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1. Introduction 

Theory based analysis, experiments and mathematical modeling are the three 
methodologies to push forward the development in chemical engineering, and most likely 
in other scientific fields. In present, the applications of mathematical modeling are 
significantly critical in chemical engineering research, equipment design and process 
optimization. Mathematical modeling is, by name, a mathematical description or 
abstraction of the realistic world. However this description in all conditions deviates more 
or less from the reality and has always been a compromise between the feasibility and 
accuracy. In the past decades, the computational power has developed rapidly. For this 
reason, more complicated models can be utilized to simulate the reality with limited errors, 
which provides great benefits for the chemical engineers. 

For the implementation of modeling and simulation, the use of efficient numerical 
algorithms is usually needed to solve the mathematical equations. Two classes of methods 
are commonly applied as the numerical algorithms in the modeling tasks of chemical 
engineering. One class of methods is based on the discretization of original governing 
model equations. The other class is the weighted residual methods, containing a number 
of different sub-methods. The main subject of this thesis is the study of novel applications 
of the moment based weighted residual method (or simplified as “the moment method”), as 
one sub-method in the class of weighted residual methods. In addition, to demonstrate 
different applications of the classical mass transfer and reaction models is another 
important topic discussed in this thesis. 

Two publications (Alopaeus et al., 2008; Roininen et al., 2010) are considered as the 
starting point of this thesis. Alopaeus et al., presented the procedure to solve a dynamic 
model for plug flow reactor with the moment method. Roininen et al., applied the moment 
method to solve the dynamic model with axial dispersion term. In this thesis, the 
applications of the moment method are developed further as presented in the application 
section and in the attached publications. 

Four publications are included in this thesis, namely [1]-[4]. Publication [1] discusses the 
implementation details of the moment method to solve the chromatographic general rate 
model which is characterized as coupled partial differential equations. Publication [2] 
provides a novel method for parameter fittings according to the moments of the 
chromatographic effluent curves. Publication [3] presents the procedures to reduce the 
computational load when solving the concentration profiles in anisotropic biomass particles 
by: 1) to simplify the three dimensional model into one dimensional; 2) to solve the model 
with high order moment method, instead of the commonly used low order finite difference 
method. In Publication [4], a model is developed to describe the mass transfer and 
degradation of hemicellulose in flow-through hot water extraction processes. The moment 
method is applied as an efficient numerical tool to solve the model. 
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2. Mass transfer models in chemical engineering 

Chemical engineering a hundred years ago was mainly considered as an industry, 
consisting of a number of independent product related techniques. During that period, the 
research and study were in principle based on these techniques, such as fertilizer 
manufacture process, sugar and salt production techniques etc. From 1920s to 1950s with 
the accumulated experience and knowledge, it was recognized that different techniques 
and processes in chemical engineering can be divided into a number of individual unit 
operations. The typical unit operations include, e.g. evaporation, filtration, distillation, 
extraction, heating, cooling, absorption, crystallization etc. Since 1950s with the study 
proceeded further in unit operations, it was found that similarities in different unit 
operations existed. For example heating and cooling are related to heat transfer; 
absorption and extraction can be characterized as mass transfer process; evaporation and 
distillation are the combination of heat transfer and mass transfer etc. (Chen & Zhang, 
2001)  

R.B.Bird, S.E.Stewart, E.N.Lightfoot published the book named “Transport Phenomena” 
(Bird et al., 1960), which was considered as a milestone in the development of chemical 
engineering field. In this book, the basic theories of momentum transfer, heat transfer and 
mass transfer were systematically introduced for the first time. Since then, the transfer 
theories became one of the most important research topics in chemical engineering field. 
However at 1960s, the computational tools available to solve the transfer problems were 
still limited. In recent decades with the rapid development in computational power and 
numerical methods, chemical engineers and researchers obtained a lot more opportunities 
to solve the chemical engineering problems based on the transfer theories. 

Since mass transfer is the main focus of this thesis, the general formulations of the mass 
transfer models are discussed in detail in this section. Several classical models to describe 
diffusion and convection are introduced as well. 

2.1 Mass transfer models – general formulations 

In this part, the general formulations of the mass transfer models and brief derivation 
procedures (Wang, 2004; Chen & Zhang 2001) are presented and discussed. In the case 
where mass transfer proceeds with unsteady state conditions in a multi-component system 
with the fluid phase flowing in all directions, partial differential equations are needed to 
describe the mass transfer process. Here assumption is made that the mass transfer of 
solute A proceeds in solution B. The derivations of model equations can be formulated 
according to molar mass concentration or mass concentration. The former is used to 
present the model derivations in this section, since the models in the publications included 
in this thesis are mainly with molar mass concentration. One micro element of rectangular 
shape in the fluid phase is employed in the derivation as shown in Figure 2.1.  
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Figure 2.1 Layout of differential control volume  

If solute A (mol/L3) is the study objective, according to the mass conservation law we have:  

“mass transfer input rate of A into the element” + “mass generation rate of A in the element 
by reactions” = “mass transfer output rate of A out of the element” + “accumulation rate of 
A in the element”  

The statement can be written in a simplified notion as: 

Output – Input + Accumulation – Generation = 0    (2.1)  

This is the expression of mass conservation law. In the followings, each term in the 
expression is analyzed in order to derive the general formulations of the mass transfer 
model. 

2.1.1 Mass transfer rate  

In point ),,( zyx , it is assumed that the fluid flow rate is u  (molar average velocity). The 
flow rates in each dimension of the Cartesian coordinates is zyx uuu ,, . The fluxes due to 

the flow of fluid or convection in all the three directions are zAyAxA uCuCuC ,, . The molar 

 

dz 

dy 

dx 

x 
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flux relative to the molar average velocity due to diffusion in all the three directions are 

zAyAxA jjj ,, .  

The input rate of solute A along the x  direction from the left side area is: 

dydzjuCInput xAxAx )( ,      (2.2) 

The output rate of solute A along the x  direction from the right side area is: 

dydzdx
x

juC
juCOutput xAxA

xAxAx

)(
)( ,

,     (2.3) 

The difference of output and input rate is: 

dxdydz
x

j
x
uC

InputOutput xAxA
x

,)(
)(     (2.4) 

Similarly the differences of output and input rate along zy, directions are: 

dxdydz
y

j
y
uC

InputOutput yAyA
y

,)(
)(     (2.5) 

dxdydz
z

j
z
uCInputOutput zAzA

z
,)()(     (2.6) 

The total difference of output and input rate in all three directions is: 

dxdydz
z

j
y

j
x

j
z
uC

y
uC

x
uC

InputOutput zAyAxAzAyAxA ,,,)()()(
 (2.7) 

2.1.2 Accumulation rate 

The concentration of solute A is AC , and ),,,( tzyxfCA . The number of moles of A at an 
instant moment in the micro element is: 

dxdydzCN AA       (2.8) 

The accumulation rate of A is: 

dxdydz
t

C
t

N AA       (2.9) 
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2.1.3 Generation rate 

If reaction exists in the system, the reaction rate in the micro element is Ar . When A is 
product, Ar is positive; when A is reactant, Ar is negative. The generation rate of A is: 

dxdydzrRateGeneration A                         (2.10) 

2.1.4 Mass transfer differential models  

When inserting Eq.(2.7), (2.9) and (2.10) into Eq.(2.1), the equation becomes: 

0)()()( ,,,
A

AzAyAxAzAyAxA r
t

C
z

j
y

j
x

j
z
uC

y
uC

x
uC

                     (2.11) 

Eq.(2.11) is transformed as: 

0,,,
A

zAyAxAAzyx
A r

z
j

y
j

x
j

Dt
DC

z
u

y
u

x
uC                              (2.12) 

Where the total derivative of concentration is defined as: 

z
Cu

y
Cu

x
Cu

t
C

Dt
DC A

z
A

y
A

x
AA                         (2.13) 

According to Fick’s law: 

x
CDj A

ABAx                            (2.14a) 

y
CDj A

ABAy                           (2.14b) 

z
C

Dj A
ABAz                             (2.14c) 

Eq. (2.12) is rearranged as: 

A
AAA

AB
Azyx

A r
z
C

y
C

x
CD

Dt
DC

z
u

y
u

x
uC 2

2

2

2

2

2

                      (2.15) 

The vector notation of Eq.(2.15) is: 
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AAAB
A

A rCD
Dt

DCuC 2)(                                             (2.16) 

Eq. (2.16) is the general mass transfer differential model. 

Similar as Eq.(2.15), the model equation in spherical coordinate is: 

A
AAA

AB
AAA

r
A rC

r
C

rr
Cr

rr
DC

r
uC

r
u

r
Cu

t
C

2

2

222
2

2 sin
1sin

sin
11

sin
           

                         (2.17) 

t is time, r is radius coordinate,  is angle of position, is colatitude, uuur ,, are the 

components of the mass average speed in spherical coordinates ),,(r . 

The one dimensional mass transfer models applied in the publications of this thesis were 
modified from the general mass transfer differential models as in Eq.(2.15) and (2.17).  

2.2 Estimation of diffusion coefficients  

In the mass transfer models, diffusion coefficients need to be predicted with accuracy. 
Three methods are introduced in the following for estimating the diffusion coefficients.  

2.2.1 Stokes-Einstein theory 

The Stokes-Einstein equation was firstly published in (Einstein, 1905) on the theory of 
Brownian motion. The equation is mainly used for the diffusion of spherical particles or 
molecular in diluted solution with certain dynamic viscosity at absolute temperature T. 

