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Modern measuring techniques allow us to get more and more data in less time
and cheaper price. When analyzing data, one sample might be the gene expres-
sion of a cell or the activity of a human brain at a certain time, consisting of
tens of thousands of features. Often we have much fewer samples than features,
and simple methods will overfit the data. Factor models are designed to model
this kind of high-dimensional data via a lower dimensional factor space. Factor
analysis is the simplest factor model: it reconstructs each feature in the data as
a weighted sum of the hidden factors (components).

In this thesis I examine group factor analysis (GFA), which is an extension of fac-
tor analysis for multiple data sets. High-dimensional data can often be naturally
divided to different groups (views), which GFA uses as prior information by infer-
ring the component activities for views instead of single features. This property
combined with an automatic system for the component activity determination
results in a powerful factor model.

In this thesis, GFA is extended to explicitly model hidden relations between
different data views. This is done by generating their component activity matrix
in two alternative ways: as samples of a multivariate normal distribution and as a
product of two low-rank matrices. Both the extensions are solved via variational
Bayesian inference, and are shown to model data with accuracy comparable to
GFA. For data with many views low-rank GFA is the most accurate model.

Additionally the problem of small number of samples is dealt with two trans-
fer learning setups: one being able to take advantage of background data with
samples or features shared with target data, and the other introducing a novel
transfer learning setup. It is shown, using both artificial and real data, that both
of these setups allow us to form a better model when suitable background data is
available. The real data consists of drug response profiles measured on cell lines
using two different microarray platforms.
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Päiväys: 16. tammikuuta 2013 Sivumäärä: viii + 53
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Modernien mittaustekniikoiden avulla saadaan nykyään entistä enemmän aineis-
toa tutkittavaksi lyhyemmässä ajassa ja halvemmalla. Kun tutkimuksen kohtee-
na ovat esimerkiksi solun geenien ilmentymisarvot tai ihmisaivojen toiminta, yksi
näyte voi koostua kymmenistätuhansista muuttujista. Usein näytteitä on paljon
vähemmän kuin muuttujia, jolloin yksinkertaiset menetelmät ylisovittuvat aineis-
toon. Faktorimallit on suunniteltu mallintamaan tällaista korkeaulotteista dataa
matalaulotteisemman faktoriavaruuden avulla. Faktorianalyysi on näistä malleis-
ta yksinkertaisin: se rekonstruoi jokaisen aineiston muuttujan latenttien faktorien
(komponenttien) painotettuna summana.

Tässä diplomityössä sovelletaan ja edelleenkehitetään ryhmäfaktorianalyysiä
(GFA), joka on faktorianalyysin laajennus useille aineistojoukoille. Korkeaulot-
teinen data voidaan usein jakaa ryhmiin (näkymiin), jotka GFA ottaa huomioon
mallintamalla komponenttiaktiivisuudet ryhmille yksittäisten muuttujien sijaan.
Mallissa on myös mukana komponenttien relevanssin määrittävä osa. Nämä seikat
tekevät GFA:sta käytännöllisen faktorimallin.

Tässä työssä laajennetaan ryhmäfaktorianalyysiä mallintamaan aineiston eri
näkymien suhteita eksplisiittisesti. Tämä tehdään mallintamalla näkymien kom-
ponenttiaktiivisuudet kahdella vaihtoehtoisella tavalla: moniulotteisen normaa-
lijakauman näytteinä sekä kahden matalan rangin matriisin tulona. Molemmat
laajennukset ratkaistaan variationaalisen Bayes-päättelyn avulla, ja niiden tark-
kuus aineiston mallintamisessa vastaa GFA:n tarkkuutta. Aineistossa, jossa on
useita näkymiä, matalan rangin GFA on tarkin malli.

Pienen näytemäärän ongelmaan puututaan lisäksi kahdella siirto-oppimismene-
telmällä. Toisessa hyödynnetään taustadataa, jossa on kohdedatan kanssa jaettuja
näytteitä tai muuttujia. Toisessa lähestymistavassa on menetelmänä syvemmän
tason siirto-oppiminen. Työssä osoitetaan sekä keinotekoisella että oikealla ai-
neistolla, että molemmat menetelmät parantavat lopullista mallia, kunhan sopi-
vaa taustadataa on saatavilla. Oikea aineisto koostuu solulinjoille mikrosiruilla
tehdyistä lääkevastemittauksista.

Asiasanat: bayesiläinen data-analyysi, faktorimallit, siirto-oppiminen,
variationaalinen Bayes-päättely
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Symbols and Abbreviations

Scalars, vectors and matrices

Scalars are marked with lower and upper case symbols. Vectors are treated
as column vectors and marked with boldface lowercase symbols. Matrices
are boldface uppercase symbols. Transpose is marked with the symbol >.
Column vectors corresponding to the ith row and the jth column of matrix
X are marked with Xi and X·j, respectively. Lists of matrices are marked
with boldface uppercase symbols, such that Xm is the mth matrix in the list
X.

List of symbols

|A| Determinant of matrix A
E[x|y], 〈x〉y Expectation of x, given y
Ik Identity matrix with k rows and columns
x̂ Prior for x
DKL(q||p) Kullback-Leibler divergence between distributions p

and q
Γ Gamma function
ψ Digamma function
L Lower bound of a function
θ Model parameters
G(x|a, b) Gamma probability density at point x with shape and

rate parameters a and b
N (x|µ,Σ) Gaussian probability density at point x with mean µ

and covariance Σ
W(Λ|V, v) Wishart probability density at Λ with scale matrix V

and v degrees of freedom
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List of abbreviations

ARD Automatic Relevance Determination
CCA Canonical Correlation Analysis
CGFA Correlated-Group Factor Analysis
DNA Deoxyribonucleic Acid
FA Factor Analysis
GFA Group Factor Analysis
KL-divergence Kullback-Leibler divergence
L-BFGS-B Limited memory Broyden-Fletcher-Goldfarb-Shanno

method with Box constraints
LRGFA Low-Rank Group Factor Analysis
PCA Principal Component Analysis
PCCA Probabilistic Canonical Correlation Analysis
RNA Ribonucleic Acid
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Chapter 1

Introduction

1.1 Overview

In scientific research, there is at the moment more data available than ever.
Whether one data sample is a 10000-dimensional vector of gene expression
values measured as a response for a certain drug or the blood-oxygen-level-
dependent in different human brain regions at a certain time, there is a clear
need for sophisticated statistical methods in modeling the data [22][25]. We
often face data where the amount of information per sample is much higher
that the total number of samples. This is called the “small n, large p”
problem. Additionally, a large part of the measurements might actually be
irrelevant noise.

The “small n, large p” problem is often dealt with dimensionality reduc-
tion, that is, finding a representation of data where we have significantly
fewer features. There is a wide variety of dimensionality reduction meth-
ods: In the simplest case one might have prior information about relevant
features, or the features might be chosen by some ad-hoc criteria, such as
picking the features with most variance [23]. Another approach is to build
a model that lets data decide which features are relevant. This too can be
done in many ways, and in this thesis we consider factor models. Probably
the most well-known factor model is factor analysis, which is used to explain
p possibly correlated variables with k << p uncorrelated latent factors (or
components) [32].

In this thesis we examine the model group factor analysis (GFA), which
can be viewed as a generalization of factor analysis for multiple data sets [33].
In high-dimensional data, there often exists some sort of natural grouping of
variables. The grouping might present different pathways in gene expression
data or different brain regions of fMRI data. In this thesis the term view is

1



CHAPTER 1. INTRODUCTION 2

used to describe these different groups, reflecting the idea that we measure a
shared thing from different perspectives. In group factor analysis these views
are taken into account in the latent space: all variables in one view share
the same components, but different views may share different components.
Thus, when determining the component activities, it is enough to infer MK
parameters instead of DK, where M is the number of views, K is the number
of components and D is the total dimensionality.

For huge data sets with many views, inferring MK independent compo-
nent activity parameters might still not be optimal. With large M surely
there are some views that have much in common or some that have very
little. This is the idea behind the two GFA modifications developed in this
thesis: one where the activities are sampled from a normal distribution and
the other with two low-rank matrices forming them. In vanilla GFA two
views might have identical component activities, but in these modifications
this kind of similarity is explicitly modeled.

Increased experimental data size has to be taken into account when de-
signing models. Besides that, there are more and more open databases where
researchers all over the world have uploaded data from their experiments. For
example European Bioinformatics Institute maintains roughly 40 biological
databases.1 Given similar measurements, this kind of background data could
be used for example to help dealing with the “small n, large p” problem. If
someone has measured the effects of one thousand drugs on cell lines, why
not include them to the model of our ten drugs? In the simplest scenario
we can just add some samples or views to our own data. In general, we are
facing a transfer learning problem: how to use the background information
to get the best possible model for target data? In this thesis the question
is answered by developing a sequential Bayesian learning GFA and a novel
way of transfer learning: transferring the view correlation structure from a
background data.

1.2 Structure of the thesis

The structure of the thesis is as follows: basic mathematical methods and
the application area are reviewed in chapter 2. On the methodological side,
Bayesian inference is explained first along with the special case of variational
inference. They are followed by an introduction to transfer learning and
factor models, and finally by introducing the biological background.

Chapter 3 begins with an introduction to group factor analysis and deriva-

1http://www.ebi.ac.uk/Databases/

http://www.ebi.ac.uk/Databases/


CHAPTER 1. INTRODUCTION 3

tion of its inference equations. After that, as the first main contribution of
this thesis, two novel extensions of GFA are derived: correlated-group factor
analysis and low-rank factor analysis.

Two new transfer learning extensions for GFA are presented in chapter
4. Different types of prior-inducing schemes are discussed and two trans-
fer learning extensions are derived: traditional sequential Bayesian learning
model and a hierarchical model for transferring view correlation structure.

Chapter 5 contains experiments on simulated data for all the GFA models
presented in this thesis. The purpose of these experiments is to show that
the implementations work in the way they are designed to.

In chapter 6, experiments with real drug response data are carried out to
see how applicable the models are. Independently learning the target data
is compared to a transfer learning approach, where additional information is
extracted from the background data.

