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Introduction
Experiment consisting of a visual search was conducted in order to investigate
the e�ect of top-down and bottom-up processing with natural stimuli. Gray-scale
photographs of nature scenes were used as stimuli. Stimuli had two conditions:
natural and scrambled. Natural images were unaltered photographs and in scram-
bled images the global information was reduced.
Aim
Aim of the experiment was to form statistical models explaining the e�ect the am-
plitude of early visual potentials as functions of visual input, oculomotor variables
and top-down factors.
Methods
Magnetoencephalography (MEG), electroencephalography (EEG) and eye track-
ing were recorded simultaneously during the experiment. In the scope of this thesis
only EEG and eye tracking were analysed. Statistical models were generated using
a method called linear mixed (e�ect) modeling.
Results
Data analysis produced two models describing the early visual potential as param-
eters of visual input and oculomotor variables. The e�ect of top-down processing
was investigated as an additional statistical test.
Conclusion
Out of the two generated models the visual input model was deemed more accurate
due to spatial focality and amplitude latency. Results of the study indicate that
early visual responses in EEG correlate strongly with low-level visual inputs and
to a lesser degree with oculomotor variables. No evidence of correlation between
response amplitude and top-down factors were observed.
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Johdanto
Visuaalista tarkkaavaisuutta tutkittiin koeasetelmassa, jossa koehenkilöt etsivät
heille esitettyjä kuvan osia suuremmista luontovalokuvista. Kuvia oli kahta tyyp-
piä: muokkaamattomia, sekä kuvia joista globaali informaatio oli hävitetty.
Tavoite
Kokeen tavoitteena oli kehittää visuaalisia hermostovasteita kuvaava tilastolli-
nen malli. Mallin avulla oli tarkoitus tutkia kuinka matalan ja korkean tason
tarkkaavaisuusprosessit vaikuttavat mitattuun vasteeseen.
Menetelmät
Kokeen aikana koehenkilöiltä mitattiin aivosähkökäyrää (EEG), aivomagneet-
tikäyrää (MEG) sekä silmänliikettä. Kerätty data analysoitiin mallintamalla kat-
seeseen synkronisoituja EEG-vasteita tilastollisesti. Kokeessa kerättyä MEG dataa
ei analysoitu tämän työn puitteissa. Mallintamiseen käytettiin lineaarisia seka-
malleja, jotka muodostettiin ärsykekuvien, silmänliikkeiden ja tarkkaavaisuuspros-
essien avulla.
Tulokset
Mallintaminen tuotti kaksi erilaista mallia, jotka selittivät syntyneen vasteen
visuaali-informaation ja silmänliikkeiden perusteella. Korkean tason tarkkaavaisu-
uden vaikutusta tutkittiin molemmissa malleissa ylimääräisellä tilastollisella
testillä.
Johtopäätökset
Kahdesta tuotetusta mallista visuaalimalli vaikutti todenmukaisemmalta. Silmän-
liikemallin tulokset olivat puolestaan epävarmempia sijaintinsa ja esiintymis-
latenssinsa takia. Kummankaan mallin tapauksessa ei havaittu todisteita korkean
tason tarkkaavaisuuden vaikutuksesta vasteisiin.

Avainsanat: EEG, MEG, Silmänliikemittaus
Visuaalinen tarkkaavaisuus
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1 Introduction

Towards Ecologically Valid Study of Cognition (TEVSOC) was a research project
conducted at Cognitive Science Division of the University of Helsinki between 2011
- 2014. The project was funded by the Academy of Finland and this thesis was
conducted as a part of TEVSOC project. The aim was to develop and improve the
methodology for naturalistic visual attention studies. The experiment was partly
cognitive neuroscience and partly vision research. Data acquisition of the experiment
was conducted in the BioMag Laboratory at Helsinki University Central Hospital
with the approval from the board of ethics and in accordance to declaration of
Helsinki [1]. This thesis outlines the entire process from designing the experiment
to the analysis of the results while maintaining a technical viewpoint. The thesis
speci�cally attempts to address all the technical challenges involved in recording and
analysing multiple-source neurological data in a psychophysical experiment.

The experiment aimed to investigate the e�ect of local and global visual information
to early neural responses of visual processing. The stimuli consisted of 70 grayscale
nature photographs selected from an existing picture database. In each trial of the
experiment the subject was �rst shown a small portion of an image followed by a
larger image. The subject was then asked if the �rst fragment could be found in
the following larger image. A total of 28 volunteers (mostly students) participated
in the experiment. During the experiment both electroencephalography (EEG) and
magnetoencephalography (MEG) were recorded. A remote eye tracker was also
used to capture participants' eye movements during the presentation of the stimuli.
Combination of the two recording methodologies gives information about where and
when the subjects were looking at and what the neural activity was during the vi-
sual search task. This setup is coined co-registration [2] and is an emerging research
tool in psychological research. By utilizing co-registration, the experiment was im-
plemented as a free-viewing paradigm, that is, the subjects were free to examine
the presented stimulus without any constraints to eye movements. Free-viewing is a
relatively novel experimental paradigm made possible by the recent increase in the
availability of commercial eye trackers. The triple registration of eye tracking, EEG
and MEG is also a relatively new recording technique and during the writing of this
thesis no earlier research had recorded these three datasets simultaneously. Due to
the complexity of synchronizing three di�erent recording apparatus the implemen-
tation of the experiment proposed some interesting technical challenges. A more
in-depth description of the stimuli, experimental setup and recording apparatus can
be found in section 3.

The experiment had two main objectives. The �rst aim was to study and improve
the ecological validity of psychophysical experiments in the �eld of visual attention
research. The term ecologically valid in this context implies to experimental setups
where the conditions of the experiment are as close as possible to real life. This is
a contrast to more traditional setups where the experimental conditions are tightly
controlled in order to simplify the data analysis. One example of these constraints
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is the aforementioned restriction of eye movements. Eye movements are normally
restricted in EEG/MEG experiments because they generate artifacts in the recorded
signal due to the electric properties of the human eye. The artifact signal is of a
much higher amplitude than the underlying neural signal source and thus masks the
responses that these experiments are trying to study. With the advance of record-
ing technology and techniques, however, it is now possible to relax some of these
constraints and compensate for the artifacts using the data gathered with the eye
tracker. This change in paradigm, in turn, brings up some challenges regarding the
synchronization of multiple recording devices that must be addressed. The second
objective was to form a statistical model to explain the contributions of di�erent
factors on the recorded neural responses. These factors included variables calculated
from the visual input (such as the relative luminance and contrast of the observed
region of the stimuli) as well as oculomotor variables. These low-level covariates
of visual attention are commonly known as bottom-up processing. The analysis
focused on the so called early visual responses which occur approximately 50-100
ms after the intake of visual information. E�ect of higher level processes of visual
attention (also known as top-down processing) on the early visual responses was also
investigated. These higher level processes include such cognitive functions as mem-
ory and intention. The aim of the data analysis was to produce a comprehensive
model of the early visual potentials by combining both the top-down and bottom-up
processing as well as the oculomotor processes.

The �rst part of this thesis covers the theoretical background of visual attention,
experimental designs, recording methods and statistical models. Second part fo-
cuses on the practical implementation of the experiment, recording procedure and
data analysis. Finally, the third part consists of reporting the results of the anal-
yses performed and estimating the accuracy of these results. The experiment pro-
vided enough data for multiple di�erent analyses and hypothesis tests. The possible
courses for future research with the collected data are also outlined at the end of
this thesis.



3

2 Background

2.1 Vision and visual attention

Visual attention is a process which selects and limits the intake of information
from our surroundings. Vision is arguably the most important sensory input for
humans and is thus a widely researched topic. Research on visual attention aims to
integrate the neural pathways of vision and neural processing of visual information
to behavioral results observed when images are being studied. Most theories agree
that visual attention is guided by two competing mechanisms: the top-down and
the bottom-up [3]. In bottom-up processing attention is attracted to salient and
prominent visual features of the perceived stimulus [4]. These salient features present
a pop-up e�ect which automatically capture and attract attention. Top-down model
on the other hand describes attention as a combination of higher level cognitive
functions [5]. These functions include such processes as memory, intention and
emotions. In the light of earlier research it appears that visual attention is guided by
an interplay of both processes [6]. This section very brie�y outlines the physiological
basis of visual attention by covering functions of the eyes and the human visual
system.

Human vision is a complex system of sensory organs and neural pathways that
transform incoming light into a representation of the surrounding space and objects
within the �eld of view. The �rst step in this processing chain are the eyes which
acquire the visual information. Human eye consists of a ball-shaped sensory organ
�lled with viscous �uid and enveloped inside three layers of membrane. The frontal
surface of the eyeball contains a transparent outer layer known as the cornea and a
ligament-suspended lens. Light re�ected from objects travel through this lens to the
rear surface of the eye where it is encoded and passed forward through the visual
system. The lens is surrounded by a ring-like group of ciliary muscles which control
the shape of the lens. Changes in lens geometry enables the viewing of objects at
varying viewing distances. The rear inner surface of the eye contains an area known
as the retina which consists of a dense cluster of light sensitive sensor cells knowns as
photoreceptors. These photoreceptors electrochemically encode the incoming light
into electric signals and pass them on to the brain through the optic nerve. The
optic nerve travels through the visual pathway eventually reaching the visual cortex
of the occipital lobe where the actual neural processing of the visual information
starts. The retina houses two types of photoreceptors: rod-cells for dim light and
cone-cells for perception of color and �ne detail. Photoreceptors are not distributed
equally over the retina and the center of the retina has a considerably higher density
of cone-cells. Due to the nonuniform distribution only a small portion of the total
�eld of view can be observed with high visual acuity at any given time. The region
of high visual acuity is known as the fovea centralis (abbreviated to fovea in most
literature) which is a dense cluster of cone-type photoreceptors located in the part
of the retina known as macula. Visual acuity decreases rapidly as distance from
the center of the fovea increases and the high acuity region is roughly 2 degrees
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of the visual �eld. In order to accurately perceive objects within the �eld of view
the eyes must constantly move. Detecting objects outside the fovea is also possible
but with dramatically impaired accuracy. The surrounding �eld between 3 to 5
degrees of the visual �eld around fovea is known as the parafovea. The area around
the parafovea is known as the peripheral visual �eld which reaches out to about
10 degrees of the total visual �eld. Structure of the eye can be seen in �gure
1. Connected to each eyeball are six muscles which enable the various rotational
movements. Eyes are capable of conducting di�erent kinds of movement as a part
of the complex physiological negative-feedback system of human vision. In the case
of a static visual stimuli (such as a picture displayed on a computer monitor) the
two main movement types that occur are saccades and �xations. Saccades are rapid
transitions of the eye which shift the location of the fovea [7]. The transitions are
preprogrammed "leaps" during which the eye is e�ectively blind due to a mechanism
called saccadic suppression [8]. The velocity pro�le of a saccade roughly follows a bell
curve. Fixations on the other hand are time periods when the eye is stationary and
relatively stable. During �xations the information is being acquired by the retina,
encoded into electrical signal and passed forward through the optic nerve. Duration
of the �xations change depending on the task being performed. For example, the
�xation duration in a visual search task is usually shorter than when reading text
[9]. Eye does not, however, remain absolutely stable during a �xation. In reality
�xations contain a subset of "micro movements" which facilitate the intake of visual
information. These micro movements are often in the order of 5 to 100 arc-minutes
of the visual �eld. Purpose of the micro movements is not entirely clear but is
thought to acts as a countermeasure for drifts and the image fading from the fovea
[10]. In the case of a moving target the eyes perform a motion known as smooth
pursuit [11]. Smooth pursuit allows tracking of moving objects and normally can
not be performed without a moving stimulus. Because the performed experiment
involved static picture stimuli, only �xations and saccades will be discussed in the
further chapters. [12]