AB
AB r

kTD
6

 

Ar : Molecular radius of solute A, m 

B : Dynamic viscosity of solvent B, in cP 
k : Boltzmann constant  
T : Temperature in Kelvin 
 
The value of this theory depicts the relationship between the diffusion coefficient ABD and 
the dynamic viscosity B , which provides the theoretical foundation for other 
complementary empirical formulations.  
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2.2.2 Wilke-Chang semi-empirical formulation 

Wilke-Chang formulation (Wilke & Chang, 1955) is as: 

6.0
2/112 )(104.7

bAB
BAB V

kTMD  

BM : Molar mass of solvent B 
: Associative factor of solvent B (e.g. 6.2water , 5.1ethanol , 0.1 for non- 

      associative solvent) 

bAV : Molecular volume of solute A at the boiling point under standard atmosphere pressure  
 
For non-electrolyte diluted solution and small molecular, the deviation between the 
predicted and measured diffusion coefficients is within approximately 13.0% (Chen & 
Zhang, 2001). 

2.2.3 Scheibel semi-empirical formulation 

Another semi-empirical formulation to estimate the diffusion coefficient is (Liong et al., 
1991):  

3/1

3/2
12 3

1102.8
bABbA

bB
AB V

T
V
V

D  

bAV : Molecular volume of solute A at the boiling point under standard atmosphere pressure  

bBV : Molecular volume of solvent B at the boiling point under standard atmosphere 
       pressure 

This formulation above is applicable also for diluted solution. In some cases, it appears to 
be more exact than the preceding one; but for vA/vB ≤ (1 - 2), the deviation from 
experiment becomes important. The Scheibel method typically yields estimates with errors 
of < 20% for diffusion coefficients in organic solvents (Thibodeaux & Mackay, 2011). 

2.3 Mass transfer models across phase boundaries 

The estimation of mass flux across the phase boundaries is critical in the applications of 
mass transfer models. Assumptions are usually made to construct descriptive mathematic 
models for the mass flux. Three representative models, Two film model, Higbie model and 
Danckwerts model are discussed in this section. 
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1) Two film model 

Two film theory, also referred as steady film theory was proposed in (Lewis & Whitman, 
1924). This was the first model describing the convection mass transfer and has been 
applied widely till now as the standard model for estimating the mass and heat transfer 
fluxes across phase boundaries. 

The most basic assumption is that two very thin films locate on both sides of the interface 
of two phases. Mass transfer resistance exists only in the two adjacent thin films. The 
turbulent flow pattern in the bulk phases disappears when it approaches to the interface. 
The molecular diffusion through the two films becomes the dominant manner for mass 
transfer. The interphase between the films is in thermodynamic equilibrium. No 
accumulation of mass or energy is in the films. Figure 2.2 shows a schematic 
representation of the two film model.  

 

Figure 2.2 Schematic layout of the two film model (Lewis & Whitman, 1924)  

Two film model provides the theoretical foundation for the theory of mass transfer. 
However, the simplified mass transfer mechanism results in sometimes unexpected errors 
when describing fast mass transfer process in industrial applications, e.g. highly efficient 
packing tower (Taylor & Krishna, 1993). 

2) Higbie penetration model 

The Higbie penetration model was proposed by Higbie (Higbie, 1935) to illustrate the 
transfer mechanism of solute from the liquid phase through the interface. The model states 
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that diffusion is in unsteady state and the molecules of the solute are in constant random 
motion. The clusters of these molecules arrive at the interface, remaining there for a fixed 
period of time. Some of the molecules penetrate into the liquid phase. Some of them mix 
back into the bulk of the gas phase (Hines & Maddox, 1985). Figure 2.3 shows the 
schematic layout of the Higbie penetration model. 

Gas
LiquidCi

CA0=0

y=0
 

Figure 2.3 Schematic layout of the Higbie penetration model  

The formulation to calculate the convection mass transfer coefficient is derived based on 
the Fick’s second law. The derivation procedure is found in (Higbie, 1935). The formulation 
is: 

c

AB
cm

Dk 2  

cmk : the convection mass transfer coefficient 

ABD : diffusion coefficient of solute A in solvant B 

c : remaining time of the solute at the interface 
 
Danckwerts modified the Higbie penetration theory. This model is similar to Higbie model, 
except that molecules at the interface remain for different random periods of time or for 
different age (Danckwerts, 1951).  
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3. Numerical methods for mass transfer models 

3.1 Introduction of numerical methods 

Most mass transfer models, as well as other chemical engineering models include 
complicated partial differential equations with multiple dimensions. Analytical solutions are 
available only in very limited cases for these models. Therefore a number of numerical 
methods have been developed in order to solve the models (Rice and Do, 1995).  

In this section, the most traditional computational techniques based on discretization are 
firstly introduced. The underlining idea of these techniques, as shown in Figure 3.1, is to 
discretize the governing partial differential equations into a system of algebraic equations, 
which are solved consequently. The most commonly used techniques include the finite 
difference, finite element, finite volume and spectral methods (Fletcher, 1991). As the two 
most important and most frequently used methods, the differences and similarities of finite 
difference and finite volume methods are discussed. In addition, the features of higher 
order and low order numerical methods are presented briefly by a number of 
representative examples. 

GOVERNING 
PARTIAL DIFF. EQS. 

AND B.C.’S
DISCRETIZATION

SYSTEM OF 
ALGBRAIC 

EQUATIONS
EQUATION SOLVER

APPROXIMATE 
SOLUTION. 

u(x,y,z,t) etc.

 

Figure 3.1. Overview of the computational solution procedure (Fletcher, 1991) 

Weighted residual methods, different in nature from the discretization methods, are 
presented also in this section. The fundamentals of weighted residual methods are that it 
assumes the existence of an approximate solution. The methods can be also described by 
Figure 3.1, if the second box “discretization” is replaced by “parameterization with trial 
functions”. Various methods belong to this category are discussed such as subdomain 
method, least squares method, collocation method, Galerkin method, moment method.  

3.2 Finite Difference Method  

To discretize the governing partial differential equations to a system of algebraic equations 
or ordinary differential equations, finite difference method is the most widely applied 
technique with probably as long history as calculus itself. Detailed discussions of the finite 
difference methods can be found in (Fletcher, 1991; Finlayson, 1980; Wang, 2004; 
Ferziger & Peric, 2002). Equation (3.1) is the definition of a derivative, which reflects also 
the foundation of finite difference method. 

x
xxx

x x

)()(lim
0

(3.1)
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One example of a single Taylor series expansions with three expansion terms as in Eq 
(3.2) (Fletcher, 1991),  

)(
2

3
2

22

1 xO
x

x
x

x
ii

ii     (3.2) 

where )( 3xO represents the error of the approximation. We may write two discretization 
based approximation method of the first spatial derivative: 

Forward difference: 

xx
ii

i

1       (3.3) 

Backward difference: 

xx
ii

i

1       (3.4) 

From a more general methodical technique for constructing difference approximations in 
Eq. (3.5) (Fletcher, 1991), 

)(11
m

iii
i

xOcba
x

     (3.5) 

where a, b and c are to be determined and the term )( mxO will indicate the accuracy of 
the resulting approximation. m is three and related to the number of terms on the right 
hand side of Eq.(3.5). We may write the central difference method to approximate the first 
spatial derivative and the approximation of the second spatial derivative as: 

Central difference: 

xx
ii

i 2
11       (3.6) 

The second spatial derivative is: 

2
11

2

2 2
xdx

d iii

i

      (3.7) 
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The discretization of time derivative 
t

 is similar as for the spatial discretization. The time 

discretization based on the backward difference is shown in Eq.(3.8). n indicates the time 
level with known information n . However, information from time level 1n and greater is 
not available because time proceeds only in positive direction. This discretization is called 
as backward Euler method or implicit Euler method, which is unconditionally stable 
(Atkinson, 1989).  

tx

nn 1

      (3.8) 

The basis for the finite difference method is the construction of a discrete grid, the 
replacement of the continuous derivatives in the partial differential equations with 
equivalent finite difference expressions and the rearrangement of the resulting algebraic 
equation into an algorithm (Fletcher, 1991). A flowchart describing the implementation 
steps of the finite difference method is: 

FOR EACH INTERIOR GRID
POINT (j,n) EVALUARE
ALGORITHM TO GIVE ψ jn+1

tn+1 = tn + ∆t

FINAL
TIME

REACHED

ADJUST (IF NECESSARY)
BOUNDARY VALUES ψ  in+1AND
ψ jn+1

SOLUTION

SOLUTION PROCESS

SET UP GRID
INITIALISE

DEPENDENT
VARIABLES

CONSTRUCT FINITE
DIFFERENCE ANALOGUE OF

P.D.E. AND B.C.s

yes

no

 

Figure 3.2 Schematic of the finite difference solution process (Fletcher, 1991) 

In practical implementation of the finite difference method, very often only the spatial term 
in the partial differential equation is discretized. By doing so, the governing partial 
differential equations are reduced to a system of ordinary differential equations at the 
nodal points. This system can be considered as a semi-discrete form, or known as the 
method of lines. With the development of a number of techniques that are used for the 
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systems of ordinary differential equations, the method of lines becomes very attractive 
because the techniques can be applied conveniently to solve the semi-discrete form of the 
partial differential equations (Schiesser & Griffiths, 2009).  

3.3 Finite Volume Methods 

Finite volume methods, or named as control volume methods have recently attracted great 
attention and been developed to a high level mainly for computational fluid dynamics 
applications. The features of fluid dynamics problems include complex geometries with two 
and three dimensions, which can be adopted and solved conveniently by the finite volume 
methods.  

The basic idea of the finite volume method is to divide the computational domain into a 
number of control volumes; volume integral is applied to the governing equations in order 
to obtain a group of discretized functions. This basic idea differs the finite volume method 
from other discretization methods. After the discretization process on the continuous 
computational domain is completed, four geometric conditions can be obtained as: 

1) Node point: is the geometric location of the unknown variable, representing the 
according control volume. 

