Figure 28, the biggest cause for the reduced kappa number is 

decreased lignin content, as was expected. Surprisingly, the HexA content was 

lower for pulp number 4 than for 1. 

 

Figure 28. UVRR spectra of pulps after E-OP-stage. 
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8.4 Performance of D-stage 
 

Both of the pulps had similar properties after D-stage. These properties are shown 

in Table 17. During the D-stage viscosity did not decrease, kappa number 

decreased about 4 units just like in other studies and brightness increased by 12 % 

ISO (Clavijo, 2010) (Costa et al. 2005). After D-stage the brightness values were 

on a good level. The final pH values were somewhat higher than the target, but 

the properties of pulp after the D-stage show that the conditions were satisfying. 

This can be partly explained with the fact that after the D-stage it was noticed that 

some chlorine dioxide was left in the pipeline when dosing, but the amount was 

roughly estimated to be only 0.3 – 0.6 kg act. Cl/BDT and on a similar level for 

both parallel samples. The usual residual chlorine dioxide in the literature part 

was reported to be 10 – 50 mg ClO2/l (Mckague and Carlberg, 1996). According 

to that, the residuals of this study are normal. 

     Table 17. Properties of pulps from the first sequence after D-stages. 

 D-1 D-4 

Final pH 3.98 4.15 

Residual chlorine (mg ClO2/l) 27.2 52.8 

ClO2 consumed (kg act Cl/BDT) 13.68 13.37 

Viscosity (ml/g) 920 900 

Brightness (% ISO) 85.0 84.7 

Kappa number 2.1 2.2 

 

There seemed to be no distinction either between the UVRR spectra of pulps as 

shown in Figure 29. The HexA content after D-stage can be estimated to be about 

15 - 20 meq/kg. This estimation is done by comparing the intensities of UVRR 

spectra of this stage and the initial pulp. A slightly high final pH and thus lower 

ClO2 consumption could have resulted in somewhat lower removal of HexA and 

lignin. 
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Figure 29. UVRR spectra of pulps after D-stage. 

 

 

 

8.5 Performance of Z/D-stage 
 

As stated before, the amount of pulp for this Z/D-stage was too small causing a 

low consumption of ozone. This is clearly seen as very low brightness in Table 

18. In addition, the viscosity decreased considerably and the kappa numbers 

between the pulps differed. The final pH after adding ozone, however, was as 

desired but the pH after D-stage was about 2.5 which was somewhat too low. Due 

to this low pH the viscosity decreased.  

     Table 18. Properties of pulps from the second sequence after Z/D-stage. 

 ZD-12 ZD-4 

Final pH 2.8/2.7 2.6/2.3 

Ozone consumed (kg/BDT) 1.6 1.7 

ClO2 consumed (kg act. Cl/BDT) 7.5 7.5 

Viscosity (ml/g) 790 790 

Brightness (% ISO) 82.9 82.1 

Kappa number 1.7 2.6 
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A clear difference is seen in Figure 30 between the two pulps: ZD-12 has half of 

the HexA amount of ZD-4. The quantity of lignin is roughly the same for both 

samples. HexA content for ZD-4 barely decreased. In addition, the lignin amounts 

for both pulps stayed on the same level. 

 

Figure 30. The UVRR spectra of Z/D-pulps. 

 

 

8.6 Performance of P-stage in A-EOP-D-P sequence 
 

P-stage did not cause any significant differences in P-stage performance between 

the pulps as shown in Table 19. Viscosities dropped significantly for all the pulps 

and the final viscosity remained low despite the use of magnesium sulfate. Higher 

peroxide dose caused larger decrease in viscosity. When there is still some 

residual peroxide present, the lignin structures that are easily oxidized, are absent. 

However, if the residual peroxide is high, the viscosity can suffer, especially when 

temperature is high and pH closer to neutral. (Filho and Süss, 2002) Again, it can 

be noticed, that the higher the pH is, the lower is the residual peroxide 

concentration. Final pH for all the samples was as wanted. 
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     Table 19. Properties of pulps from the first sequence (A-EOP-D-P). 

 P-1 P-1 P-4 P-4 

H2O2 dosage (kg/BDT) 6 8 5 8 

MgSO4 dosage (kg/BDT) 1.85 1.84 2 1.84 

NaOH dosage (kg/BDT) 5.7 5.7 5.9 5.95 

Final pH 10.79 10.77 11.01 10.93 

Residual peroxide (mg/l) 208 288 120 158 

H2O2 consumed (kg/BDT) 4.13 5.40 3.92 6.58 

Viscosity (ml/g) 750 700 770 700 

Brightness (% ISO) 88.4 90.1 87.7 90.0 

Brightness after heating (% ISO) 85.3 87.1 84.6 87.0 

Brightness reversion (%) 3.5 3.4 3.5 3.4 

 

UVRR spectra after P-stage in Figure 31 show that no HexA was degraded during 

the P-stage. The lignin content was decreased only slightly. There was no 

distinction in the spectra caused by the different dosages of hydrogen peroxide or 

filtrate reuse. The brightness reversion values between the samples are identical 

and therefore the filtrate reuse does not have any effect on the brightness stability. 

 

Figure 31. UVRR spectra of the pulps after P-stages.  
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8.7 Performance of P-stage in A-EOP-Z/D-P sequence 
 

After P-stage there were differences between the pulps as shown in Table 20. For 

P-4 sample the brightness had a ceiling and thus the bigger consumption of 

hydrogen peroxide did not have any impact on the brightness. This could have 

been caused by Z/D-stage that slightly failed due to insufficient mixing. For P-12 

sample there was no brightness ceiling in 89 % ISO. This 89 % ISO brightness 

was achieved with only a consumption of about 3.1 kg H2O2/BDT. The brightness 

reversion was for both pulps on a good level which is quite the same as in 

previous studies (Clavijo, 2010) (Andrew et al. 2013). There were no differences 

in viscosity between the parallel samples which had different dosages of peroxide. 

Residual peroxide amounts were again also high but the final pH was within the 

target in every case. 

     Table 20. Bleaching results and properties of pulps from the sequence containing Z/D-stage. 

 P-12 P-12 P-4 P-4 

H2O2 dosage (kg/BDT) 5 7 7 9 

MgSO4 dosage (kg/BDT) 1 1 1 1 

NaOH dosage (kg/BDT) 9 10 10 11 

Final pH 10.6 10.8 10.7 11.0 

Consumed H2O2 (kg/BDT) 3.3 3.5 5.3 7.6 

Viscosity (ml/g) 750 740 710 720 

Brightness (% ISO) 89.3 89.7 88.8 88.9 

Brightness after heating (% ISO) 87.7 88.1 87.0 87.0 

Brightness reversion (%) 1.8 1.8 2.0 2.1 

 

The UVRR spectra of P-stage pulps show that no differences are found due to 

different chemical charges (Figure 32). However, for both cases the lignin content 

had decreased slightly after the EOP-stage. The content of HexA remained the 

same during the stage but ended up higher than in the study of Clavijo (2010) 
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even though the brightness reversion was practically the same, which is not in 

agreement with the literature part.  

 

Figure 32. The UVRR spectra of P-stage pulps. 