In the human visual system the retina can be considered to be the input layer for
incoming visual information. In addition to photoreceptors the retina also houses
horizontal, bipolar, amacrine and ganglion cells related to the processing of incoming
light. The structure of the retina is layered, with photoreceptors at the bottom of
the retina and other cell groups on top. A diagram of this structure is displayed in
�gure 2. The role of amarcine, bipolar and horizontal cells is to further compress the
electrical signals generated by the photoreceptors before it reaches the ganglion cells.
The information is subsequently passed forward from the retina by the axons of the
ganglion cells on top of the retinal cell-layer. Axons exit the optic disc in a bundle of
�ber-like axons known as the optic nerve. The optic nerve splits at the optic chiasm
where about 60% of the �bers of the optic nerve cross the chiasm and 40% stays on
the same side. After the optic chiasm the bundles on each side contain information
from both eyes and are known as optic tracts. The bundles of the optic tract diverge
to multiple di�erent regions of the brain. Part of the �bers travel to regions that
control the motoric functions of the eyes (superior colliculus) and part to the region
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Figure 1: Structure of the human eye [13].

responsible for the pupillary re�ex (pretectum) and to other components of the
feedback system. Eventually the optic tract reaches the cortex of the occipital lobe
which is also known as the visual cortex. Visual cortex is where the decoding and
processing of the visual information starts. Eventually the information will advance
towards frontal regions of the brain via temporal (also known as ventral-pathway)
and parietal (also known as dorsal-pathway) pathways [14] but information is also
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fed back to the sensory areas [15]. In the study of visual potentials the responses
recorded from the visual cortex are of the key interest. Technically it is possible
to record the responses of the visual stimulation from deeper brain structures, such
as pretectum or superior colliculus, using a method with su�cient penetration and
sensitivity to deep sources (i.e. MEG or fMRI) [16]. Although these responses could
in some sense be called visual potentials, in the context of this study and most
of the supporting literature, the term visual potential is reserved for the neural
responses recorded from the visual cortex of the occipital lobe. It is these visual
potentials (more speci�cally the very early ones) that were also the key interest in
the experiment.

Figure 2: Cell layers of the retina [17].

2.2 Experimental setups in psychophysical experiments

In experimental psychology the design and careful control of confounding factors
is an integral part of any research project. This section is intended to give a brief
overview of what kind of preparatory work the experiment required. It will cover
such topics as factor control, within/between subject paradigms, stimulus onset
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asynchrony (SOA) and blocking. These aspects are important for stimulus prepa-
ration, programming of the experiment and setting up the triggering signals.

In the context of experimental design all parameters of the experiment are called
factors. Aim of the design is to produce a paradigm where the factors of interest
(i.e. the variables whose e�ect on the measured quantity is being investigated) are
controlled with respect to all other factors As such all non-crucial factors should be
processed into as uniform as possible. In the case of photographs this means nor-
malizing the properties of all stimuli according to some condition. Possible methods
include matching luminance histograms [18] or normalizing the spectral content of
di�erent frequency bands [19]. In designing the experiment important step is to
decide which factors are controlled and to what degree. Presentation order of the
stimuli is also an important design decision. In order to counter systematic e�ects
randomization of the order in which subjects are exposed to stimuli of di�erent
conditions should be used.

Another question regarding the setup is whether the experiment follows a between-

subjects or within-subjects paradigm. In between-subjects design a di�erent popula-
tion is used for di�erent stimulus group (essentially dividing the pool of participants
based on prede�ned conditions). In a within-subject paradigm all subjects are ex-
posed to the same stimuli. Both approaches have their advantages and disadvantages
[20]. The bene�t of within-subject paradigm is that the subject pool is consider-
ably larger due to all subjects being in one group. Additionally, in between-subject
paradigms it is possible that the subjects have been divided in a way where individ-
ual di�erences become a factor in the results. The major downside of within-subject
is the interconnectivity of tasks and stimuli within the experiment, also known as
the carryover e�ect. In carryover e�ect some of the conditions in the experiment
in�uence the performance and/or response in other conditions [21]. This of course is
not a problem in between-subject paradigm as the experimental conditions are sepa-
rated into groups. Furthermore, fatigue can be an issue in a prolonged within-subject
paradigms as it can a�ect both behavioral results and neural responses.

In experiments where neural responses are recorded anticipatory e�ects become a
real problem. When nearly identical stimulus is repeated at a constant rate the
subject becomes habituated to it and the related responses are often dampened.
To counter this the interval between stimuli is often randomized. This process is
known as stimulus onset asynchrony or SOA for short [22]. Randomization of the
onset will also prevent the phase-locking of responses. SOA is more important in
experiments where the stimulus is presented in a rapid succession but it is good
practice to control it in all experiments.

Blocking in experimental design means dividing the experiment into segments. Block-
ing can be done according to some variable or alternatively just to reduce the fatigue
factor of the experiment. There are multiple ways of performing blocking with re-
gards to the order in which blocks are ran and the randomization of the content
inside each block [23].
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Finally the actual implementation of the experiment is the last step but also a very
important one. In experiments where a physiological variable is being measured
the temporal accuracy is of critical importance. The timing of stimulus presenta-
tion must be controlled to the order of milliseconds. For this purpose there exists
a wide range of stimulus presentation softwares. Most of these provide the tools
to program the experimental design. These programs range from visual modeling
languages (ExperimentBuilder, E-Prime) to more traditional Java-style program-
ming (Presentation). Both of these programs are commercial but Python-based
open-source solutions like PsychoPy [24] and MATLAB based psychotoolbox exist
as well. The most important thing for the stimulus presentation environment is
the temporal accuracy, i.e. the time delay between the command to display the
stimulus and actually drawing it on the monitor or screen. The second important
feature of stimulus presentation software is their connectivity to recording devices.
In addition to accurately displaying stimulus the software must be able to signal the
recording device when subject was exposed to the stimulus. This process is known
as triggering and it is used to add markers in the data streams for later analysis.
Di�erent softwares support di�erent protocols for triggering but the most common
interfaces are the parallel port and the Ethernet protocol.

2.3 Recording methods and apparatus

2.3.1 Eye tracking methodology

Eye tracking technology has been around for closer to 50 years now and the �rst gaze
tracking experiments were performed already in the 1930s. The term eye tracking

usually means the tracking of the location and orientation of the human eye and
then calculating a projection indicating the location of the gaze. With this method
it is possible to determine where and when the test subject was looking at. In typical
setups the subject is looking at a computer monitor with the eye tracker positioned in
front of them although other methods for presenting the stimulus could also be used.
A wide range of di�erent eye tracking devices exist today ranging from laboratory
measurement devices to portable ones. Applications of eye tracking include usability
research, human-computer interfaces (HCI) [25], marketing research [26] as well as
basic psychological research [27]. Eye-tracking is a valuable research tool in visual
attention as properties of the eye movements change during the analysis of visual
scenes [28].

To date various di�erent methods and devices for tracking eye movements exist [29].
Throughout the development of eye trackers the method for capturing the eye orien-
tation has changed drastically. Earliest devices relied on the electric �elds generated
by eye movements using a technique more commonly known as electrooculography
(EOG). These �elds are recordable with standard EEG setups and most EEG mon-
tages included additional bipolar EOG-electrodes for more accurate eye-movement
registration. Using two sets of bipolar EOG electrodes placed around the eyes it
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is possible to detect both horizontal and vertical shifts in the direction of the gaze
along with eye blinks. As stated earlier, in traditional sense, the EOG signal is
considered to be an artifact that masks the underlying EEG activity. EOG has,
however, been utilized in various BCI experiments for acting as a rough estimate of
the direction of the gaze [30]. Advantages of EOG-based eye tracking include high
temporal resolution (same as EEG) and relatively low instrumentation cost. Down-
side to this method is poor spatial accuracy [32]. Another method of tracking eye
movements is to use contact lenses. With this method the basic principle is to use a
contact lens attached on top of the eye to relay information about the orientation of
the eye. The method of receiving the information of the orientation varies between
methods. One example is the relatively old method of conducting the measurement
inside an alternating magnetic �eld with coils integrated into the contact lenses [31].
Changes in the orientation of the lens can then be measured from induction cur-
rent and converted into gaze coordinates. While this method can produce spatially
accurate results the setup is technically challenging. Furthermore the setup can be
uncomfortable for the subject being measured. Some earlier research also indicates
that the eye movements di�er from normal when a load (such as a contact lens)
has been attached to it. The arti�cial change in eye movement parameters might
be undesirable if the object of the experiment is to study visual attention. Today
optical video-based methods are the most common way of performing eye tracking.
Earliest video-based trackers simply recorded eye movements and the calculation of
the gaze point was done manually by superimposing the gaze coordinates on top of
the viewed stimulus. With more advanced computer vision applications and increase
in computation speed it later became possible to automate the entire process. Today
nearly all of the commercially available eye trackers are based on infrared (IR) video
cameras with an external IR light source and automated software for processing the
captured images.

Video-based eye trackers have revolutionized the �eld of eye movement research
[32]. These devices record image of the eye (or eyes) and calculate the gaze location
for each recorded frame. Video-based eye trackers often use infrared (IR) cameras
and external IR light sources for tracking but devices that operate with normal
cameras also exist [33]. The bene�t of using IR is to assert that the only source
of re�ections on the eye is caused by the measuring device. For successful tracking
the measurement site should of course not have any other IR light sources present
which makes outdoor recordings di�cult. The method is based on focusing the
camera on the eye and extracting the location of the pupil and the �rst Purkinje

re�ection. Purkinje re�ection is the IR light re�ected back from the cornea of the
eye. Extracting the center of the pupil and the location of the corneal re�ection in
prespeci�ed calibration points makes it possible to interpolate the gaze point in all
other areas inside the calibration zone. Calibration is normally done by displaying
points in di�erent areas around the display monitor. Number of calibration points
depends on the device, calibration area and how accurate recording is required by
the application. Both the pupil center and the corneal re�ection is calculated at
these points and a mathematical model explaining the geometry and orientation of
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the eye is constructed. Naturally the eye tracker only works inside the calibrated
area. Sampling rate of the device is a critical parameter for accurate tracking.
Since eye movements are one of the fastest motions generated by the human body,
cameras with sampling rates exceeding 250 Hz are desirable. Tracking is possible
with sampling rates as low as 30 Hz but with greatly reduced temporal accuracy
which does not allow measurement of saccades due to their short duration. Quality
of the tracking increases with the sampling rate but seems to have diminishing
gains past 300-500 Hz. High-end cameras with sampling rates over 1000 Hz are
only utilized to research micro movements of the eyes, such as the jittering and
microsaccades that occur inside a �xation.

