
Jarno Lähteenmäki

Scenario based security evaluation:
Generic OpenFlow network

School of Electrical Engineering

Espoo 16.11.2014

Network Technology, special assignment supervisor

and advisor:

D.Sc. (Tech.) Mikko Särelä

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80714126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university

school of electrical engineering

Author: Jarno Lähteenmäki

Title: Scenario based security evaluation: Generic OpenFlow network

Date: 16.11.2014 Language: English Number of pages: 5+35

Department of Communications and Networking

Professorship: Networking Technology Code: S.38

Supervisor and instructor: D.Sc. (Tech.) Mikko Särelä

Demand for network programmability was recognized when development of proto-
cols slowed down due to network inflexibilities in 1980s. Research speeded up and
many proposals were made to solve architectural issues during 2000s. Academic
world put up an initiative to build up new programmable network architecture
later 2000s. OpenFlow was born.
In modern public network infrastructures the security of the network architecture
is crucial to archive data confidentiality, integrity and authenticity, yet high avail-
ability. Many studies have shown that there are many security vulnerabilities and
issues on current OpenFlow implementations and even in OpenFlow specification
itself. Many proposals have been made to enhance these known issues. In this
research, the scenario based security evaluation of the generic OpenFlow network
architecture was carried out using technology publications and literature. The
security evaluation framework was used in security assessment.
Proposed risk mitigation patterns were found to be effective on most of the cases
for all 13 identified and evaluated scenarios. Lack of mandatory encryption and
authentication in OpenFlow control channel were most critical risks on general
level. OpenFlow specification should provide clear guidance how this should be
implemented to guarantee inter-operability between different vendors. Short term
solution is to use IPSec. Second critical issue was that bugs and vulnerabilities
in OpenFlow controller and switch software are causing major risks for security.
Proper quality assurance process, testing methods and evaluation are needed to
enhance security on all phases of the software production.
Current OpenFlow implementations are suffering poor security. Tolerable level
can be reached by utilizing small enhancements. There are still many areas which
need to be researched to archive solid foundation for software defined networks of
the future.

Keywords: OpenFlow, security, evaluation, scenario

iii

Contents

Abstract ii

Contents iii

Abbreviation v

1 Introduction 1

2 Theoretical background 3

2.1 Software problem categories . 3
2.2 Software evaluation methods . 4

2.2.1 Security evaluation methods 4
2.2.2 The Software Evaluation Framework 4

2.3 Threat vectors . 6
2.4 Network vulnerability types . 7

2.4.1 Man-in-the-middle attack . 7
2.4.2 Denial of Service attack . 7
2.4.3 ARP spoofing . 7
2.4.4 Information disclosure . 8

2.5 OpenFlow specification . 8
2.6 Summary . 10

3 Security evaluation 12

3.1 Related work . 12
3.1.1 Hardware programmability and controller performance 12
3.1.2 OpenFlow vulnerabilities . 13
3.1.3 Threat vectors and secure control platform 13
3.1.4 Lowering effect of an attack 14
3.1.5 Experimenting attacks to OpenFlow infrastructure 14
3.1.6 Evaluation of controller softwares 15
3.1.7 Flow rule verification . 15
3.1.8 Summary . 16

3.2 OpenFlow protocol level security issues 16
3.2.1 Switch level . 16
3.2.2 Controller level . 16
3.2.3 Controller-switch interface . 17

3.3 Code verification, debugging and security breach analysis 18
3.4 Security evaluation . 18

3.4.1 Risk distribution . 19
3.4.2 Threat mitigation patterns . 20
3.4.3 Re-evaluated scenarios . 22

iv

4 Results and recommendation 24

4.1 Implementation recommendations . 24
4.2 New requirements for OpenFlow specification 25
4.3 Other considerations . 26

5 Summary 27

References 28

Appendices

A Full Security Table before security enhancements 31

B Full Security Table after security enhancements 33

v

Abbreviation

Abbreviation Definition
API Application Programming Interface
ARP Address Resolution Protocol
ASIC Application Specific Integrated Circuit
CPU Central Processing Unit, Processor
DoS Denial of Service
DPID Data Path identification, OpenFlow specification
DTLS Datagram Transport Layer Security
ETSI European Telecommunications Standards Institute
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IPSec IP Security
MiM Man-in-the-Middle Attack
MAC Media Access Control
NTP Network Time Protocol
OFP OpenFlow Protocol
QA Quality Assurance
REST Representational state transfer architecture
SDN Software Defined Networking
SEF Security Evaluation Framework
SSL Secure Socket Layer
TCP Transmission Control Protocol
TLS Transmission Layer Security
UDP User Datagram Protocol
URI Uniform Resource Identifier

1 Introduction

Distributed packet based network technology has history of more than 50 years.
First traditional networks were developed on 1960s and 70s. Programmable net-
work research started on 1980s when development of protocols slowed down due to
inflexibilities on existing network models. Since the launch of first packet based
networks there have been security related issues. When user base was low there
were no large interest to enhance the security. At the end of 2009 academic put
up co-operation initiative to build up new programmable network architecture and
OpenFlow was born.

While carriers are rolling out Software Defined Networks (SDN) with increasing
speed, the security of whole architecture has had challenges to keep up with the pace.
Multiple OpenFlow specifications have been released since the first release on year
2009. Many new features have been presented but hardly none which would enhance
the security of the OpenFlow protocol itself. OpenFlow has become a mainstream
control-data interface protocol. Due to relatively young age of OpenFlow, there
are still quite many areas which are under development. Especially security related
functions.

SDN has got a footage largely on network communities on 2010s. Advantage of
using SDN is realized with extensive programmability and flexibility. At the same
time it bring totally new attack vectors for intruders. Like the definition of term
SDN states, network is controlled by a software based applications.

All software are prone for defects, bugs, flaws and risks but these can be managed
by utilizing effective tools. Some of these problems remains in the application for
a long time without an implication and some might trigger a problem quite rapidly
or frequently. To handle these problems, software products should be evaluated
and tested. By using scenario based evaluation of the OpenFlow network architec-
ture, an organization, planning to deploy an OpenFlow network, can identify risks
beforehand. Security evaluation framework provides iterative way to enhance secu-
rity to level that meets requirements of the organization. Furthermore, to extend a
risk handling, an organization can implement more advanced checking tools which
can even monitor control traffic on real time if needed by utilizing solutions that
networking and security researchers have developed.

In this research, security of the OpenFlow based SDN architecture was assessed
using scenario based security evaluation framework. Scientific publications related
to security, networking and programming areas were used as a source material.
The security evaluation framework was used as a methodology to assess different
scenarios.

The research problem in this study was to find out what should be taken into
account from security point of view when an organization is planning to roll out
OpenFlow network. This study does not provide overall picture of all possible
scenarios but pinpoints some of the most crucial areas of interest instead.

In this paper, software problem categories, software evaluation methods and
OpenFlow specification are described in section two. In third section, the OpenFlow
security analysis is carried out by first taking a look to the related work done by

2

other researchers and then evaluating found issues using security evaluation frame-
work. In fourth section, recommendations are presented that can be used for making
OpenFlow based network more secure. In section five the paper is concluded.

3

2 Theoretical background

SDN and especially OpenFlow based network technologies have evolved rapidly over
the past years to become a feasible network technologies. So far, there have been no
studies which addresses what kind of security and vulnerability issues must taken
into account when planning to implement OpenFlow networks in real production
environment. This study pinpoints some of the major areas.

Confidentiality, integrity, authenticity and availability are the basic properties of
a secure network communication [1]. Security is not one action that can be done to
ensure that these properties exists. Instead, security must be executed on all levels
and all phases of the design, implementation and execution of the system. There are
evidences that poor design and lack of software quality assurance can result huge
disasters by enabling catastrophic software failures [2]. As networks have become
a critical infrastructure for many environment, like hospitals, nuclear power-plants
and in-vehicle control-systems, it has become a crucial that software quality is set
to high standard.

Following sections give a brief theoretical introduction to the context. First,
software problem categories and software evaluation methods are presented. Then,
OpenFlow specification is described.

2.1 Software problem categories

According to McGraw [3], software based security problems can be categorized into
four classes. First three, defects; bugs; flaws, represents different kind of occurrence
pattern and mitigation method. The fourth class, risk, is caused as an effect of a
flaw and a bug. Some of these are quite easy to observe, but there are cases which
are never found due to probabilistic nature of problem occurrence [4].