 

 

 

8.8 Properties of A-stage filtrates 
 

The amount of sulfuric acid to be added, after the previous filtrate was combined 

with pulp, decreased after each A-stage. In addition, it was easily notable that 

when more filtrate was circulated, the pH decreased less and less, when sulfuric 

acid was added before the next stage. These facts mean that the acidity of the 

filtrate increased and that the filtrate acted as a buffer. As a proof of this, the 

titration curves of both A1- and A4-sample show that A4-sample requires more 

sodium hydroxide than A1 before reaching pH 7. This can be explained with 

increasing content of organic acids in the A4-filtrate. The pH curve is presented in 

Figure 33. 
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Figure 33. The titration curve for A1- and A4-filtrates. 

 

The curve shows that about twice as much sodium hydroxide had to be added in 

A4-filtrate than in A1-filtrate in order to reach neutral pH. Although the start pH 

was already higher for A4-sample, A1-sample required 210 mg NaOH/l and A4-

sample 380 mg/l for pH 7. In addition, the steepness of the slope is much lower 

for A4-filtrate which also refers to the fact that the acidity is higher for A4-filtrate. 

In addition, when the new pulp was introduced to filtrate, the pH before adding 

any acid decreased every time: with A1-filtrate pH was 5.3, with A2-filtrate 4.5 

and with A3-filtrate 4.3. Naturally, there also was a clear difference in the color 

between the filtrates: A4 had significantly darker color than A1 which according 

to literature can be due to lignin (Vehmaa et al. 2011). 

The sulfuric acid addition did not decrease significantly after each A-stage as 

shown in Figure 34. The initial pH in every case was 3.4 ±0.05. The results were 

somewhat surprising compared to the fact that the acidity was so high and pH of 

pulp with the filtrate without any acid addition was under 5 for A3- and A4-pulp 

suspensions. However, the buffer properties of the filtrate explain this behavior. 
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8.8.1 Non-process elements in the filtrates 

 

The differences in the composition between the A4- and A1-filtrates were 

relatively quite similar for NPE’s and TOC. The concentrations for most elements 

were 2.7 - 3.3 –fold in the A4-filtrate, as shown in Table 21. This finding is 

logical because there is a certain concentration of each NPE in the A1-filtrate and 

when the filtrate is reused in A-stage, the NPE’s naturally accumulate in the 

filtrate. However, the concentrations of Ba, Cu and Fe were unaffected while the 

concentrations of Al and Mn in the filtrate decreased due to the circulation. 

Obviously these two elements were retained more strongly on the pulp. 

 

 

 

 

 

 

 

Figure 34.  The dose of sulfuric acid for each stage and the final pH of the filtrate. 
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     Table 21. Non-process elements found in the filtrates. Values are in mg/l. 

 A1 A4 A4/A1 

P 1.0 3.3 3.3 

S 223 530 2.4 

Si 0.7 2.2 3.1 

Fe 2.3 2.0 0.9 

Mn 2.4 0.8 0.3 

Cu 0.1 0.1 1 

Al 0.5 0.2 0.4 

Ba 0.4 0.4 1 

Mg 17 54 3.2 

Ca 138 450 3.3 

Na 290 835 2.9 

K 4.2 11.8 2.8 

Cl 59 164 2.8 

TOC  493 1400 2.8 

 

 

8.8.2 Organic compounds in the filtrates 

 

The UVRR spectra of both A1- and A4-filtrates have several emission bands at 

the same wavenumbers but the band intensities vary significantly between the 

samples, as can be seen in Figure 35. Most of the peaks are more intense for the 

A4-filtrate. The different peaks are specified in Table 22 and the UVRR spectrum 

of 20 g/l of 2-furoic acid, which is utilized in defining the peaks, is presented in 

Appendix 3. The whole spectrum of both filtrates are shown in Appendix 2. 



 

 

 

82 

 

 

Figure 35. UVRR spectra of A1- and A4-filtrates. S stands for syringyl compounds, F for 2-furoic acid, G for 
guaiacyl compounds, L for lignin, P for phenolic structures and C for 5-formyl-2-furancarboxylic acid. 

 
Table 22. Specified UVRR peaks for A4- and A1-filtrates. 

Shift of the peak (cm
-1

) Specific for the peak 

805 - 830 Only for A4-filtrate, caused by syringyl units (Saariaho et 

al. 2005) 

930 - 940 A4 intensity is double compared to A1, caused by 2-

furoic acid 

970 - 980 More intense for A4, caused by syringyl compounds 

(Saariaho et al. 2005) 

1020 - 1030 A4 intensity is double compared to A1, caused by 

guaiacyl units (Saariaho et al. 2005) or 2-furoic acid 

1145 - 1150 A4 intensity is triple to A1, caused by lignin derivatives 

(Saariaho et al. 2005) (Pandey and Vuorinen, 2008) or 2-

furoic acid 

1191 Only for A4-filtrate, caused by 2-furoic acid 

1394 – 1399 A4 intensity is double to A1, caused by phenolic units 

(Wang, 2012) or 2-furoic acid 
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1482 Highest peak for both, A4 intensity is double to A1, 

caused by 2-furoic acid (Loureiro et al. 2010) 

1525 Only for A4- filtrate, caused by 5-formyl-2-

furancarboxylic acid 

1580 – 1650 Much more intense for A4-filtrate, caused by lignin and 

its derivatives but also 2-furoic acid 

 

 

 

 

 

 

9 Discussion 

9.1 Development of pulp properties 
 

First, the initial properties of the oxygen delignified pulp were determined. These 

properties are shown in Table 11. The amount of HexA in reality is somewhat 

higher because TKK procedure quantifies only 80 – 90 % of the HexA (Tenkanen 

et al. 1995). Just like mentioned in the literature part, about 10 meq/kg is 

equivalent to one kappa unit. Thus, HexA in pulp used for this work is responsible 

of even about 6.5 kappa units of total 10.7. 

In comparison with the values reported in the literature, the viscosity and kappa 

number were on the average level. HexA content and brightness were on the 

higher end of average values. (Vuorinen et al. 1999) (Clavijo, 2010) (Gomes et al. 

2007) (Clavijo et al. 2012) 
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9.1.1 A-stage pulp properties 

 

Even though the brightness did suffer slightly from the filtrate reuse in A-stage, 

the viscosity was unaffected and the kappa number was even somewhat lower 

than without the filtrate circulation. These slight differences could not be 

confirmed by the UVRR spectra because they were almost identical for both 

pulps. 

 

9.1.2 EOP-stage pulp properties 

 

After EOP-stage the difference between the pulps in kappa number was the same 

as after A-stage, but the brightness values were now closer to each other. The 

viscosities of the samples were again identical. For EOP-1 sample the HexA 

content did not decrease at all while EOP-4 had a slight decrease in HexA content. 

HexA was not expected to degrade during EOP-stage as mentioned in the literature 

part.  

 

9.1.3 D-stage pulp properties 

 

The differences in pulp properties caused by the filtrate reuse disappeared in this 

stage. The viscosities were again practically the same between the pulps but now 

so were also brightness and kappa number. So during D-stage the change in 

brightness was superior for D-4 sample whereas the decrease in kappa number 

was significantly higher for D-1 sample. After D-stage the HexA contents of the 

pulps were now similar and there seemed to be no distinction between the UVRR 

spectra. During the D-stage both HexA and lignin content decreased to about half 

of what they were before the D-stage.  
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9.1.4 Z/D-stage pulp properties 

 

Z/D-stage caused a significant difference between the two pulps. ZD-4 had twice 

as much HexA as ZD-12 but the lignin content was roughly the same for both of 

the pulps. Some of this difference in lignin and HexA content can be explained by 

the low A-stage pH for ZD-12. This difference explains also the difference formed 

in kappa number. Viscosities were again same and the difference in brightness 

values remained the same as after EOP-stage. 