Result of an IR eye tracking is a set of coordinates inside the calibrated area. These
coordinate correspond the area of acute vision or fovea at each point as described
in section 2.1. In data analysis the recorded data is often segmented into �xations
and saccades (although sometimes raw data is used). In addition, eye blinks are
often extracted as well to account for the time period during which the location
of the eye could not be determined. This classi�cation operation of extracting �x-
ations, saccades and blinks is more commonly known as event detection. Various
algorithms for event detection exist but most of them can be classi�ed into one of
the two categories: low-speed and high-speed. Low-speed family of algorithms ex-
amine the coordinates of the eye movement recording in terms of proximity and time
[34]. These algorithms search for tightly clustered coordinates that stay clustered
for a prespeci�ed minimum time periods. These time periods are then labeled as
�xations and the rest of the data transitions between the �xations are considered
saccades. In some terminology low-speed algorithms are also referred to as cluster-
ing or dispersion-based algorithms. High-speed methods on the other hand calculate
the velocity of the eye at any given time using the recorded gaze-point coordinates
[35]. The velocity at which the eye is moving can be calculated using the equation 1
for two consecutive gaze coordinates. By analysing the velocity of the eye relative to
threshold it is then possible to classify di�erent time periods into �xations, saccades
or noise.

vt =

√
(xt − xt−1)2 + (yt − yt−1)2

∆t
(1)

The advantage of high-speed algorithms is the ability to detect both �xations and
saccades. In doing so the information of saccade properties (amplitude, acceleration,
top speed, etc) are also retrieved, while the low-speed algorithms are only capable
of detecting �xations. High-speed algorithms, however, only work with relatively
high sampling rates. To accurately calculate the velocity pro�le of the saccade
sampling rate must be high enough to fully capture di�erent phases of acceleration
and deceleration. The agreed limit for reliable high-speed event detection is around
250 Hz. Low-speed algorithms on the other hand can produce reliable results with
lower sampling rates.

Figure 3 illustrates the basic principle behind a velocity-based high speed event de-
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tection algorithm. Left top panel of the �gure contains a 3.5 second segment of eye
tracking coordinate data.. Data shown here was collected during the experiment
using a remote IR eye tracking camera with 250 Hz sampling rate. Below the coor-
dinates is the velocity of the eye together with the detection threshold for saccades.
This threshold is used to divide the data into �xations and saccades. Typically the
speed is plotted as degrees of the visual angle over time but in this case pixels were
used to keep the units uniform with the coordinate plot The bottom panel on the left
shows the resulting division of the samples to �xations and saccades. On the right
side of the �gure the same data is plotted in two dimensions. This plot contains the
sample points during the three second interval, overlaid with the detection results.
This example is a simpli�ed case and most modern detection algorithms use also
additional parameters for event detection. These parameters include such variables
as duration thresholds for both �xations and saccades as well as acceleration and
peak detection thresholds for saccades.

Figure 3: Example of a velocity-based event detection algorithm

2.3.2 EEG and MEG

In addition to eye movements both MEG and EEG were recorded during the ex-
periment. Purpose of these methodologies was to capture the correlates of neural
activity during a free-viewing visual search task. Both of these methods have been
widely used in the �eld of psychological research. Advantages of MEG and EEG
include their low-operating costs (compared to fMRI) and non-invasiveness. This
section provides a brief background information to to the operation and background
phenomenon of MEG and EEG recordings.

Electroencephalography (EEG) is a relatively old non-invasive method for study-
ing the electrical activity of the human brain. In EEG recording, electrodes are
attached to participant's scalp and the measured potentials are compared to a refer-
ence electrode. Location of the reference varies but is usually attached to either the
nose, ear or some other region with very little neural activity. The electrical activity
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from the scalp corresponds to the electrical activity of the brain but also contains
external and physiological artifacts that have to be removed or corrected before
the actual analysis. Because the measured potentials are in the order of microvolts
the recorded signal must be ampli�ed during acquisition. All modern EEG-devices
store the signal in digitized format for more e�cient processing and analysis. The
electrical activity of the brain is based on constant �ring of neurons. Due to the
dampening e�ect of the scalp, skull and other intervening membranes between the
EEG electrodes and the brain, EEG-devices lack sensitivity to detect the activity
originating from a single neuron. The recorded EEG signal is in fact a spatial sum-
mation of thousands to millions similarly oriented neurons �ring at the same time. A
major contribution of the EEG signal comes from the post-synaptic pyramidal cells
of the cortex. The main signal generator for EEG is the post-synaptic potential at
the axon terminal. Due to the limited sensitivity of EEG devices the signal sources
closer to the scalp are easier to observe than deep sources.

Magnetoencephalography (MEG) is another brain imaging method for recording
the electrical activity of the human brain. MEG is based on recording the very
weak magnetic �elds (in the region of 0.5 pT) generated by the neuronal currents.
More speci�cally the detected �eld is induced in the dendrites of the neurons during
a synaptic transmission. The recorded signal shares characteristic with the EEG
signal but there are bene�ts of recording both signals at the same time. Detection of
these magnetic �eld is possible through the highly sensitive superconducting quantum

interference device (SQUID) sensors. Typical MEG devices contain two types of
SQUID sensors: magnetometers and gradiometers. Magnetometers are used to sense
the magnitude of the perpendicular magnetic �eld while the gradiometers pick-up
the spatial gradient of the �eld. Using a set of three sensors (1 magnetometer
and 2 gradiometers) for each sensor location it is possible to thoroughly record
the magnetic �eld of the underlying signal. In order to function the MEG device
requires a magnetically shielded room as the recording is very sensitive to outside
interference. Unlike EEG, the MEG is unable to detect radial sources and is only
sensitive to tangential currents which makes the simultaneous recording of EEG and
MEG especially appealing for source localization [36].

2.3.3 Co-registration

Eye tracking is exceptionally useful when paired with brain imaging methodologies.
In the past eye trackers have been used in research with EEG, MEG and fMRI.
Addition of eye-tracking bene�ts the research of visual EEG/MEG in two ways.

1. Eye tracking provides information regarding the visual input at each of the
recorded time points.

2. Eye tracking enables the removal of EOG artifacts by dividing the EEG/MEG
data to �xation-locked segments.
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Figure 4: MEG sensor layout and the structure of a single sensor unit [37]

In the case of visual stimuli the combination of the two methodologies allows the
researchers to accurately determine both the visual input as well as the neural
response. Eye movements can be used as natural and self-paced markers to segment
the EEG/MEG data into meaningful time-epochs. Co-registration also enables the
use of free-viewing setups. As mentioned earlier in section 1 the EOG activity in
both EEG and MEG recordings was traditionally considered an artifact. This is due
to the electric activity of the eye movement (caused by eye being a natural dipole)
having the tendency to mask underlying EEG activity. Numerous methods exist to
estimate and correct ocular artifacts from a recording [38] [39]. The inherent problem
with these methods is the risk of removing actual data along with the artifacts.
Co-registration of eye movements and EEG/MEG provides a new solution for the
problem. With a concurrent eye tracking recording it is possible to either limit the
analysis of the EEG-signal into time windows during which the eye was in a �xation.
This technique is known as �xation-locked potential or �xation related potentials.
Other methods use eye movement data as an additional data signal to perform the
artifact correction. These methods allow the use of free-viewing experimental setup
where eye movements no longer critically hinder the data analysis [40].

An inherent problem with adding new recording modalities into an experiment is
the synchronicity between devices [41]. Co-registration only works if all of the three
recording devices are operating under the same clock. The problem arises from the
fact that each recording device has its own internal clock which controls the opera-
tion of the device. The internal clocks di�er slightly but even a non-systematic time
di�erence of 10 milliseconds can render the analysis impossible. Furthermore the
slight di�erences between the clocks tend to amplify in long recordings through a
process known as clock drift. For this reason asserting and correcting synchronicity
is a mandatory step in co-registration paradigms. In most acquisition devices the
recorded data also contains a time-stamp for each sample. With these timestamps
the di�erent recordings can be synchronized as a post-processing step as long as
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each recording contains mutual trigger signals. To generate mutual trigger signals
an external computer is often used for stimulus presentation and triggering. This
computer displays the stimuli and sends trigger signals to each of the acquisition
devices which then encode the trigger signal in the data stream. One way of syn-
chronizing multiple recordings is to adjust the temporal properties of one or more of
the signals through interpolation. An alternative approach is to analyse the data in
short segments around the trigger signals where the internal clocks of the di�erent
devices can be considered to be in synchrony. In this experiment the latter method
was used.

2.4 Event related potentials

2.4.1 Event related potential technique methodology

The methods of analyzing the EEG signal vary based on the application. In clinical
diagnostic applications, such as medical devices that measure the depth of anesthe-
sia [42], metrics derived from the power spectrum are commonly used. In spectral
analysis of EEG the signal is �rst transformed into the frequency domain and power
modulations of di�erent bands and electrode locations are analysed. In brain re-
search, spectrum-based analysis methods are also used but it is more common to
examine EEG in time-domain as event related potentials (ERPs) [43]. The basis
of ERPs is the temporal averaging of repeated measurements in order to discover a
speci�c underlying waveform related to the task or stimulus. ERPs can be described
as phase-locked oscillations of a speci�c cluster of neurons, strong enough to produce
a detectable waveform through averaging. Because EEG has both stochastic and
deterministic properties the recordings generally contain a lot of activity not directly
related to the investigated phenomenon. To extract the ERP from the background
noise, multiple repetitions of the task or stimulations is required in order to make
the waveform visible. The exact number of repetitions depends on the robustness
of the neural response being investigated but the signal-to-noise ratio of ERPs is
generally considered to follow the square root of the number of trials [44]. Purpose
of the ERP technique is to discover latencies, amplitudes and shapes of the di�erent
responses and how these relate to the used stimulus or task. Various statistical tests
are also employed in order to assert that the obtained waveforms are statistically
signi�cant.

ERPs have been studied for a very long time and a comprehensive report can be
found in [44]. The result of ERP research is a precise taxonomy of di�erent neural
responses. In ERP literature di�erent responses are noted using a pre�x N or P.
The pre�x indicates the polarity of the response, where N stands for negative and
P for positive. The pre�x is followed by a number which indicates the typical
latency of the ERP. For instance P300 ERP is an ERP with a positive polarity
which occurs around 300 ms after the presentation of stimulus. Depending on the
literature the latency might be truncated to just hundreds of milliseconds (such as
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P3 in psychological literature regarding the potential). It is also worthy to note that
in some literature the polarity of the responses is plotted in downwards direction
for historical reasons. Here, however, all ERPs are plotted with positive polarity
pointing upwards. ERPs have been used to study various neural processes such as
auditory, visual and even some BCI applications. In the analysis of ERPs the signals
are often low-pass �ltered with a 30 Hz cuto� �lter in order to further minimize noise
and clarify the shape of the response. [44]

2.4.2 Visually evoked potentials

Neural responses resulting from processing of visual information are known as visual
(event-related) potentials. ERPs that relate to visual stimuli and are recorded from
the occipital lobe are called visually evoked potentials (VEPs). VEPs are used in
study of attention and other psychophysical experiments regarding visual inputs. In
clinical diagnostics they are also used to diagnose multiple sclerosis by inspecting the
functionality of the visual pathway [45]. In vision research the two most prominent
visually evoked potentials are the C1 and the P1 potentials. P1 is named according
to the typical ERP taxonomy where P signi�es positive polarity and the 1 indicates
the typical latency in hundreds of milliseconds. P1 peak is a positive potential
that peaks around 100 ms after visual stimulus onset. P1 is omnipresent result
of visual sensory stimulation and is not directly task-dependent. P1 amplitude
has been shown in some cases to be in�uenced by top-down factors [46] but is
typically considered to consist mostly of the low-level features of visual stimuli such
as luminance [47], contrast and edge density [48] of the visual input. The signal
generator for the P1 response is located in the dorsal extrastriate cortex which in
the typical 10-20 EEG montage lands in near the center of the occipital electrode
site. A second early visual response is the peak of the C1 wave. C1 wave is a visual
potential with a varying polarity which is in�uenced by the location of the stimulus
in the visual �eld. C1 occurs between 50-100 ms after �xation onset.