First, defect is a vulnerability, that was born in implementation or design phase
of the software production. A software might contain a defect many years. Defects
are challenging to detect.

Second, bug is a problem in software code, that was born in implementation
phase. A software might contain bugs which are never executed and never found.
Bugs are relatively easy to discover and some testing automation can be used for
bug hunting.

Third, flaw is a problem which exist in the software code and was born in design
phase. It is at deeper level in the code than a bug. Flaws are more challenging
to find. Software code containing a flaw might get executed but not triggered. On
most cases some special conditions need to be set to trigger the flaw.

Fourth, risk is the realization of an event of a bug or a flaw with some probability
and impact. Measure of risk takes into account the possible damage a bug or flaw
causes. [3]

Though we talk here about software related problems, all these categories have an
affect also to network quality. Traditional networks have software based components
underneath which might contain same kind of problems. When we move to area of
SDN networks the role of software products becomes more crucial due to centralized

4

control plane. Before we move to more SDN related items we next take a look at
the software assessment and evaluation methods.

2.2 Software evaluation methods

Software security evaluation is crucial part of any software release management
process. Different methods are suiting for different needs. It is important to choose
right method for the task to archive feasible results. Here are described some of the
methods.

2.2.1 Security evaluation methods

Architectural evaluation of software security can be divided into four classes. (1)
Mathematical methods, (2) simulation based evaluation methods, (3) experience-
based assessment and (4) scenario-based evaluation. [5] In this case study, we are
focusing on scenario-based evaluation and specifically we are using the security eval-
uation framework (SEF) for analysis.

First, in a mathematical method, the software is modelled as formulas and statis-
tics. The model can reflect the software quality requirements accurately only on
some restricted domain. In that domain the security can be evaluated definitely.
It is nearly impossible to model all possible domains. One reason is that software
security is measured with absence of security risks mentioned in previous section.
Mathematical model instead provides a way to evaluate a presence of an event.
Other reason is that flaws, bugs and defects are put into the code in implementation
phase and normally evaluation is done against reference architecture.

Second class, simulation based evaluation, can be used for partial penetration
tests. Simulated software environment is never the exact copy of actual software but
mimics only most important part of the software instead. Simulation can be used
to test against known vulnerabilities and problems.

Third class, experience-based assessment, is based on specialists experience of
the software security. Security architects reviews the application design, coding style
and testing methods.

Fourth class, scenario-based evaluation can provide good level of accuracy and
systematic process. In this method some specific quality parameters are assessed
by setting up a scenarios that represents different risks. Scenarios are assigned into
different profiles that are used to evaluate the actual software architecture. [5]

2.2.2 The Software Evaluation Framework

SEF [5] describes a process which can be used for analysing given architecture to-
wards defined scenarios. The process contains six phases.

First, the process starts with defining an evaluation goal. Generally goal is one
of quantitative assessment, qualitative assessment or trade-off assessment.

In second phase, security scenarios are created. A 5-tuple scenario contains a
specific security requirement, a threat towards the system, a precondition (enabler)
that must be met before scenario can occur, a behaviour of the system when specific

5

scenario is realized and a pattern which is a set of actions which are required to
mitigate the risk to prevent a threat to realize if applicable.

In third phase, security profiles are created. One way to divide scenarios is risk
based approach. The risk rating method based on OWASP’s RRM model [6] is
in formula 1 where P is the probability of the event i and I is the impact of the
event when it has occurred. Values for P and I are ranging from 0 to 9. In RRM,
relative level is low when value is from 0 to 3, medium when value is from 3 to 6
and high when value is from 6 to 9. The R can be calculated from these values.
Security objectives for networks, as mentioned earlier, are confidentiality, integrity,
availability and authenticity.

Ri = Pi ∗ Ii (1)

In fourth phase, the full scenario table can be created using threat, patter, se-
curity objectives and risk information. Risk and probability values are estimated
using experts opinion. [5] In this phase it is crucial that person who is doing this
subjective analysis has certain level of expertise.

In fifth phase, the actual evaluation is done by comparing required security
properties with provided scenarios. Possible scenario values for different factors are
listed in Technical impact factors -table (table 1) and vulnerability factors -table
(table 2). Impact of the scenario is average of the technical impact factors of a
scenario. Probability of the scenario is average of vulnerability factors of a scenario.
In this study risk based evaluation was used.

Table 1: Technical impact factors [5]
Impact of Confidentiality (IC) [2] non-sensitive data disclosed

[6] sensitive data disclosed
[7] critical data disclosed
[9] all data disclosed

Impact of Confidentiality (II) [1] minimal corrupt data
[6] seriously corrupt data
[7] extensive corrupt data
[9] all data totally corrupt

Impact of Availability (IAV) [1] minimal services interrupted
[6] serious services interrupted
[7] extensive services interrupted
[9] all services lost

Impact of Authenticity (IAU) [1] fully traceable
[7] possibly traceable
[9] completely anonymous

In sixth and the last phase, the evaluation results are scrutinized if given system
architecture meet security requirements or not. Architecture can be revised and
evaluated again until required level of security is met.

6

Table 2: Vulnerability factors [5]
Easy of Discovery [1] practically impossible

[3] difficult
[7] easy
[9] automated tool available

Ease of Exploit [1] theoretical
[3] difficult
[5] easy
[9] automated tool available

Publicity [1] unknown
[3] hidden
[7] obvious
[9] public knowledge

The ultimate goal of the security evaluation framework is to enhance security
of the software systems. Even though the framework is targeted to software appli-
cations it is also usable to evaluate any other systems like network architectures.
Later in chapter 3.4 we use the SEF model for evaluating OpenFlow based network
environment. Results are used for enhancing the architecture.

2.3 Threat vectors

A threat vector is a way or a path to penetrate to the system or cause some mali-
cious effect by attacker. OpenFlow based network is attractive for attackers due to
centralized control-plane which enables also potential control of the whole network
for the attacker [7]. Here are described seven individual threat vectors categorized
by Kreutz et al. [7] and additional two categories which are proposed by this study.
First, (1) forged or faked traffic flow attack vector can be initiated by malicious

user or by a faulty device. The purpose of the deliberate attack is to cause a denial
of service attack. This threat vector is not specific for OpenFlow, but it is also
possible in traditional network.
Second, (2) attacks on vulnerabilities in devices can cause a slowness to packet

forwarding, cloned or dropped packets. Also some data can be rerouted for data
theft purposes. This threat vector is not specific for OpenFlow but programmability
amplifies the impact of an attack.
Third, (3) attacks on control plane communication between a controller and a

switch is specific for OpenFlow protocol and is not present in traditional networks.
Lack of encrypted and authenticated communication and some weaknesses in SS-
L/TLS protocol enables this vector.
Fourth, (4) attacks on and vulnerabilities in controllers is OpenFlow specific.

Attacker using this vector may get a control of the whole network.
Fifth, (5) lack of mechanisms to ensure trust between the controller and manage-

ment applications is specific for OpenFlow protocol. Upper-layer application may

7

contain bugs and vulnerabilities that enables this vector.
Sixth, (6) attacks on and vulnerabilities on administrative station is not Open-

Flow specific. In OpenFlow controlled network by installing malicious code to the
administrative station attacker can gain control of the controller and thus control a
part or whole network.
Seventh, (7) lack of trusted resources for forensics and remediation is not Open-

Flow specific. While all layers of the network might be compromised, there has to be
separate place for storing logging and tracing information that cannot be changed.
Eighth, (8) interoperability problems and vulnerabilities enabled by the insuf-

ficient OpenFlow specification. This threat vector is challenging to categorize on
detailed level. Individual solutions might be secure as such but when used in mixed
environment those might appear to be vulnerable.
Ninth, (9) information disclosure of the actual OpenFlow based network itself.

This kind of threat reveals information of the network itself and it can be used for
attacks toward the network.
These nine threat vectors are referred in this report. After taking a look to these

attack paths we move our focus to the network vulnerability types.

2.4 Network vulnerability types

Since the launch of first data networks, many vulnerabilities have been discovered
and general types have formed. There are well-known network attack and vulnera-
bility types which are referred in the report. Used types are explained here.