 

9.1.5 P-stage pulp properties 

 
After the P-stage of the sequence containing the D-stage, the UVRR spectra of the 

pulps were about the same. In addition, the viscosity, brightness values and 

brightness reversion were the same. Thus, neither the filtrate reuse nor 

accumulation of harmful metals did seem to have any effect on the end properties 

of pulp. This could be caused by D- and Z/D-stages which remove metals due to 

their acidity. However, when compared to the studies of Clavijo (2010) and 

Andrew et al. (2013) the brightness reversion for all the samples was quite high. 

The desired brightness was 89 % ISO so that the results obtained with circulation 

could then be easier assessed. Therefore, using Figure 36 the required hydrogen 

peroxide dose can be estimated: For both P-1 and P-4 samples this dose was about 

6.7 kg/BDT. However, there is a slight difference in the amounts of consumed 

peroxide: P-4 sample consumes about 1 kg H2O2/BDT more which is at least 

partly caused by higher pH during the stage. This may not surely be significant 

also in mill scale. 
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Figure 36. Brightness in relation to hydrogen peroxide dose in bleaching sequence 1. 

 

P-stage for Z/D-pulp did not change the UVRR spectra which means that the final 

pulp without the circulation had half of the HexA amount compared to the pulp 

with circulation. The lignin content remained slightly lower for the pulp without 

reuse. These dissimilarities explain the differences in brightness values but the 

dissimilarities in brightness reversion are surprisingly small as compared to the 

differences in spectra. In this sequence the reversion values were on the same 

level as in other studies (Clavijo, 2010) (Andrew et al. 2013). The viscosities 

dropped significantly for both pulps but no considerable differences were found. 
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dosages so that comparison could be made between the sequences. Because the D-

sequence had similar final brightness levels for both pulps, the value closest to 89 

87,5

88

88,5

89

89,5

90

90,5

5 6 7 8

B
ri

gh
tn

e
ss

 (
%

 IS
O

) 

Hydrogen peroxide dose (kg/BDT) 

P1

P4



 

 

 

87 

 

% ISO was chosen (6 kg/BDT of which 4.1 was consumed) although the 

consumption of peroxide varied slightly. For the P-1 sample of the Z/D-sequence, 

again closest point to the 89 % ISO was chosen (5 kg/BDT of which 3.3 kg/BDT 

was consumed). Lastly, for the P-4 sample, the point of comparison was chosen as 

the brightness which was achieved with 7 kg/BDT (5.3 kg/BDT consumed) 

because of the brightness ceiling obtained. 

 

Figure 37. The brightness levels after each stage. 

 

The clearest distinction between the sequences is after D- and Z/D-stages: Due to 

the low consumption of ozone the brightness values are significantly lower for 

Z/D-pulps before P-stage. The beginning of the sequences was similar and for 

both sequences the situation is the same: after A-stage the brightness for the 

sample without circulation is higher. The difference formed in A-stages is already 

smaller after EOP-stage. The difference no longer exists after the P-stage. In fact, 

the final brightness for the P-12 sample was surprisingly achieved with a lower 

dosage of H2O2 than for P-1 and also for P-4 sample, even though the brightness 

after Z/D-was several units lower. 

No reason for the differences in peroxide doses was found. In the study of Clavijo 

(2010) the brightness after D-stage was about 82 % ISO which is close to the 

values obtained with Z/D-pulp. The peroxide dosage to reach 90.4 % ISO in that 
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reactions but the dosage was even slightly lower than in the study of Clavijo 

(2010). The P-4 sample of the second sequence reached 88.8 % ISO quite easily 

when considering the low brightness after D-stage although it reached a 

brightness ceiling. The ceiling may have been caused by the imperfect mixing. 

The final brightness is somewhat harder to achieve for the second sequence when 

the filtrate is circulated but not for the first sequence. For the first sequence the 

consumption of peroxide is only slightly lower if filtrate is not circulated. 

Additionally, pH also has an effect on the peroxide consumption. 

 

9.2.2 Kappa number 

 

There was not much variation between the kappa numbers of the sequences as 

shown in Figure 38. An exception was EOP-1 pulp which had quite high kappa 

number. In addition, the kappa numbers after D-stage were the same but the ones 

after Z/D-stage differed significantly. The kappa number for A-12 was not 

measured because the conditions of the A-stage were kept constant. However, the 

pH of A12-stage was slightly lower than that of A1-stage and the kappa after EOP-

stage was lower than even for EOP4-sample. Thus, the kappa number was chosen 

to be 7 in Figure 38. This is between the kappa numbers of A1- and A4-samples. 

Kappa numbers after P-stage were not measured. 

 

Figure 38. Kappa numbers after each stage for each sequence. 
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9.2.3 Viscosity 

 

The viscosity of each sample is presented in Figure 39. The P-stage viscosities are 

matching the test points chosen for Figure 37. The viscosity of A-12 was to be 

970 ml/g, which is between the values of pulps 1 and 4. This was again due to the 

lower final pH of the A-12 stage. 

 

Figure 39. Development of pulp viscosity during the bleaching sequences. 

 

In the beginning of sequences no significant variation is seen but during the Z/D-

stage the viscosities dropped more than 100 units while during the D-stage the 

decrease in viscosity was negligible. The use of ozone is known to decrease the 

viscosity (Andrew et al. 2013). After the P-stage the viscosities of both sequences 

were practically the same except for P4-sample of the Z/D-sequence. Thus, the 

viscosity of Z/D-sequence pulps decreased less than the viscosity of Z/D-sequence 

pulps during the P-stage. This could be caused by the fact that in the P4-pulp of 

the second sequence the H2O2 dosage was higher. The viscosity of the second 

sequence did not decrease as much as the one of the first sequence during P-stage 

because the viscosity was already notably lower after the Z/D-stage. 

All in all, the final viscosities were low at least compared to values at pulp mills. 

In laboratory the proportion of pulp in contact with metallic reactors and walls is 

significantly higher than in mill scale bleaching reactors and towers. In addition, 

the process conditions were not optimized according to viscosity loss. It is not 
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unusual that the sequences performed in the laboratory result in low viscosity. In 

accordance with the study of Costa et al. (2005) no significant differences in 

viscosity were found between the filtrate circulated pulps and pulps with reference 

sequences. 

 

9.2.4 Brightness reversion 

 

The difference of brightness reversion between the sequences is significant as 

presented in Figure 40: The value of the first sequence is almost double the one 

for the second sequence. The differences in brightness reversion values are 

discussed more detailed in the next chapter. 

 
Figure 40. Brightness reversion (% ISO) for each sequence. 

 

 

9.2.5 UVRR spectra 
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The HexA level of ZD-12 pulp is about twice lower than of all the others. ZD-12 

pulp is the pulp obtained without circulation and used for Z/D-sequence. ZD-4 has 

slightly higher HexA content than the both pulps of the first sequence. After the 

P-stage all the pulps have similar spectra as before the stage. Lignin contents of 

all the pulps in every stage are practically the same regardless of the sequence or 

filtrate circulation. Thus, the only difference is caused by the Z/D-stage without 

circulation in relation to HexA content. Ozone is known to react preferentially 

with HexA than with lignin (Andrew et al. 2013). However, the ozone charge and 

even the total chemical charge in both Z/D-stages were low when talking about 

Figure 41. The UVRR spectra of the D-sequence 
without filtrate circulation. 