2) Control volume: is the integration domain for the governing equations. 
3) Face of control volume: regulates the separating surfaces between control volumes. 
4) Grid lines: is to connect the two node points in neighbor. 

One-dimensional example of computational grids for finite volume method is shown in 
Figure 3.3.  

 

Ci fi-1/2 fi+1/2 Ci-1  Ci+1 Ci-2  Ci+1 fi-3/2 fi+3/2 

Face of control
volume

Node point Grid line

Control volume

Flow direction

 

Figure 3.3 The computational grids of one-dimensional problem for finite volume method  
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In order to discretize the continuous governing equations, the discretization schemes are 
critical for implementation of the finite volume method. This indicates that the main 
problem of the finite volume method is the interpolation of the function values at the 
surface of the control volumes, because the solution is only available at the node points. 
Several commonly used discretized schemes are introduced below and their features are 
discussed. A simple and illustrative one-dimensional mass conservative model in Eq.(3.9) 
is selected to present different discretization schemes.  

0
x
cu

t
c

      (3.9) 

This model describes a plug flow column. The outflow curve is monitored at the end of the 
column and is a function of time. This is an important and typical practice in chemical 
engineering, e.g. chromatographic and extraction columns which are discussed more in 
detail in publications [1] and [4]. In this example, a constant concentration pulse 

lmolc /0.1 is introduced into the column. The column length is 1.0 meter. The flow rate 
in the column is 1.0 m/s. With these conditions, the analytical solution of the model is as in 
Figure 3.4. 

 

 

Figure 3.4 The analytical solution of the model in Eq.(3.9).  

To solve the model in Eq.(3.9) with finite volume method, a number of discretization 
schemes are applied as presented below. Noticeably here, we select to use the method of 
lines, leaving the time variable continuous, and consider only the spatial discretization. The 
discretization form or partial discretization form of the model is: 

i
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                            (3.10) 
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f indicates the flux between different control volumes as in Figure 3.3. Different 
expressions of the flux represent different discretization schemes.  

1) First order upwind scheme 

The first order upwind scheme simply assumes that the value of the variables at the 
boundary equals to the value at the center of the control volume in upstream as (Hirsch, 
1990): 

ii Cf
2
1                                                        (3.11) 

As a low order method, the first order upwind scheme is stable and provides rational 
solutions in all conditions. Due to this reason, the scheme has been utilized widely and for 
long period. However similar with other low order methods, heavy numerical diffusion as 
shown in Figure 3.5, is an unavoidable disadvantage of the scheme.  

2) Second order upwind scheme 

In contrast to the first order upwind scheme, the second order upwind scheme uses two 
neighboring node points in upstream to estimate the value of the variables at the boundary 
as (Hirsch, 1990): 

15.05.1
2
1 iii CCf                                (3.12) 

This is a second order scheme, classified already as a high order method. The accuracy of 
the solution is improved. Unfortunately the scheme generates numerical oscillations in the 
vicinity of steep gradients and discontinuities, explained by the Godunov's theorem 
(Wesseling, 2001) and shown in Figure 3.5. 

3) QUICK scheme  

QUICK scheme (Quadratic Upwind Interpolation of Convective Kinematics) is the 3rd order 
method. It considers three node points when estimating the value of the variables at the 
boundary as (Date, 2005): 

21 8
1

8
3

8
6

2
1 iiii CCCf                           (3.13) 

Similar with other high order methods, QUICK scheme generates also numerical 
oscillations as shown in Figure 3.5. 

4) ENO and WENO schemes                          

 In order to limit the numerical diffusion and oscillations to an accepted level, a number of 
methods have been developed such as high order method combined with flux limiters 
(Hirsch, 1990), and essentially non-oscillatory and weighted essentially non-oscillatory 
schemes (Harten et al., 1987). The idea behind these schemes is to simulate the smooth 
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curve with a high order scheme, but the shock curve with a low order scheme. However 
the disadvantage of application of flux limiters is that no particular flux limiter has been 
found to work well for all problems, and a particular choice is usually made on a trial and 
error basis (Sweby, 1984). 

In ENO and WENO schemes, how to judge the smoothness, discontinuity or shock of the 
stencil mathematically is of great importance (Harten et al., 1987). ENO scheme is to keep 
the smoother stencil, but discard the less smooth stencil. WENO is to keep both the 
smoother stencil and the less smooth stencil, but give them different weighting coefficients. 
Details of the ENO and WENO schemes can be found in (Harten et al., 1987; Liu et al., 
1994; Jiang & Shu, 1996). 

In Figure 3.5, 3rd order WENO is applied. It can be seen that the solution performance is 
improved in respect of the limitations of numerical diffusion and numerical oscillations, 
compared to other schemes. In addition, if higher order of WENO is used (e.g. 5th order 
WENO), the result is expected even better than the above 3rd order WENO, but with 
increased computational load. 

    

 

Figure 3.5 The simulation curves with first order upwind scheme, second order upwind 
scheme, QUICK and WENO. 

In respect of the discretization, the finite volume method can be understood as the 
intermediate between the finite difference method and the finite element method. Finite 
difference method considers the variable development on the node points, but not the 
change between the node points. Finite element method considers only the changes 
between the node points (Reddy, 2005). Finite volume method intends to determine the 
values of the variables on the node points, which is similar with the finite difference method. 
In the finite volume method distribution must be assumed between the node points, 
similarly to the finite element method. 
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Finite volume method is usually categorized as a weighted residual method because it is in 
principle identical with the subdomain method. In implementation, the finite volume method 
and the finite difference method are very similar. However, for complex geometries in 
computational fluid dynamics, the finite volume method is more suitable than the finite 
difference method. As well, the finite volume method has an additional advantage of 
discretizing directly the conservation form of the governing equations. This implies that the 
discretized equations preserve the conservations laws better compared to e.g. the finite 
difference method of which the conservations laws are satisfied only approximately with 
very dense grids. It is sometimes possible to discretize the fluxes at the boundaries of the 
control volume by the finite difference method. In this case, the method has often been 
referred to as conservative finite difference method (Samarskii, 2001). The specificity of 
the finite volume method with respect to the finite difference method is that the 
discretization is performed on the local balance equations, rather than the PDE; the fluxes 
on boundaries of the control volumes are discretized, rather than the continuous 
differential operator. 

3.4 Weighted Residual methods 

In this section, the weighted residual methods are introduced. In (Finlayson, 1980) and 
(Fletcher, 1991), detailed discussions of the weighted residual methods can be found. The 
fundamentals of the weighted residual methods is that an approximation solution is 
assumed in the form of Eq.(3.14): 

)()(),(
1

ztatz j

J

j
j                                 (3.14) 

)(ta j are the unknown coefficients and j are the known analytical functions or trial 

functions, which may be e.g. polynomials or trigonometric functions.  The number of the 
coefficients ja is the method order. Here 0F is the governing equation to be solved. If the 

approximation solution in Eq.(3.14) is used to replace the exact solution in the governing 
equation F , a residual appears as: 

RF )(                         (3.15) 

The residual R is also a continuous function of z and t as in Eq.(3.14). The residual R
approaches zero in the computational domain if the method order is sufficiently high and 
the unknown coefficients )(ta j are properly selected. The method to determine the values 

of )(ta j is to set the integral of the weighted residual in the computational domain as zero: 

0)()( dzzRzWm                        (3.16) 

Different formulations of the weighting function )(zW denote different approaches in the 
category of weighted residual methods, which are explained further in the following sub-
sections. 
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3.4.1 Subdomain method 

The weighting function in the subdomain method is expressed as: 

1mW in the computational subdomain 

0mW out of the computational subdomain 

According to the weighting functions in the computational subdomain, Eq.(3.16) becomes: 

b

a

dzzR 0)(                          (3.17) 

This is exactly identical to the finite volume method as mentioned previously. Therefore the 
finite volume method is usually grouped in the weighted residual methods.  

3.4.2 Least Squares Method 

The weighting function of the least squares method is: 

m
m a

RzW )(                         (3.18) 

Eq.(3.18) is equivalent to the requirement that dzzR )(2 is to be minimized. 

3.4.3 Collocation method 

The weighting function is )((z)Wm mzz , where is the Dirac delta function. is 

defined as =1 when z=zm; =0 when mzz . All the points at z=zm are called collocation 
points. At the collocation points, the residual R is forced to be zero. In case the collocation 
points are considered as the node points of the finite difference method, the collocation 
method without the use of an approximation solution becomes very similar with the finite 
difference method.  

In practical applications, the trial functions are usually or even exclusively selected as a 
series of orthogonal polynomials. The collocation points are the roots of an orthogonal 
polynomial, e.g. the roots of the Jacobi polynomial. It is then called as orthogonal 
collocation method, which is a particularly effective interpretation of the collocation method 
(Fletcher, 1991). The orthogonal collocation method is advantageous in implementation 
because it can be written in a compact matrix notation. The function values at the 
collocation points can be calculated conveniently. Special attention on the boundary 
condition is needed in implementation of the orthogonal collocation method because the 
boundary conditions are not automatically satisfied by the collocation equation. The 
solution is in fact straightforward that the collocation equations are written for the inner 
collocation points. The values of the two end points of the computational domain are 
solved to satisfy the boundary conditions, which is quite similar with the finite difference 



19 
 

method. To evaluate the performance of the collocation method in respect of 
computational accuracy, a rule of thumb is available (Rice & Do, 1995) as:  

“normal polynomials + arbitrary collocation points” < “normal polynomials + roots of 
orthogonal polynomials as collocation points” < “orthogonal polynomials + roots of 
orthogonal polynomials as collocation points” 

If the computational domain is divided into subdomains and the orthogonal collocation 
method is applied to each subdomain, then this method is called the orthogonal collocation 
method on finite elements. Orthogonal collocation and orthogonal collocation on finite 
element methods are attractive numerical tools for solving chemical engineering problems 
and have been widely used for decades. A number of the classical textbooks (Fletcher 
1991, Finlayson 1972, Finlayson 1980, Rice & Do, 1995, Villadsen & Michelsen, 1978) 
focusing on computational techniques discuss the methods extensively. The orthogonal 
collocation method is particularly effective on one-dimensional parabolic partial differential 
equations. The most common application of the method is in reaction and diffusion 
problems (Finlayson 1980). For example a chromatographic general rate model was 
solved by the orthogonal collocation on finite element method (Gu et al., 1990).  