The thesis is concluded in chapter 7, where the models and experimental
results are discussed in-depth.

1.3 Contributions of the thesis

The main contributions of this thesis are the extensions of the GFA model:
correlated-group factor analysis, low-rank factor analysis and transfer learn-
ing models. These were formulated in collaboration with Arto Klami, Seppo
Virtanen and Samuel Kaski, who presented GFA as a factor analysis model
generalized for multiple data sets [33]. The author derived and implemented
the extensions, performed the experiments and wrote the thesis indepen-
dently.



Chapter 2

Background

This chapter begins with an introduction to Bayesian statistics, including
a specific methodology: variational Bayesian inference. Also the general
framework of transfer learning and factor models are presented. Finally, we
discuss the biological background of drug response experiments, since it is
necessary to know what type of data we are modelling.

When introducing Bayesian inference we use x to denote the data and do
not specify its nature in detail. This is because the inference methods are
very general, and even if the data were discrete, the only change one would
have to make is to replace the integrations with summations. While dealing
with factor models we denote the data with X ∈ RD×N , meaning that the
data consist of N samples for which we have D continuous measurements.

2.1 Bayesian inference

In traditional statistics we are often interested in finding parameters θ that
maximize the likelihood of data x:

θ̂ = arg max
θ

p(x|θ), (2.1)

where θ̂ is called the maximum likelihood estimate. In Bayesian statistics the
parameters have a prior p(θ), allowing us to infer a probability distribution
for the parameters. This is done using Bayes’ rule:

p(θ|x) =
p(x|θ)p(θ)

p(x)
∝ p(x|θ)p(θ). (2.2)

We are interested in the posterior distribution of parameters, p(θ|x),
given data and prior p(θ). Probability of the data, p(x), is constant with

4



CHAPTER 2. BACKGROUND 5

respect to the model parameters and can thus be ignored in many inference
tasks.

In Bayesian inference the model is defined by the likelihood and the prior.
The prior is usually chosen from a distribution family that is conjugate to
the likelihood p(x|θ), assuring that the posterior is a closed form distribution
too. In the so-called objective Bayesian setup the prior is chosen such that
it contains as little information as possible; an uninformative prior results
in the traditional maximum likelihood estimate, with the exception that we
get a posterior distribution instead of a point. More generally, which is often
referred as the subjective setup, the prior actually reflects prior beliefs.

If either the likelihood p(x|θ) or the prior p(θ) is a complex distribution,
the posterior p(θ|x) is usually not tractable. In that case it needs to be
approximated.

2.1.1 Variational Bayesian inference

In this section we describe a framework for approximating the posterior of the
model parameters, p(θ|x), with another distribution q(θ). Following Bishop
[5], we start by formulating the marginal distribution p(x) as:

ln p(x) =

∫
q(θ) ln p(x)dθ (2.3)

=

∫
q(θ) ln

p(θ|x)p(x)

p(θ|x)
dθ (2.4)

=

∫
q(θ) ln p(x,θ)dθ −

∫
q(θ) ln p(θ|x)dθ (2.5)

=

∫
q(θ) ln

p(x,θ)

q(θ)
dθ −

∫
q(θ) ln

p(θ|x)

q(θ)
dθ (2.6)

:=L(q) +DKL(q||p), (2.7)

where in equation (2.3) the logarithm of the marginal likelihood is formulated
by integrating over the variational distribution q(θ). Bayes’ rule is applied
in equation (2.4), after which the division in the logarithm is changed to
a subtraction of two logarithms, and the conditional probability is changed
to a joint probability in equation (2.5). In equation (2.6) we have added∫
q(θ) ln q(θ)dθ −

∫
q(θ) ln q(θ)dθ and combined it with the existing inte-

grands. Finally, equation (2.6) is divided in two terms that are interpreted
as the lower bound L(q) and the KL-divergence DKL(q||p) [21].

The derivation in equations (2.3)-(2.7) holds for all types of q(θ). In
equation (2.7) the KL-divergence measures the distance of the true posterior
and variational distribution q(θ), so we would like to minimize it. As the
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marginal distribution p(x) is a constant, this can be done equivalently by
maximizing L(q). Since DKL(q||p) ≥ 0, L(q) is a lower bound for ln p(x).
The equality applies only when q(θ) matches the true posterior.

In order to learn a tractable q(θ), we will follow a framework called mean
field theory [30], where the variational distribution q(θ) is factorized with
respect to all parameters:

q(θ) =
∏
i

qi(θi). (2.8)

We use shorthand notation qi to denote qi(θi). Given the factorized vari-
ational distribution, the lower bound becomes

L(q) =

∫ ∏
i

qi

(
ln p(x,θ)−

∑
i

ln qi

)
dθ (2.9)

=

∫
qj

(∫
ln p(x,θ)

∏
i 6=j

qidθi

)
dθj −

∫
qj ln qjdθj + const (2.10)

=

∫
qj ln p̃(x,θj)dθj −

∫
qj ln qjdθj + const (2.11)

=

∫
qj ln

p̃(x,θj)

qj
dθj + const, (2.12)

where

ln p̃(x,θj) :=

∫
ln p(x,θ)

∏
i 6=j

qidθi = E[ln p(x,θ)|qi 6=j], (2.13)

and the latter part of equation (2.11) is the entropy of qj, denoted by H(qj).
Equation (2.12) is actually the negative KL-divergence of qj and p̃(x,θj), so
the maximum is

E[ln p(x,θ)|qi 6=j] + const. (2.14)

This results in an iterative mean field variational Bayesian algorithm,
as presented in algorithm 1. The iteration is needed since the optimum of
qi(θi) depends on the expectations of the other factors. Convergence to a
local optimum is guaranteed because the bound is convex with respect to
each of the factors qi(θi) [7]. Algorithm 1 is closely related to expectation-
maximization algorithms, as presented by Dempster [10].

If the optimum in equation (2.14) is not tractable, equation (2.12) has
to be maximized some other way with respect to qj. This can be done for
example with numerical methods [6].
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Algorithm 1: Mean field variational Bayesian inference

Start with some initial distribution for q(θ)
while not converged do

for i=1,...,I do
Update qi(θi), while holding the rest of the variational
distribution fixed

end

end

2.2 Transfer learning

As discussed in the previous section, the goal of Bayesian inference is to find
a posterior estimate p(θ|x). If there are enough samples and our modeling
assumptions are correct, the posterior is an accurate distribution for the
parameters [11]. However, many experiments are expensive to run, and thus
the sample size might be too small. If the dimensionality for each sample is
high, we are dealing with the “small n, large p” -problem [34]. This problem
can be dealt with the means of transfer learning, along with other approaches
such as feature selection [15].

The data acquired from our experiments is called target data. We are
interested in modeling it as well as possible. If there exists some related
background data, we would like to transfer maximal amount of knowledge
from the background data for modeling the target. Both the target and
background are described by a domain [29]

D = {X , P (X)}, (2.15)

where X is a feature space and P (X) is the marginal probability distribution
of data X = {X1, ...,XN}∈X . The target and background domains differ if
they have different features or marginal distributions.

For identical domains transfer learning is trivial: background samples
can be pooled together with the target, resulting in a more accurate model.
Likewise, if the background and target share the same samples but have
different domains, it is sufficient to combine them together. Non-trivial cases
can be dealt with a general transfer learning algorithm: first by modeling
background and then by using the relevant parts of the posterior as a prior
for the target data. This is also known as sequential Bayesian learning, and
in exact inference the posterior for target data will be the same as if it was
modeled jointly with the background [14]. If the background model is known
along with the data, sequential learning can offer significant computational
benefit, since the background data does not need to be modeled any more.
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Knowledge from shared features and samples can easily be transferred
using sequential Bayesian learning. The same logic applies to all model pa-
rameters: if there is a reason to assume they are similar, the posterior of the
background should be used as a prior for the target. These and other types
of transfer learning schemes have been discussed by Pan and Yang in their
overview on transfer learning [29].

2.3 Factor models

In many real-world applications we observe data with a huge dimensional-
ity; for example in gene expression measurements there might be thousands
of genes as variables. Often many of the variables are correlated, and thus
we would like to present the same information in a different, lower dimen-
sional space, aiming to capture information and leave out noise. Latent
variable models attend to do this, and they are useful in preprocessing high-
dimensional data and analyzing it as is. All the models studied in this thesis
are factor models.

2.3.1 Factor analysis

Factor analysis is a statistical method that models observed variables with a
smaller amount of factors [32]. Given zero mean data matrix X, our model
is:

X = WZ + ε, (2.16)

where X ∈ RD×N ,W ∈ RD×K ,Z ∈ RK×N and ε ∈ RD×N . The data matrix
is presented via the lower dimensional factors Z, and the loading matrix
(projection matrix) W describes the linear relationships of the features. The
error term ε has zero mean and diagonal covariance Σ = diag(σ1, ..., σD).
Additionally, we assume that the noise is independent of the factors, which
have zero mean and identity covariance matrix. Thus,

cov(X) = cov(WZ + ε) = cov(WZ) +Σ = Wcov(Z)W>+ Σ = WW>+ Σ,
(2.17)

and therefore factor analysis models all the correlations between the vari-
ables, leaving only diagonal noise with different variance for each variable.
The projection matrix captures the correlation structure, whereas the factors
represent the data in a space with no correlated variables.

Factor analysis is a widely used latent variable model for example in
chemistry [26]. It is also closely related to principal component analysis,
which has an isotropic noise covariance instead of just diagonal [18].
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2.3.2 Probabilistic canonical correlation analysis

Canonical correlation analysis (CCA), as presented by Hotelling [17], is a way
of finding maximal linear correlations between two sets of variables, namely
X and Y, with dimensionalities DX and DY . The first pair of canonical
correlations, (a>X,b>Y) is chosen to achieve maximal correlations. The
next pair is again chosen in order to maximize correlation, with the restriction
that it has to be uncorrelated with the preceding canonical variables. In the
end, we get two sets of variables, A>X and B>Y, that have a diagonal
correlation matrix with descending elements.