Figure 43. The UVRR spectra of the Z/D-sequence 
without filtrate circulation. 

Figure 42. The UVRR spectra of the D-sequence with 
filtrate circulation. 

Figure 44. The UVRR spectra of the Z/D-sequence with 
filtrate circulation. 
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active chlorine. Hence, it is surprising how low the lignin and HexA contents are 

in both pulps compared to the other sequence. However, the lignin and HexA 

amounts remain quite high compared to the study of Clavijo (2010). This is due to 

inefficient removal of HexA during all A-stages. 

HexA content does not explain the difference in brightness reversion levels 

because P-12 has lowest quantity of HexA but still the same brightness reversion 

as P-4 of the second sequence. Thus, Z/D-stage must cause something that lowers 

the brightness reversion. As stated in the literature part, using ozone decreases 

brightness reversion. It is also known that carbonyl groups can also cause 

brightness reversion, but they can be removed using for example chlorine dioxide 

and hydrogen peroxide (Wennerström, 2005). In addition, they are mostly formed 

during Z-stage. According to Clavijo (2010) both the use of peroxide and the use 

of MgSO4 with peroxide decrease brightness reversion, but there was almost no 

difference at all in using them between the sequences. 

The cause for brightness ceiling of P-4 in the second sequence cannot either be 

explained with UVRR spectra. It can be concluded of these two sequences the 

Z/D-P one was somehow more efficient, even though the ozone consumption of 

the Z/D-stage was also very low. However, when having filtrate circulation this 

efficiency was slightly decreased although it still remained on a somewhat same 

level as the one of D-P sequence. 

 

 

9.3 Filtrate properties 

9.3.1 Non-process elements 

 

The concentrations of some elements in the filtrates did not increase as expected: 

The small differences in copper and aluminum concentrations between A1- and 

A4-samples could possibly be explained with measurement errors or inaccuracies. 

For example in case of copper the device could have rounded a concentration of 

0.05 mg/l to 0.1 mg/l. The amount of copper in the study of Costa et al. (2005) 
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was on the similar level as in this one. As stated in the literature part, barium is 

known to dissolve better when pH is about 2 thus making the filtrates already 

saturated. Thus, the rest of barium could be attached to pulp. The higher the 

barium concentration in the filtrate is the higher is naturally the probability for 

barium deposits in the bleaching equipment. In addition, iron is also poorly 

soluble when pH is above 2. However, the concentration of iron in this study was 

significantly higher than in the study of Costa et al. (2005) although the variation 

is largely caused by raw material. However, it can be concluded that as the 

accumulation of NPE’s increased almost 200 %, the acidity of the filtrate also 

nearly tripled. 

Other elements that had a higher concentration in this study were magnesium and 

calcium that were mentioned to be both good in preserving fibres. Therefore, it is 

a disadvantage that the concentration of these is higher in the filtrate. In addition, 

the amounts of chlorine and sodium are somewhat higher than in the study made 

by Costa et al. (2005). As mentioned in the literature part, chlorine is one of the 

most problematic elements in the recovery cycle and hence its concentration 

should be as low as possible. 

Compared to the study of Costa et al. (2005) lower concentrations of 

phosphorous, aluminum and potassium were found in this study. The most 

significant difference was with potassium. This is beneficial because Costa et al. 

proposed that potassium is the most problematic inorganic element, and 

phosphorous another important one. For some reason the manganese 

concentration in A4-filtrate is one third of the one in A1-filtrate but appears to be 

on a similar level compared to the study of Costa et al. For preserving the fibres 

the more manganese is removed in A-stage, the less stays with the pulp causing 

polymerization, especially with peroxide. However, when recirculating the filtrate 

less manganese should be present in the filtrate. Thus, the concentration should be 

lower. 

The content of sulfur is somewhat high due to the added sulfuric acid. However, 

when the filtrate is reused the Na/S balances of the mill do not change. Na and S 

are both of high economic value and thus they should be recovered. In addition, 
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from environmental point of view, the recovery of sodium and sulfur is important. 

Costa et al. (2005) had about 400 mg/l of sulfur in their filtrate. The main reason 

for the differences in concentrations is the NPE content of pulp entering the A-

stage and the whole mill. 

The TOC level was 50 % lower compared to the study by Clavijo (2010). The 

difference was probably caused by the less extensive removal of HexA in the A-

stage. The moderate decrease in kappa number during A-stage confirms this 

interpretation.  

 

9.3.2 Organic compounds 

 

Most of the Raman bands originating from 2-furoic acid in A4-filtrate were twice 

higher than in A1-filtrate. This also fits well with the fact that the titrable acid 

content was about two times higher for A4-filtrate. Another degradation product 

of HexA, 5-formyl-2-furancarboxylic acid shows Raman band at 1525 cm
-1

 which 

is present in UVRR spectrum of A4-filtrate whereas in the spectrum of A1-filtrate 

the peak is not that clear. This tells that the most of the formed degradation 

products are found as 2-furoic acid as it was already mentioned (Vuorinen et al. 

1999). Another fact that can be seen from the spectra is that there is no peak at 

about 1098 cm
-1

 which would belong to cellulose. 

There is also a surprisingly significant difference in the intensity of lignin band 

(1600 cm
-1

) between the filtrates. The significantly higher lignin content in A4-

filtrate explains its darker color. In addition, the intensities of the peak at 1191  

cm
-1

 between the filtrates varied significantly. The UVRR spectrum of 2-furoic 

acid, however, showed peaks in these both wavelengths, although no lignin was 

present that could have explained the peak at 1650 cm
-1

. The intensities between 

2-furoic acid and the filtrates are not comparable because UVRR spectrum of 2-

furoic acid was not normalized. Yet, some of the differences between these 2 

peaks can be explained with 2-furoic acid. 
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10 Conclusions 

 

The effect of circulating the A-stage filtrate on the operation of A-stage and 

subsequent final bleaching was studied. The experimental work consisted of 

bleaching the pulp, with and without the filtrate circulation, using two different 

sequences (A-EOP-D-P and A-EOP-Z/D-P). In addition, the properties of circulated 

filtrate were determined. 

The operation of A-stage did not suffer from the reuse of the filtrate. The only 

disadvantage was a slight decrease in brightness after A-stage – even the UVRR 

spectrum of the pulp barely affected by the circulation. In addition, the small 

difference had already almost disappeared after the EOP-stage. 

When reusing the A-stage filtrate and adjusting the pH every time to 3.4 the use of 

sulfuric acid could be decreased by 20 %. 

The filtrate circulation had no effect on the final bleaching in D-P sequence, 

properties of the pulp and chemical consumption. 

Nevertheless, the filtrate reuse was found to have some impact on Z/D-stage. The 

residual content of HexA and lignin remained higher while the brightness gain 

was lower, and the viscosity decreased more extensively. Full final brightness was 

harder to achieve when A-stage filtrate was circulated prior to the Z/D-stage. 

However, the residual lignin content of the fully bleached pulp was always on the 

same level irrespective of the bleaching sequence and the filtrate circulation.  

Circulation of the A4-filtrate led to accumulation of organic acids among which 2-

furoic acid and formic acids (not analyzed) were the most important ones. Thus, a 

double amount of NaOH was required to neutralize the A4-filtrate compared to 

A1-filtrate. A4-filtrate also had significantly stronger color and higher lignin 

content than A1-filtrate had. 