2.4.1 Man-in-the-middle attack

In a man-in-the-middle (MiM) attack an attacker can reroute a traffic from the
source to destination via a middle box by spoofing underlying network address or
name. This attack is well known type of vulnerability in network security field. It
can be used for revealing the actual information of the traffic. Protocols that are
lacking an encryption or good implementation of secret key exchange are more easily
vulnerable to this attack. [8]

2.4.2 Denial of Service attack

In a Denial-of-Service (DoS) attack one source host sends malformed or amplified
data packets to the target host to cause disturbance to the targeted service. Target
can be single service, host or whole network of some organisation or country. A
variant of DoS is Distributed DoS (DDoS) attack where multiple hosts are used as
a source to attack on single target. [9]

2.4.3 ARP spoofing

ARP spoofing, also known as ARP cache poisoning, is network intrusion method
where attacker steals a MAC address of a gateway or a host. Methods to cheat a

8

target host is to send false ARP reply messages to the host that is under attack.
[10]

2.4.4 Information disclosure

When network behaves on some predictable pattern, when forwarding a traffic, it
is possible to probe from outside how network is acting. Attacker might be able to
get an information that can be used to target more powerful attack. [11]
These four are mentioned because these are referred from elsewhere in the report.

There are actually more known network vulnerabilities than these mentioned. We
leave these practical vulnerabilities for a while and take a look at the OpenFlow
specification.

2.5 OpenFlow specification

OpenFlow specification is an open standard released by Open Networking Founda-
tion [12]. It was born on 2000s when academic world started studying how campus
network could be built using programmable network technology. First formal re-
lease was made at the end of year 2009. In this study, we are focusing on latest
specification available, 1.4.0 version.
Generic SDN architecture contains three layers as described in figure 1. Open-

Flow specification covers two bottom layers of the architecture - control layer and
infrastructure layer.

Figure 1: Generic Software-Defined Network Architecture [13]

OpenFlow specification defines software interfaces between network devices, that
takes care of forwarding plane, and controllers, that takes care of the control plane.

9

On switch end, there is OpenFlow channel software component which handles all
requests from and to controller. Connection from a switch to primary controller
is defined as main connection. Connections from a switch to other secondary con-
trollers are defined as auxiliary connections. The main control session between a
OpenFlow switch and the controller uses TCP protocol on port 6653. The use of
transmission layer security (TLS) is optional but preferred. Switch and controller
should also support mutual certificate based authentication. [12]
Each OpenFlow enabled switch has one or more flow tables that contains a

flow handling information programmed by controller. When a packet arrives to the
network device it is checked against flow tables.
If matching rule is found from a flow table, switch can modify the packet and

update fields if needed. It can update an action set, that are executed just before
the packet leaves the switch. The switch can also update the metadata if needed.
It is used to pass information between flow tables in the switch.
If matching flow entry is not found from the table, there is three options the

switch can do depending on the default rule of the flow table. First, the switch can
forward the packet to the controller via OpenFlow channel. Second, it can drop the
packet. Third, it can continue to the next flow table. [12] The flow handling and
per-table packet processing by the OpenFlow specification is shown in figure 2.

Figure 2: Packet flow through the processing pipeline [12]

Each communication packet in the OpenFlow communication protocol (OFP)
contains a header and a message. Header defines OFP version, message payload
type, message length and communication packet identifier. [12] The OpenFlow
header structure is shown in figure 3. OpenFlow specification defines many message
types. Here are listed five most commonly used.

10

struct ofp_header {

uint8_t version ;

uint8_t type;

uint16_t lenght ;

uint32_t xid;

};

OFP_ASSERT (sizeof (struct ofp_header) == 8);

Figure 3: OpenFlow-header defined in specification [12]

• Packet-In: When OpenFlow switch sends a packet to the controller it uses
Packet-In message type. This kind of situation occurs when flow processing
stops in table-miss flow entry and action is defined, so that switch sends the
packet to the controller.

• Features: Controller can query switch capabilities by using Features message
type. Controller typically use this right after communication channel has been
established between the controller and the switch.

• Configuration: Using Configuration message type controller can set and query
switch configuration.

• Modify-State: Controller uses Modify-State message type to add, modify or
delete flow entries in the switch’s flow table. This message type is also used
for changing switch port properties.

• Packet-Out: Packets, that are destined to be sent out from the switch port,
are passed from controller to the switch using Packet-out message type.

OFP header and message handling is implemented in software components. In
controller it is purely software application and in switches either using software
or application specific integrated circuit (ASIC). OpenFlow specification does not
define how the actual implementation should be done.
In this study we are referring to generic OpenFlow network environment and

architecture. Fundamental parts of this structure is shown in figure 4.

2.6 Summary

In this chapter we went through theory and specification part of the study. Software
problems are categorized into different classes to help theoretical handling of issues.
To minimize probability of vulnerabilities, bugs, defects or risks, it is good practise
to evaluate the software and system architecture. Security evaluation framework can
be used for assessing system using scenario based approach. In SEF method, threats
are categorized into scenarios which have mitigation patters, technical impact factor
and occurrence probability. Using these informations, scenarios are evaluated and
examined if it can meet required security level or not.

11

Figure 4: Generic OpenFlow based network structure

OpenFlow specification was released on year 2009 by Open Networking Founda-
tion. Due to relatively young age of the specification, there are still much to improve
in security related features in specification. OpenFlow itself is the communication
protocol between controller and a switch.
After taking a look at the theory of software quality and OpenFlow specification,

we proceed to practical research and what have been done in the past.

12

3 Security evaluation

Network programmability and security of it have been under investigation on sev-
eral researches. During this study, some of the past research results were examined.
Those are presented in related work section. After that, OpenFlow protocol level
security issues were examined using OpenFlow 1.4.0 specification document and vul-
nerability reports. In third section we also take a short look at the code verification
and debugging applications that could be used for enhancing quality assurance (QA)
process. In final section the actual evaluation is carried out.

3.1 Related work

Since the release of OpenFlow 1.0 back in 2009, many reports have been published
regarding security issues of OpenFlow specification. Most of the examined reports
were focusing on issues other that OpenFlow security itself, nevertheless many re-
ported those and concluded how immature OpenFlow security currently was. Here
are presented some of those which where found to have most affect.

3.1.1 Hardware programmability and controller performance

Sezer et al. [14] reported their research with publication named "Are we ready for
SDN? Implementation challenges for software-defined networks". They studied if
SDN technology was ready for a prime time or not. From security point of view
they raised a couple of items.

First, modern networks requires capacities from 100Gb per second to 1Tb per
second. To archive such a high speed network, forwarding packets must be im-
plemented using a custom ASIC. OpenFlow requires high level of programmability
from network equipment to archive flexibility. General purpose CPU chips contains
programmability but does not provide enough bandwidth.

Second, Sezer et al. also noted that controller and network node scalability is
an issue. When number of nodes increases in the network the statistical behaviour
results also increased latency between a node and controller. When splitting the
controller into multiple instances for scalability reason it also brings new challenge
in form of inter-controller communication. To be able to keep full network view all
the time, controllers need to exchange a lot of state information.

Sezer et al. concluded their report by stating that future networks will follow
the past trends. Expanding capacity requirements will push programmability into
every device on the network. Meanwhile, technology standardization bodies are
developing methods to overcome scalability issues and improving security at the
same time. Nevertheless, the challenge is that industry working groups will need
central coordination to archive interoperability and to take advantage of existing
standards. [14] Though Open Networking Alliance has quite strong support from
software and hardware vendors it should build liaison to other industry working
groups like IETF and ETSI. At the present day there is no industry which can work
in a vacuum.

13

3.1.2 OpenFlow vulnerabilities

Benton et al. [15] performed an assessment of OpenFlow vulnerabilities. They raised
multiple security issues of OpenFlow protocol.
The optionality of TLS was raised as most crucial vulnerability. This single

vulnerability yields many different attack vectors. First, networks that are using
only plain-text communication in switch to controller communication are vulnerable
to man-in-the-middle attack. If switch to controller network is secure and dedicated
the risk is lower but still it exists. Especially when control traffic is carried via
third party network for example from remote office or in campus-style network this
becomes an issue. The challenge is that man-in-the-middle attacks are hard to detect
and it can be undetected for a long time. An attacker can seize a control of any
subsequent switch it detects after collecting a data for picturing a full network. [15]

Second, some vendors have implemented a listener mode to the switches which
enables unauthenticated connections to the switches. This is not protocol level issue
but organizations that are implementing OpenFlow networks are facing this kind of
issues.

Third, in some controller software the implementation of switch authentication
is not flawless. If authentication is not implemented properly an attacker can gain
an information that can be used for denial of service attack and potentially tear
down some part of the network by sending a false information using a switch source
address to the controller.