Probabilistic canonical correlation analysis (PCCA) gives CCA a factor
model interpretation [4]. The model is defined as follows:

p(Z) ∼
N∏
i=1

N (Z·i|0, IK) (2.18)

p(X|Z) ∼
N∏
i=1

N (X·i|WXZ·i+ µX ,ΣX) (2.19)

p(Y|Z) ∼
N∏
i=1

N (Y·i|WY Z·i+ µY ,ΣY ) (2.20)

where K is the latent dimensionality. The W ∈ RD×K are the projection
matrices, with corresponding positive semi-definite covariance matrices Σ∈
RD×D.

Given two data sets and latent dimensionality K, PCCA has a maximum
likelihood solution [4]. Similar to standard CCA, the solution tries to model
the correlations between the data sets, which allow the model to have more
statistical strength. CCA and PCCA are standard methods for modeling two
data sets, and have been used for example to learn a bilingual dictionary
from two monolingual text corpora [16].

2.3.3 Model complexity control

A major drawback of factor analysis is that the number of components, and
thus the dimensionality of the latent space has to be fixed. In this thesis
this problem has been dealt with automatic relevance determination (ARD),
originally formulated in the framework of neural networks [24][27]. For factor
analysis it could be implemented by assigning the columns of loading matrix
the distribution

W ∼
K∏
k=1

N (W·k|0,
1

αk

ID), (2.21)
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where the α = {α1, ...,αK} are called ARD parameters. If the data can
be described via a k-dimensional latent space and we are modeling it with
K > k factors, the extra K − k factors will have effectively zero variance.
This happens since they do not aid in modeling the data significantly, but
instead they do increase the likelihood of W when αk →∞.

Automatic relevance determination has been applied in many Bayesian
models. Nielsen [28] presented factor analysis with ARD parameters and
solved it with variational inference methods.

2.4 Biological background

In this thesis our application comes from drug response experiments. Those
experiments try to measure how various drugs affect human body. To have
some idea of how drug effects could be measured, we need have some basic
knowledge of the target object, human body.

The functional unit of every living organism is the cell. Humans have
approximately ten trillion of them, all of which have one thing in common:
DNA (deoxyribonucleic acid). DNA contains the information needed for the
organism’s functioning and developing, and this information is utilized by
proteins that are the functional units inside the cell [1]. Messenger RNA
(ribonucleic acid) forms a protein from a stretch of DNA (gene) in a process
called gene expression.

When comparing patients having different diseases and treatments, we
would expect to see different protein levels in their cells, since proteins are
the basic functional units. Unfortunately this kind of information is very
hard to acquire. There is, however, an efficient way to measure the next best
thing. A DNA microarray is an array with fragments of DNA, called probes,
that are matched with messenger RNA in cells. The probes can be mapped
into genes, allowing us to infer the expression level for each gene.

2.4.1 Drug response experiments

The action mechanism of many drugs is enzyme inhibition. This means that
they act in cells and decrease the activity of some enzymes (usually proteins)
for example by binding into them. This effect can be seen in gene expression
measurements, allowing us to infer the drug action mechanisms. [19]

Lamb et al. [22] published a gene expression database for drug response
experiments. Instead of doing possibly harmful experiments on patients,
they used isolated human cells and measured their gene expression values
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with DNA microarrays. This type of data can be used to analyze connec-
tions among drugs, genes and diseases. The data contains measurements
done with two different microarray platforms, both measuring approximately
22000 genes. The number of drugs measured with the platforms are 682 and
313. In both the platforms the genes can be divided into 217 different groups,
corresponding to the pathways via which they interact. The pathways de-
scribe series of chemical reactions occurring within a cell.



Chapter 3

Group Factor Analysis

This chapter begins with an introduction to group factor analysis and deriva-
tion of variational Bayesian inference update equations for solving an approx-
imate posterior of the model parameters. After that the limitations of GFA
are discussed, and two new GFA extensions are presented to address them.

Group factor analysis can be thought of as an extension of factor analysis
to multiple data sets that have independent sparsity inducing ARD param-
eters [33]. Whereas in factor analysis the data consists of N samples with
dimensionality D each, now we are interested in M such data matrices, with
varying dimensionality Dm. All the views are modeled using shared latent
variables, as clarified in figure 3.1. The key idea is that we have a set of sam-
ples that can be presented via M different views that have some specific and
some shared variation. An example of a real world data set was published
by Lamb at al. [22]: there are N drugs tested on cell lines with different gene
expression measurements as features, grouped into different pathways. We
will return to this example in the experimental part of this thesis.

The generative model of GFA is:

p(X|W,Z, τ ) ∼
M∏
m=1

N∏
i=1

N (Xm
·i |WmZ·i, τ

−1
m IDm), (3.1)

where Xm
·i is the ith sample of view Xm, Wm is the projection matrix for

view m, Z·i is the latent representation of the ith sample and τm is the noise

12
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samples

fe
at

u
re

s

≈

view 1

view 2

view 3

view 4

samples

⇔

W Z

Figure 3.1: Given data where the samples are described by several views,
factor analysis can be used to model it by concatenating the views. This
results in a features×samples-matrix, which is modeled as a product of two
matrices: projection matrix W and latent components Z. GFA takes the
prior grouping into account by having a separate projection matrix for each
group (gray lines). In our application different drugs are samples, genes are
features and pathways are views.

precision. The priors of the model are defined as

p(Z) ∼
N∏
i=1

N (Z·i|0, IK) (3.2)

p(τ |aτ , bτ ) ∼
M∏
m=1

G(τm|aτ , bτ ) (3.3)

p(W|α) ∼
M∏
m=1

K∏
k=1

N (Wm
·k |0,

1

αmk

IDm) (3.4)

p(α|aα, bα) ∼
M∏
m=1

K∏
k=1

G(αmk|aα, bα), (3.5)

where αmk is an ARD parameter controlling the variance of component k for
view m. Gamma-priors for both τ and α will be chosen to be uninformative,
so the a and b parameters for both are fixed to 10−14. Thus the prior expected
values of τ and α are 1 and their prior variances are 1014. The data and
parameter dimensions are Xm∈RDm×N ,Wm∈RDm×K ,Z∈RK×N ,α∈RM×K

and τ ∈RM , where Dm is the dimensionality of view m and K is the number
of latent components. The plate model presentation of GFA is in figure 3.2.

Similar to any other factor model, GFA models correlated variables via an
uncorrelated lower dimensional latent space. The relations of the variables



CHAPTER 3. GROUP FACTOR ANALYSIS 14

aτ

bτ

aα

bα
τ Xm Wm αm

Zi

m = 1...Mi = 1...N

Figure 3.2: Plate model of group factor analysis. Gray node presents ob-
served variables. Rounded plates denote random variables and rectangles
fixed parameters.

WFA WPCCA WGFA

view 1

view 2

view 3

view 4

Figure 3.3: White parts of the projection matrices denote elements close to
zero, not affecting the factor model. Gray parts denote elements deviating
significantly from zero. Factor analysis does not take into account the group-
ing of features and determines the activity of each component separately for
each feature. PCCA extended to more than two views takes the feature
grouping into account, but allows only components that are shared with all
the views or specific to just one view. GFA allows the views to share the
components arbitrarily.

are taken into account in the sparse projection matrix W, as two strongly
correlated variables are likely to have the same active components. However,
the structure of the ARD matrix α is a feature that distinguishes GFA from
other factor models. Factor analysis applied to pooled data sets infers the
activity of each component independently for each feature, requiring DK
free parameters in total, where D =

∑M
m=1Dm [28]. When the data has a

high dimensionality, it is more reasonable to take the views into account in
order to reduce the number of free parameters. GFA does this by inferring
the component activity independently for each view, thus requiring MK pa-
rameters. The independence allows a single component to be shared between
an arbitrary subset of all the views. This differs from PCCA generalized to
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many views, where only components shared between all the views or ones
specific to one view only are allowed [4]. The different component activity
structure can be seen in figure 3.3, as visualized in the projection matrices
of these factor models.

The set of all GFA parameters shall be denoted as θ = {Z,W,α, τ}.
Their posterior can be computed using Bayes’ rule:

p(θ|X) (3.6)

=p(X|θ)p(θ)/p(X) (3.7)

=p(X|Z,W,α, τ )p(Z)p(W|α)p(α|aα, bα)p(τ |aτ , bτ )/p(X) (3.8)

=
N∏
i=1

e−
1
2
Z>·iZ·i

M∏
m=1

[
N∏
i=1

(
|τmIDm |

1
2 e−

τm
2

(Xm
·i −WmZ·i)>(Xm

·i −WmZ·i)
)

K∏
k=1

(
α

Dm
2

mk e
− 1

2
αmkW

m>
·k Wm

·k

) K∏
k=1

αaα−1
mk e−b

ααmkτ a
τ−1
m e−b

ττm

]
× const. (3.9)

The posterior in equation (3.9) can be split into two parts: the prior of
the latent variables Z is independent of all the other variables, and the rest of
the posterior is a product over all the views. Thus the complete log-likelihood
for view m is:

Lm(X,θ) =
DmN

2
ln τm −

τm
2

N∑
i=1

(Xm
·i −WmZ·i)

>(Xm
·i −WmZ·i)

+
Dm

2

K∑
k=1

lnαmk −
1

2

K∑
k=1

αmkW
m>
·k Wm

·k

+
K∑
k=1

(aα − 1) lnαmk −
K∑
k=1

bααmk

+ (aτ − 1) ln τm − bττm + const. (3.10)

The complete log-likelihood is a sum of (3.10) over views m= 1, ...,M ,
plus a view-independent expression

L(Z) =− 1

2

N∑
i=1

Z>·iZ·i. (3.11)
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3.1 Update equations for variational Bayesian

inference

The posterior of model parameters in equation (3.9) is a complicated for-
mula and thus cannot be solved in closed form. Here we will apply mean-
field variational Bayesian inference presented in section 2.1.1. The posterior
distribution is approximated as:

p(θ|X) ≈ q(θ) = q(Z)q(W)q(α)q(τ ), (3.12)

which is the key assumption of mean-field variational Bayesian inference.
The variational distribution q(θ) can be solved using algorithm 1, for which
we need to compute the conditional distribution updates. This is done in
the following section, where the following notation is used for simplicity: the
complete log-likelihood as a function of parameter φ is denoted as L(φ) and
its expectation given the other variational distributions by 〈L(φ)〉q(θ). Like-
wise, the log-likelihood for view m is denoted by Lm. We can further factorize
q(θ) with respect to views, since the complete log-likelihood is a sum over
them. For clarity, all the update equations are displayed in frames. Addi-
tionally, a slightly different notation is adopted to separate the distributional
parameters from actual model parameters: the superscript of a distributional
parameter is the related model parameter, and subscripts will be used more
than one distributional parameter is needed. For example ΣW

m is a parameter
of q(Wm).