In general, the filtrate circulation led to enrichment of soluble non-process 

elements. Typically their concentration was tripled. The most critical one is 



 

 

 

96 

 

chlorine whose concentration was not excessive. However, the manganese 

concentration was quite high and the total content of barium could not be 

determined. Thus, a risk of barium sulfate scaling could not be assessed. 

All in all, the reuse of the filtrate in A-stage still looks promising. No 

disadvantages for the D-P sequence were found although the filtrate contained 

significant amounts of lignin and the NPE content was increased compared with 

A1-filtrate. Thus, in future, a solution in which part of the filtrate would be 

removed from the circulation should be investigated. This way the excessive 

accumulation of harmful components could be prevented. Another possibility 

would be still to try decreasing the addition of sulfuric acid. Because the 

circulated filtrate has high acidity, the process proposed by Räsänen et al. (2005, 

2011) could help to induce the hydrolysis. It would also be good to know what 

causes these kinds of NPE amounts have and if they harm the operation in the 

long run.   



 

 

 

97 

 

References 

 

Andrew, J. E., Johakimu, J., & Ngema, N. E. (2013). Ozone bleaching of South 

African Eucalyptus grandis kraft pulps containing high levels of hexenuronic 

acids. Tappi Journal, 12(8), 9-16. 

 

Anttila, J. R., Rousu, P. P., & Tanskanen, J. P. (2007). Modelling of multistage 

washing systems: Application in the design of pulping processes based on organic 

acids. Paperi Ja Puu, 89(2), 95-101. 

 

Athley, K., & Ulmgren, P. (2001). Interaction between divalent metal ions and 

oxygen-delignified kraft pulps. Nordic Pulp And Paper Research Journal, 16(3), 

204-214. 

 

Axegård, P., Carey, J., Folke, J., Gleadow, P., Gullichsen, J., Pryke, D., Reeve, 

D., Swan, B. & Uloth, V. (1997). Minimum Impact Mills: Issues and Challenges. 

Tappi Proceedings – Environmental Conference & Exhibition, Part 1. 529-541. 

 

Bajpai, P. (2012). Closed-cycle bleach plant. Environmentally Benign Approaches 

For Pulp Bleaching. Elsevier. 329-372. 

 

Bergnor-Gidnert, E., Tomani, P. E., & Dahlman, O. (1998). Influence on pulp 

quality of conditions during the removal of hexenuronic acids. Nordic Pulp And 

Paper Research Journal, 13(4), 310-316. 

 

Boffardi, B. P. (1992). Corrosion and deposit control in mill supply water. Tappi 

Engineering Conference (3). 953-974. 

 

Brogdon, B. N., & Lucia, L. A. (2005a). New insights into lignin modification 

during chlorine dioxide bleaching sequences (III): The impact of modifications in 

the (EO) versus E stage on the D1 stage. Journal Of Wood Chemistry And 

Technology, 25(3), 133-147. 

 

Brogdon, B. N., & Lucia, L. A. (2005b). New insights into lignin modification 

during chlorine dioxide bleaching sequences (IV): The impact of modifications in 

the (EP) and (EOP) stages on the D1 stage. Journal Of Wood Chemistry And 

Technology, 25(3), 149-170. 

 



 

 

 

98 

 

Buchert, J., Teleman, A., Harjunpää, V., Tenkanen, M., Viikari, L., & Vuorinen, 

T. (1995). Effect of cooking and bleaching on the structure of xylan in 

conventional pine kraft pulp. Tappi Journal, 78(11), 125-130. 

 

Cabrera, M. N. (2009). Composición química y tratamiento de los effluents 

generados en las nuevas sequencias de blanqueo A-EP-DND y A-EP-D-P. 

Universidad de la República, Facultad de Ingenería. Master’s Thesis. 

 

Carvalho, M. G. V., & Carvalho, N. M. (2008). Performance of a final hydrogen 

peroxide stage in the ECF bleaching of Eucalypt D0EOPD1 kraft pulps. Tappi 

Journal 7(8). 8-13. 

 

Chirat, C., Lachenal, D., Angelier, R., & Viardin, M. T. (1997). (ZD) bleaching: 

fundamentals and application. Journal Of Pulp And Paper Science, 23(6), J289-

J292. 

 

Chirat, C., & Lachenal, D. (1997). Other ways to use ozone in a bleaching 

sequence. Tappi Journal, 80(9), 209-214. 

 

Chirat, C., Hostachy, J-C., Paloniemi, J., Pelin, K., Pohjanvesi, S., Nordén, S., 

Vesala, R. & Wennerström, M. (2011). Bleaching. Chemical Pulping Part 1, 

Fibre Chemical And Technology. Second edition. Ed. Fardim, P. Publ. Paper 

Engineer’s Association/Paperi ja Puu Oy. 460-587. 

 

Clavijo, L. (2010). Optimizatión de las secuencias de blanqueo A(EOP)DD y 

A(EOP)DP. Universidad de la República, Facultad de Ingenería. Master’s Thesis. 

 

Clavijo, L., Cabrera, M.N., Kuitunen, S., Liukko, S., Rauhala, T., Vuorinen, T. 

(2012). Changes in eucalyptus kraft pulp during a mild acid treatment at high 

temperature. O Papel, 73(4), 59-64. 

 

Colodette, J. L., Gomes, C. M., Rabelo, M. S., Eiras, K. M. M., De Fatima 

Gomes, A., & Oliveira, K. D. (2008). Eucalyptus kraft pulp bleaching: state-of-

the-art and new developments. Tappi Journal, 7(2), 18. 

 

Costa, M. M., & Colodette, J. L. (2002). The effect of kraft pulp composition on 

its bleachability. Tappi International Pulp Bleaching Conference. 195-213. 

 

Costa, M. M., Landim, A., Colodette, J., Silva, C. M., & Ventorim, G. (2005). A 

novel bleaching technology adapted to partial bleach plant closure. Paperi Ja Puu, 

87(7), 442-448. 



 

 

 

99 

 

Crăciun, G., Duţuc, G., Botar, A., Puiţel, A. C., & Gavrilescu, D. (2010). 

Environmentally friendly techniques for chemical pulp bleaching. Environmental 

Engineering & Management Journal (EEMJ), 9(1), 73-80. 

 

Dahl, O., Tirri, T., & Niinimäki, J. (1996). Sulfaattisellun valkaisussa käytettävän 

kierrätysveden laatuvaatimukset. University of Oulu. 

 

Dahlman, O. B., Reimann, A. K., Stromberg, L. M., & Morck, R. E. (1995). High-

molecular-weight effluent materials from modern ECF and TCF bleaching. Tappi 

Journal, 78(12), 99-109. 

 

Dapı́a, S., Santos, V., & Parajó, J. C. (2002). Study of formic acid as an agent for 

biomass fractionation. Biomass And Bioenergy, 22(3), 213-221. 

 

Devenyns, J., & Chauveheid, E. (1997). Uronic acids and metals control. 9
th

 

International  Symposium On Wood And Pulping Chemistry. M5-1. 

 

Devenyns, J., Chauveheid, E. & Mårtens, H. (1998). Uronic acids and metals 

control. International Pulp Bleaching Conference, 151-157. 

 

Devenyns, J., Plumet, L. (1994). The importance of the magnesium to manganese 

ratio in alkaline peroxide bleaching. European Workshop On Lignocellulosics And 

Pulp, 139-144. 