Fourth, there might be situations where switch fails to either remove a rule
requested by controller or adds faulty rule. Currently there is no direct way to
check anomalies between controller state information and a real switch flow table.

Fifth, if flow-rule planning is not done carefully it is possible to cause a DoS
situation by sending more Packet-In messages to the controller than it can handle.
Also Flow-Mod messages can cause excessive amount of traffic for the controller.

Sixth, controller vulnerabilities that enables an attacker to use a vulnerability of
one interfacing application to control the whole network.

Their research was not very wide, pointing out only some of the current issues.
Nonetheless, the conclusion summarises quite well the current situation of OpenFlow
development. Benton et al. [15] says in their conclusions chapter:

OpenFlow risks repeating the errors of other insecure network manage-
ment protocols (e.g. Telnet, SNMPv2, TFTP) where physical security
was initially the only security and adoption of transport security lagged.

3.1.3 Threat vectors and secure control platform

Kreutz et al. [7] researched security of the SDN architecture. They presented a
model for threat vectors as described in chapter 2.3. They also presented a general
design of the secure SDN control platform and introduced several mechanisms that
offers a solution for the threat vectors.

Secure control platform had two major advancements. It archived a fault toler-
ance by using replication. It also enabled an interface that can be used for masking

14

malicious or faulty applications.
For fault tolerance, proposed method was to replicate controllers so that those

are using different controller software. Second method was self-healing mechanisms
that can be use for replacing vulnerable or faulty component by it self and return
to normal operational state much faster after a failure.

For masking malicious of faulty applications, proposed method was dynamic
device association where OpenFlow switch could dynamically change from one con-
troller to another when it notices that first controller is not in secure state. Further-
more, a method to isolate infected switch from the network was proposed. In this
method other switches can propose a switch to the blacklist.

By presenting solutions for a secure SDN core and showing several threats Kreutz
et al. argued that there is a strong need for further discussion in the SDN community
to speed up solving multiple critical issues. So far, SDN has repeated same mistakes
that have been present in traditional networks for a long times. With a support
from database, programming and systems communities these problems can be fixed.
[7]

3.1.4 Lowering effect of an attack

Klöti et al. [11] did a security analysis of OpenFlow protocol and network setups. In
their study they found that different attack vectors can be eliminated using certain
techniques.

To prevent DoS attacks they proposed rate limiting the control channel between
a switch and controller. This damp the load to the controller in event of DoS attack.
By using selective event filtering and packet dropping, controller can first select to
receive only part of the messages from switches, then identify the pattern of attack
and then install new packet-drop flow rule to damp only the attack traffic. [11]

Klöti et al. concluded their paper by recommending numerous prevention and
mitigation techniques. They admitted that OpenFlow applications and standards
are not secure enough, thus, Open Networking Foundation should work on this area
to fulfil the gap. [11] It is crucial to have secure by design bedrock for the rest of
the applications build on top of OpenFlow foundation.

3.1.5 Experimenting attacks to OpenFlow infrastructure

Romao et al. [16] did a practical analysis of OpenFlow security. Their goal was to
show how OpenFlow weaknesses can be exploited.

They experimented different attacks like communication channel interruption
using ARP spoofing, port mirroring with OpenFlow using man-in-the-middle attack
between controller and a switch and DoS attack to switch flow table by sending plain
ICMP echo-request packets with different destination addresses. They managed
successfully to execute all attacks they tried. [16]

They proposed four enhancements to make OpenFlow behaviour less drastic.
First, OpenFlow switches should include fallback controller with minimalistic rule
set that can be used when the connection to main controller is lost. Second, all

15

controller to switch communication should use dedicated physical or virtual connec-
tion so that intruder has no way to communicate with switch management port.
Communication channel must use TLS encryption. If hardware vendor has not im-
plemented TLS in the software this feature should be demanded from the vendor.
Third, all OpenFlow enables switches should have methods to detect and prevent
ARP spoofing. Fourth, controller software should has feature to detect network
anomalies. Despite these enhancements, in their conclusion Romao et al. stated
that OpenFlow is not ready for production networks. [16]

3.1.6 Evaluation of controller softwares

Shalimov et al. [17] did a analysis of open source OpenFlow controllers. Tested
softwares were NOX, POX, Beacon, Floodlight, MuL, Maestro and Ryu.

They analysed scalability, reliability, performance and security of different con-
trollers. They intentionally sent packets with malformed OpenFlow header or mal-
formed OpenFlow messages to the controller. None of the tested controllers passed
all test cleanly. Some of the controllers crashed, some did not notice that the packet
was malformed, some noticed malformed packet though.

As a conclusion they pointed that many of tested controllers contained vulnera-
bilities that could be used for the malware attacks. Controller software community
should take security seriously. [17] Most open source SDN controller projects have
to improve QA processes to ensure that software problems are found during the
development cycle.

3.1.7 Flow rule verification

To extend security capabilities in OpenFlow network, Khurshid et al. [18] presented
a VeriFlow method which brings new layer between controller and network switches.
Main purpose of this new layer was to enable real-time network-wide checking of
invariants. This debugging tool can detect faulty OpenFlow-rules, that have been
issued by upper-layer application. At the best case VeriFlow can detect and prevent
such rules to reach flow-table of network devices and therefore prevent potential
security breaching flow-rules. During the evaluation of VeriFlow, Khurshid et al.
did a benchmark for the tool. Flow rule checking brings extra delay when inserting
new rules or removing old ones. In ten host network extra delay was 15 ms compared
to controller-switch interface without VeriFlow.

VeriFlow is using a mathematical testing model to test if individual flow-rule
meet security requirement or not. Method was described in chapter 2.2. Therefore
we can state that VeriFlow can be fully accurate only on some finite domain and with
pre-defined set of matching rules. It might miss some faulty rules if it is out of scope.
Although VeriFlow is very powerful tool, it should not be used as a principal way to
ensure network security but as a security assurance tool to prove in statistical way
that upper-layer applications, including controller software, does not issue faulty
rules at the first place.

16

3.1.8 Summary

Many research results concluded that security of OpenFlow specification and im-
plementations are not rock solid. Problems are multifaceted. Most of the problems
could have been prevented with secure by design practices. Also there are aspects
that emphasizes the meaning of OpenFlow specification itself. Identified problems
are analysed using a scenario based evaluation in chapter 3.4. Now we move to
OpenFlow specification part of the study.

3.2 OpenFlow protocol level security issues

OpenFlow is relatively recent specification. The version 1.0 was released at the end of
2009. Ever since, there have been substantial number of releases that provides more
features but hardly none which would directly enhance the security of OpenFlow
architecture itself. We did use OpenFlow specification version 1.4.0 in this study.
Controller facing applications are not part of this study because it is not con-

sidered as part of the OpenFlow scope. These application level features thoroughly
brigs new kind of security issues and is worth for further study. In following chap-
ters, security related topics are presented to give an overall picture of the current
situation of OpenFlow security.

3.2.1 Switch level

OpenFlow specification does not define how to handle malformed or corrupted pack-
ets [12]. Implementing vendor must choose if packet is dropped or forwarded in these
cases. Forwarding behaviour is archived if packet header checksum is omitted.
OpenFlow switch might be enabler for DoS attack if hardware constrains are

not taken into account. Although modern datacenter core switch gear might con-
tain very powerful CPUs like typically used in servers [19], smaller edge switches
towards access devices includes much less computing power [20]. As mentioned in
chapter 3.2.3 the TLS communication between the controller and switch is optional
but preferred. When encrypted communication is used, performance issue on ac-
cess switches is raised. Switch has to have enough performance on slow-path to
encrypt and decrypt Packet-In, Packet-Out messages and other controller commu-
nication like Configuration and Modify-State messages, furthermore it must reserve
performance for platform monitoring, logging and other housekeeping operations.
If OpenFlow switch contains performance bottlenecks it is possible enabler for

Denial-of-Service attack by using threat vector 1 (described in 2.3). This vulnera-
bility can be probed using information disclosure threat vector (9).

3.2.2 Controller level

When using a multi controller environment, operational misconfigurations and se-
curity issues becomes more likely due to fact that OpenFlow specification does not
guide how controller to controller traffic should be handled. To archive best and
most secure control platform, controllers should be replicated and diversified [7].

17

To archive diversity at least two different controllers software should be used. This
yields doubled testing and integration work. This also makes QA process more
complex.