3.1.1 The q(Z) distribution

The complete log-likelihood as a function of Z is

L(Z) =
N∑
i=1

[
−1

2
Z>·iZ·i −

1

2

M∑
m=1

τm(Xm
·i −WmZ·i)

>(Xm
·i −WmZ·i)

]
,

(3.13)
and its expectation given the other variational distributions is

N∑
i=1

[
Z>·i

M∑
m=1

〈Wm〉〈τm〉Xm
·i −

1

2
Z>·i

(
Ik +

M∑
m=1

〈τm〉〈Wm>Wm〉

)
Z·i

]
.

(3.14)
Equation (3.14) is the optimal log-density for q(Z), given the other pa-

rameters. By exponentiating the log-density, we can see that the optimal
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q(Z) is a normal distribution,

q(Z) =
N∏
i=1

q(Z·i) =
N∏
i=1

N (Z·i|MZ
i ,Σ

Z), (3.15)

where the parameters are:

ΣZ =

(
Ik +

M∑
m=1

〈τm〉〈Wm>Wm〉

)−1
(3.16)

MZ
i =

M∑
m=1

ΣZ〈Wm〉>〈τm〉Xm
·i . (3.17)

3.1.2 The q(Wm) distribution

The parts of equation (3.10) depending on Wm are:

− 1

2

N∑
i=1

τm(Xm
·i −WmZ·i)

>(Xm
·i −WmZ·i)−

1

2

K∑
k=1

αmkW
m>
·k Wm

·k . (3.18)

The part of equation (3.18) not depending on Xm
·i is

−τm
2

N∑
i=1

(WmZ·i)
>WmZ·i = −τm

2

N∑
i=1

Dm∑
j=1

(Wm>
j Z·i)

>Wm>
j Z·i (3.19)

= τm

Dm∑
j=1

−1

2
Wm>

j (
N∑
i=1

Z·iZ
>
·i )W

m
j . (3.20)

The Wm-independent part of equation (3.18) can be handled as a con-
stant, leaving us with:

τm
2

N∑
i=1

(Xm>
·i WmZ·i + (WmZ·i)

>Xm
·i )

=
τm
2

N∑
i=1

Dm∑
j=1

(Xm
jiW

m>
j Z·i + (Wm>

j Z·i)
>Xm

ji) (3.21)

=τm

Dm∑
j=1

Wm>
j (

N∑
i=1

Xm
jiZ·i). (3.22)
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Furthermore, the second term of equation (3.18) is

− 1

2

K∑
k=1

αmkW
m>
·k Wm

·k = −1

2

Dm∑
j=1

Wm>
j αmWm

j , (3.23)

where αm is the mth row of α transferred into a diagonal K ×K matrix.
Thus we get:

〈Lm(Wm)〉q(θ) =
Dm∑
j=1

[
Wm>

j 〈τm〉

(
N∑
i=1

Xm
ji〈Z·i〉

)

−1

2
Wm>

j

(
〈τm〉

N∑
i=1

〈Z·iZ>·i 〉+ 〈αm〉

)
Wm

j

]
, (3.24)

from which we can infer that q(W) is of the form:

q(W) =
M∏
m=1

Dm∏
j=1

q(Wm
j ) =

M∏
m=1

Dm∏
j=1

N (Wm
j |MW

mj,Σ
W
m ). (3.25)

We get the following update equations for variational distribution q(Wm
j ):

ΣW
m =

(
〈τm〉

N∑
i=1

〈Z·iZ>·i 〉+ 〈αm〉

)−1
(3.26)

MW
mj = ΣW

m 〈τm〉

(
N∑
i=1

Xm
ji〈Z·i〉

)
. (3.27)

3.1.3 The q(τm) distribution

The complete log-likelihood as a function of τm is

Lm(τm) =
DmN

2
ln τm −

τm
2

N∑
i=1

(Xm
·i −WmZ·i)

>(Xm
·i −WmZ·i)

+ (aτ − 1) ln τm − bττm, (3.28)

with expectation:

〈Lm(τm)〉q(θ)

=(aτ +
DmN

2
− 1) ln τm −

(
bτ +

1

2

N∑
i=1

〈(Xm
·i −WmZ·i)

2〉

)
τm. (3.29)
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Thus q(τ ) is distributed as

q(τ ) =
M∏
m=1

G(τm|aτm,bτm), (3.30)

where the parameters are:

aτm = aτ +
DmN

2
(3.31)

bτm = bτ +
1

2

N∑
i=1

〈
(Xm
·i −WmZ·i)

2
〉
, (3.32)

and the expectation can be computed as〈
(Xm
·i −WmZ·i)

2
〉

=
Dm∑
j=1

(
Xm2
ji − 2Xm

ji〈Wm
j 〉>〈Z·i〉+ tr

[
〈Wm

j Wm>
j 〉〈Z·iZ>·i 〉

])
. (3.33)

3.1.4 The q(αm) distribution

The αm dependent parts of the log-likelihood for view m (3.10) are:

Dm

2

K∑
k=1

lnαmk −
1

2

K∑
k=1

Wm>
·k αmkW

m
·k +

K∑
k=1

(aα − 1) lnαmk −
K∑
k=1

bααmk

=
K∑
k=1

[
Dm

2
lnαmk −

1

2
Wm>
·k Wm

·kαmk + (aα − 1) lnαmk − bααmk

]
(3.34)

=
K∑
k=1

(
aα +

Dm

2
− 1

)
lnαmk −

K∑
k=1

(
bα +

1

2
Wm>
·k Wm

·k

)
αmk. (3.35)

We get:

〈L(α)q(θ)〉 =
K∑
k=1

[(
aα +

Dm

2
− 1

)
lnαmk −

(
bα +

〈Wm>
·k Wm

·k 〉
2

)
αmk

]
,

(3.36)

from which we can infer that q(α) is of the form

q(α) =
M∏
m=1

K∏
k=1

q(αmk) =
M∏
m=1

K∏
k=1

G(αmk|aαm,Bα
mk), (3.37)
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where

aαm = aα +
Dm

2
(3.38)

Bα
mk = bα +

〈Wm>
·k Wm

·k 〉
2

. (3.39)

We can compute the expectation 〈Wm>
·k Wm

·k 〉 by

〈Wm>
·k Wm

·k 〉 =

p∑
j=1

(
ΣW
m + MW

mjM
(m,j)>
W

)
(k,k)

. (3.40)

3.1.5 Convergence of the lower bound

Convergence of the lower bound can be monitored by computing it after each
iteration:

L(q) =

∫
q(θ) ln

p(X,θ)

q(θ)
dθ (3.41)

=

∫
q(θ) ln

p(X|θ)p(θ)

q(θ)
dθ (3.42)

=

∫ ∏
i

q(θi) ln
p(X|θ)p(θ)∏

i q(θi)
dθ (3.43)

= 〈ln p(X|θ)〉q(θ) −
∑
i

〈DKL(q(θi)||p(θi))〉q(θ−i). (3.44)

The explicit form of equation (3.44) can be found in Appendix A.

3.2 Correlated-group factor analysis

In group factor analysis the ARD parameters in matrix α of size M × K
are estimated independently for each view-component pair. Given a large
number of views in the data, it might be more reasonable to explicitly model
their correlations. The key idea behind correlated-group factor analysis is
that two views describing the same samples should have something in com-
mon. Since their feature spaces differ, we assume that similar views might
share similar component activity structure. In this section this novel model
is implemented by generating the ARD matrix from a multivariate normal
distribution with covariance matrix included in the model. The following
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aτ

bτ
τ Xm Wm ξ·k

Zi

m = 1...Mi = 1...N

a

s
µ

Λ Vk = 1...K

Figure 3.4: Plate model of correlated-group factor analysis (CGFA).

priors are used to replace α in standard group factor analysis:

p(W|ξm) ∼
M∏
m=1

K∏
k=1

N (Wm
·k |0,

1

exp(ξmk)
IDm) (3.45)

p(ξ·k|µ,Λ) ∼ N (µk,Λ
−1) (3.46)

p(µ|a) ∼
K∏
k=1

N (µk|a, s2) (3.47)

p(Λ|V) ∼ W(V, v). (3.48)

The model is visualized in figure 3.4. Blei and Lafferty [6] proposed a
similar high-level correlation modeling for different topics of a topic model.

For complete model we get the likelihood:

p(X|θ)p(θ)/p(X) (3.49)

=p(X|W,Z, τ )p(τ |aτ , bτ )p(W|ξ)p(ξ|µ,Λ)p(Z)p(Λ|V)/p(X) (3.50)

=
M∏
m=1

[
N∏
i=1

(
|τmIDm|

1
2 e−

τm
2

(Xm
·i −WmZ·i)>(Xm

·i −WmZ·i)
)
τ a

τ−1
m e−b

ττm

K∏
k=1

(
eξmk

Dm
2 e−

1
2
exp(ξmk)W

m>
·k Wm

·k

)] K∏
k=1

[
|Λ|

1
2 e−

1
2
(ξ·k−µ)>Λ(ξ·k−µ)1

s
e−

(µk−a)
2

2s2

]
N∏
i=1

e−
1
2
Z>·iZ·i |Λ|

v−M−1
2 e−

1
2
tr(V−1Λ) × const, (3.51)

which will be used view-specifically. Thus complete log-likelihood for view
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m is:

Lm(X,θ) =
N

2
ln τm −

τm
2

N∑
i=1

(Xm
·i −WmZ·i)

>(Xm
·i −WmZ·i)

+
Dm

2

K∑
k=1

ξmk −
1

2

K∑
k=1

exp(ξmk)W
m>
·k Wm

·k

+ (aτ − 1) ln τm − bττm + const. (3.52)

The complete log-likelihood is a sum of (3.10) over views m = 1...M plus
a view-independent expression

L(Z) =− 1

2

N∑
i=1

Z>·iZ·i +
K

2
ln |Λ| − 1

2

K∑
k=1

(ξ·k − µ)>Λ(ξ·k − µ)

+
v −M − 1

2
ln |Λ| − 1

2
tr(V−1Λ)− K

2
ln s2 −

K∑
k=1

(µk − a)2

2s2
.