 

EIPPCB (2001), BREF document for the Pulp and Paper Industry, 

http://eippcb.jrc.ec.europa.eu/reference/BREF/ppm_bref_1201.pdf, Referred on 

25.2.2014. 

 

Eiras, K. M. M., & Colodette, J. L. (2003). Eucalyptus kraft pulp bleaching with 

chlorine dioxide at high temperature. Journal Of pulp And Paper Science, 29(2), 

64-69. 

 

Eiras, K. M. M., & Colodette, J. L. (2005). Investigation of eucalyptus kraft pulp 

brightness stability. Journal Of Pulp And Paper Science, 31(1), 13-18. 

 

Eriksson, G., & Grén, U. (1996). Pulp washing: sorption equilibria of metal ions 

on kraft pulps. Nordic Pulp & Paper Research Journal 11(3), 164-170+176. 

 

Filho, C. L. & Süss, H. U. (2002). Hydrogen peroxide in chemical pulp bleaching 

– an overview. Iberoamerican Congress On Pulp And Paper Research. 1-27. 

 

http://eippcb.jrc.ec.europa.eu/reference/BREF/ppm_bref_1201.pdf


 

 

 

100 

 

Germgård, U., Annergren, G. & Olsson, B. (2011). Fiberlines. Chemical pulping 

part 1, Fibre chemical and technology. Second edition. Ed. Fardim, P. Publ. Paper 

Engineer’s Association/Paperi ja Puu Oy. 675-728. 

 

Gomes, C. M., Colodette, J. L., Mounteer, A. H., Del'Antonio, N., & Silva, C. M. 

(2007). Characterization and biodegradability of effluents derived from hot acid 

hydrolysis and hot chlorine dioxide bleaching of eucalyptus pulp. Appita Journal: 

Journal Of The Technical Association Of The Australian And New Zealand Pulp 

And Paper Industry, 60(1), 65-69+73. 

 

Gu, Y., Malmberg, B., & Edwards, L. (2004). Prediction of metals distribution in 

mill processes, Part 1: Metals equilibrium model. Tappi Journal, 3(1), 26-32. 

 

Gullichsen, J. (2000a). Chemical engineering principles of fiber line operations. 

Chemical Pulping. Eds. Gullichsen, J. & Fogelholm, C. Publ. Fapet Oy. 245-330. 

 

Gullichsen, J. (2000b). Fiberline operations. Chemical Pulping. Eds. Gullichsen, 

J. & Fogelholm, C. Publ. Fapet Oy. 19-244. 

 

Gullichsen, J. (2000c). Introduction. Chemical Pulping. Eds. Gullichsen, J. & 

Fogelholm, C. Publ. Fapet Oy. 14-18. 

 

Gullichsen, J., & Ostman, H. (1976). Sorption and diffusion phenomena in pulp 

washing. Tappi Journal, 59(6), 140-143. 

 

Haglind, I. A. K., Kringstad, K. P., & Almin, K-E. Donnan equilibria in pulping 

and bleaching; some considerations. International Symposium On Wood And 

Pulping Chemistry Part 2. 635-640. 

 

Henricson, K. (1997). AHL stage: Improved pulp bleachability by mild acid 

treatment. Paperi Ja Puu, 79(8), 546-550. 

 

Histed, J., McCubbin, N. & Gleadow, P. L. (1996). Bleach plant operations, 

equipment and engineering. Pulp Bleaching – Principles And Practice. Eds. 

Dence, C. W. & Reeve D. W., Tappi press. 513-674. 

 

Histed, J. A., & Nicolle, F. M. A. (1973). Water reuse and recycle in kraft 

bleacheries. Pulp And Paper Magazine Of Canada, 74(12), 80-91. 

 

Jaretun, A., & Aly, G. (2000). Removal of chloride and potassium from kraft 

chemical recovery cycles. Separation Science and Technology, 35(3), 421-438. 



 

 

 

101 

 

Jiang, Z. H., Van Lierop, B., & Berry, R. (2000). Hexenuronic acid groups in 

pulping and bleaching chemistry. Tappi Journal, 83(1), 167-175. 

 

Johansson, M. H., & Samuelson, O. (1977). Epimerization and degradation of 2-

O-(4-O-methyl-α-d-glucopyranosyluronic acid)-d-xylitol in alkaline medium. 

Carbohydrate Research, 54(2), 295-299. 

 

Jääskeläinen, A. S., & Sundqvist, H. (2007). Puun Rakenne Ja Kemia. Otatieto. 

142. 

 

Kawae, A. & Uchida, Y. (2010). Relationship between hexenuronic acid and 

brightness reversion of ECF-bleached hardwood Kraft Pulp: Part 1. Japan Tappi 

Journal, 64(2), 60-69. 

 

Krotscheck, A. W. (2006). Pulp Washing. Handbook of pulp. Ed. Sixta, H. 

WILEY-VCH Verlag GmbH & Co. KgaA. 511-559. 

 

Lachenal, D. & Muguet, M. (1992). Degradation of residual lignin in kraft pulp 

with ozone. Application to bleaching. Nordic Pulp And Paper Research Journal, 

1(7), 25-29. 

 

Lachenal, D., Pipon, G., & Chirat, C. (2009). Final pulp bleaching by ozonation: 

chemical justification and practical operating conditions. Journal Of Pulp And 

Paper Science, 35(2), 53-56. 

 

Laine, J., Lövgren, L., Stenius, P., & Sjöberg, S. (1994). Potentiometric titration 

of unbleached kraft cellulose fibre surfaces. Colloids And Surfaces A: 

Physicochemical And Engineering Aspects, 88(2), 277-287. 

 

Laivins, G. V. & Scallan, A. M. (1998). The Exchange And Removal Of The 

Metal Cations In Pulps. The Fundamentals Of Papermaking Materials, Vol 2. Ed. 

Baker, C. F. Publ. Pira International. 837-858. 

 

Lapierre, L., Paleologou, M., Berry, R. M., & Bouchard, J. (1997). The limits of 

metal removal from kraft pulp by acid treatment. Journal Of Pulp And Paper 

Science, 23(11), J539-J542. 

 

Lehtinen, K.-J., (2004). Relationship of the Technical development of pulping and 

bleaching to effluent quality and aquatic toxicity. Eds. Borton L., Hall, T., Fisher, 

R. & Thomas, J. Pulp & Paper Mill Effluent Environmental Fate & Effects. 

DEStech Publications Inc. 



 

 

 

102 

 

Lehtinen, K.-J., Axelsson, B., Kringstad, K., & Strömberg, L. (1991). 

Characterization of pulp mill effluents by the model ecosystem technique. SSVL-

investigations in the period 1982-1990. Nordic Pulp And Paper Research Journal 

6(2). 81-88. 

 

Lindberg, H., Engdahl, H., & Puumalinen, R. (1994). Strategies for metal removal 

control in closed cycle mills. International Pulp Bleaching Conference. 293-302. 

 

Liu, Y. L., Chen, K. F., & Lin, B. P. (2013). The Use of Mg (OH) 2 in the Final 

Peroxide Bleaching Stage of Wheat Straw Pulp. Bioresources, 9(1), 161-170. 

 

Loureiro, P. E., Fernandes, A. J., Furtado, F. P., & Carvalho, D. V. (2010). New 

insights into chromophore chemistry of eucalyptus pulps assessed by UV-

resonance raman micro-spectroscopy. XXI TECNICELPA Conference and 

Exhibition. 