In addition to visual input, some VEPs are also generated by the neural correlates of
saccades [49] [50]. Lambda response is a saccade related potential occurring approx-
imately 80 ms after saccade-o�set. Earlier studies have found lambda response to
correspond to preceding saccade parameters but stimulus control experiments have
shown that it can also be modulated by visual inputs [51]. Source localization of
the lambda response indicates that it has common neural generators with the P1
response. Another saccade related potential is the saccadic spike potential (SP).
According to existing research the SP is caused by the recruitment of motor neurons
required to complete the saccade [52]. Source localization places the origin of the
SP around the central and parietal regions of the brain [53] [54] and studies of the
SP latency indicate that it peaks several milliseconds after the saccade onset [50].
Lambda response and the spike potential indicate that both low-level visual prop-
erties of the perceived visual stimuli as well as the oculomotor properties modulate
the amplitude of the early visually evoked potentials.
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It is plausible that what is typically labeled as P1 can in reality be caused by a combi-
nation of the aforementioned components. In this article separation between various
sources is omitted, instead all VEP components are clustered into a single measur-
able parameter. This method could be considered a black-box approach where the
human visual system in a free-viewing paradigm is investigated in a data-driven
manner to discover how the visual input and the oculomotor properties modulate
the amplitude of the recorded potentials.

In �gure 5 all �xation-locked segments of EEG collected during the experiment were
averaged over subjects and plotted as a time-series in the lower panel. In this plot
time point zero corresponds to the o�set of the preceding saccade and beginning of
the �xation. Channels located on the occipital lobe (O1, O2 and Oz) were colored
blue as the e�ect is most visible on these channels. From time-series the early visual
responses are clearly visible from 50 to 100 ms post-�xation onset with a peak around
75ms. Above the time-series are three topography plots from three time-points (25,
75 and 175 ms) which demonstrate the spatial distribution of the EEG amplitudes.
Also visible in the �gure is the negative N1 de�ection wave around 125 ms. This
VEP is also result of visual processing but is outside the scope of this thesis. This
�gure also clearly demonstrates the variation of VEP amplitudes and waveforms
(and in truth all ERPs share this characteristic) over individual subjects.

Figure 5: Visually evoked potential as a time-series with topograhpy plots from
three time points (25, 75 and 175 ms)
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2.5 Linear Mixed E�ect Model

The overall aim of the experiment was to record EEG during a free-viewing of natural
stimuli. The collected EEG is then processed and segmented according to �xations
occurring in each trial. These �xation-locked segments are then further analysed
with a statistical modeling technique called linear mixed e�ect modeling (LMM).
The purpose of the model is to explain the amplitude of the early visual response in
di�erent locations of the scalp as a function of various parameters including variables
from visual input and saccade kinematics. This section provides the mathematical
theory behind this model and the details about applying it to the data. Parameter
selection for the model is also discussed, although more detailed description can be
found in section 3.5.

Linear mixed e�ect model (LMM) is a multiple regression model that explains a
dependent variable y in terms of linear regressors (called �xed-e�ects in this context)
X and random e�ects Z. In practice LMM is very similar to regular linear regression
with the exception of the random e�ects term. In LMM �xed-e�ects correspond to
factors that are known to have or are suspected to have in�uence on the dependent
variable. Mixed-e�ects on the other hand are variables that are known to cause
random and uncontrollable variations in the dependent variable. Equation 3 presents
the LMM equation in matrix form. For comparison the matrix form equation of
linear regression is presented in equation 2.

y = Xb+ ε (2)

y = Xb+ Zu+ ε (3)

Values for the parameters of the linear mixed model are calculated using the maxi-
mum likelihood (ML) estimation. When sample sizes are small ML estimation can
be biased in the estimation of the variance components. When dealing with small
sample sizes it is also possible to use restricted maximum likelihood estimation
(REML) [55] to compensate for the bias.

For the model to be valid the �xed-e�ects variables must satisfy certain conditions
[56]. First assumption is that all dependencies of the underlying phenomena should
be linear in order to �t a linear model. This assumption can be veri�ed by examining
the residuals of the model. Second assumption is that di�erent �xed e�ects of the
model should not be linearly correlated. Correlated �xed e�ects undermine the
stability of the model. Collinearity of �xed e�ects can be assessed by computing
correlations between all of the �xed e�ects. Third assumption is that residuals of
the model should also be evenly distributed over the �tted values. Even distribution
indicates that variance over the model is uniform (i.e. the "credibility" of the model
does not change through the course of the �tted values). Fourth assumptions is
that the residuals of the �tted model should also be gaussian. Finally the �fth
assumption dictates that each of the samples fed into the model are independent
(i.e. from an unique source). As most experiments of this type consist of repeated
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measures this assumption is impossible to satisfy. Instead this can be compensated
by adding subject as a mixed e�ect to the model. [57]

In statistical modeling a model that accurately describes the response of interest
with fewest possible parameters is preferred. It is reasonable to start with a full-
model consisting of all possible variables that �t the theory. After formulation of
the full model the best approach is to reduce the model to minimum amount of
parameters that best explain the data. Kullback-Leibler distance (KLD) is a metric
used to describe the informational distance between two probability distributions.
One way to interpret KLD is the information lost by forcing the data into a speci�c
model. It thus follows that the minimization of the KLD produces the optimal
model for the data. The most prominent model reduction technique based on KLD
is the Akaike Information Criterion (AIC) [58] [59] which can be found in equation
4.

AIC = 2k − 2ln(L) (4)

In equation 4 k is the number of predictors in the model. The number of predictors
is used to penalize the AIC score as models with large numbers of predictors (or
�xed e�ects in the case of LMM) tend to have higher maximum likelihood values.
AIC can be used to select the best �tting model from a set of models by minimizing
the AIC score. A common way of applying AIC is to use a step-wise backwards
selection where predictors are dropped from the model in an attempt to minimize
the AIC score. The resulting curve of AIC scores should indicate which �xed-e�ects
are most relevant for the model.

Multiple di�erent methods exist for quantifying the statistical signi�cance of linear
mixed e�ect models. These methods range from bayesian inference to regular anal-
ysis of variance based (ANOVA) test. In this experiment the statistical signi�cance
of the produced models were assessed using a likelihood ratio tests (LRT). LRT is
based on forming two models: the actual model of interest and a null model. The
actual model is the resulting model of applying LMM. The null model is a reduced
version of the actual model containing only some (or in the extreme case none) of
the �xed e�ect variables. The test statistic D is de�ned as a logarithmic ratio of the
likelihood functions of the two models.

D = −2ln(L0) + 2ln(L1) (5)

In this experiment LRT was used to determine statistical signi�cances. Likelihood-
ratio tests, however, only work with models that have been estimated using ML
instead of REML. For this reason the models were also calculated using ML.
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3 Materials and methods

3.1 Experimental design and implementation

The experiment conducted in the TEVSOC project was a simple visual search task.
A dataset of 70 greyscale nature photographs selected from the DOVES database [60]
were used as the stimuli. The selected photographs contained only forest sceneries
with no man-made objects or people in them. Purpose of this selection was to
assert that the picture dataset was semantically homogeneous. Histograms of all the
selected images from the dataset were matched to the mean histogram of the entire
image set. To preserve original structure of the images a structural similarity index
(SSIM) algorithm [61] was used in the matching process. Images were normalized in
MATLAB using the SHINE toolbox [18] with SSIM option for the preservation of the
original structure. The resulting dataset of images was thus normalized in a global
sense while still having local di�erences. The experiment included three stimulus
conditions: natural, scrambled and control. In the natural condition the image
was unaltered except for the histogram matching. In the scrambled condition the
image was divided into an equispaced 4 x 4 grid and the order of the grid elements
was randomly scrambled. To control the strong contrast di�erences arising from
the scrambling, images in the both natural and scrambled condition were overlaid
with a 4 x 4 grid consisting of 2 pixel wide black lines. The third control condition
consisted of a solid gray color which with the black grid overlay. The color of the
image was set to the average pixel value of the image dataset. Image scrambling
is a method which has previously been used to investigate the e�ect of top-down
processing in a visual search task. [62] The purpose of the two primary stimulus
conditions (natural and scrambled) was to generate situations where either top-down
or bottom-up processing was more imminent. In the case of the natural stimulus
the semantic information of the photograph is present. It is thus logical to assume
that attention in the natural condition is controlled more by top-down mechanism.
In the scrambled condition semantic information is distorted and in this case the
test hypothesis was that attention is controlled by bottom-up mechanisms based on
visual saliency. Example of each stimulus condition can be seen in �gure 6.

Figure 6: Stimulus conditions: natural, scrambled and control

Experiment consisted of a total of 210 trials equally divided among the three con-
ditions and each of the trials had the same task. In each trial the subject was �rst
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presented a small image patch called a target. All of the targets were the size of
a single grid element of the larger stimuli. Furthermore all targets have been se-
lected from the elements of the larger images. Target patches were selected through
a clustering analysis of all the patches within an image. Purpose of the clustering
analysis was to pick most distinct target patches for each trial. Target patches were
also uniformly distributed over the 16 possible locations in all task conditions. The
subject viewed the target for 4 seconds after which a full-sized scene picture of one
of the three conditions was displayed. The subject was allowed to examine the scene
picture for 8 seconds. After 8 seconds the subject was asked if the presented target
was part of the larger image. Display times of both the target and the full image
were based on results from a pilot study conducted to discover typical response
times for the task. Subjects delivered their answer in yes/no format using an optical
response box. Between each trial the subjects focused on a �xation cross on the
center of the screen. The duration of the �xation cross was randomized in order to
prevent anticipatory e�ects. The experiment was divided into 5 blocks in order to
counter the fatigue factor. The presentation order of the blocks was varied over the
subject in order to counter balance the experiment. Between blocks the subject was
allowed to rest and the eye tracking camera was re-calibrated before the start of the
next block. Stimulus presentation and synchronization of the recording devices were
implemented using Presentation-software. Structure of a single trial is visualized in
�gure 7.

Figure 7: Structure of a single trial and display durations of each component.