(3.53)

Inference for the variational distributions of Z, τ and W remains the same
as in standard group factor analysis, with the one exception of αmk being
replaced by eξmk . Update equations for the other parameters are derived in
the following sections.

3.2.1 The q(ξ) distribution

The parts of the complete log-likelihood dependent of ξ·k are:

M∑
m=1

[
Dm

2
ξmk −

1

2
exp(ξmk)W

m>
·k Wm

·k

]
− 1

2
(ξ·k − µk)

>Λ(ξ·k − µk). (3.54)

Equation (3.54) is not the logarithm of any standard probability distri-
bution, so we will approximate the q(ξ) distribution with another variational
distribution, analogously to what Blei and Lafferty [6] proposed to a topic
model:

q(ξ) =
M∏
m=1

K∏
k=1

q(ξmk) =
M∏
m=1

K∏
k=1

N (ξmk|λmk,S2
mk). (3.55)

Since we cannot obtain a closed form optimum given the other parameters
any more, we need to maximize the lower bound as presented in equation
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(2.11). That is the expectation of (3.54), given q(ξ), plus the entropy of q(ξ),
i.e. 1

2

∑M
m=1

∑K
k=1 ln S2

mk. For ξ·k, this becomes:

M∑
m=1

[
Dm

2
λmk −

1

2
eλmk+

S2
mk
2 〈Wm>

·k Wm
·k 〉
]

+
1

2

M∑
m=1

ln S2
mk

− 1

2
〈ξ>·kΛξ·k − µ>k Λξ·k − ξ>·kΛµk + µ>k Λµk〉, (3.56)

where the last term equals

−1

2
λ>·k〈Λ〉λ·k −

1

2
diag(Λ)>S2

·k + λ>·k〈Λ〉µk. (3.57)

Now we can maximize (3.56) as a function of [λ·k,S
2
·k] using L-BFGS-B

optimization (bounded S2
·k > 0) with gradients

∂L
∂λ·k

=
D

2
− 1

2
eλ·k+

S2
·k
2 〈tr(W·

·kW
·>
·k )〉 − 1

2
λ·k〈Λ〉+ 〈Λ〉µk (3.58)

∂L
∂S2
·k

=− 1

4
eλ·k+

S2
·k
2 〈tr(W·

·kW
·>
·k )〉+

1

2v2k
− 1

2
diag(Λ), (3.59)

where W·
·k denotes a matrix with M rows and D =

∑M
m=1Dm columns. The

matrix contains the projection weights of component k for each feature in
data X.

3.2.2 The q(µ) distribution

The complete log-likelihood as a function of µ is

L(µ) =
K∑
k=1

[
−1

2
(ξ·k − µk)

>Λ(ξ·k − µk)−
(µk − a)2

2s2

]
, (3.60)

where µk denotes a length M vector, where all the elements are µk’s.
The expectation of equation (3.60) given other model parameters is

K∑
k=1

[(∑
λ>·k〈Λ〉+

a

s2

)
µk −

1

2

(
M∑
i,j=1

〈Λij〉+
1

s2

)
µ2
k

]
. (3.61)

We can see that q(µ) can be updated as:

q(µ) =
K∏
k=1

q(µk) =
K∏
k=1

N (µk|mk, t
2), (3.62)
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where

t2 =

(
M∑
i,j=1

〈Λij〉+
1

s2

)−1
(3.63)

ak = t2
(∑

λ>·k〈Λ〉+
a

s2

)
. (3.64)

3.2.3 The q(Λ) distribution

The complete log-likelihood as a function of Λ is

K

2
ln |Λ| − 1

2

K∑
k=1

(ξ·k − µk)
>Λ(ξ·k − µk) +

v −M − 1

2
ln |Λ| − 1

2
tr[V−1Λ]

=
K + v −M − 1

2
ln |Λ| − 1

2
tr

[(
V−1 +

K∑
k=1

(ξ·k − µk)(ξ·k − µk)
>

)
Λ

]
.

(3.65)

Thus, q(Λ) should be updated as

q(Λ) =W(Λ|F, n), (3.66)

where:

F =

(
V−1 +

K∑
k=1

〈
(ξ·k − µk)(ξ·k − µk)

>〉)−1 (3.67)

n = K + v, (3.68)

and〈
(ξ·k − µk)(ξ·k − µk)

>〉 = diag(S2
·k)+λ·kλ

>
·k−λ·kµ>k −µkλ

>
·k+µkµ

>
k . (3.69)

3.2.4 Lower bound

The lower bound is computed so that we can monitor its convergence. The
derivations for this can be found in Appendix B.

3.3 Low-rank relevance determination

The motivation of correlated-group factor analysis was that the M×K ARD
matrix should not be modeled independently, since there will probably be
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some dependencies between different views for large M . However, CGFA has
two major drawbacks:

• There are approximately M2

2
free parameters to be estimated in Λ.

• There is no suitable value for Λ’s prior scale matrix V.

The first drawback makes the model hard to infer for large M , which was
originally the setting that motivated CGFA. A key feature of GFA in gen-
eral is that there are separate ARD parameters for each view and component.
Thus the prior expectation of Λ, vV, should contain small values correspond-
ing to large variances. Since v > M − 1, the prior V should be set to εIM ,
where ε is a small value, to allow this. This, however, would make the prior
very informative, as we can see in update equation (3.67).

Since modeling the structure of the ARD matrix via a multivariate normal
distribution has major shortcomings, an alternative generative model should
be thought of. The motivation for the structured α-matrix is still the same:
all views of a large collection are probably not independent. Since we assume
large M , it would be ideal if the structure could be modeled with O(M)
parameters. This is achieved with one of the main contributions of this
thesis: low-rank GFA (LRGFA). The ARD matrix is modeled in LRGFA by
fixing it as

α = eUV, (3.70)

where the matrix dimensions are U ∈RM×R and V ∈RR×K , R < M . The
exponentiation is done elementwise, and it is needed to get the scale of α large
enough, and to allow only positive values. Instead of MK free parameters
(or O(M

2

2
) in CGFA) only MR+KR are needed for the ARD. Both U and V

get a N (0, 1
λ
) prior for their elements, where λ is used to control the variance

of U and V.
The complete log-likelihood with respect to α becomes:

L(α) =
M∑
m=1

[
Dm

2

K∑
k=1

lnαmk −
1

2

K∑
k=1

αmkW
m>
·k Wm

·k

]
(3.71)

=
M∑
m=1

[
Dm

2

K∑
k=1

(UV)mk −
1

2

K∑
k=1

e(UV)mkWm>
·k Wm

·k

]
. (3.72)

The complete log-likelihood with respect to U and V equals (3.72), plus
the log-priors

−
M∑
m=1

R∑
r=1

λ

2
U2
mr −

R∑
r=1

K∑
k=1

λ

2
V2
rk = −λ

2

(
tr(U>U) + tr(V>V)

)
. (3.73)
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In vanilla GFA the ARD parameter α is chosen to be gamma-distributed,
since it is the conjugate prior distribution for the precision of normal distri-
bution. Now this is not the case, and the variational inference has to be done
in the following manner: First all model parameters except α are updated as
in standard GFA, given α. Then α is updated by maximizing the expected
complete log-likelihood:

α = arg max
α
〈ln p(X,θ|α)〉q, (3.74)

which corresponds to maximizing (2.11) when the variational distribution is
a point estimate. This type of inference was discussed by Archambeau and
Bach [2], and equation (3.74) can be optimized with a numerical optimization
method, such as L-BFGS-B [8].

An alternative way for doing variational inference with exponentiated
variables was presented by Dikmen and Févotte, who derived closed form
update equations for maximizing a lower bound of L [12]. This type of so-
lution would reduce the computational time of the implementation, since
numerical optimization is not needed. However, since it requires an approx-
imation of the lower bound, it has to be considered only if computational
time becomes a problem in the low-rank GFA.

3.3.1 Lower bound

The lower bound of the low-rank model can be computed as in GFA, with
the following changes: α is replaced with eUV in p(W|α), there is no p(α),
and finally for U we get:

DKL(q(U)||p(U)) =

∫
q(U) ln p(U)dU −

∫
q(U) ln q(U)dU = ln p(U),

(3.75)
since q(U) can be thought of as Dirac delta at point U. The divergence
between the prior and the variational distribution of V is likewise ln p(V),
and hence the log-prior term in equation 3.73 will be a part of the lower
bound.

3.4 Summary

We introduced Group Factor Analysis and presented two novel extensions for
it. Both the extensions are motivated mainly by a scenario where the data
consists of many views (large M), and thus it is usually not restrictive to
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assume that there are some dependent views. The relation of two views can-
not be modeled via their projection matrices, since the views have different
feature spaces. The approach in this thesis is to model the ARD matrix such
that it has dependency structure with respect to views. In correlated-group
factor analysis this is done in a straightforward manner by sampling α·k from
a multivariate normal distribution for each k = 1...K. This approach is not
ideal, since modeling the precision matrix of the normal distribution requires
approximately M2

2
free parameters. Additionally an uninformative prior for

the precision matrix would lead to small variance in α, and thus in a failed
automatic relevance determination. Low-rank GFA models α as a product
of two rank R matrices, using only O(M) free parameters. Thus it should
be suitable for modeling data where the views are correlated and induce a
low-rank component activity structure. The extensions are compared in an
artificial data experiment in chapter 5.