 

Martin, V. J., Burnison, B. K., Lee, H., & Hewitt, L. M. (1995). Chlorophenolics 

from high molecular weight chlorinated organics isolated from bleached kraft mill 

effluents. Holzforschung 49(5), 453-461. 

 

McDonough, T. J. (1996). The Technology of Chemical Pulping. Pulp bleaching 

– Principles and Practice. Eds. Dence, C. W. & Reeve D. W., Tappi Press. 213-

456. 

 

Mckague A. B. & Carlberg, G. (1996). Pulp bleaching and the environment. Pulp 

bleaching – Principles and Practice. Eds. Dence, C. W. & Reeve D. W., Tappi 

Press. 749-846. 

 

Mckague, A. B., Chew, W., Zhu, S. & Reeve, D. W. (1998). Compounds 

identified in effluents from bleaching wood pulp. Proceedings Of The 

International Pulp Bleaching Conference Vol. 1. 205-212. 

 

Medina, J. (2007). Characterization of efficient ECF bleaching parameters of 

Eucalyptus pulp. Universidad de la República, Facultad de Ingenería. Master’s 

Thesis. 

 

Neale, S. M. (1929). 30—The Swelling Of Cellulose, And Its Affinity Relations 

With Aqueous Solutions, Part I—Experiments On The Behaviour Of Cotton 

Cellulose And Regenerated Cellulose In Sodium Hydroxide Solution, And Their 

Theoretical Interpretation. Journal Of The Textile Institute Transactions, 20(12), 

T373-T400. 



 

 

 

103 

 

Nordberg, C., Lidén, J., & Öhman, L. O. (2001). Modelling the distribution of 

free, complexed and precipitated metal ions in a pulp suspension using Donnan 

equilibria. Journal Of Pulp And Paper Science, 27(9), 296-301. 

 

Nordèn, H. V. (1966). Analysis of a pulp washing filter. Kemian Teollisuus, 

23(4), 344-351. 

 

Pandey, K. K., & Vuorinen, T. (2008). UV resonance Raman spectroscopic study 

of photodegradation of hardwood and softwood lignins by UV laser. 

Holzforschung, 62(2), 183-188. 

 

Pfromm, P. H., (1999). Chloride and potassium in the kraft recovery cycle: A 

practical guide. Institute Of Paper Science And Technology. Project F01706, 

report 4. 11. 

 

Pikka, O., Vehmaa, J. (2007). Advances in eucalyptus pulp bleaching technology. 

3
rd

 ICEP. Referred on 4.2.2014. Available at: 

http://www.eucalyptus.com.br/icep03/80Pikka.text.pdf.  

 

Pikka, O., Vehmaa, J., Alastalo, J., & Gullichsen, J. (2000a). Improved bleaching 

by means of fractional washing. Proceedings Of Tappi Pulping/Process & 

Product Conference, [CD-ROM]. 

 

Pikka, O., Vesala, R., Vilpponen, A., Dahllöf, H., Germgård, U., Norden, S., 

Bokström, M., Steffes, F., Gullichsen, J., (2000b). Bleaching applications. In 

Chemical Pulping. Eds. Gullichsen, J. & Fogelholm, C. Publ. Fapet Oy. 617-666. 

 

Pöyry Corporation. Pöyry homepage [Online]. Sharing success – Fibria, Brazil 

Referred on 26.6.2014. Available: 

http://www.poyry.com/sites/default/files/poyry_fibria_a4_client_success_story.pd

f. 

Ragnar, M., & Backa, S. (2004). Hot chlorine dioxide bleaching-A modified 

approach. Nordic Pulp & Paper Research Journal, 19(4), 417-419. 

 

Reeve, D. W. (1989). Delignification process variables. Pulp And Paper 

Manufacture: Alkaline pulping (Vol. 5). Eds. Kocurek, M. J., Grace, T. M., & 

Malcolm, E. Tappi Pr. 448-460. 

 

Rodrigues da Silva, M., & Colodette, J. (2002). Mill experience using a hot acid 

stage for eucalyptus kraft pulp bleaching. Tappi International Pulp Bleaching 

Conference, 287-297. 

http://www.eucalyptus.com.br/icep03/80Pikka.text.pdf
http://www.poyry.com/sites/default/files/poyry_fibria_a4_client_success_story.pdf
http://www.poyry.com/sites/default/files/poyry_fibria_a4_client_success_story.pdf


 

 

 

104 

 

Rudie, A. W., & Hart, P. W. (2005). Managing calcium oxalate scale in the bleach 

plant. Solutions!. 45-46. 

 

Rudie, A. W., & Hart, P. W. (2006). Modeling and minimization of barium sulfate 

scale. Tappi Engineering, Pulping & Environmental Conference Proceedings. p. 

10. 

 

Ruuttunen, K., Selluloosatekniikan perusteet – slides. [online]. Massan pesun 

periaatteet ja pesulaitteet, 23.09.2010, https://noppa.aalto.fi/noppa/kurssi/puu-

23.2000/luennot/Puu-23_2000_l9_massan_pesu_2010.pdf, Referred on 

12.02.2014. 

 

Räsänen, E. (2003). Modelling ion exchange and flow in pulp suspensions. VTT 

Technical Research Centre of Finland. 

 

Räsänen, E., Laitinen, A., van Heiningen, A. R., & Koukkari, P. (2005). 

Application of Donnan equilibrium theory for improved bleaching process 

chemistry. 59th Appita Annual Conference And Exhibition: Incorporating The 

13th ISWFPC (International Symposium On Wood, Fibre And Pulping 

Chemistry). 321-327. 

 

Räsänen, E., Robertsén, L., Vuorenpalo, V., Karppi, A., Parviainen, K., Dahl, O. 

& Vanhatalo K. (2011). Manufacturing of Microcellulose. WO 2U11/154597 A1.  

 

Räsänen, E., Stenius, P., & Tervola, P. (2001). Model describing Donnan 

equilibrium, pH and complexation equilibria in fibre suspensions. Nordic Pulp & 

Paper Research Journal, 16(2), 130-139. 

 

Saariaho, A. M., Argyropoulos, D. S., Jääskeläinen, A. S., & Vuorinen, T. (2005). 

Development of the partial least squares models for the interpretation of the UV 

resonance Raman spectra of lignin model compounds. Vibrational Spectroscopy, 

37(1), 111-121. 

 

Sixta, H., Süss, H., Potthast, A., Schwanninger, M. & Krotscheck, A. W. (2006). 

Pulp Bleaching. Handbook Of Pulp. Ed. Sixta, H. WILEY-VCH Verlag GmbH & 

Co. KgaA. 609-932. 

 

Süss, H. U., Schmidt, K., Del Grosso, M., & Mahagaonkar, M. (1999). Peroxide 

application in ECF sequences - a description of the state-of-the-art. Proceedings 

Of The 53
rd

 Appita Annual Conference. 129-136. 

https://noppa.aalto.fi/noppa/kurssi/puu-23.2000/luennot/Puu-23_2000_l9_massan_pesu_2010.pdf
https://noppa.aalto.fi/noppa/kurssi/puu-23.2000/luennot/Puu-23_2000_l9_massan_pesu_2010.pdf


 

 

 

105 

 

Süss, H. U., Schmidt, K., & Hopf, B. (2004). How to improve brightness stability 

of ECF bleached softwood and hardwood kraft pulp. 58th Appita Annual 

Conference Proceedings (2). 493-499. 