3.4.4 Galerkin method 

The idea behind the Galerkin method is the weighting function must be selected in the way 
which is similar with the trial function as: 

)()( zzW mm                         (3.19) 

For example, if the trial functions form a complete set (for polynomials a complete set 
would be Jxxxxx ,...,,,,1 432 ), Eq.(3.16) indicates that the residual is orthogonal to every 
member or a complete set. Consequently when J tends to infinity, the approximating 
solution converges to the exact solution (Fletcher, 1991). 

The commonly used trial functions in the Galerkin method are linear or quadratic functions 
that are not zero in the computational domain. Figure 3.6 is a typical configuration of linear 
approximating functions.  
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Figure 3.6 One-dimensional linear approximating functions. The domain between 1jx and 

jx is element A; between jx and 1jx is element B.   

The Galerkin method is the foundation for a family of computational techniques called finite 
element methods (Fletcher, 1991), which emphasize the status of the Galerkin method. 

3.4.5 Moment method 

The moment method is one of the most important topics in this thesis. The key idea of the 
moment method is to follow the time evolution of the moments of the concentration profiles. 
Similar with the aforementioned methods in this section, the moment method can be 
introduced also with the notion of residuals. As can be seen in Section 4, the moment 
transformation procedure is presented based on the concept of residuals. Here instead, 
we introduce the moment method by the definition of moments. The j:th moment of a 
distribution is: 

 
1

0
)( dm j

j                        (3.20) 

The derivative of moment m with respect to the dimensionless time  is: 

1

0
)( d

d
dm jj

                           (3.21)

  

According to the Leibniz rule, the differential operator on the right hand side can be moved 
into the integral: 

1

0

)( d
d

dm jj
                                              (3.22) 

In the Publication [1-4], moment transformation of the model equations was carried out 
according to Eq.(3.22). The application details of the moment method will be introduced in 
more details in the following section. 
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4. Applications of the mass transfer and reaction models with the 
moment method  

The general formulations of the model and the procedures to utilize the moment method 
are introduced in the beginning of this section. Hereafter detailed presentation is carried 
out in accordance with the subject of individual publication embedded in this thesis.  

 

- One-dimensional mass transfer and reaction model 

The models applied in this thesis contain in general two phases, 1) the bulk fluid phase; 2) 
the particle phase describing stagnant liquid and solid material in the particle. The mass 
transfer processes considered in the models are: 1) diffusion in the particle phase, 2) film 
mass transfer between the particle phase and the bulk fluid phase, 3) axial dispersion and 
convection in the bulk phase. The reactions are described as the source terms of the 
model. The model formulations are presented below. 

Bulk fluid phase: 

reationb
bi

i
pb

RRpibibibibi CS
z
CD

R
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C p )(
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2
,       (4.1) 

Particle phase: 

reationp
pi

pip
pi CS

R
C

R
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D
t

C
)(1 2

2             (4.2)  

The first, second, third and fourth terms on the left hand side of Eq. (4.1) represent 
variation of bulk phase concentration against time, convection, mass transfer between the 
bulk and particle phases, and axial dispersion in the bulk phase, respectively. The first and 
second terms on the left hand side of Eq. (4.2) represent the variation of particle phase 
concentration against time, the diffusion in the particle phase. The terms on the right hand 
sides of Eq.(4.1) and (4.2) are the source terms. The models applied in Publications [1-4] 
and in this section are modified or extended from the model equations in Eq. (4.1) and 
(4.2). The initial and boundary conditions are presented subsequently when particular 
modeling cases are introduced. By introducing the dimensionless terms, Eq. (4.1) and (4.2) 
can be transformed into the dimensionless forms in Eq. (4.3) and (4.4). refC  equals to the 

reference concentration of the component in question. More details about the initial and 
boundary conditions, as well as the derivations of dimensionless models can be found in 
Publications [1-4]. 
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The dimensionless terms are: 
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Dimensionless forms of Eq. (4.1) and (4.2) are:  

Bulk phase: 
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Particle phase: 
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- Moment transformation 

The moment method has been applied throughout Publications [1-4]. Based on the 
definition of moments in Eq.(3.20)-(3.22), moment transformations of the model equations 
were already introduced in Publication [1]. We derive here again the moment 
transformation form from the notion of the weighted residual methods, because the 
moment method is one of the members of the weighted residual methods. To do so, it 
could be seen clearly that the objective of the moment method is to minimize the errors of 
the moments of the modeled concentration profiles. The particle phase model equation is 
used here as an example to demonstrate the procedure of the moment transformation. 
Similar procedure of the moment transformation for the bulk phase model can be found in 
(Roininen, 2010).  

Polynomial approximation as in Eq.(4.5), is used for the estimation of modeled 
particle-internal concentration profiles. Orthogonal polynomials that are functions of r2 

as (Finlayson, 1980) are selected since boundary condition ( ,0
dr
dc

at 0r ) requires 

that 1st order term is zero:  
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1
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When the particle-internal concentration profile is estimated by the polynomial 
approximation, the residual R appears as: 
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The coefficients )(iw  in Eq.(4.5) are determined by integrating the residual R over the 
computational domain as in Eq.(4.7) and setting this value to zero. Hence the errors of 

)(iw can be minimized.  

0),(11

0

2
2

1

0

rdrrs
r

r
rr

rdRr j
reactioni

pi
i

pij                       (4.7) 

As integration is a linear operation, each term can be integrated separately. Rearranging 
Eq.(4.7) gives: 
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The left hand side of Eq.(4.8) is the definition of j:th moment. Therefore Eq.(4.8) becomes: 

rdrrsrdr
r

r
rr

m j
reactioni

jpi
i

j
pi

1

0

1

0

2
2 ),(1

                       (4.9) 

By inserting the appropriate boundary conditions, the moment transformation form is: 
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The coefficients )(iw are directly related to the concentration profile moments based on a 
linear transformation as: 

)()( wAm                          (4.11) 

Where the elements of A are: 

,
12

1
, ji

A ij    11 ni , 11 nj                      (4.12) 

The weights )(iw  of Eq.(4.5) can be calculated from:  

)()( 1 mAw                         (4.13) 

Where 1A is the reverse matrix of A . 
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The transformation matrix depends only on selection of the polynomial and the number of 
moments. Thus the matrix for a selected polynomial does not depend on time related 
variables and can be constructed and inverted prior to the time integration of the model. 
This feature saves the CPU time considerably. Different polynomial trial functions and the 
according transformation matrixes were used throughout this study. Detailed introduction 
can be found in (Alopaeus, Laavi & Aittamaa, 2008) and Publication [1].  
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4.1 Moment method as a numerical tool for chromatographic general rate model 

Moment method is applied in Publication [1] to solve the chromatographic general rate 
model. The chromatographic general rate model is modified from the mass transfer and 
reaction model in Eq.(4.1) and (4.2). Since no reactions occur in the chromatographic 
processes, as a result the reaction term is typically removed in the chromatographic 
general rate model. In addition, equilibrium between the solid part of the chromatographic 
resin particle and the stagnant liquid confined in the particle needs to be considered. 
Therefore the particle phase is divided into two parts, the solid particle and the stagnant 
liquid. The dimensionless model formulations are: 

Bulk fluid phase: 
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Particle phase: 
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The first term on the right hand side of Eq.(4.1.1) is the variation of bulk phase 
concentration against time. The first, second and third terms on the left hand side of 
Eq.(4.1.1) describe convection, mass transfer between the bulk and particle phases, and 
axial dispersion in the bulk phase, respectively. The first and second terms on the left hand 
side of Eq. (4.1.2) represent the solid material and the stagnant liquid of particle phase. 
The term on the right hand side of Eq.(4.1.2) depicts the diffusion in the particle phase. 

The typical initial and boundary conditions for normal chromatographic operations: 

I.C. 0 , ),0(bibi ; ,,0 rpipi                     (4.1.3) 

B.C. ,0  )/)(( ,, irefifbii
bi CCPe ; ,1  0bi                     (4.1.4) 
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The initial conditions in Eq.(4.1.3) describe that no components exist in the bulk and 
particle phases at 0 . The first term of the bulk phase boundary conditions in Eq.(4.1.4) 
indicates that a rectangular concentration pulse with the height of ifC , , and the width of is 

introduced into the chromatographic column from its entrance ( 0 ). The second term of 
the particle phase boundary conditions in Eq.(4.1.5) depict  the mass transfer between the 
particle and the bulk phases at the particle boundaries ( 1r ). 
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4.1.1 Implementation procedure of the moment method 

The moment transformation for the bulk fluid phase is similar as in previous publications 
(Alopaeus, Laavi & Aittamaa, 2008; Roininen & Alopaeus, 2011). For the particle phase, 
the model equations are coupled by the competitive isotherms written as: 
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 where iisi bqA , , kkk CbB ,0                     (4.1.6) 

The moment transformation routine becomes different compared to solving the 
independent PDEs. The new moment transformation routine for the particle phase 
includes three steps: 1) the use of the new parameter G representing the average 

concentration in the particle phase; 2) the expression of 
d

d p , representing the 

concentration derivative in the stagnant liquid in the particle phase, are solved from 
algebraic function pairs; 3) the moment transformation is done based on the expression of 

d
d p  obtained from step 2). Detailed moment transformation forms for bulk fluid phase 

model and particle phase model can be found in Publication [1].  