3.2 Acquisition

3.2.1 Apparatus

EEG and MEG were recorded using a Elekta Neuromag VectorView device. The
EEG system consisted of a 60 unipolar channel EEG cap (EasyCap) with 78 Ag/AgCl
sintered ring electrodes. The reference electrode was placed on the tip of the nose.
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Four additional bipolar (di�erential) electrodes were attached around the eyes in
order to register the electrical activity caused by eye movements. EEG electronics
were located inside the MEG gantry and connected to the cap through two 37 pin
male headers. In addition to the header the EEG interface had separate sockets for
ground and reference electrodes as well as the bipolar electrodes. EEG electronics
consisted of a preampli�er and Signal Acquisition Board which handled the digiti-
zation of the recorded signal. After the EEG cap was adjusted to the participant's
head, the locations of all the channels were registered using the Isotrak 3D digitizer.
The MEG device consisted of 204 planar gradiometers and 102 magnetometers. The
sensors were positioned in the manner described in section 2.3.2. Thus each of the
sensor location had one magnetometer and two orthogonal planar gradiometers. The
MEG gantry supports recording in both supine and seated position. In the exper-
iment all the measurements were conducted using the seated position. Both EEG
and MEG were recorded at a 600 Hz sampling rate. Both data streams were saved
on �le without applying any �ltering or averaging. The recordings were saved in
Elekta's proprietary FIFF-format. Layout of the EEG sensors can be seen in �gure
8 and MEG sensors in �gure 9.

Figure 8: EEG sensor layout

The head location inside the MEG device was registered and monitored through
head position indicator (HPI)-coils. In the experiment 4 HPI coils were placed in
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Figure 9: MEG sensor layout [37]

a equispaced circle around the subject's head. HPI and the digitized anatomical
landmarks are used to align subject's head with the device coordinate frame. In
other words this procedure connects the data acquired by the device to a speci�c
anatomic location. This information is necessary for source modeling. HPIs can
also be used for continuously monitor the head position inside the device but this
feature was not used in the experiment.

Eye movements were recorded using the SensoMotoricInstruments remote iViewX
MEG250 eye tracker. The tracker was MEG-compatible and thus presented no
external artifacts to the recorded signals. Device itself was a tripod mounted camera
with a circular IR light source attached to a boom arm. The eye tracker was used for
recording eye movements from a the right eye of each subject. Sampling rate of the
device was 250 Hz and the signal was recorded using iViewX-software running on
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a separate computer. The device used a oval �tting method for detecting the pupil
and thresholding for the cornea re�ection detection. a 9-point calibration sequence
was used to setup the device.

Data acquisition was performed inside a magnetically shielded room (ETS Lindgren,
Euroshield Ltd.) and the stimulus was presented on a screen in front of the subject
using a back projecting display screen. The projector used to display the stimuli
was a digital light processing (DLP) projector. The distance between the screen and
the subject was roughly 1.5 meters. A photograph of the measurement setup with
the subject inside the MEG gantry can be seen in �gure 10.

Figure 10: Recording apparatus

3.2.2 Quantifying the spatial accuracy of the eye tracker

At the beginning of each experiment block the eye tracker was re-calibrated. The
eye tracking camera had no way of saving the calibration information or an estimate
of the calibration accuracy. For this purpose a spatial accuracy test protocol was
implemented to save calibration quality and it was executed at the beginning of
each experiment block. The test protocol consisted of displaying 16 crosses on the
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screen in a randomized sequence. The display time of each cross was adjusted to one
second so that the subject had enough time to �xate each cross once. The locations
of the crosses corresponded to the grid centers of the 4 x 4 overlay used in the
actual stimulus. These locations were selected as they were considered to be a good
estimate of the region where calibration should be accurate. After performing event
detection to the eye movement data it was then possible to quantify the calibration
error of the device in these 16 locations. For each location the coordinate o�set and
dispersion of the �xation were calculated and stored. These values were later used
to reject badly calibrated EEG segments from the dataset. The order in which the
crosses appeared was randomized on each run to prevent anticipation. Figures 11
and 12 illustrate the results of a successful calibration and a poor calibration. In
these pictures black cross marks the location of the displayed �xation cross. Gray
X-symbols correspond to the registered �xation locations and the average dispersion
in x- and y-directions is displayed as a circle. The numerical value for the o�set in
pixels from the target is also written next to each �xation.

Figure 11: Result of a successful eye-tracker calibration

3.2.3 Temporal synchronization of the acquisition devices

For accurate application of the co-registration technique temporal synchronicity
must exist between the devices. In the ideal case both the MEG/EEG and eye
tracker would be running under a single clock. Unfortunately each device has their
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Figure 12: Result of a poor eye-tracker calibration

own internal clock and it is also wrong to assume an ideal condition where the two
independent clocks would operate at the same rate. Synchronizing the devices in
real time is di�cult so an alternative approach was used. The stimulus presenta-
tion computer was capable of transmitting triggering signals to both data streams.
In the case of MEG/EEG the communication protocol was 4-bit TTL pulses sent
through a parallel port. On the eye tracker side the communication was over an
Ethernet protocol. The experimental setup was con�gured to send mutual messages
to both data streams which were later used to synchronize the recordings o�ine in
the preprocessing stage of the data analysis. Due to two di�erent communication
protocols (TTL and Ethernet) the latencies of triggering messages were also dif-
ferent. It is possible to compensate this di�erence by �rst measuring the average
latency for both protocols and then modifying the timestamps of the triggering sig-
nals as a post processing step. In this experiment, however, there was no need to
correct for latency as the time-window for EEG segmentation was determined from
the data. As such it was not imperative to know the exact latency of the two trigger-
ing protocols as long as the latency in both triggering streams remained relatively
stationary. This assumption was tested by calculating the average variation between
two triggers in both cases. The average jitter in both systems was approximately 1
ms which was within acceptable limits for synchronization purposes. More details
on the synchronization procedure are in section 3.4.
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Figure 13: Setup for synchronizing multiple measuring devices

3.3 Procedure

This section describes a typical recording session. The total number of participants
was 32 out of which 28 were used for the actual analysis. Each subject had normal or
corrected-to-normal vision, no diagnosed neurological or psychological de�ciencies
and used no medication which a�ects the central nervous system. The duration of
a single recording session was between 1.5 to 2 hours. Most of the participants were
student volunteers recruited through mailing lists. Rewards for the participations
was 5 culture tickets (worth 5 euros each). Steps of a typical recording session are
listed below.

1. Arrive at the recording site and test MEG equipment. This consisted of vi-
sually checking that all the channels were working properly during an empty
room recording. Channels with spurious activity where either reset or heated
in order to solve the problem. If a particular channel could not be made func-
tional it was marked down in the measurement journal. Optical response box
and TTL pulse triggering channels were also inspected at this point.

2. When the subject arrives they are �rst given a brief introduction about the
experiment. Subject is then asked to read the written instructions about the
experiment and sign a consent form.

3. Subject was briefed about the magnetic sensitivity of the MEG device. Subject
was then instructed to remove all metallic objects from their body (jewelry,
hair pins, watches, etc). If subject had clothes that included metal parts
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(zippers, studs in jeans, etc) they were instructed to change those items to
provided hospital garbs. Subject was also asked to remove any make up around
their eyes. Reason for this was two fold. Firstly the eye mascara can contain
metal particles which during blinks and eye movements can cause distortions
in the recorded magnetic �eld. Secondly black eye mascara deteriorates the
eye tracker calibration quality when attempting to localize the pupil. If the
subject had glasses they were replaced with MEG compatible plastic glasses
of equal prescription for the duration of the experiment.

4. After subjects were considered MEG compatible they were prepared for EEG.
This included �tting a EEG cap on the subject and preparing the electrode
sites. Each electrode site was �rst scrubbed with a q-tip in order to push hair
away from the scalp. Gentle scrubbing also reduces the contact impedance
as the area is cleansed of dead skin cells and dirt. After scrubbing the EEG
electrodes were �lled with conductive EEG gel.

5. HPI coils were attached on the EEG cap with scotch tape. Coils were attach
high enough so that they would fully enclosed inside the MEG dewar and thus
present a clear signal for the device.

6. Anatomical landmarks, locations of the HPI coils and all of the EEG channels
were digitized using the Isotrak 3D digitizer. Procedure was started by acti-
vating the registration sequence from the user interface of the MEG device and
then pointing out anatomical locations, HPI coil locations and EEG channels
with a digitizer pen.

7. Subject moved inside the magnetically shielded room and seated inside the
MEG gantry. Wires from the EEG electrodes were connected to the signal
acquisition board. The seat of the MEG gantry was raised so that the subject's
head was fully inside the dewar. Subject was also instructed about the task
at this point.

8. Electrode contact impedances were measured from the EEG and corrected if
necessary. Electrode contacts were improved until all electrode impedances
were near or below 5kΩ

9. Subject was given the optical response and instructed how to use it. Subject
was to lift their thumb for yes and index �nger for no. At this point the optical
response was tested once more.

10. Eye tracker was set up on a tripod mount in front of the subject. The lens of the
camera was aligned towards the right eye and the IR illuminator was adjusted
until both the pupil and cornea re�ection were detected by the camera. In
cases where detection of the cornea re�ection was poor the focus was o�set to
generate a sort of low-pass �lter for more stable image.

11. Back projecting screen was brought into the magnetically shielded room and
placed in front of the subject. DLP projector was turned on and image quality
was checked.
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12. Head localization using HPI coils and the automatic software was used. If the
HPI check failed the position of the HPI coils was changed. The recorded head
position coordinates were saved for further use.

13. Eye tracker was calibrated using a 9 point calibration sequence. In the case
of calibration failure or poor data quality after calibration the eye tracking
camera was readjusted.

14. The experiment was now ready to be ran and the �rst block could be started.
Recalibration of the eye tracker and other modi�cations to enhance the signal
quality were performed between each block. Collected MEG, EEG and eye
tracking data were saved on �le after each block. During each block the subject
was monitored through a video camera and a two-way intercom was also used
to communicate with the subject.

15. After 5 blocks the subject was free to exit from the magnetically shielded
room. Subject changed back to their own clothes and were given a reward of
5 culture tickets.

3.4 Preprocessing

Before the actual analysis the data was subjected to various forms of preprocessing
to remove all possible noise from the signal. First step of the preprocessing chain
was to run the collected data through a MaxFilter-software. MaxFilter is part of
the Elekta Neuromag software package and is used to suppress outside magnetic
interference from the recorded biomagnetic �elds. MaxFilter can also be used to
compensate for head movements using the data from the HPI-coils but this step
was omitted in the preprocessing chain. Head movement compensation runs the
risk of distorting the data and should not be applied without compelling reasons
(i.e. subject unable to sit still due to epilepsy). MaxFilter was used to perform
Maxwell �ltering [63] (named after Maxwell's equations on which the method is
based) for the recorded data. In this operation the data is decomposed into three
components by utilizing signal subspace separation. These three components are
signals originating from inside the brain, external disturbances and noise generated
by sensors or sources with close proximity to the sensors.

In the second stage the data was loaded into BESA-software. An adaptive noise
removal algorithm [64] was used to remove ocular artifacts from the data. In this
method ocular artifacts were �rst identi�ed visually from the data. Visual identi�ca-
tion was possible due to the distinct wave form of ocular artifacts caused by saccades
and blink. In addition the bipolar EOG channels made identi�cation easy. A data
segment consisting of purely eye movements was used for this step to reduce the
chance of removing components of interest. The segment used for this purpose was
the calibration accuracy test explained in section 3.2.2. For this purpose eye move-
ment components were de�ned outside the task trials. BESA computes a principal
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component analysis (PCA) using the marked EEG segments in order to generate a
model of the artifact which is then applied to the rest of the data.