[21] reports an Open Floodlight vulnerability that can be used for connecting to
the controller so that legitimate switch is blocked and booted as defined in proto-
col. This vulnerability is using threat vector 3 (described in 2.3), attack on control
plane communication between controller and a switch. In this attack, attacker man-
ages to get switch identification information datapath_id (DPID). The actual DPID
can be revealed using very simple procedure. Open Floodlight controller provides
REST API by default which shows information of all switches and their information
including DPID. Access to the REST API URI is unauthenticated and is using plain-
text HTTP communication method. The URI in Floodlight is http://<controller
IP>:8080/wm/core/controller/switches/json. The controller IP is pretty easy to
search using a basic network scanning for TCP port 6633. Of course attacker has to
have access to the management network first. Most probable way to achieve it is to
use threat vector 6, target vulnerable administrative station by inserting malware
and using a backdoor.

3.2.3 Controller-switch interface

OpenFlow specification states that encryption in communication from switch to
controller is optional [12]. Proposed method is TLS/TCP on main connection and
optionally DTLS/UDP on auxiliary connection. Specification does not state which
version of TLS should be used. It is known that TLS and DTLS versions 1.0 are
vulnerable and should not be used in high security applications [22]. This type of
attack is using a threat vector 3.

Furthermore, specification does not require certificate based mutual authentica-
tion of the switch and the controller. This raises a risk, that must be considered
case by case how to mitigate. There is two alternative options to address this. First
option is to considering recommended certificate based authentication as a manda-
tory. Despite the fact that these actions makes control channel more robust against
man-in-middle attacks there is still some scenarios where communication level can
be disturbed. Other option to mitigate the risk is to use a IPSec protocol between
the switch and a controller.

When certificate based authentication is used, it is possible that authentication
fails for example due to signature verification, certificate expiration or device time
offset. Specification does not provide any guidance how these situation should be
handled. Lack of definition yields most probably a vendor specific implementations
and thus inoperable cross-vendor solutions. Safest way to handle these situations
would be to initiate a date-time update on the switch for example using NTP and
then retry controller connection. It should be avoided to fall back to unencrypted
connection because that will lead to unsecure implementation by enabling new attack
vector for intruders.

Crucial point for interoperability in certificate based authentication is the use
of same fields on the both ends. Current OpenFlow specification does not provide

18

definition which fields should be used. When implementing switch and controller
software a flexibility to choose an arbitrary certificate format should be retained.
This lowers the possibility for operational misconfigurations and thus possible secu-
rity vulnerabilities.
Another certificate related lack in specification is absence of guidance what ex-

changing certificates in both directions actually means. Real three-way handshake
should be implemented to prevent a possibility of man-in-the-middle attacks. How
this should be implemented in DTLS case remains for further study.
When authentication is not used correctly in switch to controller interface, at-

tacker can send a forged packets to the controller using an address of the OpenFlow
switch. When packet reaches the controller it assumes that is packet is from the
switch and handles it accordingly. This attack type is using a threat vector 3.

3.3 Code verification, debugging and security breach anal-

ysis

OpenFlow protocol is implemented as a software code in a switch and controller that
is referred here as a OpenFlow client application and server application accordingly.
The software is written using some arbitrary programming language. Thus, all
problem categories mentioned in chapter 2.1 can occur in final implemented code.
It is good practice to use code verification and testing tools to minimize software

risks. OpenFlow enabled application can be automatically tested using NICE tool.
It can help to uncover bugs by doing a model checking and symbolic execution.
[23] Another option is to use Anteater. It checks network environment for network
invariants in the data plane in real time. Benefit of this approach is that it can cover
all protocols and errors caused by faulty switch firmware or problems in controller
to switch control channel. [24]
Debugging OFP based network problems returns practically to analysis of flow

rule insertions and removals from controller to switches. To be able to track what
kind of rules are inserted and removed, rules must be logged. This feature can be
implemented to path between a controller and a switch using controller extension
or separate middle-box. [25] This logging feature can also be used for audit trail
analysis if log entries are stored to hamper proof storage so that it cannot be changed.

3.4 Security evaluation

Goal of this evaluation was to do a qualitative assessment of generic OpenFlow
enabled network environment. This evaluation can give an indication if presented
architecture supports required security requirements. Security evaluation framework
was used for assessment as described in chapter 2.2.2.
Threats were gleaned from research reports studied during this work. Each sce-

nario was mapped to threat vector. Then security objectives and probabilities were
defined using author’s previous security and network knowledge and recommenda-
tions made by other report authors. In table 3 are described six high risk scenarios
out of 13 total scenarios, their security requirements, probabilities and calculated

19

risks as a summary. All detailed scenarios and values for technical impact factors
and vulnerability factors are shown in appendix A. Selection criteria for most suc-
cessful pattern is a mitigation method that can lower probability most effectively.
In this study patterns were chosen using results from related work and author’s
previous knowledge of networks and security.

Table 3: The Full Security Table

S Threat TV Pattern Total Total Risk

6 Abuse of switch listener mode 2 Disable switch listener mode 7 6 43

4 Lack of mandatory encryption in

OpenFlow protocol

3 Secure switch to controller network and use

IPSec to secure transport

5 8 38

5 Lack of proper authentication in

OpenFlow protocol

3 Secure switch to controller network and use

IPSec to secure transport

5 8 38

7 Software bugs and defects in

management station which enables

unauthorized access to the system

6 Isolate management station from other network

and utilize patching process

8 4 33

8 Man in the middle attack on

communication path between

management station and controller

5 Disable mac learning on management network

switches and use static mac entries. Secure

management network physically.

5 5 25

9 Man in the middle attack on

communication path between

controller and OpenFlow switch

3 Disable mac learning on controller network

switches and use static mac entries. Secure

controller network physically.

5 5 25

Legends:

TV = Threat Vector S = Scenario

*) SO = Security Objectives **) Pr = Probability

SO
 *) Pr **)

3.4.1 Risk distribution

Each scenario has unique technical impact factors and vulnerability factors. The
graph in figure 5 represents relationship between those two factors in this evaluation
before security enhancements. As we can see, scenarios are distributed quite evenly
to the range. High risk scenarios have high impact and probability values. Top six
scenarios with highest risk value are marked with red square.
The SEF framework gave us a result which indicates that security of given ar-

chitecture was not adequate. There were many scenarios which contains so high
probability value that it is statistically almost sure that such scenario is realized
during the lifetime of the network. After evaluating the security of proposed archi-
tecture, mitigation patterns were applied to the model. In next section patters are
described and results analysed.

20

Impact

P
ro

b
ab

il
it

y

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8

Scenarios before security enhancements

Scenarios

1.

2.

3.

4.
5.

6.

Figure 5: Comparing scenarios with probability and impact before security enhance-
ments

3.4.2 Threat mitigation patterns

There are alternative ways to mitigate risk of each scenario. Top six risk scenarios
are listed in table 4 after applying mitigation patterns. Full list can be seen in
appendix B. Scenario numbers are referring to the table in appendix.
Abuse of listener mode found to be most critical security risk (scenario 6). This

issue is valid only for some OpenFlow enabled switches from vendor Hewlett-Packard
(HP). This risk is easy to mitigate by disabling listener mode configuration in
switches [26]. This is not OpenFlow specification related issue but vendor spe-
cific implementation issue instead. Important here is that other vendors should be
precautious when implementing this kind of features. Feature should be disabled by
default in device configuration.
Lack of mandatory encryption and proper authentication were found to be second

and third critical security issues (scenarios 4 and 5). All OpenFlow implementations
should consider securing switch to controller communication path using SSL [15].
Another method proposed by the author of this study is to use IPSec if available.
Communication channel encryption is OpenFlow specification related issue. ONF
should focus more on these security related items and include clear guidance how
vendors should implement control plane security.

21

Table 4: The Full Security Table after enhancements

S Threat TV Pattern IC II IAV IAU Total EOD EOE Pub Total Risk

7 Software bugs and defects in

management station which

enables unauthorized access

to the system

6 Isolate management station

from other network and

utilize patching process

7 7 7 9 8 3 3 3 3 23

2 Software bugs in OpenFlow

client which enables

vulnerability

2 Enhance software quality

with sophisticated testing

automation and simulation

driven methods

7 6 6 7 7 3 3 3 3 20

8 Man in the middle attack on

communication path between

management station and

controller

5 Disable mac learning on

management network

switches and use static mac

entries. Secure management

network physically.