The idea of the moment method is to follow the time evolution of the concentration profile 
moments. The implementation procedure of the moment method is: 1) the model 

expression of 
dt
dC is first transformed to 

dt
dm via moment transformation; 2) The ODEs 

dt
dm

are solved by the solver (LSODE) to obtain the values of moments; 3) The weights are 
calculated by linear transformation from the moments; 4) The concentration profiles are 
calculated by polynomial approximation. This calculation routine is presented in a concise 
form as: 

Cwm
dt
dm

dt
dC                       (4.1.7) 

The calculation routine mentioned above can be also modified as: 

Cw
dt
dw

dt
dm

dt
dC                       (4.1.8) 

This indicates that time derivative of the weights are used as the integrated variables 
instead of the moments. Time derivative of the weights is calculated by means of 

dt
dmA

dt
dw 1 . Based on this modified routine, the concentration can be calculated at each 

time step directly from the weights of the selected polynomial. This is faster than to 
calculate the concentration each time from moments to weights to concentration with the 

original routine. In this study, integration has been always implemented on 
dt
dw , not 

dt
dm in 
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order to decrease the computational load. The shortened CPU time is presented in Table 1 
of Publication [1] as an example. 

4.1.2 Numerical parameters of the moment method 

Two important ways can be applied to improve the accuracy of the moment method. One 
is to increase the degree of the polynomials which approximate the concentration profiles. 
The other is to divide the whole computational domain into a number of subdomains. In 
Publication [1], detailed discussions can be found for the effects of numerical parameters. 
In the works of Publication [1] and [2], the degree of the polynomials were third and 
second in the bulk phase and in the particle phase respectively. The whole computational 
domain in the bulk phase was divided into 12 subdomains. 

4.1.3 Algorithm verification and experimental simulations 

In order to verify the computational accuracy of the moment method, mass balance of the 
model is investigated first. In addition, the concentration profiles solved by the moment 
method are compared with an applicable analytical solution. In the end, the modeled 
profiles are compared with the measured results in order to verify the applicability of the 
moment method as well as the general rate model. 

- Mass balance verifications 

Mass balance investigation is an important and effective tool to discover implementation 
errors and to ensure the accuracy of the simulated results. In this work, comparison is 
made between the numerical area under the simulated profile and the theoretical mass 
input. A number of test cases are carried out to check the mass balance. In all the tests, 
the errors were below 0.3%.  More detailed results for mass balance check can be found 
in Table 1 of Publication [1].  

- Comparison with an analytical solution 

Comparison with an analytical solution is also an effective tool to verify the numerical 
solution method. However in this work, the general rate model and the competitive 
isotherms are complicated, its analytical solution is not available in literature. In a recent 
publication (Siitonen & Sainio, 2011), the explicit equations for the height and position of 
the first component shock for binary mixtures with competitive Langmuir isotherms under 
ideal conditions (no mass transfer resistance and no axial dispersion) were developed. 
Together with the previously published results of Golshan-Shirazi and Guiochon (Golshan-
Shirazi & Guiochon, 1989; Golshan-Shirazi & Guiochon, 1989), the analytical solution for 
the entire chromatographic outflow curves can be obtained. Our numerical solution is 
compared with the analytical solution as presented in Figure 4.1.1. The dimensionless 
isotherm parameters [A, B] for component 1 and 2 are [2.0, 0.2] and [2.5, 0.25] 
respectively as in Eq.(4.1.6). The dimensionless injection volume is 0.17 for both 
components. It can be seen that the numerical solution and the analytical solution are 
reasonably close to each other. Further, the retention times of the two shocks are correct. 
This result suggests that the moment method is implemented correctly. 
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Figure 4.1.1. Comparison between analytical solution (solid lines) under ideal condition 
and moment method numerical solution (dotted lines) with mass transfer resistance. The 
analytical solution of components 1 and 2 are shown respectively.  

- Simulation of benzalkonium chloride adsorption 

The comparison between the experimental and simulated results for the verification of the 
model and the numerical scheme is a common practice. The experiment of adsorptive 
removal of benzalkonium chloride from water in an adsorption column (Turku & Sainio, 
2009) is used for the purpose of verification in this work. The experiment was about the 
adsorption of C12 and C14 homologues of benzalkonium chloride from water. The bed 
porosity was εb=0.46. The particle porosity was εp=0.60. Effective particle radius was 0.53 
mm. Total feed concentration was 0.87 g/L. Feed composition was 60% C12 and 40% C14. 
Flow rate was 1.66×10−5 ms−1 or 2 BV/h. Column inner diameter was 1.6 cm. The bed 
volume was 6 ml. Detailed experimental parameters can be found in the reference (Turku 
& Sainio, 2009). 
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The applied nonlinear competitive Langmuir isotherm was: 

2,1,
1

2

1

, j
Cb

Cbq
q

k

L
kk

L
jjjs

j                                         (4.1.9) 

sq for C12 and C14 are 1.13 and 1.35 molL−1; b for C12 and C14 are 2381.2 and 4531.3L 
mol−1.  Other model parameters include: Axial dispersion coefficient is Dax = 5.4×10−8m2 
s−1 for all components; The liquid film mass transfer coefficient k=4.5×10−7 ms−1 is used for 
C12 and C14; The pore diffusion coefficients for C12 and C14 are 1.0×10−10 and 1.4×10−10 
m2 s−1 respectively. (Turku & Sainio, 2009) 

From modeling point of view, adsorption is identical with chromatography. Therefore the 
general rate model for chromatographic column introduced can be used directly to 
simulate the adsorption process. In the experiment, only the total concentration of C12 and 
C14 homologues was able to be measured (Turku & Sainio, 2009), thus the experimental 
(circles) and simulated (solild line) total concentrations were used for comparison in Figure 
4.1.2. Dashed lines represent the simulated outlet concentrations for the individual 
homologues. It can be seen that the simulated curve is in conformity with the measured 
result. The applicabilities of the moment method and the general rate model predict are 
verified. 

 

 

Figure 4.1.2.  Benzalkonium chloride experimental data (circles) and simulated curves 
(lines) 
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Worthwhile to mention, the moment method has been frequently verified with another 
numerical method, orthogonal collocation and finite element method during the 
development of the simulator, which was provided by Gu (Gu et al., 1990). Identical results 
were observed in all test cases from these two numerical methods. 

4.2 Estimation of chromatographic general rate model parameters with the moment 
analysis method 

In Publication [2], the moment values of the simulated chromatograms are applied for the 
estimation of the parameters in the chromatographic general rate model. The model 
applied in this work is identical with Publication [1], except the nonlinear Langmuir 

isotherm as 
b

b
rp b

a
11,  is used, instead of the nonlinear competitive isotherm. Three 

characteristic values of a curve are utilized in the parameter optimization process of this 
work. The values of the curve are the mean μ, the standard deviation σ and the skewness 

. These values are defined based on the first three moments of the curve, which are 
namely the first normalized moment, and second and third central moments. Definitions of 
the moments and the characteristic values are presented as below. 

The first normalized moment (M1), denoted also as , is the mean of the curve. For a 
chromatographic effluent curve, the discrete form of the first normalized moment is:   

k

i
ii

k

i
iii

ttC

tttC
M

1

1
1

)(

)(
                       (4.2.1) 

k is the total number of the experimental concentration points or the simulated 
concentration points. it  is the sampling time. it  is the time interval over which C is 
assumed to be )( itC . 

The discrete form of second central moment (M2) is: 
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))((
                      (4.2.2) 

Its square root is the standard deviation : 

2M                         (4.2.3) 

The discrete form of third central moment (M3) is: 
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                      (4.2.4) 

 

The skewness , defined based on the third moment and the standard deviation is: 

3
3M

                        (4.2.5) 

For chromatography, retention time (related to the first moment), physical dispersion 
(related to the second moment) and skewness (related to the third moment) are the three 
most relevant characteristic values of the in-column chromatogram. The implementation 
principle of the moment method is to minimize the errors of moments in the in-column 
chromatogram. This suggests naturally that the three characteristic values of the in-column 
chromatogram are estimated with minimized errors. Thus the estimations of retention time, 
physical dispersion and skewness of the simulated effluent curve are also expected to be 
with good accuracy. In Figure 4.2.1, the simulated in-column chromatogram and the 
simulated effluent curve are presented to clarify their difference. Due to this feature, the 
moment method is advantageous compared to other numerical schemes for 
chromatographic simulations. Also based on this feature, a number of parameters of the 
chromatographic model are optimized with the utilization of these three characteristic 
values of the effluent curve in this work.  

 

 

 

 

 

 

Figure 4.2.1. Graphic description of the simulated in-column chromatogram and effluent 
curve.  

 

In order to show quantitatively that the effluent curve moments are predicted with “good 
accuracy” by the moment method, we compared against the analytical solution of retention 
time and physical dispersion of the effluent curve (Miyabe, 2008). The error-in-%, when 
compared with the analytical solution, are approximately within %05.0 for retention time 
and %4.0 for physical dispersion. As mentioned in Section 4.1, the degrees of the 
approximating polynomials in the bulk phase and in the particle phase here are third and 

② chromatographic column ① 

①: in-column chromatogram 

flow direction in the column 

②: effluent curve 
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second, respectively. The whole computational domain in the bulk phase is divided into 12 
subdomains. It can be seen that satisfactory results are obtained with these rather low 
number of variables, although the errors could be reduced further by using higher number 
of variables. The parameters and results in detail can be found in the following Table 4.2.1.  