In the third stage the eye movement data was �rst synchronized with the MEG/EEG
recordings using the mutual trigger codes saved during the recording. In this stage
the original trigger channel from the MEG/EEG recording was �rst exported from
BESA and then loaded into MATLAB along with the triggering information from
the eye tracker recording. Synchronization was based on the assumption that the
clocks of the two recording devices (MEG/EEG and eye tracker) could be considered
to operate at an equal rate in small time windows. In other words, processing
the data in small segments around shared markers would cause the data to be
synchronized. It was reasonable to assume that drifts between the devices only occur
in longer time periods. The shared triggers used in synchronization were the markers
which indicated the beginning of each trial. After synchronization the eye movement
data was used to segment the MEG/EEG recording according to �xation onset
times occurring while viewing the large scene picture. Event detection of the eye
tracking data was performed using the high-speed event detection application from
the manufacturers software package (SMI iTools). The software package contained
SMI's implementation of an existing event detection algorithm [65]. Parameters used
for detection were 50 deg/s threshold for saccade velocity and a 50 ms minimum
duration for �xations.

EEG was segmented into time epochs based on the �xations found in eye tracking
data. Time epochs were 500 ms in duration starting 200 ms before the onset of the
�xation. Resulting EEG segments were baseline corrected by subtracting the mean
amplitude value of each segment. In addition, each segment was also band-pass
�ltered to frequency range of 0.5 to 30 Hz using a zero-phase digital �lter. As a �nal
step, the EEG segments were pruned by inspecting the recorded potentials inside
each segment. Segments containing potentials that exceeded 120 uV were rejected.
Also segments which belonged to a recording with unsatisfactory calibration quality
were discarded. Rejection was based on thresholding the calibration accuracy values
collected at the beginning of each block. Fixations that were registered in a location
with poor calibration accuracy or large dispersion were removed. Threshold for
removal was 80 pixels in both calibration o�set and dispersion. Resulting loss of
data for both rejection methods is displayed in �gures 14 and 15 The resulting
�xation-locked single trial EEG data segments exported from BESA were then used
in the statistical analyses to form the LM-models.

3.5 Statistical analysis of the collected data

3.5.1 Outline of the analysis

Purpose of the statistical analysis was to �rst construct a model describing the
generation of the early visual potential as a function of low-level visual input and
oculomotor variables. After a reliable model has been generated the e�ect of top-
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Figure 14: Portions of rejected data marked in grey in 16 grid locations based on
the calibration o�set

down processing can be investigated by inserting stimulus condition (natural vs.
scrambled) as an additional �xed-e�ect variable. Starting point for the analysis
was the 500 ms segments of EEG data resulting from the preprocessing chain of
chapter 3.4. Note that even though both EEG and MEG data were collected in the
experiment, only EEG data was used for the statistical analysis at this stage. The
rationale behind this decision was to �rst formulate the model as channel-based and
later expand it to cover the actual neural sources localized using the MEG data.
The EEG-only approach was also selected as to make the results comparable to
earlier EEG-based studies of the early visual potentials. The source based LMM
analysis of the MEG data is beyond the scope of this thesis but it is brie�y covered
in section 6. The statistical LMM analysis was implemented in R [66] using lme4
[67] package.

In order to model the generation of early visual potentials a linear mixed e�ect
model (LMM) was built. As described in section 2.5 the LMM uses a combination
of �xed and mixed-e�ect predictors to form a multiple regression model describing
the dependent variable. The dependent variable in this case is the temporal average
inside of the segmented EEG. The exported EEG segments were too long to be
averaged so the time window for the temporal averaging was selected based on
literature and visual inspection of average waveforms over all the data segments.
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Figure 15: Portions of rejected data marked in grey in 16 grid locations based on
�xation dispersion

Purpose of this selection was to assert that the time window contained most of the
early visual potential components. There was no averaging over the channels instead
the model was constructed separately for each individual channel.

In the LMM model the �xed e�ects contain the variables of interests. The main
goal of the LMM is to �nd the relationship between the dependent variable and the
�xed-e�ects. Mixed-e�ects on the other hand are added to the model to explain
random variations in the data. In the case of EEG the mixed-e�ects can also be
used to satisfy the assumptions set by the repeated measurements nature of the
data. The selection of proper �xed-e�ects is not a simple task. The process of
selecting these e�ects and the methods used to calculate them are described in
section 3.5.2. In turn section 3.5.3 covers the selection of mixed-e�ects. To improve
the accuracy and robustness of the resulting model a model reduction based on the
Akaike Information Criterion was performed. Purpose of the reduction was to limit
the model to a minimum amount of parameters that best explain the data. Details
of the model reduction are in chapter 3.5.5.
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3.5.2 Selection of independent �xed-e�ects

As explained in section 2.4.2 the amplitude of the early visual potentials (especially
the P1 potential) is heavily modulated by the parameters of the visual input. These
parameters range from relative luminance and contrast to the amount of edges in the
perceived area [47][48]. Literature also shows that oculomotor properties of the eye
movements (such as the amplitudes of preceding and succeeding saccades) modulate
the lambda response of the early visual potentials[76].

As described in section 2.1 the area of acute vision (called fovea in this context)
is relatively small. The fovea spans about a 2◦ patch of the visual �eld. Using
the eye tracker coordinate data it was possible to extract the exact region of the
stimulus image which was foveated in each �xation. All of the low-level visual
variables were calculated from within this patch. The corresponding fovea size
in pixels was calculated separately for each subject using the measured distance
between the subject and the monitor. Fovea sizes between subjects had very little
variation as the distances to monitor was very homogeneous over the subjects. The
low-level visual variables selected for the model were: relative luminance, contrast,
kurtosis, skewness, entropy and edge density. Relative luminance is used as an
approximation of the luminance experienced by the visual nervous system while
inspecting digital images. In gray-scale images the relative luminance corresponds
to the pixel intensity values and thus the average of the pixel intensity values inside
the fovea patch was used to calculate the RLU variable. Contrast of the patch was
calculated in a similar manner as the variance of the pixel intensity values inside the
patch. The third and fourth statistical moments (skewness and kurtosis) were also
calculated from the pixel intensity values in order to determine the symmetricity
and peakedness of the intensity value distribution inside the patch as compared to
the normal distribution. Entropy of the patch was also computed as an additional
metric for visual saliency [68]. Edge density within the patch was calculated using
Sobel approximation. All computed low-level visual �xed-e�ect variables were z-
score standardized by subtracting the mean and dividing by the standard deviation.
An example visual input �xed-e�ect variables sampled from 11 di�erent locations
of a randomly selected stimulus picture is displayed in �gure 16.

The oculomotor variables used in LMM were calculated using the eye movement
events (saccades and �xations) extracted from the recorded eye coordinate data.
Because eye movement events were calculated using a high speed algorithm, details
regarding the properties of the saccades were already available. Based on earlier
research following oculomotor variables were used in the linear mixed e�ect model:
amplitude of the saccade preceding the �xation, amplitude of the saccade succeeding
the �xation, �xation duration and total change in gaze direction. The two ampli-
tude variables indicate the distance the eye traveled (in degrees) during the saccade.
Fixation duration on the other hand is the total duration of the �xation in millisec-
onds. The total change in saccade direction was calculated as the angle between the
incoming and outgoing saccade. This variable contained only the magnitude of the
change (not the direction) and was scaled between 0 to 180 degrees. A total change
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Figure 16: Example of low-level visual input variables

in saccade direction of 0 degrees indicates no change and the succeeding saccade
continues in the same direction as the preceding saccades. Conversely a change of
180 degrees corresponds to a complete change in direction and the succeeding sac-
cade travels to the direction of the preceding saccade. As in the case of low-level
visual variables the oculomotor variables were also z-score standardized.

Both the low-level visual and oculomotor variables explain the bottom-up processing
component of the recorded EEG response. In order to investigate the in�uence of
top-down processing the stimulus condition was also added to the model as a �xed-
e�ect. The stimulus condition was a categorical variable with two states: natural
and scrambled. Condition variable was kept out of the model during the initial
formulation and model reduction. Once a model describing bottom-up processing
had been established the condition variable was added to the model.

3.5.3 Selection of mixed-e�ects

The mixed-e�ect variables were added to the model in order to control variations
caused by known factors in the data. These variables can be assigned to the model as
random intercept or random slopes. For this model all mixed e�ect were assigned as
random intercepts. This decision was based on the fact that literature presented no
evidence that mixed e�ect would have interactions with the amplitude of the early
visual potentials. In order to detect which variables should be assigned as mixed
e�ect, variance was calculated with respect to all possible variables not yet assigned
as �xed-e�ect. The sources of variance were calculated from subjects, images, target
locations and areas of interest. The results are plotted in �gures 17 and 18 as
box plots. Inspection of di�erent variances indicated that both subject and image
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should be chosen as mixed-e�ect. This corresponded to theory as EEG recordings
can have signi�cant di�erences between individual subjects. As the stimulus images
contained stark local di�erences the variation caused by di�erent images was not
surprising. Location of the target patch within the 4 x 4 grid had no perceivable
e�ect and neither did the image condition (natural vs scrambled). The grid location
which the subject was �xating on did not have perceivable di�erences over the 16
locations.

Figure 17: Variance plots

Figure 18: Variance over task condition

In many statistical models the e�ect of repeated measures must be controlled. Re-
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sValue condIdx FDU SDC PSA SSA RLU CON KUR SKE ENT EDE

1.51 1 0.000 0.000 0.000 0.000 0.037 0.011 0.016 0.036 0.054 0.022

1.12 1.35 0.000 0.000 0.001 0.001 0.018 0.159 0.215 0.000 0.075 0.069

1.06 1.43 0.325 0.229 0.243 0.000 0.001 0.004 0.007 0.001 0.013 0.048

1.01 1.49 0.001 0.190 0.077 0.658 0.000 0.020 0.002 0.001 0.006 0.001

0.979 1.54 0.223 0.046 0.009 0.011 0.000 0.399 0.043 0.018 0.095 0.011

0.975 1.55 0.243 0.006 0.569 0.008 0.001 0.074 0.016 0.006 0.026 0.038

0.966 1.56 0.045 0.527 0.098 0.320 0.000 0.012 0.010 0.002 0.011 0.020

0.934 1.62 0.153 0.001 0.001 0.002 0.002 0.066 0.045 0.002 0.000 0.754

0.692 2.18 0.007 0.000 0.002 0.000 0.082 0.208 0.267 0.019 0.700 0.003

0.355 4.26 0.002 0.000 0.001 0.000 0.857 0.046 0.379 0.915 0.021 0.035

Table 1: Results of the Belsley Collinearity Diagnostics test

peated measures basically means a situation where multiple samples in the model
come from the same source. In this case the problem is very real as the model
uses data where there are multiple EEG segments from the same subject. Assigning
subject as a mixed e�ect also solved this problem.

3.5.4 Formulation of the statistical model

First step of formulating the linear mixed e�ect model was to assert that none of
the �xed e�ect variables were linearly correlated. The absence of collinearity was
tested using the Belsley Collinearity Diagnostics test [69]. Results of this test can
be found in table 1. All condition indices produced values below 15 indicating that
no serious collinearity could be detected.