Chapter 4

Transfer Learning with GFA

In this chapter GFA is extended to transfer learning setups, where the main
goal is to extract relevant information from background data to help model
the data of interest. This is done first by standard sequential Bayesian learn-
ing and then by introducing a more high-level transfer learning scheme.

4.1 Sequential Bayesian learning

In Bayesian statistics the posterior of model parameters θ can be learned at
once given data x, or sequentially given data {x1, ...,xn}, which are inde-
pendent given θ. Sequential learning is based on repeatedly applying Bayes’
rule: first we get a posterior for the parameters given just x1, then this is
used as a prior to get a posterior given x2 [14]. After n repetitions we get

p(θ|xn...x1) =
p(xn|θ)...p(x1|θ)p(θ)

p(xn)...p(x1)
=
p(x|θ)p(θ)

p(x)
. (4.1)

As can be seen in equation (4.1), the posterior of the model parameters
can be learned equivalently either by using all the data at once or sequentially.
This is, of course, given that we can solve the exact posterior. The sequential
approach is needed for example when the data are not available all at once.

In our experiments we are interested in a scenario where there is a back-
ground data that has some identical samples or features with the data of
interest. This kind of sharing is visualized in terms of the factor model
structure in figure 4.1. If all the samples or all the views are shared, the
background data could of course be concatenated with the target data but in
case of large size the computational time will be long. In a sequential setup
the posterior of the shared background model parameters is used as a prior
for the target data.

28
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Figure 4.1: Boxes with solid strokes describe the generative model of target
data, namely X ≈ WZ. Boxes with dotted and dashed lines describe the
background data with shared features and samples, respectively. Gray lines
are used to denote the grouping of features into views.

In terms of model parameters we have two cases. Common samples have
the same latent representation, and thus the background data can be taken
into account by setting a prior for Z when modeling the target data. Common
features or views share the same projection matrix, allowing us to set a prior
for W:

p(Z|M) ∼
N∏
i=1

N (Z·i|M̂Z
i , Σ̂

Z
) (4.2)

p(W|α,M) ∼
M∏
m=1

K∏
k=1

N (Wm
·k |M̂W

m·k,
1

αmk

Σ̂
W

m ), (4.3)

whereM denotes a GFA model of the background data. The model contains

all the parameters of the variational distributions. Σ̂
Z

is a block diagonal
matrix with two parts: posterior of the variance of q(Z) from background
model and identity matrix for new samples. Since the variational distribution

of W is factorized with respect to features instead of components, Σ̂
W

m will
be a diagonal matrix with average prior variances for all the Dm features.
New features will have a value of 1. For simplicity, we will denote the inverse

matrices of Σ̂
Z

and Σ̂
W

m by Λ̂
W

and Λ̂
Z

, respectively. Only the inverse
matrices will be used from now on.

With these priors we get the following complete log-likelihood for view
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m:

Lm(X,θ) =
N

2
ln τm −

τm
2

N∑
i=1

(Xm
·i −WmZ·i)

>(Xm
·i −WmZ·i)

− 1

2

K∑
k=1

αmk(W
m
·k − M̂W

m·k)
>Λ̂

W

m (Wm
·k − M̂W

m·k)

+
Dm

2

K∑
k=1

ln(αmkΛ̂
W

m ) +
K∑
k=1

(aα − 1) lnαmk −
K∑
k=1

bααmk

+ (aτ − 1) ln τm − bττm + const. (4.4)

The complete log-likelihood for the whole model is a sum of (4.4) over
views m = 1...M plus a view-independent term

L(Z) =− 1

2

N∑
i=1

(Z·i − M̂Z
i )>Λ̂

Z
(Z·i − M̂Z

i ). (4.5)

The variational Bayesian update equations for sequential Bayesian GFA
are derived in the following sections. Similar to the previous chapter, we
approximate the posterior using the mean-field assumption that all the pa-
rameters are independent. No further assumptions are made regarding the
variational distribution q, but it will be further factorized due to the factor-
ized complete likelihood. The priors in sequential Bayesian GFA change the
update equations of Z, W and α.

4.1.1 The q(Z) distribution

Variational distribution q(Z) is of the form

q(Z) =
N∏
i=1

q(Z·i) =
N∏
i=1

N (Z·i|MZ
i ,Σ

Z), (4.6)

and the update equations are:

ΣZ =

(
Λ̂
Z

+
M∑
m=1

〈τm〉〈Wm>Wm〉

)−1
(4.7)

MZ
i =

M∑
m=1

ΣZ
(
〈Wm〉>〈τm〉Xm

·i + Λ̂
Z
M̂Z

i

)
. (4.8)
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4.1.2 The q(Wm) distribution

Distribution q(Wm) is of the form:

q(Wm) =
Dm∏
j=1

q(Wm
j ) =

Dm∏
j=1

N (Wm
j |MW

mj,Σ
W
m ). (4.9)

We get the following update equations:

ΣW
m =

(
〈τm〉

N∑
i=1

〈Z·iZ>·i 〉+ 〈αm〉Λ̂
W

m

)−1
(4.10)

MW
mj = ΣW

m

(
〈τm〉

(
N∑
i=1

Xm
ji〈Z·i〉

)
+ 〈αm〉Λ̂

W

m M̂W
mj

)
. (4.11)

4.1.3 The q(αm) distribution

Variational distribution q(α) is of the form

q(α) =
M∏
m=1

K∏
k=1

q(αmk) =
M∏
m=1

K∏
k=1

G(αmk|aαm,Bα
mk), (4.12)

where

aαk = aα +
Dm

2
(4.13)

Bα
mk = bα +

〈Wm>
·k Λ̂

W

mWm
·k 〉+ M̂W>

m·k Λ̂
W

m M̂W
m·k

2
− 〈Wm>

·k 〉Λ̂
W

m M̂W
m·k. (4.14)

4.2 Transferring view correlation structure

Sequential Bayesian learning can be used when background and target data
share some samples or features. The CGFA and low-rank GFA extensions
however offer chance for a whole new type of transfer learning setup: trans-
ferring knowledge when there is nothing directly shared between the domains
but the views still have something in common. In our biological experiment
this is motivated by a new measurement platform where the views correspond
to the same pathways, but have a different feature space. Some of the genes
are shared, so sequential learning would be feasible by placing a prior for
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the shared parts of W. However, this way we would ignore the knowledge
that all the new features in one view are still measuring the same underlying
process.

Our approach in this section is to ignore the feature representation of the
views and use higher level information to model the view relations. Using
CGFA this can be done by using the posterior of Λ from the background
model as the prior of the target model (model parameter V). This is sen-
sible since we have assumed that the views are paired between the different
domains and measure the same underlying process. More generally, manner
the prior Λ̂ can be acquired from any GFA model by calculating the inverse
sample correlation matrix of α. This corresponds to our idea of treating two
views similar if they have a similar component activity structure.

In low-rank GFA the component activities of the views are modeled with
matrix U ∈ RM×R, and thus the view correlation prior can be taken into
account by setting

p(U) ∼
R∏
r=1

N (U·r|0,
1

λ
Λ̂
−1

), (4.15)

where the strength of the prior can be controlled via the precision parameter
λ.

For both LRGFA and CGFA transferring the view correlation structure
rewards the model for having similar structure in the target data. In CGFA
this kind of transfer of knowledge is straightforward: if two views have a
correlation -0.8 between their component activities, we would prefer to have
a similar correlation in the target model too. The motivation behind low-
rank GFA was that we need O(M2) parameters for modeling view correlation
this way. The smaller number of parameters, MR+KR, affects the nature
of this transfer learning setup: by setting a prior we no longer wish that
two correlated views have similar component activity, but instead a similar
presentation in a low dimensional space spanning the component activities.
This works ideally in cases where the views have only few different component
activity profiles, allowing LRGFA to to use one column of U for each profile.
It should be noted, though, that U is normally distributed and thus the
component activities of one view are formed as a linear combination of R
different profiles, where the rth profile is Vr. Thus LRGFA should work for
non-trivial data even with a small R.

Transferring view correlation structure can be done in CGFA via param-
eter transfer, which is a well-established transfer learning approach [29]. A
similar kind of an approach has been implemented for example for learning
multiple tasks at once [13]. The knowledge transfer in LRGFA can be viewed
as deep learning, since instead of setting a prior for a parameter we set one
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for the structure of a parameter [3]. In a related deep learning publication
background data was used for learning structural regularities in the form of
Markov logic [9].



Chapter 5

Experiments on Artificial Data

Artificial data experiments are used to test whether GFA is able to model
data with known parameters and properties as expected. Thus artificial
data is generated directly from the model, allowing us to test how good the
implementations are when the distributional assumptions are correct.

Lower bound is used in all the GFA models for monitoring the convergence
of the variational inference. It can also be used to select the GFA model
that is the closest to the actual posterior. However, the lower bounds have
no meaningful scale when comparing two models with different priors, for
example GFA and low-rank GFA. A very general way of comparing models
is via predictive error, which will be used in this thesis the following way:

1. Generate data Xtrain and Xtest, with N and 100 samples, respectively.

2. Run GFA given data Xtrain, get model M.

3. Compute p(Ztest|X−mtest,M), where view m is left out of Xtest.

4. Compute E(Xm
test|Ztest,M).

5. Return the RMSE.

This is repeated for all the views (M times). The predictive error is an
ideal measure since it encourages optimal fit, punishing over- and underfitting
[31].