Table 4.2.1. Parameters and test results for comparison between the effluent curve 
moment values calculated analytically and the values by the moment method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three issues need to be emphasized here when compared with analytical solutions of the 
2 effluent curve moments.  

1) In this comparison, linear isotherm was applied. This is because only with the simple 
linear isotherm, the analytical solution is available. No analytical solution can be found in 
the literature if the complicated nonlinear isotherm is used. 

2) The model in Miyabe’s paper (Miyabe, 2008) is slightly different from the model we used 
in this work. Miyabe’s model intends to consider the effect of adsorption on the total mass 
transfer rate. But for our model the adsorption rate is infinitely fast because it is assumed 
that local equilibrium exists for each component between the pore surface and the 
stagnant fluid phase in the macro pores. Thus the adsorption term in Miyabe’s model is 
removed when calculating the analytical solutions of the moment values, in order that our 
numerical solutions are comparable with the analytical solutions. 

test No. 1 2 3 4 5 6 
sample size(m3) 0.01 0.01 0.01 0.01 0.01 0.01 
flow vol (m3/s) 8.0x10-6 8.0x10-6 8.0x10-6 8.0x10-6 8.0x10-6 8.0x10-6 
diameter (m) 0.225 0.225 0.225 0.225 0.225 0.225 
column length(m) 5.0 5.0 5.0 5.0 5.0 5.0 
bed porosity 0.34 0.34 0.34 0.34 0.4 0.4 
particle porosity 0.4 0.4 0.4 0.4 0.6 0.6 
Dax (m2/s) 7.0x10-6 6.0x10-6 6.0x10-6 7.0x10-6 8.0x10-6 8.0x10-6 
Dp (m2/s) 5.0x10-9 6.0x10-9 7.0x10-9 5.2x10-9 9.0x10-9 9.5x10-9 
k (m/s) 1.8x10-5 1.8x10-5 1.8x10-5 1.8x10-5 1.8x10-5 1.8x10-5 
Rp (m) 1.65x10-4 1.65x10-4 1.65x10-4 1.65x10-4 1.65x10-4 1.65x10-4 
C0 (mol/l) 0.1 0.1 0.2 0.2 0.1 0.2 
equilirium constant 1.08 1.1 1.2 1.24 1.3 1.5 

retention time 
analytical solution 26262.75 26459.56 27443.64 27837.27 27264.72 28457.54 
moment method 26273.56 26472.86 27455.98 27843.40 27259.19 28464.21 
error 0.04% 0.05% 0.04% 0.02% -0.02% 0.02% 

physical dispersion 
analytical solution 3363379 2960785 3183555 3780106 4858247 5302706 
moment method 3372687 2970275 3191491 3790052 4839065 5283989 
error 0.28% 0.32% 0.25% 0.26% -0.39% -0.35% 
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3) The analytical solution of the skewness (related to 3rd moment) is not available in open 
literatures. We cannot compare it in the same way as the retention time and physical 
dispersion. In this work, the skewness is used in the objective function for parameter fitting 
against the experimental data. The curves produced with the fitted parameters are very 
close to the experimental data with certain skewness. This indicates that the skewness 
can also be estimated by the moment method with good accuracy. 

In this work, the unknown parameters are regressed against the experimental data (Saari 
et al., 55, 2010), in which the effluent curves of the chromatographic separation for 
glucose and galactose were measured. The fitting procedure optimizes the values of the 
model parameters by minimizing the residual sum of squares between experimental and 
simulated values for each set of single solute data in the effluent curves. The fitted 
parameters include pore diffusion coefficient pD ; isotherm parameter a and b for nonlinear 

Langmuir isotherm
b

b
rp b

a
11, . Other simulation parameters and the starting values of 

pore diffusion coefficients are estimated by the empirical formulations in literature (Chung 
and Wen, 1968; Mackie et al., 1955; Wilson et al., 1966). The starting values of the 
isotherm a and b are estimated from the experimental data.  

Two objective functions were used in the fitting as in Eq.(4.2.5) and (4.2.6). The fitting 
made with Eq.(4.2.5) is called “moment fitting” which is to minimize the errors between the 
moments of the modeled curves and the moments of experimental data.  

2

3

2

2

2

1
E

ES

E

ES

E

ES wwwresidual                     (4.2.5) 

Where w  is the weighting factor of each term; Subscript “S” represents the simulated 
curve and “E” represents the experimental curve.  

The fitting by the objective function in Eq.(4.2.6) is called “concentration fitting”, which 
focuses on the error minimization on each individual measured concentration point against 
the simulated values. 

n

i
ii tytfresidual

1

2)()(                       (4.2.6) 

Where )(tyi is the concentration value (g/100ml) for one component at ith measurement 

point (at time t) measured in the experiment; )(tf i is the concentration value (g/100ml) for 
one component estimated by the model (also at time t); t is time (s) for different 
measurement points; n  is total measurement points in the experiment. 

Three simulation cases and the used parameters were presented in Table 4.2.2 and 
Figure 4.2.2 (from Publication [2]). In Case A, all the parameters were calculated from 
empirical formulations. Deviation exists between the simulated profiles and the measured 
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curves as shown in Figure 4.2.2. In Case B, the “moment fitting” was used to determine 
the pore diffusion coefficient pD  and isotherm parameters a and b. The conformity 

between the modeled and measured curves is high as shown in Figure 4.2.2, B. In Case C, 
the “concentration fitting” was used instead to fit the pore diffusion coefficient pD  and 

isotherm parameter a and b. The modeled and measured curves are in good conformity as 
shown in Figure 4.2.2, C. It can be seen in Table 4.2.2 that the CPU time consumed for 
the “moment fitting” is considerably shorter than “concentration fitting”. We also noticed 
that for “concentration fitting”, the fitting is very sensitive to the selection of the initial 
values of the fitted parameters. It means that when the initial values are not reasonably 
close to the target values, the fitting process may fail. But for “moment fitting”, this does 
not appear to be a problem and the parameters still can be optimized successfully. This 
feature of the “moment fitting” can be considered as an advantage over the “concentration 
fitting”. 

The merits of the moment analysis method in this study against the analytical solution of 
the moments include: 1) the moment values of the chromatograms can be calculated for 
more complicated isotherms, e.g. nonlinear competitive isotherms. For the moment values 
obtained by the analytical solutions, only the simple linear isotherm can be applied; 2) 
higher order moment values with good accuracy can be calculated from the simulated 
chromatograms. However, the analytical expressions are available for the first and second 
moments only, not for higher order moment values. 
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Figure 4.2.2. Glucose and galactose simulated effluent curves (lines) and experimental 
data (symbols). A: simulation before parameter fitting; B: simulation after moment fitting; C: 
simulation after concentration fitting 
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4.3 Modeling of mass transfer and reactions in anisotropic biomass particles  

In Publication [3], the aim is to reduce the heavy computational load when the 
concentration profiles are solved inside anisotropic biomass particles. In this study, the 
rectangular wood chips are selected to represent biomass particles. The reasons for this 
selection are: 1) the wood chips, are very widely used as the raw material in different fields 
e.g. kraft pulping, biorefinery etc; 2) the kinetic models of wood chips are comparatively 
well developed. As shown in Figure 4.3.1, wood chips are usually immersed in water 
solution during the industrial processes, e.g. pulping, biorefinery etc, the mass transfer and 
reactions in the wood chips are considered and modeled in water phase. 

X
Z

Y

wood chip

water

 

Figure 4.3.1. Illustrative picture of the wood chip in water. X,Y,and Z are the dimensions of 
the wood chip. 

Due to the anisotropic properties of the wood chips, usually three dimensional (3D) models 
have been applied in order to consider the mass transfer phenomena accurately (Jutila, 
1980; Grénman et al., 2010). The computational time to solve the complicated 3D models 
usually can be considerably long, especially if these are used with unit operation models. 
In this work, firstly we reduce the rigorous 3D model to one-dimensional (1D) model by 
introducing the geometrical shape parameter, which describes the rectangular shape of 
the wood chips. Secondly the high order moment method, instead of the conventionally 
used low order finite different method, is used in order to decrease further the number of 
variables with reduced computational load. 

Three different models are utilized to describe the mass transfer and reactions in the 
anisotropic wood chips as: 1) the rigorous 3D model, considering different mass transfer 
resistance in all three directions; 2) the homogeneously mixed chip model (HMC model), in 
which the concentration profiles inside the particle are ignored, suggesting that the phase 
inside the particle is homogeneously mixed and all the mass transfer resistances are 
lumped into the film on the particle surface; 3) the 1D model as a reduced form of the 3D 
model, which is the main study objective in this work. The formulations of the three models 
are presented as below. 
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4.3.1 3D particle phase model 
 
The 3D model accounts for different mass transfer resistance in all three dimensions. 
 
The model of the wood chip phase is: 

r
i

z
i

y
i

xi
i S
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2
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2
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'                      (4.3.1) 

The boundary conditions at the center of the chip as Eq.(4.3.2) and at the surface of the chip as 
Eq.(4.3.3) are: 
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Where iD is the diffusion coefficient in water; 'E is the Effective Capillary Cross Sectional 

Area for different directions as: 

yzp

yz
xE ' , 

xzp

xz
yE ' , 

xyp

xy
zE '                          (4.3.4) 

In all the models of this study, rS represents the reaction term PWC with the reaction 
rate law wcrr CCKS . C  represents the inorganic reactant, e.g. alkali; W  represents the 
lignin existing in the wood chips; P  represents the product of the reaction, e.g. the 
dissolved lignin. 