The resulting linear mixed e�ect model had a total of 10 �xed e�ects and 2 mixed
e�ects. Abbreviation used for the variables have been collected in table 2. The
resulting equation for the LM-model in R syntax is written in equation 6.

y ∼ RLU + CON + SKE +KUR + ENT + EDE

+PSA+ SSA+ FDU + SDC + (1|SUB) + (1|IMG) (6)

Instead of restricted maximum likelihood (REML) the regular maximum likelihood
(ML) was used when calculating the model coe�cients. Using ML instead of REML
enabled the use of likelihood ratio test when determining the statistical signi�cance
of the model.

After the model had been constructed the residual of the model were studied in
order to satisfy the other assumptions included in LM-models. Assumptions were
tested on EEG channels O1, Oz and O2 as these electrode locations correspond to
the visual cortex. As stated in section 2.4.2 this region should provide the best �t for
the LM-model as they are closest to the generation site of visually evoked potentials
[70] [71]. Figure 19 displays the residuals of the model as a scatter plot for these
three electrode locations. From �gure 19 it appears that the relationship between
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Abbrevation Variable
Visual
RLU Relative luminance
CON Contrast
KUR Kurtosis
SKE Skewness
ENT Entropy
EDE Edge density
Oculomotor
PSA Preceding saccade amplitude
SSA Succeeding saccade amplitude
FDU Fixation duration
SDC Saccade direction change
Mixed-e�ects
SUB Subject
IMG Image

Table 2: Variables used in the LMM equation
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the visual response and the predicting �xed e�ect is linear as residuals do not form
a curve or other shape that would indicate otherwise. Same �gure also indicates
that the variance is roughly equal over the �tted values and the �xed-e�ect can thus
be considered homoskedastic. Figure 20 contains the distribution of the residuals as
histograms. According to the �gure the residuals appear to be normally distributed
satisfying the condition of residual gaussianity.

Figure 19: Residual plot of the LM-model in three occipital channels

3.5.5 Reduction of the model

As described in section 2.5, various information criterions (such as the AIC or BIC)
can be used to assess how well data �ts the assigned model. Using information crite-
rions it is also possible to prune the model down by removing badly �tting variables.
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Figure 20: Histograms of residuals in three occipital channels

In this experiment the model reduction was performed using the Akaike Information
Criterion. The process was implemented using AIC to conduct a backward selection
of features. Reduction was started by �rst calculating the AIC score for the full
model. In the next step AIC score was calculated to models where, in turn, each of
the �xed e�ects were removed. The variable which was responsible for the largest
drop in the AIC score was removed from the model and the process was repeated to
the new model. This method was iterated until only one variable remained in the
model. Again the process was calculated for the three occipital channels and the
resulting model reduction curve can be seen in �gure 21.

Figure 21: AIC-based stepwise model reduction for channels O1, Oz and O2
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From the results it seemed plausible that oculomotor variables and the low-level
visual variables should be separated into individual models. According to the model
reduction oculomotor and visual variables were analysed as separate models. Fur-
thermore, the edge density variable (EDE) was removed from the visual model as it
received poor scoring in all three electrode locations. The resulting LMM equations
in R syntax are in equations 7 and 8.

y ∼ RLU + CON + SKE +KUR + ENT + (1|SUB) + (1|IMG) (7)

y ∼ FDU + PSA+ SSA+ SDC + (1|SUB) + (1|IMG) (8)

3.5.6 Statistical signi�cance testing

To quantify the reliability of the generated model a likelihood-ratio test (LRT) was
used. Testing was implemented as a two-step process and performed on both of the
models formed on the basis of the model reduction. In the �rst step the model of
each channel was compared to a model consisting only of the mixed-e�ects. The
reduced model is referred to as null model in this context. The three hypothesis to be
tested were labeled H0 (null model) H1.1 (visual input model) and H1.2 (oculomotor
model). In the second step another, within-model LRT, was computed for electrode
locations which were found signi�cant in the �rst step. In this second test the
signi�cances of the di�erent �xed-e�ect variables inside the model were computed.
LRT is described in section 2.5 and the testing was performed using the R lmerTest
library [72]. The tested hypotheses are listed below.

• H0: Low-level visual and oculomotor variables do not modulate the amplitude
of early visual potentials

• H1.1: Low-level visual variables modulate the amplitude of early visual poten-
tials

• H1.2: Oculomotor variables modulate the amplitude of early visual potentials

The e�ect of top-down processing was investigated by adding the stimulus condition
in both of the models as a �xed-e�ect variable. The e�ect of stimulus condition was
then tested by comparing these models to visual input and oculomotor models. The
new models containing the top-down component were labeled as H2.1 (for the visual
input model) and H2.2 (for the oculomotor model).

• H2.1: Low-level visual variables and the stimulus condition modulate the am-
plitude of early visual potentials

• H2.2: Oculomotor variables and the stimulus condition modulate the ampli-
tude of early visual potentials
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4 Results

The LMM analysis produced two separate models explaining the generation of the
early visual potential. First model explained the amplitude of the response in terms
of visual input and the second model in terms of oculomotor variables. With each
model the top-down e�ect of stimulus condition (natural vs scrambled) was also
investigated as an additional likelihood ratio test.

The statistical signi�cance of the visual model in all of the electrode locations is
presented in �gure 22. Statistical signi�cances were obtained by comparing the null
model and the actual model using LRT. Most of the signi�cant electrode locations
were near the occipital lobe with few exceptions in the right tempo-frontal region.
These exceptions do not �t the theory and considering their location are most likely
caused by some residual eye movement artifacts in the data. It is also possible that
the result was caused by minor heteroscedasticity of the data which can produce
false positives in linear regression models [73]. Further analysis of the statistically
signi�cant tempo-frontal electrode group was thus omitted.

Model coe�cients for the six strongly signi�cant (p<0.01) channels around the occip-
ital and parietal lobes are plotted in �gure 23. These electrode locations correspond
to the visual cortex where the e�ect should be predominant due to the suitable
alignment of the signal sources. Results of the within-model LRT are also color-
coded into the �gure indicating strong and very strong presumptions against the
null hypothesis. The exact values for the visual input model can also be found in
appendix A.

In the visual input model �xed-e�ect coe�cients for the relative luminance and
kurtosis had a positive correlation with the dependent variable. In other words,
the model indicates that an increase in either of these values will result in a larger
amplitude for the early visual potential response. Out of the two, the e�ect of rel-
ative luminance was larger and more consistent over the locations. Skewness of the
fovea patch had a positive correlation with the early visual potential amplitude in
all locations except PO8 where the coe�cient was slightly negative. The entropy
�xed-e�ect coe�cient was negative in all of the channel locations. The �xed-e�ect
for contrast had positive correlation in both left and right sides of the occipital
and parieto-occipital electrode sites. In the occipital midline (Oz and Iz), however,
the coe�cient was negative. The results of the within-model LRT test over the
channels of the left hemisphere (locations O1 and PO7) indicated that both relative
luminance and kurtosis had strong statistical signi�cance. On the right hemisphere
(O2 and PO8) only entropy had strong signi�cance. On the midline both relative
luminance and entropy were statistically signi�cant. In the light of these results the
H0 hypothesis for the visual model could be discarded. The early visual potential
is clearly modulated by low-level visual features so the alternative hypothesis H1.1
could be accepted. The resulting model describes how various low-level visual fea-
tures of the observed region in a natural stimuli contribute to the generation of the
early visual response.
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Figure 22: Results of LRT for visual input model

Second model explained the response amplitude as a combination of oculomotor
variables. Results of the LRT comparing null model to the oculomotor model are in
�gure 24.

Model coe�cients of six of the most strongly signi�cant channels are plotted in
�gure 25. As with the visual input model the strong and very strong signi�cances
are indicated with di�erent colors. The exact values for the oculomotor model can
also be found in appendix B.

In the oculomotor models of the six electrode locations succeeding saccade ampli-
tude, saccade direction change and �xation duration had negative correlation to
early visual potential amplitude. Conversely the amplitude of the preceding sac-
cade had a positive correlation. In all 6 electrode sites saccade direction change and
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Figure 23: Model coe�cients for visual input model

preceding saccade amplitude �xed e�ects were statistically signi�cant according the
the within-model LRT.

The e�ect of stimulus condition on the amplitude of the early visual potential was
examined by inserting stimulus condition as a �xed-e�ect variable into both models.
Using the same six channels for visual input and oculomotor models yielded no
statistically signi�cant results in the test. It would appear that stimulus condition
does not modulate the amplitude and hypotheses H2.1 and H2.2 regarding the top-
down e�ect could be discarded.
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Figure 24: Results of LRT for oculomotor model
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Figure 25: Model coe�cients for oculomotor model
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5 Summary and discussion

5.1 Evaluation of the experimental design and implementa-

tion

The experimental design and implementation of the experiment worked well. During
the recording and analysis stage there were no unexpected factors which would have
hindered the reliability of the results. The only problem with the setup was the long
duration of each recording session, therefore, most subjects were visibly fatigued
after the experiment. The long duration resulted from the need to obtain multiple
repetitions for statistically reliable analysis of the collected data. Furthermore,
setting up the recording apparatus and preparing the subject took a considerable
amount of time. In this experiment the e�ect of fatigue, however, was controlled by
dividing the experiment into �ve blocks of equal length and reversing presentation
order of the blocks for half of the subjects. With this counterbalancing the e�ect of
fatigue should not have a�ected the analysis.

Implementation of multiple registration methods in the experiment was success-
ful. Temporal synchronicity between the two recording methodologies was achieved
through external triggering of the two data streams by a computer controlling the
displaying of stimulus images. Analysis methods enabled the extraction of EEG
data segments synchronized to the �xation onsets of the eye tracking coordinate
data. The implemented eye tracker calibration quality validation test could be used
to quantify the calibration accuracy and precision in various locations of the cali-
bration area. Results of this validation test could then be utilized to remove data
with poor accuracy regarding eye movements thus improving the reliability of the
statistical analysis. This method also enabled the selective removal of partially cor-
rupted eye movement data, thus saving more data for later processing steps than
traditional rejection methods.

5.2 Evaluation of results

In the statistical analysis a linear mixed-e�ect model was generated to explain the
recorded early visual potential amplitude of the processed EEG segments as a func-
tion of low-level visual and oculomotor parameters. According to AIC-based model
reduction analysis a single model could not su�ciently explain both visual and ocu-
lomotor variables so the model was split into two separate models. Contrary to
existing theory the model reduction analysis suggests that the interaction between
visual input and oculomotor variables was minimal on the occipital electrode site.
This observation seems plausible when comparing the regions of statistical signi�-
cance in both models. In both models the subject and the observed stimulus image
were assigned as mixed-e�ect variables. Both models were tested against a null
model hypothesis using the LRT method in order to determine electrode sites where
the model was statistically signi�cant. In addition another within-model LRT was



46

computed for the six most signi�cant electrode locations in both model types to
discover the statistically signi�cant coe�cients.

5.2.1 Visual model

The visual input model was signi�cant in all of the occipital electrode sites which
coincided with the existing theoretical framework. The model, however, was also
signi�cant in tempo-frontal electrode sites which could not be explained by earlier
research. The tempo-frontal electrodes were thus assumed to be caused by residual
artifacts or heteroscedasticity in the data.