6 6 1 7 5 3 3 3 3 15

9 Man in the middle attack on

communication path between

controller and OpenFlow

switch

3 Disable mac learning on

controller network switches

and use static mac entries.

Secure controller network

physically.

6 6 1 7 5 3 3 3 3 15

1 Software bugs in controller

which enables vulnerability

4 Enhance software quality

assurance process with

standardized testing and

simulation driven methods

9 7 7 7 8 1 3 1 2 13

13 Vulnerability on controller

interface enables attack on

control plane communication

3 Utilize real-time flow rule

analysis software

7 6 7 7 7 1 3 1 2 11

Legends:

TV = Threat Vector S = Scenario

*) IC = Impact on Confidentiality **) EOD = Easy of Discovery

II = Impact on Integrity EOE = Easy of Exploit

IAV = Impact on Availability Pub = Publicity

IAU = Impact on Authenticity

Security Objectives
 *)

Probability
**)

Security of management station was found to be fourth critical (scenario 7).
Software bugs and defects provides back-door for an attacker to the management
network. From management station the attacker can connect to the controller. This
study recommend that management station must be isolated from other network.
Also all unauthorized access from management network to outside should be blocked
and logged. Furthermore, patching process must be defined and implemented to
ensure that all vulnerabilities are mitigated as soon as those are discovered. This is
OpenFlow implementation specific issue.
MiM attacks on control communication path between both switch to controller

and management station to controller was found to be fifth critical risk (scenarios
8 and 9). There are several ways to secure these communication paths to be more
resilient for MiM attacks. This study recommend that MAC address learning should
be disabled from switches and use static MAC entries in the network between man-
agement station and controllers. This effectively lowers the possibility of traditional
MiM attack. It is also important to isolate control and management networks phys-
ically so that attacker cannot have an physical access to devices or cables. This is
considered as OpenFlow implementation specific issue.

Software bug in OpenFlow client or in controller is high risk issue (scenarios
2 and 1). By utilizing proper software release process with QA control and au-

22

tomated testing procedures, software communities can achieve enhanced software
quality. Furthermore, simulation driven testing can be used for exclude all known
vulnerabilities before releasing software. This is not OpenFlow specification related
issue but issue that organization should consider.
Controller vulnerability related risk can be lowered using real-time flow rule

analysis software (scenario 13). VeriFlow is one of those as presented in chapter 3.1.7.
VeriFlow does not provide full protection against non-authoritative rule insertions
but it protects against mathematically predictable patterns in pre-definable domain.
There are some areas where current OpenFlow specification is ambiguous (sce-

nario 12). This raises a possibility for interoperability problems in multi-vendor
environment. One of these situations is when an OpenFlow switch receives a mal-
formed packet. First way to dampen impact is to utilize rate limiting packets des-
tined to controller. This effectively dampens impact of possible attack done using
a malformed packets. This is also controller software quality issue. All controller
applications should survive and be resilient against this kind of risk.

Another case where rate-limiting can be used for dampening attacks is where
switch receives more traffic than it can handle (scenario 11). Controller application
should be aware of hardware constrains and be able to insert rate-limit rules ac-
cordingly. Rule insertion, and rate-limiting, can be done on the edge of the network
where traffic is originating.

Information disclosure of OpenFlow network occurs when attacker probes the
network by sending different kind packets and using for example flow initiation
time, jitter time and latency time information to picture the structure of the net-
work (scenario 10). One way to reduce the difference between flows first packet
and subsequent packets is to ensure that controller capacity is adequate [17]. Con-
troller should also be closely located from OpenFlow switch so that packet can be
passed as fast as possible to controller. Another way to reduce possibility of infor-
mation disclosure is to use explicit rule insertion where controller predefines all flows
beforehand. This approach is rarely feasible due to flow table size constrains.

Flow insertion or removal can fail for some reason from time to time (scenario 3).
Software bugs, control channel temporal distortions or hardware malfunction causes
that controller and switch states are not synchronized. This study recommend, as
a long term solution, to include flow table synchronization feature to OpenFlow
specification where a switch and controller can initiate table check and update the
table if differences. Short term solution is to use flow rules with short lifetimes.
Downside of this latter method is that it increases control traffic and yields more
jitter to the flows.

3.4.3 Re-evaluated scenarios

After applying previously listed patterns to the architecture the security evaluation
process was re-executed. The graph in figure 6 represents relationship between
probability and impact after applying security enhanced patterns to the architecture.
By comparing figures 5 and 6 we can see that probability of of high risk scenarios
have reduced. Thus, we can state that system architecture is more secure after

23

applying risk mitigation patterns. After applying these enhancements, there is still
issues with medium risk. Further study and analysis is needed to enhance the
architecture even more.

0

1

2

3

4

5

6

0 2 4 6 8

Scenarios after security enhancements

Scenarios

Impact

P
ro

b
ab

il
it

y

Figure 6: Comparing scenarios with probability and impact after security enhance-
ments

Earlier work on the field was presented in this chapter. After that was results
compared against theoretical frameworks and evaluated using SEF model. Next we
move to the results and recommendations part of the study.

24

4 Results and recommendation

In the previous chapter we went through some of the earlier research done so far
and carried out the actual security evaluation. Results pointed out that there are
still much to improve in security before OpenFlow networks could be implemented
without significant risks. Some of the major risk enablers and attack types are shown
in the figure 7. There is practically none part of the architecture that could dodge
a threat. In this section, paramount view is offered to the security improvements
in studied research reports. Finally we also present some new results that patch up
some of the observed loopholes.

Figure 7: Threats and attack types in OpenFlow network

4.1 Implementation recommendations

During this study many observations were made that were related to implementation
level. Here are listed these recommendations.
Current OpenFlow specification does not state which version of SSL/TLS should

be used for switch to controller interface. It is known that TLS version 1.0 is
vulnerable [22]. Thus, it is recommended that TLS version 1.1 should be used.
Some OpenFlow switch models have a debug or listener mode that can be used

without authentication [27]. It might be enabled by default, it should be disabled

25

in production network.
One option to make network more stable would be to implement a fallback

controller to the switch that could be used if primary controller fails. This fallback
controller would include small number of essential flow rules. To prevent basic ARP
spoofing in OpenFlow enabled network switch should include and enable prevention
mechanisms in place by default. [16]
Controller network should be isolated from actual user traffic as well as possible.

There should be no backdoors from external network to the controller segment. The
need for physical separation needs to be concluded on case by case basis.
Administrative stations should be patched with high priority to minimize risk for

vulnerabilities. Administrative stations should also be hardened by using security
best practices [28]. All connections from administrative stations should be blocked to
the external networks so that possible attacker is not able to retrieve any additional
malware or viruses to the system. All secret keys should be kept in secure storage
device to prevent a data theft which could possible used for attack.
To lower the possibility of ARP spoofing and, thus, a man-in-the-middle at-

tacks, it is recommended that static MAC and ARP entries are used in controller
networks’ switches and routers. If management network is also SDN/OpenFlow
enabled, separate controller should be dedicated for that purpose.

4.2 New requirements for OpenFlow specification

OpenFlow specification is continuously evolving industrial standard. ONF has been
releasing new revisions every three to six months. During this study, some new
requirements were found that are recommended to be included in specification in
the future.
First, control communication channel encryption should be made mandatory.

Also clear technical minimal level should be defined to exclude technologies which
are known to be vulnerable. Currently TLS 1.1 sets the minimum standard. To en-
able uniform implementation of certificate based authentication, specification should
include clear guidance how it should be implemented. Authentication should be
mandatory.
Second, current OpenFlow specification does not provide any message capability

for flow table rule synchronisation between controller and a switch. If erroneously
some rules are not removed in the table, e.g. after the network outage or software
bug, it is evident that controller and switch rules are getting out of synchronisa-
tion. Long term solution would be to include a flow table checksum and flow table
synchronisation message features to the OpenFlow specification.
Third, OpenFlow version 1.4.0 specification explicitly states that it does not

define what is the expected behaviour when controller or switch receives a malformed
or corrupted packet. It is known that these packets are causing problems for many
current controller software [17]. OpenFlow specification should define how controller
and switch should handle such packets. As long as OpenFlow specification does not
give guidance, the expected behaviour should be that the packet is ignored, logged
and rate-limited.