 

4.3.2 HMC particle phase model 
 
In the Homogeneously Mixed Chip phase model (HMC), the concentration profiles inside 
the particle are ignored. This indicates that the phase inside the particle is assumed to be 
homogenously mixed and all the mass transfer resistances are lumped into the film on the 
particle surface. The HMC model formulation is: 
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,,,               (4.3.5) 
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where xyk , xzk , yzk are the lumped mass transfer resistance coefficients in three directions 

of the wood chip; xyA , xzA , yzA are the areas at different directions; xy , xz , yz are the 

porosity at different directions; bC is the bulk phase concentration. 

 

4.3.3 1D particle phase model 
 
The 1D model is a dimensional reduction of the 3D model with the formulation as: 
 

r
iii S
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RR

D
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C 1                                         (4.3.6) 

The initial and boundary conditions as: 

0t ,  C C C WPCC ; 0R , 0
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, ;                      (4.3.7)                 

Where is the particle tortuosity; R  is the particle characteristic dimension;  is the 
geometrical shape parameter which is defined as (Burghardt and Kubaczka, 1996): 

1L
V
A

                       (4.3.8)

  

A is the computational surface area of the particle and V is the computational volume of 
the particle. L  equals to the smallest dimension of the wood chip divided by two. With 
proper choice for Ω, the equation can be used for slab (Ω = 0), cylinder (Ω = 1), and sphere (Ω = 2). 
Detailed discussion about the geometrical shape parameter  can be found in Publication 
[3]. 

 
In this work the simulation profiles of the 3D model solved by the finite difference method 
are used as the reference, which are compared with the profiles of the HMC model and 1D 
model solved by the finite difference method or moment method. In the implementation to 
solve the 3D model, the concentration profiles of 1/8 of a rectangular wood chip are solved. 
The complete profile in the whole wood chip is obtained by the symmetric feature of the 
rectangular chip. The 3D model is solved by the finite difference method with nine grid 
points in each direction. As a result, the total number of grid points used to solve the model 
is 9 × 9 × 9. In the HMC model, only one variable is solved because the concentration 
inside the particle is considered uniform. In the 1D model by the finite difference method, 9 
grid points are selected to guarantee the computational accuracy. To solve the 1D model 
with the moment method, for each component, 0th, 1st, and 2nd moment are conserved 
resulting in 3 variables. The polynomial functions selected is identical as Eq.(4.5). Detailed 
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discussion of the moment method to solve the 1D model can be found in Publication [3]. 
For 3D model and 1D model, the concentration profiles presented in the following figures 
are the average values calculated from the modeled concentration profiles. For HMC 
model, the concentration profile is directly the solved variable. 
 
It can be seen in Figure 4.3.2 that the simulation profiles of HMC model are different from 
the 3D model. This indicates that ignoring the concentration profiles inside the chips may 
result in serious errors in the predicted compositions. In Figure 4.3.3, the simulated profiles 
of the 1D model solved by the finite difference method are in good conformity with the 3D 
model. Similarly the 1D model solved by the moment method provides also satisfactory 
consistency against the 3D model as in Figure 4.3.3. This suggests that the slightly 
compromised accuracy in 1D models results from the geometric assumption, not from 
various numerical methods. In Table 4.3.1, it can be seen clearly that the number of 
variables in the 3D model decreases dramatically in the 1D model solved by the finite 
difference method. The number of variables decreases further when the 1D model is 
solved by the moment method. This indicates that the 3D model is very time consuming to 
be solved. The high order moment method reaches similar accuracy with less number of 
variables and reduced computational load, compared to the low order finite difference 
method. 
 

   
 
Figure 4.3.2. Average concentrations as a function of time in the particle phase. Dashed 
lines are the Homogeneously Mixed Chip phase model (HMC). Solid lines are the 3-D 
model with the finite difference method (3D_FD). 
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Figure 4.3.3. Average concentrations as a function of time in the particle phase. Dashed 
lines are the 1-D model solved with the finite difference method (1D_FD). Solid lines are 
the 3-D model with the finite difference method (3D_FD). 

 
 
Figure 4.3.4. Average concentrations as a function of time in the particle phase. Dashed 
lines are the 1-D model with the moment method (1D_MM). Solid lines are the 3-D model 
with the finite difference method (3D_FD). 
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Table 4.3.1. Performance of various models and numerical schemes. Dev is the average 
quantitative deviation from the 3-D model; A-re and H-re are the average relative error and 
the highest relative error of individual point.  
 

 
*The computer applied in this study is with Intel® Xeon® CPU E31230 @ 3.20GHz. Detailed definitions of 
Dev, A-re and H-re can be found in Publication [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model numerical method accuracy variables CPU time(s) Dev A-re H-re 
3-D model Finite Difference Method - 9x9x9 96.1 - - - 
HMC model - Bad 1 0.04 1.37x10-1 3.0-40.0% 50.0% 
1-D model Finite Difference Method Satisfatory 9 2.4 7.87x10-3 3.0% 5.6% 
1-D model Moment Method Satisfatory 3 0.3 8.29x10-3 3.0% 6.0% 
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4.4 Modeling of mass transfer and degradation of hemicelluloses in flow-through 
hot water extraction 

One important objective of hot water extraction process is to separate hemicelluloses from 
wood. The topic of Publication [4] is to present a model which simulates the average 
molecular weights and the outflow mass of the extracts in flow-through hot water extraction 
process. Three phases and four mass transfer phenomena are considered in this model. 
Three phases are: 1) bulk liquid phase, 2) stagnant liquid phase in the voids of the wood 
particles, and 3) the solid wood particle phase. Four mass transfer phenomena are: 1) 
dissolution of the polymers from the solid wood particle phase, 2) diffusion of the polymers 
in the stagnant liquid phase, 3) film mass transfer between the stagnant liquid phase and 
the bulk liquid phase, 4) axial dispersion of the polymers in the bulk phase. The model is 
modified and extended from the one-dimensional mass transfer and reaction model of 
Eq.(4.1) and (4.2). Because the hemicellulose polymers dissolute from the solid wood 
particle to the stagnant liquid confined in the pores of wood particles, the particle phase 
model in Eq.(4.2) is reformulated into two phase equations, namely stagnant liquid phase 
and solid wood particle phase. By doing so, mass transfer between the two phases can be 
described appropriately. In addition, degradation of the hemicellulose polymers is 
described by the discretized population balances, which simulate the changes of the 
molecular weight distribution during the extraction. The model governing equations with 
the initial and boundary conditions are: 

Bulk phase: 
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Stagnant liquid phase: 
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Solid wood particle phase: 
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                     (4.4.3) 

The reaction term or source term reationztS ),(  in Eq.(4.1) and (4.2) is replaced by the 

discretized population balance term bii

NC

j
bjjiji CLgCLgLLL )()(),(

1
, to describe the 

degradation of polymers. The term s
pidiCk in Eq.(4.4.2) and (4.4.3) is for the dissolution of 

polymers from the solid wood particle phase to the stagnant liquid phase. 
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Initial and boundary conditions of Eq. (4.4.1)-(4.4.3) are:   
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                   (4.4.6) 

The initial condition of Eq.(4.4.4) describes that at 0t , the hemicellulose polymers exist 
only in the solid wood particle phase. The concentration of hemicellulose polymers is zero 
in bulk phase and stagnant liquid phase.  

Discretized population balance notion (Alopaeus et al., 2006) is applied in the model of this 
study. This results in a high number of variables to be solved because the hemicellulose 
polymers in the model are divided into approximately 20 categories based on the polymer 
chain length, which indicates 20 ODEs need to be solved. The moment method is used to 
solve the model of this work. Similar as any high order methods, the moment method is 
capable to reach expected accuracy with less number of variables (approximately 102-103 
variables with the moment method in this work), resulting in faster computational speed 
than those low order methods. This is especially beneficial in this work because the 
number of integrated ODEs can reach to the range of 103-104 if low order method is 
applied. In addition, the mass balance error is limited into a satisfactory scope in all cases 
of this study (<0.2%), as one advantage of the moment method.  

In this study, the model parameters are estimated by three methods. Some of model 
parameters are directly from the experimental setup (Leppänen et al., 2011), such as the 
extraction chamber dimensions, water flow speed, wood meal particle size, extraction 
temperatures etc. Secondly some parameters are estimated based on the published 
literature, such as wood particle porosity (Robertsen, 1993), Effective Capillary Cross 
Sectional Area (Törnqvist et al., 2001), pore diffusion coefficient (Reid, 1987), external film 
mass transfer coefficient (Wilson, 1966), axial dispersion coefficient (Chung and Wen, 
1968), degradation rate (Visuri et al., 2012; Mittal et al., 2009), initial hemicellulose 
molecular weight distribution (Willför et al., 2003; Zhang et al., 2013) etc. Because the 
dissolution rates of the hemicelluloses in this work are not available in open literature, 
hence unknown parameters are fitted against experimental data. Two different schemes to 
model the dissolution rates are tested in this study: 

Scheme 1:  
 

DP
ebk

trRTb

d

/
1

2

                       (4.4.7) 
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Scheme 2:  
 

trRTb
d ebk /

1
2                        (4.4.8) 

 

Where 1b and 2b are the two unknown parameters to fitted. DP is the Degree of 
Polymerization.  

trT is the transposed temperature calculated as (Visuri et al. 2012): 
 

avetr TTT
111                       (4.4.9) 

 
Where aveT is the average temperature of the experiments, T is the measured temperature 
in the experiments. trT  is used in order to reduce excessive  parameter cross-correlation 
during the parameter optimization (Rose 1981). 
 