Based on the update equations of the latent components in equation
(3.17), we can see that the expected mean for Z(test)i is:

E(Z(test)·i) =
∑
n6=m

ΣZ〈Wn〉>〈τ n〉Xn
(test)·i, (5.1)

34
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where view m is left out since we have assumed centered data: the expecta-
tion of Xm

(test)·i is zero. Expectation for the missing view is:

E(Xm
test) = 〈Wm〉〈Ztest〉. (5.2)

5.1 High number of views

The CGFA and low-rank models were motivated by the independent ARD
parameter inference in standard GFA: when the data consist of a large num-
ber of dependent views, modeling the dependencies explicitly could increase
model quality. The performances of these models were tested with data
consisting of a small amount of samples (N = 30) in relatively many views
(M = 40), with seven features in each view (Dm). The 40 views were divided
into four groups with equal size, such that each view in the same group had
the same component activity. The component activities were generated in
matrix α as four different binary vectors, corresponding to the view groups.
In the data generation α is used as the component variance matrix, thus value
0 corresponds to having an infinite ARD parameter. Matrix α is visualized
in figure 5.1(a). The other parameters were generated as:

Z ∼
N∏
i=1

N (Z·i|0, IK) (5.3)

W ∼
M∏
m=1

K∏
k=1

N (Wm
·k |0,αmkIDm) (5.4)

X ∼
M∏
m=1

N∏
i=1

N (Xm
·i |WmZ·i, IDm). (5.5)

The generated data was modeled with GFA, CGFA and low-rank GFA
using different numbers of views, ranging from 4 to 40. The predictive RMSE
values as a function of the number of views are plotted in figure 5.2. In order
to see how well the models estimate the correct parameters, the expected
ARD matrices are visualized in figure 5.1 along with the correct matrix.

As expected, low-rank GFA achieved a lower predictive error that stan-
dard GFA when the number of views was high. Correlated-group factor
analysis, however, performed worse than GFA, even though the data should
be optimal for it. This is probably due to the two drawbacks discussed ear-
lier: poor prior for Λ and the need to estimate O(M2) free parameters for
the Wishart-distribution. It is worth noting that all the models work well
if there is enough data. However, since the drawbacks of CGFA make the
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Figure 5.1: The ARD matrix α used in data generation is shown in (a);
blue corresponds to active components and white inactive. The expectations
log10〈α〉 acquired from the GFA models are in (b)-(d). Strong activities are
blue and practically inactive components are white. All the models find the
correct amount of components. CGFA cannot set components that are active
to some views to be fully inactive for others. The ARD structure of LRGFA
is closest to the correct α.

model lack in performance, it will not be used for the rest of this thesis.
After all, low-rank GFA can model correlated views too, and it produced the
best predictions in this test. These results are supported by the estimated
component activities: GFA models the structure rather correctly, LRGFA
even better, but CGFA the worst.
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Figure 5.2: Prediction RMSE versus number of views for GFA, CGFA and
low-rank GFA. Confidence intervals of the means are based on 50 different
artificial data sets. Low-rank GFA is consistently the best model; for example
with 40 views its average RMSE is over six standard deviations better than
that of GFA.

5.2 Sequential learning

Suppose we have two sets of data coming from the same distribution: back-
ground data with N samples and target with 30. If we could solve the exact
model posteriors, it would not matter whether the sets were learned at once
or sequentially. But as we can only approximate the posterior, we will get
the best model for the target by concatenating the sets and modeling them
as one. A larger amount of data will help to minimize the error in the poste-
rior approximation. However, if there is an existing model of the background
data, we can set a prior for the target data and obtain a good solution
quickly. In this section the prediction performance was tested with respect
to the amount of background samples for the three models discussed: GFA
for target data, GFA for pooled data and sequential Bayesian GFA.

In this experiment the artificial data was generated in a similar manner to
section 5.1, with the following data dimensionality: N = 30,M = 4, Dm = 20
and K = 15. GFA was run for the target data only and for the combined do-
mains. These models were compared to sequential learning with GFA, where
model posterior for the background data has been computed beforehand.
The predictive RMSE and computational time are compared with respect to
the number of background samples N in figure 5.3.

Figure 5.3 shows that sequential GFA performs comparably to GFA ap-
plied to concatenated data, given sufficiently large amount of background
samples. It is important to note that the online computational time of se-
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Figure 5.3: Prediction RMSE and computational time versus the number of
background samples for three setups: GFA for target data, GFA for con-
catenated data (full) and sequential learning with GFA (seq). Confidence
intervals of the means are based on 20 different artificial data. GFA for the
combined domains is consistently the best model, but once there are enough
background samples sequential learning has comparable accuracy. Modeling
the combined domains gets considerably slower when there is much more
background than target data.

quential GFA depends of the target data only. Thus, given a huge background
model, using sequential Bayesian learning is advisable.

5.3 Background data with different features

In the previous section we assumed that background and target data come
from the same distribution, which will make combining them the optimal
solution. However, a more general framework can be defined by generating
target projections matrices as:

Wtarget = sWbackground + (1− s)Wnew, (5.6)

where s ∈ [0, 1] describes the similarity between target and background.
When s is one, the data in this experiment equals the data presented in
section 5.1. The goal of this experiment is to find out what can be done
when sequential Bayesian learning is no longer applicable. We get the base-
line by ignoring the background data completely, but low-rank GFA with a
prior Λ can hopefully do better than that.

Figure 5.4 shows that GFA for combined domains works only if the target
and background features are very similar. Sequential transfer is more robust,
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Figure 5.4: Prediction RMSE versus the similarity of target and back-
ground. Transfer learning setups are plotted in orange, seq denoting se-
quential Bayesian learning and Λ transferring the view-correlation structure.
Full model is optimal when the features in different domains are equivalent.
Sequential learning is more robust to dissimilar features.

since even with zero similarity we are only transferring a wrong prior instead
of modeling samples with different distributions together. LRGFA models the
data better than GFA since the views are grouped. Furthermore, transferring
the view-correlation structure is the optimal modeling procedure when the
features between the domains are very dissimilar. The prior weight λ was
selected from the set {0.1, 1, 10} as the one that resulted in the smallest
prediction error (λ=1). This does not induce overfitting, since λ was picked
from a set of only three values of different scale.

5.4 Summary

We tested the GFA models presented in this thesis on three different types of
artificial data. The first test revealed that the implementations of both CGFA
and LRGFA are sensible, providing roughly as accurate models as GFA. The
artificial data consisted of views divided in four different groups, with up to
ten views in a group. This type of setup is ideal for LRGFA, which managed
to predict missing views of new samples with the lowest error. The data suits
the modeling assumptions of CGFA very well too, since the views inside one
group have correlation 1 in their component activities. The generative model
of CGFA is not ideal since it had consistently the highest predictive error; the
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additional model parameters are more of a burden than help when inferring
the model posterior.

The sequential version of GFA was proven to work well, when background
and target data share the same features, and there is a decent amount of
samples in the background data. Combining the domains instead of learn-
ing them sequentially is in this case optimal, since the posterior inference
is approximate. However, this has two drawbacks: the computation time
depends on the size of the background data, and the features need to be the
same in both domains. Sequential learning is much more robust to dissimilar
features, as demonstrated in the final experiment. Finally, when the features
between the domains are not shared, but the views share the same component
activity, low-rank GFA with a transferred view-correlation structure results
in the optimal GFA model.



Chapter 6

Drug Response Experiment

In this section we apply the GFA models to the drug response data presented
by Lamb et al. [22]. The data contains gene expression measurements ac-
quired via two different microarray platforms having different feature spaces.
The dimensionality for both the platforms is around 22000, and the sample
sizes are 313 and 682. The features can be divided into 217 pathways. We
will consider the smaller data set as target data and try to model it as well
as possible. The three relevant models are GFA and low-rank GFA with and
without a view-correlation prior from the background platform. The prior
is justifiable, since both the platforms measure genes grouped in identical
pathways.

The data has been preprocessed as explained by Khan et al. [20], and
chemical descriptors of the drugs are added as views for the data. The pre-
processing includes normalizing the data, discarding genes with high variance
in control measurements and bringing in prior information of biological re-
sponses. The final number of unique genes is slightly above 1000 for both
background and target data, and there are approximately 700 chemical de-
scriptors. The total dimensionality of both domains is around 4500 due to
many genes being present in several views. Both the gene expression and
chemical descriptor features are centered and have variance 1.

The model comparison is done in the same way as with artificial data:
260 of the 313 samples are modeled, after which one view of new samples is
predicted given the other views. This is repeated for all the views and for ten
different divisions of data into training and test samples. The drug response
data seems to be very complex, since in all the runs all the components
were active, up to 500 components tested. Ideally we would just increase the
number of components until some of the components are shut off. In this case
this is not possible due to the low number of samples: with 260 components
the matrix list W alone has already as many free parameters as there is data
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Figure 6.1: Prediction RMSE of GFA models as a function of the number
of components. Low-rank GFA was run with three ranks and three prior
precisions λ (orange color corresponding to modeling data with no transfer
of knowledge). LRGFA is consistently better than standard GFA, and allows
modeling the data with more components. Furthermore, transferring the
view correlation with precision 100 is consistently the best model, allowing
the highest component numbers. It is also more robust to the rank.

available. Thus GFA could overfit the model completely by setting W as X
and Z as IK . This brings up an interesting question concerning factor models:
if the purpose of our model is to reduce the data dimensionality, is there any
reason to use more parameters than data? From our perspective, the answer
is yes. If our data consisted of only two drug response measurements with
thousands of genes as features, surely we would not expect that all the genes
are connected to only one hidden factor. The problem of having few samples
and many features (and latent components) prohibits using standard factor
models with large enough component amounts. The three GFA setups were
tested to see how well they can model the drug response data with different
component amounts. The results are plotted in figure 6.1.

Standard GFA works as expected: as we add more components, we are
able to model more complex relations, up until we reach 200 components.
Then we experience overfitting, which is expected since the amount of param-
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Figure 6.2: View correlation matrix acquired from the background model.
The first 24 strongly correlated views are all chemical descriptors of the
drugs. All the other views are pathways, mostly independent of the chemical
descriptors on the component level.

eters exceeds the amount of data. Low-rank GFA is less prone to overfitting,
since it models the component activity matrix with much fewer degrees of
freedom. LRGFA modeled the data optimally with around 300 components,
resulting in predictive RMSE of approximately 0.55 for ranks 10 and 15. This
is significantly lower than 0.60 achieved with GFA using 200 components, as
a random guess would have RMSE of 1. Additionally, lower ranks result
is less overfitting when more than 300 components are used; values 10 and
15 seem to suit the data well. The view correlation prior further helps to
avoid overfitting: a larger amount of components (up to 350) can be used
to model the complex data without overfitting. The lowest prediction errors
are consistently achieved using the prior with a suitable weight. The lowest
RMSE achieved with the GFA models is approximately 0.52. This makes it
is interesting to see what kind of information the prior transfers. The view
correlation matrix is visualized in figure 6.2.