26

4.3 Other considerations

When using flow-rule verification tools, like VeriFlow, the flow initiation time raises
due to added computing need. [18] This grows the probability of information dis-
closure (threat vector 9).
OpenFlow switch platforms that are using general purpose CPU architecture

can perform faster software version updates from lower OpenFlow version to higher.
When OpenFlow flow handling is hard coded to the hardware in form of ASIC chips
the OpenFlow version upgrade is not so straightforward. This yields slowness to the
protocol version upgrades and, thus, slowness to the introduction of security related
features to the network. If ASIC chips are used, those should include feature for
re-programmable firmware. This item is worth for further research.
Another observation was that by splitting controllers into multiple instances it

yields much inter-controller traffic and, thus, brings new scenario to evaluate.
From quality of OpenFlow specification point of view we can also state that Open

Networking Foundation should consider more close relationship with other industry
standardization bodies. For example IETF and ETSI have strong background of
security related specifications.
Now we have presented results and recommendations of this study. It was clear

that current level of OpenFlow security is not on sufficient level. With proper
security planning and risk mitigation patterns, security can be enhanced to bearable
level. Next, we conclude this study by presenting a summary.

27

5 Summary

OpenFlow as a concept has become a viable alternative to accomplish modern and
cost-effective network environment. Especially data centres and carrier networks
are gaining by enabling high level of automation, link load balancing and central-
ized control. However, programmability brings new security related problems and
threats.

OpenFlow is a concept which includes architecture and communication protocol
definitions released by Open Networking Foundation. OpenFlow architecture covers
infrastructure and control layer part of the generic SDN architecture. OFP is well
defined as a protocol and it is used between OpenFlow switches and controllers. It
includes capabilities to function in synchronous or asynchronous mode, in TCP or
UDP based transport layer and protocol also provides option for controller redun-
dancy. Specification does not cover topics that are not directly part of the protocol
itself, for example definition how session authentication and encryption should be
done.

OpenFlow based network service development is moving towards traditional soft-
ware development. All software applications are prone to vulnerabilities, bugs, flaws
and, thus, risks. To minimize probability and impacts of these problems, applica-
tions and architectures should be evaluated to enhance security.

The software evaluation framework is scenario based assessment method. It
builds on profiles that represents different kind of threat vectors to the system.
These profiles are prioritized by rating occurrence probabilities and impact factors
using experts opinion. For each profile, mitigation patterns are planned carefully to
decrease either probability or impact. This process is repeated iteratively as long as
required security and risk level is archived.

During this assessment security evaluation framework was used. Total of 13
individual threat profiles were identified and evaluated. Defined patterns were found
to be effective on most of the cases. Overall security could be enhanced if proposed
patterns are implemented.

Most of the problems can be avoided at the first place if design is evaluated
properly with security in mind. Importance of QA process should not be under
estimated. Most of the bugs in production system can and should be avoided by
utilizing appropriate code verification, testing and analysis tools. Though SDN
and OpenFlow brings totally new flexibility and programmability for the network
services it should be remembered that same basic problems and rules are applying
that are found from traditional software and network systems.

OpenFlow network facing application issues were scoped out from this study.
This is important field and it is worth for further study. Another area is practical
security assessment of controller softwares. There are studies which are showing
that there are severe security and stability problems in publicly used controllers.

28

References

[1] Christos Douligeris and Dimitrios Nikolaou Serpanos. Network Security: Cur-
rent Status and Future Directions. Onl. Piscataway, NJ, USA: IEEE Press,
2007. isbn: 9780470099742.

[2] Mark Dowson. “The Ariane 5 Software Failure”. In: SIGSOFT Softw. Eng.
Notes 22.2 (Mar. 1997), pp. 84–. issn: 0163-5948. doi: 10.1145/251880.

251992. url: http://doi.acm.org/10.1145/251880.251992.

[3] Gary McGraw. Software Security: Building Security In. Pearson Education,
Inc., 2006, pp. 9–14. isbn: 0-321-35670-5.

[4] Norman Fenton, Paul Krause, and Martin Neil. “A probabilistic model for
software defect prediction”. In: IEEE Trans Software Eng (2001).

[5] A. Alkussayer and W.H. Allen. “A scenario-based framework for the security
evaluation of software architecture”. In: Computer Science and Information
Technology (ICCSIT), 2010 3rd IEEE International Conference on. Vol. 5.
July 2010, pp. 687–695. doi: 10.1109/ICCSIT.2010.5564015.

[6] OWASP Risk Rating Methodology. 2014. url: https://www.owasp.org/

index.php/OWASP_Risk_Rating_Methodology (visited on 08/24/2014).

[7] Diego Kreutz, Fernando M.V. Ramos, and Paulo Verissimo. “Towards Secure
and Dependable Software-defined Networks”. In: Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking.
HotSDN ’13. Hong Kong, China: ACM, 2013, pp. 55–60. isbn: 978-1-4503-
2178-5. doi: 10.1145/2491185.2491199. url: http://doi.acm.org/10.

1145/2491185.2491199.

[8] Bruce Schneier. Applied Cryptography Second Edition: protocols, algorithms,
and source code in C. John Wiley & Sons, Inc., 1996. isbn: 0-471-11709-9.

[9] M. Handley and E. Rescorla. Internet Denial-of-Service Considerations. RFC
4732. RFC Editor, Nov. 2006. url: http://www.rfc- editor.org/rfc/

rfc4732.txt.

[10] M. Al-Hemairy, S. Amin, and Z. Trabelsi. “Towards more sophisticated ARP
Spoofing detection/prevention systems in LAN networks”. In: Current Trends
in Information Technology (CTIT), 2009 International Conference on the.
Dec. 2009, pp. 1–6. doi: 10.1109/CTIT.2009.5423112.

[11] R. Kloti, V. Kotronis, and P. Smith. “OpenFlow: A security analysis”. In:
Network Protocols (ICNP), 2013 21st IEEE International Conference on. Oct.
2013, pp. 1–6. doi: 10.1109/ICNP.2013.6733671.

[12] OpenFlow Switch Specification version 1.4.0. California, USA, 2013. url: https:

//www.opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.4.0.pdf (visited on
03/08/2014).

29

[13] Software-Defined Networking: The New Norm for Networks, OpenFlow White
Paper. 2012. url: https://www.opennetworking.org/images/stories/

downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf (visited
on 07/29/2014).

[14] S. Sezer et al. “Are we ready for SDN? Implementation challenges for software-
defined networks”. In: Communications Magazine, IEEE 51.7 (July 2013),
pp. 36–43. issn: 0163-6804. doi: 10.1109/MCOM.2013.6553676.

[15] Kevin Benton, L. Jean Camp, and Chris Small. “OpenFlow Vulnerability
Assessment”. In: Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking. HotSDN ’13. Hong Kong, China:
ACM, 2013, pp. 151–152. isbn: 978-1-4503-2178-5. doi: 10.1145/2491185.

2491222. url: http://doi.acm.org/10.1145/2491185.2491222.

[16] D. Romao et al. Practical Security Analysis of OpenFlow. 2013. url: https://

os3.nl/_media/2013-2014/courses/ssn/projects/practical_security_

analysis_of_openflow_report.pdf (visited on 08/13/2014).

[17] Alexander Shalimov et al. “Advanced Study of SDN/OpenFlow Controllers”.
In: Proceedings of the 9th Central & Eastern European Software Engineer-
ing Conference in Russia. CEE-SECR ’13. Moscow, Russia: ACM, 2013, 1:1–
1:6. isbn: 978-1-4503-2641-4. doi: 10.1145/2556610.2556621. url: http:

//doi.acm.org/10.1145/2556610.2556621.

[18] Ahmed Khurshid et al. “Veriflow: Verifying Network-wide Invariants in Real
Time”. In: SIGCOMM Comput. Commun. Rev. 42.4 (Sept. 2012), pp. 467–
472. issn: 0146-4833. doi: 10.1145/2377677.2377766. url: http://doi.

acm.org/10.1145/2377677.2377766.

[19] Cisco Nexus 7000 Series Supervisor Module Data Sheet. Tech. rep. 2013. url:
http : / / www . cisco . com / c / en / us / products / collateral / switches /

nexus-7000-series-switches/Data_Sheet_C78-437758.pdf (visited on
08/17/2014).

[20] Cisco Nexus 5000 Series Architecture: The Building Blocks of the Unified
Fabric. Tech. rep. 2009. url: http://www.cisco.com/c/en/us/products/

collateral/switches/nexus-5020-switch/white_paper_c11-462176.pdf

(visited on 08/17/2014).