In addition, the degradation rates estimated by the empirical formulations provide relatively 
inaccurate simulation results compared to the experiments. Also according to the 
parameter sensitivity study in Publication [4], the degradation rate exerts considerable 
influence on the simulation results. Therefore, the values of degradation rate are also fitted 
against the experimental measurement results as Eq. (4.4.10).  

g trRTbeb /
3

4                                                           (4.4.10) 

Where “g” is the degradation rate for individual bond. All bonds in a polymer, connecting the 
monomeric units, degrade at an equal degradation rate due to the assumption of random 
scission. 3b  and 4b are the two unknown parameters to fitted. More detailed discussions of 
the estimation of parameters can be found in Publication [4]. 

In this study, our major objective is to simulate the average molecular weights (AMWs) in 
the extracts and compare to the measured results. In Figure 4.4.1, the dissolution rates at 
different temperatures are fitted against the measured out flow mass in the extracts 
(Leppänen et al., 2011). All the other parameters are estimated based on the published 
literature data. It can be seen that the deviations between the simulated and measured 
results are large.  
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Figure. 4.4.1. Average molecular weights of hemicelluloses in water extracts, experimental 
data  and simulation results. Only the dissolution rate model parameters were fitted.  
 

In Figure 4.4.2, the dissolution rates and the degradation rates at different temperatures 
are fitted against the measured out flow mass and the measured AMWs in the extracts 
respectively. Good conformity is obtained between the simulated and measured results.   
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Figure. 4.4.2. Average molecular weights of hemicelluloses in water extracts, experimental 
data and simulation results. The dissolution rates and degradation rates were fitted.  
 
The high performance size exclusion chromatography with multi-angle laser light 
scattering detection method (HP-SEC_MALLS) was used to determine the average 
molecular weights in the experiment (Leppänen et al., 2011), in which the small polymers 
might be overlooked during the measurement of AMWs of extracts, resulting in higher 
measured AMW values. This issue is only suspected by the experimentalists without 
confirmative evidences. To investigate it, we intentionally neglected those categories with 
smaller molecular masses (< 1kDa, <2kDa, <5kDa) in the outflow curves when calculating 
the simulated results of AMWs. From Figure 4.4.3, it can be seen that the simulated 
AMWs at low temperatures (170°C-200°C), are not affected much when ignoring the 
contributions of the smaller polymers. But the simulated AMWs increase clearly when the 
smaller polymers are excluded at higher temperatures (220°C, 240°C). The reason is that 
the faction of the smaller polymers in the extracts becomes considerable due to the larger 
degradation rates at higher temperatures. On the other hand, the conformity between the 
predicted and measured AMWs becomes quite satisfactory, e.g. in case when the 
polymers <5 kDa in the extracts are ignored for the simulation of AMWs, especially at 
higher temperatures. Based on the modeling results above, we have the reason to 
speculate that the measurement of AMWs of extracts might be inaccurate due to the 
unexpected ignorance on the molecular with smaller molecular masses. 
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Figure. 4.4.3 Average molecular weights of hemicelluloses in water extracts, experimental 
and simulation results. Smaller polymers (<1kDa, <2kDa and <5kDa) are not considered in 
the simulation results. The dissolution rates and degradation rates were fitted. 
 

Except the simulation of the AMWs in the extracts, the model developed in this study is 
able to predict the outflow mass from the extraction process. As shown in Figure 4.4.4, the 
simulated monosaccharides at different temperatures are compared with the measured 
results, which show satisfactory conformity. 

 
Figure 4.4.4. Simulated and measured amounts of monosaccharides of GGM and xylan  
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5. Conclusion 

In this thesis, several applications of the moment method are presented and discussed.   
The application to solve the chromatographic general rate model suggests that the 
moment method is an efficient numerical tool which can be utilized to the chromatographic 
model, as well as to other similar models such as turbulent reactors, packed column etc.  

One feature of the moment method is to minimize the errors of moments in the 
chromatogram. This suggests that the three characteristic values of the chromatogram, 
namely the retention time (related to 1st normalized moment), physical dispersion (related 
2nd central moments) and skewness (related 3rd central moments) of the simulated effluent 
curve, are estimated with minimized errors. According to this, a number of parameters of 
the chromatographic model are optimized successfully with the utilization of these three 
characteristic values of the simulated effluent curves.  

Similar with other high order methods, the moment method is capable to reach a desired 
accuracy with decreased number of variables and reduced computational load. Based on 
this nature, the moment method is used instead of the low order finite difference method in 
the case when the concentration profiles in the anisotropic biomass particle are modeled. 
The number of variables is decreased and the computational load is reduced significantly.  

In the study of modeling the concentration profiles of hemicelluloses in the flow-through 
hot water extraction process, the number of coupled ODEs is unavoidably large. The 
advantage of the moment method appears again since the ODEs can be solved with 
limited computational time. 

The goal of this PhD study is to utilize the moment method as a general solution method or 
numerical tool in practically applicable simulator or chemical engineering design tool. Gu 
(Gu et al., 1993) used the orthogonal collocation and finite element methods as the 
numerical tool in the solution of the chromatographic general rate model and 
commercialized the simulator in the 90s’ of last century. The future work might focus on 
the development and applications of the moment method in the industrial simulators and 
other commercial design tools.  
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Symbols 

[A] [-]   linear operator between polynomial coefficients and distribution moments 

Axy [m2]   surface area of coordinate x and y 

Axz [m2]   surface area of coordinate x and z 

Ayz [m2]   surface area of coordinate y and z 

Aα [m2]   surface area of the particle 

a [-]      constant in Langmuir isotherm  

Bi [-]    Biot number, 
PP

P

D
kR

  

b [-]      constant in Langmuir isotherm  

b1 [-]    unknown parameter in dissolution rate models 

b2 [-]    unknown parameter in dissolution rate models 

b3 [-]    unknown parameter in degradation rate model 

b4 [-]    unknown parameter in degradation rate model 

C [mol L-3]      concentration  

Cb [mol L-3]      bulk phase concentration  

Cf [mol L-3]      feed concentration profile, a time dependent variable 

Cref                  [mol L-3]   concentration used for nondimensionalization in chromatographic models 

Cp [mol L-3]      concentration in stagnant fluid phase inside the particle macropores  

s
pC  [mol L-3]      concentration in the solid phase of particle  

C0 [mol L-3]      concentration used for nondimensionalization in isotherms 

D [m2 s-1]       axial dispersion coefficient  

D [m2 s-1]       diffusion coefficient in water 

Dp [m2 s-1]       pore diffusion coefficient  

DP [-]      degree of polymerization 

'
xE  [-]      effective capillary cross sectional area at x coordinate 

'
yE   [-]      effective capillary cross sectional area at y coordinate 

'
zE  [-]      effective capillary cross sectional area at z coordinate 

)(Lg  [s-1]      degradation rate of polymers with a size L 

j [molm-2 s-1]       diffusion flux  
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Kr [m3 mol-1s-1]      reaction rate constant 

k [m s-1]      film mass transfer coefficient 

k [-]        moment number 

k [J/K]        Boltzmann constant  

cmk  [m s-1]      convection mass transfer coefficient 

kd [s-1]      dissolution rate 

kxy [m s-1]      lumped external film diffusion coefficient at the area of coordinate x and y 

kxz [m s-1]      lumped external film diffusion coefficient at the area of coordinate x and z 

kyz [m s-1]      lumped external film diffusion coefficient at the area of coordinate y and z 

L [m]      separation column length 

L [m]      particle characteristic dimension 

M [-]      moment of a chromatogram 

m [-]      moment of a distribution 

M [mol]      the number of moles 

n [-]      order of the profile polynomial  

Pe [-]      Péclet number, 
D
uL

 

R [m]      spherical particle coordinate  

R [-]      residual  

RP [m]      spherical particle radius 

r [-]      dimensionless spherical particle coordinate 

r [mol m-3s-1]      reaction rate 

S [kg m-3s-1]      dimensional source term 

s [-]      dimensionless source term 

T [K]      temperature 

t [s]      time 

u [m s-1]     molar average velocity  

Vα [m3]       volume of the particle 

bAV  [m3]       molecular volume 

w            [-]          weights, combined with basis functions to approximate the concentration profile 

w            [-]       coefficients in the approximation function; weighting factor in the objective function 
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X [m]        wood chip length of x coordinate 

Y [m]        wood chip length of y coordinate 

Z [m]        wood chip length of z coordinate 

z [m]      axial coordinate  

Greek symbols 

 [-]      dimensionless time 

  [-]      angle of position in spherical coordinate 

  [-]      colatitude in spherical coordinate 

η [-]      dimensionless constant, 
uR
LD

P

PP
2  

),( ji LL  [-]      daughter size distribution for the breakage of larger polymers jL forming smaller  

          iL sized polymers 

iji LLL ),(  [-]     contribution of breakage from category j into category i 

L  [-]     size of a category 

xy  [-]     porosity at the area of coordinate x and y 

xz  [-]     porosity at the area of coordinate x and z 

yz  [-]     porosity at the area of coordinate y and z 

b  [-]      bed porosity 

p  [-]      particle porosity 

b  [-]      dimensionless bulk phase concentration 

p  [-]      dimensionless concentration in particle macropore phase  

s
p  [-]      dimensionless concentration in particle solid phase 

 [-]      dimensionless constant, 
b

bBi )1(3
  

 [-]      dimensionless axial coordinate 

 [-]       mean of the effluent curve 
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 [cP]       dynamic viscosity  

 [-]       standard deviation of the effluent curve 

 [-]       skewness of the effluent curve 

 [-]       particle tortuosity 

 [-]      geometrical shape parameter 

j  [mol m-2s-1]      flux 

 [-]        Associative factor of solvant 

Subscripts and superscripts 

0 initial value, boundary value 

b bulk phase 

i index 

j index or jth moment 

k index 

NC total number of categories 

p pore phase in particle 

ref reference value 

s stationary phase in particle 
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