The view correlation matrix shows a clear structure with respect to the
chemical descriptor views: the descriptors share almost exactly the same
components, but the correlation between them and the pathways is around
zero. It should be noted, though, that zero correlation inferred from the
model means that the views have identical component activity for half of
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their components. A correlation of -1 is achieved only if the two views have
exactly opposite component activity. Thus we can conclude that the chemical
descriptors of drugs are relevant while modeling drug response data. Corre-
lations between the pathways are moderate, but some of them were strongly
interlinked.



Chapter 7

Discussion

Group factor analysis is an extension of factor analysis to multiple data
sets [33]. Instead of modeling dependencies between individual variables, it
finds a low-dimensional representation that describes relationships between
groups of data sets. Two GFA extensions were introduced in this thesis:
correlated-group factor analysis and low-rank GFA. Both the extensions are
novel contributions presented in this thesis; they are designed to improve
modeling data with a large number of views.

In order to model the relationships between multiple views, GFA needs
to learn a matrix α that indicates for each of the K components in which
of the M views it is active. Standard GFA infers the component activities
of all the views independently, and hence uses MK parameters for describ-
ing α. For large M this may not be optimal, since often all the views are
not independent. The two extensions presented in this thesis are designed
to alleviate this problem. Instead of treating each element of α indepen-
dently, they explicitly model component activity correlations between the
views. CGFA does this straightforwardly by sampling component activities
from a multivariate distribution with a modeled covariance. In LRGFA the
component activity matrix is generated as a product of two low-rank matri-
ces. The design of CGFA suits data with many views poorly, since it uses
O(M2) parameters for automatic relevance determination. A simple toy data
experiment showed that, although of the same order, the predictive perfor-
mance of CGFA is lacking compared to GFA and its low-rank version. The
low-rank extension, however, models correlated views with a small number
of parameters (MR + KR). The tests showed that it performs statistically
significantly better than GFA, given that the data actually has a low-rank
component activity matrix.

The other main contribution of this thesis was considering GFA as a
transfer learning model. This enables using GFA for knowledge transfer,
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when besides target data there is some related background data. Empirical
experiments showed that sequential Bayesian learning with GFA has pre-
diction accuracy comparable to GFA learned on both data domains, and
computational time comparable to GFA learned on the target data only.
Thus sequential learning is recommended when the background data is much
larger than the target data. It is also necessary for scenarios where only
a subset of the features or samples are shared. Additionally, it was shown
that sequential learning is more robust when the distributions of the shared
features differ significantly.

Low-rank formulation of GFA allows also another type of transfer learn-
ing: transferring the view correlation structure. This is a new GFA extension
presented in this thesis. It takes into account more subtle connections be-
tween the different data domains: they need to have groups of variables that
measure the same view of data, but the actual features need not have a re-
lationship. In our application the need for this type of transfer learning is
clear, since the data of two gene expression platforms can be grouped into
the same pathways but having different genes. Toy data experiments showed
that low-rank GFA with this type of prior is significantly better than without
the prior. However, if the features between the domains are the same or very
similar, sequential learning and combining the background and target data
provide the best results. On the other hand, if the features are dissimilar
but the component activities of the views are not, low-rank GFA with view
correlation prior is the optimal GFA model.

To demonstrate the novel extensions in practice, we applied them to a
drug response experiment, where the target data had only 260 samples but a
total dimensionality of approximately 4500. Modeling the high dimensional-
ity would have required an infeasible amount of parameters, since even when
the number of parameters was twice the amount of data, none of the com-
ponents were considered as inactive for all the views. We argue that using
more parameters than data may still be reasonable, since a small amount of
samples does not imply that the data is simple. However, it makes the infer-
ence much more complicated, as was seen in figure 6.1 with standard GFA
having increasing prediction error once modeled with enough components.
This is expected since the data complexity discourages inactive components,
but the small sample size makes the model prone to overfitting. This prob-
lem can be dealt with low-rank GFA, since it models the component activity
matrix with much fewer degrees of freedom, making it less prone to over-
fitting. LRGFA achieved consistently lower prediction error than standard
GFA; with the most suitable parameter values significantly better. It was
also able to model more complex relations in the data (larger K) without
losing accuracy.



CHAPTER 7. DISCUSSION 47

The drug response data included also background data measured using
a different gene expression platform, resulting in different features grouped
into identical views (pathways) with the target data. The background model
allowed us to transfer the view correlation structure to the target, contain-
ing prior information about which pathways and chemical descriptor views
should be correlated. The main structure of the view correlation matrix was
simple: Chemical descriptor views are heavily correlated with each other, but
almost independent of the pathways. The pathways have in general moder-
ate correlations, but some of them were strongly interlinked. This kind of
prior information helped further avoiding overfitting. With a suitable prior
weight the target data could be modeled using a more complex model than
in LRGFA with no loss in predictive accuracy. Using the prior resulted in
a smaller prediction error in all the tested cases. Thus LRGFA with a view
correlation prior is the optimal GFA model for the drug response data.

In conclusion, GFA is a novel state-of-the-art method for modeling mul-
tiple paired data sets. Motivated by the interesting case when there is a high
number of data sets, GFA was extended to model the relations between these
different data views explicitly in this thesis. Low-rank GFA was extensively
validated to perform better than GFA in both artificial and real data exper-
iments. In addition, it reduces the effective number of model parameters,
and thus is less prone to overfitting when there is an insufficient amount of
samples in the data. We also presented a new transfer learning setup that
allows transferring high-level knowledge. When the data domains have only
this kind of high-level connection, transferring view correlation prior results
in the optimal GFA model.
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Appendix A

Lower Bound for GFA

The lower bound can be written as:

L(q) =〈ln p(X|θ)〉q −DKL(q(Z)||p(Z))− 〈DKL(q(W)||p(W|α))〉q(α)

−DKL(q(τ )||p(τ |aτ , bτ ))−DKL(q(α)||p(α|aα, bα)), (A.1)

where

〈ln p(X|θ)〉q =
M∑
m=1

[
−NDm

2
(ln(2π) + 〈τm〉) +Dm (〈τm〉bτm − aτm)

]
. (A.2)

Using shorthand notation such asDKL(W) :=〈DKL(q(W)||p(W|α))〉q(α),
the KL-divergences are:

DKL(Z) =− N
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(A.4)

DKL(τ ) =
M∑
m=1

[ln Γ(aτ )− aτ ln bτ − (aτ − 1)〈ln τm〉+ bτ 〈τm〉

− ln Γ(aτm) + aτm ln bτm + (aτm − 1)〈ln τm〉 − bτm〈τm〉] (A.5)

DKL(α) =
M∑
m=1

K∑
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mk〈αmk〉] .
(A.6)
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Appendix B

Lower Bound for CGFA

The lower bound of correlated-group factor analysis has identical data like-
lihood and KL-divergences for distributions of Z, τ and W as GFA, with
the exception of α being replaced with eξ. The other divergences needed to
calculate the lower bound are:

〈DKL(q(ξ)||p(ξ|µ,Λ))〉q(µ)q(Λ) =
1

2

K∑
k=1

[
ln

|Λ−1|
|diag(S2

·k)|
+ tr[Λdiag(S2

·k)]−M

+ (λ·k − µk)
TΛ(λ·k − µk)

]
(B.1)

〈DKL(q(µ)||p(µ|a, s))〉 =
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2
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− 1 +

(mk − a)2

s2

]
(B.2)

DKL(q(Λ)||p(Λ|V, v)) =
1

2

[
(n−M−1)L(F, n) + ntr(V−1F)− nM

−(v−M−1)L(V, v) + 2 ln
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]
,

(B.3)
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where

L(A, b) =

∫
Wi(X|A, b) ln |X|dX

=
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b+ 1− i

2
) + ln |A|+ d ln 2 (B.4)

Z(A, b) = 2bd/2|A|b/2Γd(
b

2
) (B.5)

Γd(
b

2
) = π

d(d−1)
4

d∏
j=1

Γ(
b− j + 1

2
). (B.6)


	Cover page
	Symbols and Abbreviations
	Contents
	1 Introduction
	1.1 Overview
	1.2 Structure of the thesis
	1.3 Contributions of the thesis

	2 Background
	2.1 Bayesian inference
	2.1.1 Variational Bayesian inference

	2.2 Transfer learning
	2.3 Factor models
	2.3.1 Factor analysis
	2.3.2 Probabilistic canonical correlation analysis
	2.3.3 Model complexity control

	2.4 Biological background
	2.4.1 Drug response experiments


	3 Group Factor Analysis
	3.1 Update equations for variational Bayesian inference
	3.1.1 The q(Z) distribution
	3.1.2 The q(Wm) distribution
	3.1.3 The q(tm) distribution
	3.1.4 The q(am) distribution
	3.1.5 Convergence of the lower bound

	3.2 Correlated-group factor analysis
	3.2.1 The q(ksi) distribution
	3.2.2 The q(mu) distribution
	3.2.3 The q(Lambda) distribution
	3.2.4 Lower bound

	3.3 Low-rank relevance determination
	3.3.1 Lower bound

	3.4 Summary

	4 Transfer Learning with GFA
	4.1 Sequential Bayesian learning
	4.1.1 The q(Z) distribution
	4.1.2 The q(Wm) distribution
	4.1.3 The q(am) distribution

	4.2 Transferring view correlation structure

	5 Experiments on Artificial Data
	5.1 High number of views
	5.2 Sequential learning
	5.3 Background data with different features
	5.4 Summary

	6 Drug Response Experiment
	7 Discussion
	A Lower Bound for GFA
	B Lower Bound for CGFA