[21] Jeremy M Dover. A denial of service attack against the Open Floodlight SDN
controller. Tech. rep. url: http : / / dovernetworks . com / wp - content /

uploads/2013/12/OpenFloodlight-12302013.pdf (visited on 08/17/2014).

[22] N.J. Al Fardan and K.G. Paterson. “Lucky Thirteen: Breaking the TLS and
DTLS Record Protocols”. In: Security and Privacy (SP), 2013 IEEE Sympo-
sium on. May 2013, pp. 526–540. doi: 10.1109/SP.2013.42.

[23] Marco Canini et al. “A NICE Way to Test OpenFlow Applications.” In: NSDI.
2012, pp. 127–140.

30

[24] Haohui Mai et al. “Debugging the Data Plane with Anteater”. In: Proceedings
of the ACM SIGCOMM 2011 Conference. SIGCOMM ’11. Toronto, Ontario,
Canada: ACM, 2011, pp. 290–301. isbn: 978-1-4503-0797-0. doi: 10.1145/

2018436.2018470. url: http://doi.acm.org/10.1145/2018436.2018470.

[25] S. Hommes et al. “Automated source code extension for debugging of Open-
Flow based networks”. In: Network and Service Management (CNSM), 2013
9th International Conference on. Oct. 2013, pp. 105–108. doi: 10.1109/CNSM.

2013.6727816.

[26] Production-ready SDN with OpenFlow 1.3. Tech. rep. Hewlett-Packard, 2013.
url: http://h17007.www1.hp.com/docs/interop/2013/37958_HPN_

Openflow_Brief_042913_lo.pdf (visited on 03/08/2014).

[27] HP Switch Software: OpenFlow Supplement. Tech. rep. 2012. url: http://

h20566 . www2 . hp . com / portal / site / hpsc / template . BINARYPORTLET /

public/kb/docDisplay/resource.process/?spf_p.tpst=kbDocDisplay_

ws_BI&spf_p.rid_kbDocDisplay=docDisplayResURL&javax.portlet.

begCacheTok=com.vignette.cachetoken&spf_p.rst_kbDocDisplay=wsrp-

resourceState=docId%3Demr_na-c03170243-3%7CdocLocale%3D&javax.

portlet.endCacheTok=com.vignette.cachetoken (visited on 08/07/2014).

[28] Andrés Steven et al. Security Sage’s Guide to Hardening the Network Infras-
tructure. First edition. Massachusetts, USA: ´Syngress Publishing Inc., 2004.
isbn: 1-931836-01-9.

31

A Full Security Table before security enhance-

ments

In table 5 is described all evaluated scenarios their security requirements and calcu-
lated risks. Also detailed security objectives and probability values are shown.

32

Table 5: The Full Security Table before security enhancements

S Threat TV Pattern IC II IAV IAU Total EOD EOE Pub Total Risk

1 Software bugs in controller

which enables vulnerability

4 Enhance software quality

assurance process with

standardized testing and

simulation driven methods

9 7 7 7 8 3 3 3 3 23

2 Software bugs in OpenFlow

client which enables

vulnerability

2 Enhance software quality

with sophisticated testing

automation and simulation

driven methods

7 6 6 7 7 3 5 3 4 24

3 Lack of flow table

verification and rule

syncronization between

controller and a switch

8 Use flow rules with short

lifetime

2 1 1 1 1 1 3 1 2 2

4 Lack of mandatory

encryption in OpenFlow

protocol

3 Secure switch to controller

network and use IPSec to

secure transport

6 6 1 7 5 7 9 7 8 38

5 Lack of proper authentication

in OpenFlow protocol

3 Secure switch to controller

network and use IPSec to

secure transport

6 6 1 7 5 7 9 7 8 38

6 Abuse of switch listener

mode

2 Disable switch listener mode 7 7 6 7 7 7 9 3 6 43

7 Software bugs and defects in

management station which

enables unauthorized access

to the system

6 Isolate management station

from other network and

utilize patching process

7 7 7 9 8 7 3 3 4 33

8 Man in the middle attack on

communication path between

management station and

controller

5 Disable mac learning on

management network

switches and use static mac

entries. Secure management

network physically.

6 6 1 7 5 3 9 3 5 25

9 Man in the middle attack on

communication path between

controller and OpenFlow

switch

3 Disable mac learning on

controller network switches

and use static mac entries.

Secure controller network

physically.

6 6 1 7 5 3 9 3 5 25

10 Information disclosure of

OpenFlow network

9 Ensure sufficient controller

capacity with redundant

controllers to keep session

initalization time minimum

2 1 1 1 1 9 1 7 6 7

11 Hardware constrains enabled

DoS threat

1 Utilize rate limiting on

switches for packets destined

to slow-path

2 1 9 1 3 3 5 3 4 12

12 Interoperability problems due

to insufficient OpenFlow

specification of how to

handle malformed or

corrupted packets

1 Utilize rate limiting on

switches for packets destined

to slow-path. Implement

Packet-In filter in controller

to detect malformed packet

properly.

2 1 7 1 3 3 9 3 5 14

13 Vulnerability on controller

interface enables attack on

control plane communication

3 Utilize real-time flow rule

analysis software

7 6 7 7 7 3 3 3 3 20

Legends:

TV = Threat Vector S = Scenario

*) IC = Impact on Confidentiality **) EOD = Easy of Discovery

II = Impact on Integrity EOE = Easy of Exploit

IAV = Impact on Availability Pub = Publicity

IAU = Impact on Authenticity

Probability
**)

Security Objectives
 *)

33

B Full Security Table after security enhancements

In table 6 is described all evaluated scenarios their security requirements and calcu-
lated risks after applying risk mitigation patterns. Also detailed security objectives
and probability values are shown.

34

Table 6: The Full Security Table after security enhancements

S Threat TV Pattern IC II IAV IAU Total EOD EOE Pub Total Risk

7 Software bugs and defects in

management station which

enables unauthorized access

to the system

6 Isolate management station

from other network and

utilize patching process

7 7 7 9 8 3 3 3 3 23

2 Software bugs in OpenFlow

client which enables

vulnerability

2 Enhance software quality

with sophisticated testing

automation and simulation

driven methods

7 6 6 7 7 3 3 3 3 20

8 Man in the middle attack on

communication path between

management station and

controller

5 Disable mac learning on

management network

switches and use static mac

entries. Secure management

network physically.

6 6 1 7 5 3 3 3 3 15

9 Man in the middle attack on

communication path between

controller and OpenFlow

switch

3 Disable mac learning on

controller network switches

and use static mac entries.

Secure controller network

physically.

6 6 1 7 5 3 3 3 3 15

1 Software bugs in controller

which enables vulnerability

4 Enhance software quality

assurance process with

standardized testing and

simulation driven methods

9 7 7 7 8 1 3 1 2 13

13 Vulnerability on controller

interface enables attack on

control plane communication

3 Utilize real-time flow rule

analysis software

7 6 7 7 7 1 3 1 2 11

12 Interoperability problems due

to insufficient OpenFlow

specification of how to

handle malformed or

corrupted packets

1 Utilize rate limiting on

switches for packets destined

to slow-path. Implement

Packet-In filter in controller

to detect malformed packet

properly.

2 1 7 1 3 3 5 3 4 10

11 Hardware constrains enabled

DoS threat

1 Utilize rate limiting on

switches for packets destined

to slow-path

2 1 9 1 3 3 3 3 3 10

6 Abuse of switch listener

mode

2 Disable switch listener mode 7 7 6 7 7 1 1 1 1 7

10 Information disclosure of

OpenFlow network

9 Ensure sufficient controller

capacity with redundant

controllers to keep session

initalization time minimum

2 1 1 1 1 7 1 7 5 6

4 Lack of mandatory

encryption in OpenFlow

protocol

3 Secure switch to controller

network and use IPSec to

secure transport

6 6 1 7 5 1 1 1 1 5

5 Lack of proper authentication

in OpenFlow protocol

3 Secure switch to controller

network and use IPSec to

secure transport

6 6 1 7 5 1 1 1 1 5

3 Lack of flow table

verification and rule

syncronization between

controller and a switch

8 Use flow rules with short

lifetime

2 1 1 1 1 1 1 1 1 1

Legends:

TV = Threat Vector S = Scenario

*) IC = Impact on Confidentiality **) EOD = Easy of Discovery

II = Impact on Integrity EOE = Easy of Exploit

IAV = Impact on Availability Pub = Publicity

IAU = Impact on Authenticity

Security Objectives
 *)

Probability
**)