 

Tamminen, T. (2010). Final Bleaching of Kraft Pulp: The Optimization of the 

First Chlorine Dioxide Stage (D1). Helsinki University of Technology, 

Department of Forest Product Technology. Master’s Thesis. 

 

Tarvo, V., Kuitunen, S., Lehtimaa, T., Tervola, P., Räsänen, E., Tamminen, T., 

Aittamaa, J., Vuorinen, T., & Henricson K. (2008). Modelling of chemical pulp 

bleaching. Nordic Pulp And Paper Research Journal, 23(1). 91-101. 

 

Teleman, A., Harjunpää, V., Tenkanen, M., Buchert, J., Hausalo, T., Drakenberg, 

T., & Vuorinen, T. (1995). Characterisation of 4-deoxy-β-l-threo-hex-4-

enopyranosyluronic acid attached to xylan in pine kraft pulp and pulping liquor by 

1H and 13C NMR spectroscopy. Carbohydrate Research, 272(1), 55-71. 

 

Teleman, A., Hausalo, T., Tenkanen, M., & Vuorinen, T. (1996). Identification of 

the acidic degradation products of hexenuronic acid and characterisation of 

hexenuronic acid-substituted xylooligosaccharides by NMR spectroscopy. 

Carbohydrate Research, 280(2), 197-208. 

 

Tenkanen, M., Gellerstedt, G., Vuorinen, T., Teleman, A., Perttula, M., Li, J., & 

Buchert, J. (1999). Determination of hexenuronic acid in softwood kraft pulps by 

three different methods. Journal Of Pulp And Paper Science, 25(9), 306-311. 

 

Towers, M., & Scallan, A. M. (1996). Predicting the ion-exchange of kraft pulps 

using Donnan theory. Journal of pulp and paper science, 22(9). 332-337. 

Ulmgren, P. (1997). Non-process elements in a bleached kraft pulp mill with a 

high degree of system closure-state of the art. Nordic Pulp And Paper Research 

Journal, 12(1). 32-40. 

 

Ulmgren, P., & Rådeström, R. (2001). Solubility and mechanisms of precipitation 

of calcium oxalate in D (chlorine dioxide stage) filtrates. Journal Of Pulp And 

Paper Science, 27(11), 391-396. 

 

Vehmaa, J., Pikka, O., Tervola, P. & Poulin, T. (2011) Reuse of purified process 

water in fiberline – laboratory results. Tappi Peers Conference Vol. 1. 13-34. 

 

Vianna, V. Reduction of solid waste from pulp mill fiberline. 6
th

 ICEP – 

November 24
th

 – 27
th

, 2013, Colonia Del Sacramento, Uruguay. Slide 5. Available 



 

 

 

106 

 

at: 

http://www.6thicep.org.uy/styles/inc4/downloads/Slides/12_Vianna%20Viridiane.

pdf 

 

Viirimaa, M., Dahl, O., Niinimäki, J., Ala-Kaila, K., & Perämäki, P. (2002). 

Identification of the wash loss compounds affecting the ECF bleaching of 

softwood kraft pulp. Appita Journal, 55(6), 484-488. 

 

VTT. (2011). KnowPulp [online]. Version 10.0. Referred on  8.10.2014. 

Available at: 

http://know.aalto.fi/pulp/latest/english/raw_materials/2_water/1_usage/vesitase_i

mg.htm?zoom_highlightsub=effluent. 

 

Vuorinen T., Chemistry of pulping and bleaching – slides. [online].  Formation of 

hexenuronic acid, 04.04.2011. Referred on 31.1.2014. Available at: 

https://noppa.aalto.fi/noppa/kurssi/puu-19.3000/luennot/Puu-19_3000_hexa.pdf. 

 

Vuorinen, T., Fagerström, P., Buchert, J., Tenkanen, M., & Teleman, A. (1999). 

Selective hydrolysis of hexenuronic acid groups and its application in ECF and 

TCF bleaching of kraft pulps. Journal Of Pulp And Paper Science, 25(5), 155-

162. 

 

Vuorinen, T., Fagerström, P., Räsänen, E., Vikkula, A., Henricson, K., & 

Teleman, A. (1997). Selective hydrolysis of hexenuronic acid groups opens new 

possibilities for development of bleaching processes. 9
th

 International Symposium 

Wood And Pulping Chemistry (ISWPC), M4-1 – M4-4. 

 

Wang, C. (2012). Photonanocatalyst aided alkaline pretreatment and Raman 

spectroscopic characterization of corn stover biomass. Iowa State University. 

Master’s Thesis. 

 

Wennerström, M. (2005). Decreasing brightness reversion with powerful ozone 

bleaching. Pulp And Paper Canada, 106(1). 41-44. 

 

Zhang, M., Qi, W., Liu, R., Su, R., Wu, S., & He, Z. (2010). Fractionating 

lignocellulose by formic acid: characterization of major components. Biomass 

And Bioenergy, 34(4), 525-532. 

http://www.6thicep.org.uy/styles/inc4/downloads/Slides/12_Vianna%20Viridiane.pdf
http://www.6thicep.org.uy/styles/inc4/downloads/Slides/12_Vianna%20Viridiane.pdf
http://know.aalto.fi/pulp/latest/english/raw_materials/2_water/1_usage/vesitase_img.htm?zoom_highlightsub=effluent
http://know.aalto.fi/pulp/latest/english/raw_materials/2_water/1_usage/vesitase_img.htm?zoom_highlightsub=effluent
https://noppa.aalto.fi/noppa/kurssi/puu-19.3000/luennot/Puu-19_3000_hexa.pdf


 

 

 

107 

 

List of Appendices 

 

Appendix 1: The methods for determination of pulp and filtrate 

properties 

Appendix 2: Standard Method for determination of HexA content 

Appendix 3: UVRR Spectra 

  



 

 

 

108 

 

Appendix 1: The methods for determination of pulp and 
filtrate properties 

 

Table 1. The methods for pulp determinations. 

HexA content TKK procedure (Appendix 2) 

ISO brightness SCAN-CM 11:95 and SCAN-P 3:93 

Kappa number SCAN-C 1:00 

Viscosity SCAN-CM 15:99 

 

Table 2. The methods for filtrate determinations.  

Residual peroxide iodometric titration EOP- and P-stage filtrates 

Residual chlorine iodometric titration D-stage filtrates 

TOC SFS-EN 1484, Shimadzu 

TOC-V total organic 

carbon analyzer 

A1- and A4-filtrates 

Chloride content ion chromatography A1- and A4-filtrates 

Alkali metals AAS-device (Varian 240) A1- and A4-filtrates 

Other NPE’s ICP-OES-device (Perkin-

Elmer 7100 DV) 

A1- and A4-filtrates 
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Appendix 2: Standard method for determination of HexA 
content 
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Appendix 3: UVRR Spectra 

UVRR spectra of pulps after oxygen delignification and different A-stages. 

UVRR spectra of pulp after each stage in the first sequence without filtrate 

circulation. 
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UVRR spectra of pulp after each stage in the first sequence with filtrate 

circulation. 

UVRR spectra of pulps after different P-stages in the first sequence. 
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UVRR spectra of pulp after each stage in the second sequence without filtrate 

circulation. 

UVRR spectra of pulp after each stage in the second sequence with filtrate 

circulation. 
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UVRR spectra of pulps after different P-stages in the second sequence. 

UVRR spectra of both filtrates. 
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UVRR spectrum of 2-furoic acid. 
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