In the six channel locations closest to the visual cortex the relative luminance was
found to have positive correlation with the response amplitude. This �nding coin-
cides with earlier literature [47] which also reports a positive modulation of the P1
response by stimulus luminance. Earlier research [74] also reports that contrast has
been found to correlate positively with the amplitude of the early visual responses.
The positive modulation of contrast was observed in four of the six electrode loca-
tions where only the midline electrodes (Oz and Iz) had an opposite e�ect.

The e�ect of kurtosis and skewness of the perceived stimuli on the early visual
response has not been researched in the past. According to results found in this
experiment the skewness produced no statistically signi�cant modulations on any of
the six locations. Likewise kurtosis was found to be signi�cant in only two of the
locations. It is thus plausible that third and fourth statistical central moments do not
have signi�cant contributions to the generation of the early visual potential.

No earlier ERP research has focused on the e�ect of local entropy in naturalistic
stimuli but earlier eye-tracking study [75] suggests that entropy plays a role in
bottom-up visual attention. In this experiment the entropy of the visual input had
a negative correlation in all of the electrode sites and was statistically signi�cant
in �ve sites. This result is perplexing as both contrast and entropy describe the
complexity of the image but their correlations in the LM-model are opposite.

5.2.2 Oculomotor model

The oculomotor model produced con�icting results. The model was signi�cant in a
much larger quantity of channels. The most signi�cant electrode cluster was focused
around the central and parietal regions of the scalp. Examining the coe�cients
for the oculomotor model it appeared that the largest overall contribution to the
response amplitude was caused by the amplitude of the preceding saccade (PSA).
The PSA �xed-e�ect variable is signi�cant in all of the six locations and has the
largest magnitude of all the model coe�cients.

The two primary signal generators for saccade related potentials are the lambda
response and the saccadic spike potential. Lambda response originates from the
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posterior-parietal region where as saccadic spike potential is localized around the
frontal eye-�elds and radiates towards the parietal and central regions. According
to the electrode locations of the model it would appear that the model is more
dependent on the saccadic spike potential. The SP, however, peaks around the
saccade onset where as the analyzed time-window starts 50 ms after the �xation
onset. Purely based on the temporal characteristics it is more plausible that the
origin of the response would be the lambda response.

Taking into account the relatively large spread of the statistically signi�cant elec-
trodes and the centralized location of the strongest result it is obvious the model
does not �t the data perfectly. Most likely the oculomotor model does model the
underlying saccade related potentials but is either lacking �xed-e�ects or the depen-
dent variable is selected poorly. It is plausible that the selected time window does
not fully capture the saccade related potential. The model could theoretically be
improved by using localized sources as the dependent variable instead of the elec-
trodes. Tuning of the model through source localization is brie�y discussed in section
6 while mapping the possible avenues of future research. It would also be desirable
to attempt integration with the visual model as particularly the lambda response
has been shown to interact with the parameters of the visual input [76].

5.2.3 Top-down vs. bottom-up processing

In this experiment the data indicated no evidence that early processing of the stimuli
on the visual cortex would be a�ected by top-down processing. The presented results
are compatible with the theory that early time-windows are primarily a�ected by
visual and oculomotor features. Majority of the earlier research also reports top-
down modulation only in later ERP components [77] [78]. The observed results
should not, however, be interpreted as solid evidence for the absence of top-down
in�uence to early visually evoked potentials. The e�ect of top-down processing in
early visual attention has been reported in the past [79] [80] [81].

5.3 Global normalization

Results of this experiment indicate that even though all of the stimulus images were
globally normalized, large local di�erences still exist within each image. In other
words: the low-level visual input in fovea sized patches is di�erent depending on
which region of the image the subject was �xating in. Due to these local di�erences
the amplitudes of early visual EEG responses (C1, P1, lambda) di�er between vari-
ous regions of the stimulus. In the light of these results its reasonable to claim that
global normalization is not an acceptable normalization method to control stimuli
when investigating visual responses with EEG or MEG. The amplitude modulation
caused by local variation inside the stimulus image must be accounted for by some
other method. One possible method is to model the e�ect of the visual input using
a LMM-based modeling approach. Analysis of EEG should also move away from
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using large group averages [82] and focus more on the single-trial level of the data.
This shift has already begun and there are tools to support this approach [83].
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6 Future research

During the experiment a large amount of physiological data was collected using
three di�erent registration methodologies. This thesis covers the collection of all
of the datasets but only the analysis of eye movement and EEG recordings. The
entire data set could be used to further re�ne the current analysis method or it can
be used to develop entirely new analysis protocols. This section aims to map out
the possible courses for future research within the boundaries of this experiment.
Application of the experimental paradigm to other recording methodologies is also
brie�y discussed.

From all the collected neural data only EEG was analyzed with the linear mixed
model. The accuracy of the current method can be increased by �rst performing a
source localization for the recorded EEG data and then substituting those sources
into the LM model as dependent variables. In source localization a mathematical
model is used to estimate the current density responsible for the recorded potential
on the scalp. The di�culty of estimating neural signal generators is more commonly
known as the inverse problem. This approach can be further improve by using MEG
data along with the EEG data for source localization. Due to the higher sensitivity
towards deep sources and the higher amount of sensors in the MEG recording, the
collected data can be used to complement the EEG recording when performing
source localization. With proper localization the model gains more robustness and
accuracy as it then models the estimated physiological signal generator and not just
the recorded potentials from the scalp. Source localization is not a trivial procedure
and one of the problems that must be solved is the selection of the source modeling
method. The two classes of source models are the dipole model and the source
distribution model. Out of these two classes the dipole model is parametric and the
distributed sources a non-parametric method for localization. Source localization
could be improved as well by acquiring anatomical MR images for each subject.
With anatomical MR images the spatial alignment of sources can be calculated
more accurately for each subject than when using an average template [84].

In the current statistical analysis only one dependent variable was used. This vari-
able was the temporal average of each processed EEG segment from 50 to 100 ms
after the �xation-onset. In the future research it would be interesting to break this
time-window into multiple dependent variables in and investigate the e�ects on low-
level variables and top-down factors in di�erent overlapping latencies. This approach
seems logical as the current dependent variable is known to contain partially over-
lapping components from at least three di�erent responses (C1, P1 and lambda).
Performing the analysis again with a combination of di�erent time windows could
yield more information about the relationship between low-level variables and the
response amplitude.

Another interesting topic of future research is the use of the same experimental de-
sign with another recording methodology. It might be bene�cial to run the same
experiment using a functional magnetic resonance imaging (fMRI) for data acqui-



50

sition. fMRI is a brain imaging technique which is based on recording the �ow of
oxygenated blood (known as BOLD response) to various parts of the brain and the
central nervous system. The increased in load in certain parts of the brain (like the
occipital lobe in case of visual stimulus) can be detected as an increase of blood �ow
into that region. Thus fMRI enables an indirect way of measuring brain activity as
a physiological response rather than an electric one. With some fMRI devices it is
also possible to record EEG concurrently with the fMRI [85] which would produce
synchronized data from both the hemodynamic response and the electrical activity
of the brain.
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A Visual model coe�cients

Estimate Std. Error df t value Pr(>|t|)
Iz (Intercept) 2.71 0.30 27.12 9.03 0.00

RLU 0.19 0.10 2439.00 1.89 0.06
CON -0.05 0.06 1202.11 -0.83 0.41
SKE 0.06 0.10 6625.49 0.54 0.59
KUR 0.10 0.06 12743.52 1.53 0.13
ENT -0.10 0.06 14196.61 -1.65 0.10

O1 (Intercept) 3.34 0.35 27.45 9.50 0.00
RLU 0.29 0.13 2928.73 2.28 0.02
CON 0.05 0.07 1488.48 0.71 0.48
SKE 0.13 0.13 7837.67 1.01 0.31
KUR 0.18 0.08 13846.89 2.24 0.02
ENT -0.12 0.07 15063.52 -1.62 0.10

O2 (Intercept) 3.69 0.33 28.66 11.28 0.00
RLU 0.16 0.13 3619.07 1.29 0.20
CON 0.03 0.07 1911.15 0.45 0.66
SKE 0.04 0.13 9329.79 0.28 0.78
KUR 0.13 0.08 14975.95 1.59 0.11
ENT -0.18 0.07 15932.07 -2.40 0.02

Oz (Intercept) 4.11 0.37 28.25 10.97 0.00
RLU 0.23 0.13 3482.22 1.69 0.09
CON -0.03 0.08 1825.14 -0.45 0.66
SKE 0.06 0.13 9046.57 0.41 0.68
KUR 0.14 0.08 14776.83 1.64 0.10
ENT -0.15 0.08 15779.51 -1.94 0.05

PO7 (Intercept) 1.85 0.26 27.39 7.23 0.00
RLU 0.26 0.11 2328.74 2.27 0.02
CON 0.15 0.06 1138.59 2.36 0.02
SKE 0.17 0.11 6326.12 1.52 0.13
KUR 0.21 0.07 12439.76 2.85 0.00
ENT -0.10 0.07 13960.73 -1.51 0.13

PO8 (Intercept) 2.22 0.30 27.46 7.41 0.00
RLU 0.10 0.11 2899.51 0.93 0.35
CON 0.14 0.06 1473.34 2.22 0.03
SKE -0.01 0.11 7798.35 -0.05 0.96
KUR 0.10 0.07 13819.59 1.39 0.16
ENT -0.16 0.07 15039.37 -2.42 0.02
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B Oculomotor model coe�cients

Estimate Std. Error df t value Pr(>|t|)
CP2 (Intercept) 0.12 0.28 26.19 0.41 0.68

FDU -0.06 0.07 18517.25 -0.92 0.36
SDC -0.15 0.07 18819.59 -2.33 0.02
PSA 0.48 0.07 18763.95 7.26 0.00
SSA -0.08 0.06 18817.26 -1.19 0.24

Fpz (Intercept) 1.80 0.29 27.33 6.24 0.00
FDU -0.15 0.06 18659.30 -2.79 0.01
SDC -0.25 0.06 18812.29 -4.55 0.00
PSA 0.29 0.06 18802.10 5.20 0.00
SSA -0.01 0.05 18814.34 -0.23 0.82

P1 (Intercept) 1.36 0.35 27.65 3.90 0.00
FDU -0.11 0.07 18621.36 -1.70 0.09
SDC -0.21 0.07 18814.15 -3.08 0.00
PSA 0.52 0.07 18791.77 7.83 0.00
SSA -0.05 0.07 18815.35 -0.80 0.43

P2 (Intercept) 1.54 0.40 27.65 3.85 0.00
FDU -0.12 0.07 18694.37 -1.84 0.07
SDC -0.22 0.07 18808.13 -3.35 0.00
PSA 0.56 0.07 18808.48 8.47 0.00
SSA -0.05 0.07 18811.74 -0.79 0.43

P4 (Intercept) 1.42 0.40 27.37 3.57 0.00
FDU -0.10 0.06 18687.05 -1.66 0.10
SDC -0.13 0.06 18807.62 -2.07 0.04
PSA 0.42 0.06 18805.41 6.77 0.00
SSA -0.05 0.06 18811.30 -0.79 0.43

Pz (Intercept) 1.43 0.38 27.78 3.74 0.00
FDU -0.13 0.07 18673.66 -1.81 0.07
SDC -0.25 0.07 18810.75 -3.54 0.00
PSA 0.60 0.07 18804.89 8.70 0.00
SSA -0.06 0.07 18813.53 -0.84 0.40
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